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Automorphism groups of universal diversities

Andreas Hallbäck∗†

28. august 2020

Abstract

We prove that the automorphism group of the Urysohn diversity is a
universal Polish group. Furthermore we show that the automorphism
group of the rational Urysohn diversity has ample generics, a dense
conjugacy class and that it embeds densely into the automorphism
group of the (full) Urysohn diversity. It follows that this latter group
also has a dense conjugacy class.

Keywords: Diversities, Polish groups, Fraïssé structures, ample
generics, universality, dense conjugacy class.

1 Introduction

Diversities were introduced by Bryant and Tupper in [6] and further de-
veloped in [7] in order to generalise applications of metric space theory to
combinatorial optimisation and graph theory to the hypergraph setting. The
idea is very simple: instead of only assigning real numbers to pairs of ele-
ments, a diversity assigns a real number to every finite subset of the space.
This turns out to generalise metric spaces quite nicely, and in [6] and [7] the
authors prove diversity versions of a number of results concerning or using
metric spaces. The term diversity comes from a special example of a diver-
sity that appears in phylogenetics and ecological diversities demonstrating
the broad variety of applications of diversities and of mathematics in general
of course. The precise definition of a diversity is as follows:

Definition 1.1. A diversity is a set X equipped with a map δ, the diver-
sity map, defined on the finite subsets of X to R such that for all finite
A,B,C ⊆ X we have

(D1) δ(A) ≥ 0 and δ(A) = 0 if and only if |A| ≤ 1.

(D2) If B 6= ∅ then δ(A ∪B) + δ(B ∪ C) ≥ δ(A ∪ C).
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As an abuse of language we will follow [4, 5] and from time to time refer
to the diversity map as a diversity as well. Hopefully this confusion of names
will not cause confusion for the reader.

The following observation is useful and is easy to verify.

Lemma 1.2. (D2) holds for δ if and only if the following two conditions
hold:

(D2’) Monotonicity, i.e. if A ⊆ B then δ(A) ≤ δ(B).
(D2”) Connected sublinearity, i.e. if A ∩B 6= ∅ then

δ(A ∪B) ≤ δ(A) + δ(B).

Another general observation to make is that any diversity is automatically
a metric space since the map d(a, b) = δ({a, b}) defines a metric. We refer to
this metric as the induced metric. A diversity is complete, respectively
separable, if the induced metric is complete, respectively separable. A
bijective map f : X → Y between two diversities that preserves the values
of the diversity map will be called an isoversity. If Y = X we will call f an
autoversity or simply an automorphism ofX. The group of all autoversities
of a diversity X is denoted by Aut(X). As usual for automorphism groups
we consider Aut(X) as a topological group using the topology of pointwise
convergence on X with the induced metric.

An important observation to make is that for each n ∈ N the diversity
map induces a uniformly continuous map δn on Xn given by

δn(x0, . . . , xn−1) = δ({x0, . . . , xn}).

We will use this fact several times, so we include it here for the convenience
of the reader. The proof can be found both in [4] and in [5, Lemma 21].

Lemma 1.3 ([5, Lemma 21]). Let (X, δ) be a diversity and for n ∈ N let
δn denote the map on Xn that δ induces. Then δn is 1-Lipschitz in each
argument. It follows that for all x̄, ȳ ∈ Xn we have

|δn(x̄)− δn(ȳ)| ≤
∑

δ(xi, yi).

In particular, δn is uniformly continuous.

It follows that if (X, δ) is a separable complete diversity, then Aut(X)
is a Polish group, since it is a closed subgroup of the isometry group of the
induced metric space.

To ease our notation we will hardly discern between the maps δn and
the diversity map itself. Hence, we will from time to time write δ(ā) for an
ordered tuple ā = (a0, . . . , an) instead of writing δ({a0, . . . , an}). It will be
clear from the context what is meant, so this causes no confusion.
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The interest in diversities from the viewpoint of Polish group theory
began with the paper [4]. There the authors construct a diversity analogue of
the Urysohn metric space by adapting Katětov’s construction to the diversity
setting. They call the resulting space the Urysohn diversity, denoted by U,
and show, among other things, that the metric space it induces is the Urysohn
metric space. The existence of such a universal object among diversities gives
rise to a plethora of questions concerning its automorphism group, Aut(U),
since this group is virtually unstudied. The first main result of this paper is
the following (cf. Theorem 2.11 below):

Theorem 1. Aut(U) is a universal Polish group.

The proof of this theorem follows Uspenskij’s proof of the corresponding fact
for the Urysohn metric space in [31]. It uses the Katětov-like construction
of the Urysohn diversity done in [4]. We have therefore, for the convenience
of the reader, included the main ingredients of this construction.

The other main results of the paper are the following (cf. Corollary 4.9
and Theorem below 5.11):

Theorem 2. Aut(U) has a dense conjugacy class.

Theorem 3. The automorphism group of the the rational Urysohn diversity
has ample generics.

Here a rational diversity simply means that the diversity map only takes
rational values. We will denote the rational Urysohn diversity by UQ. Of
course the first thing we need to do is to show that UQ actually exists. We
do this by showing that the class of all finite rational diversities is a Fraïssé
class. It follows that this class has a Fraïssé limit and this limit is the
rational Urysohn diversity. Moreover, we show that the completion of UQ
is the Urysohn diversity, thus providing a new proof of the existence of U.
For the convenience of the reader we have included a short introduction to
Fraïssé theory in Section 3 where we also define a useful amalgamation of
diversities that generalises the free amalgamation of metric spaces.

Once the existence of UQ is established, it is easy to show that Aut(UQ)
has a dense conjugacy class by applying a theorem of Kechris and Rosendal
from [19]. Furthermore, we will show that Aut(UQ) embeds densely into
Aut(U) (cf. Theorem 4.8 below) from which Theorem 2 follows immediately.

Afterwards we show that Aut(UQ) has ample generics. Ample generics is
a property with many strong implications such as the automatic continuity
property, the small index property and the fact that the group cannot be the
union of countably many non-open subgroups. All of these notions will be
explained below. Theorem 3 follows from an extension theorem for diversities
inspired by a result of Solecki in [27] and another theorem of Kechris and
Rosendal from [19].
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2 Universality of Aut(U)

The first thing we need is to introduce some terminology and definitions
from [4]. In that paper the authors construct the Urysohn diversity by
adapting Katětov’s construction of the ditto metric space to the diversity
setting. Following [31], we shall use this construction to prove that Aut(U)
is a universal Polish group. The first thing we need to introduce is the
diversity analogue of Katětov functions. These are the so-called admissible
maps. First we let [X]<ω denote the finite subsets of X.

Definition 2.1. Let (X, δX) be a diversity. A map f : [X]<ω → R is ad-
missible if the following holds:

(i) f(∅) = 0,
(ii) f(A) ≥ δX(A) for every A,
(iii) f(A ∪ C) + δX(B ∪ C) ≥ f(A ∪B) for all A,B,C with C 6= ∅,
(iv) f(A) + f(B) ≥ f(A ∪B).

The set of all admissible maps on (X, δX) is denoted E(X).

The reason why these maps are called admissible is because they define
diversity extensions as the lemma below tells us.

Lemma 2.2 ([4, Lemma 2]). Let (X, δ) be a diversity and let f : [X]<ω → R.
Then f ∈ E(X) if and only if for some y the map δ̂ : [X ∪{y}]<ω → R given
by

δ̂(A) = δ(A), δ̂(A ∪ {y}) = f(A)

for A ⊆ X finite, defines a diversity map on X ∪ {y}.

Similarly to the metric setting, we can define a diversity map on the set
of admissible maps. This is defined as follows.

Definition 2.3 ([4, Page 5]). Let (X, δ) be a diversity. On [E(X)]<ω we
define a map δ̂ by

δ̂({f1, . . . , fn}) = max
j≤k

sup
{
fj
(⋃
i 6=j

Ai
)
−
∑
i 6=j

fi(Ai)
∣∣∣ Ai ⊆ X finite

}
whenever n ≥ 2 and δ̂(f) = δ̂(∅) = 0.

Observe that

δ̂(f1, f2) = sup
B finite

|f1(B)− f2(B)|.

Moreover, as the notation suggests, δ̂ is a diversity map on E(X).
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Theorem 2.4 ([4, Theorem 3]). Let (X, δ) be a diversity. Then (E(X), δ̂)
is a diversity and (X, δ) embeds into (E(X), δ̂) via the map x 7→ κx where
κx(A) = δ(A ∪ {x}).

Unfortunately, just like in the metric setting, E(X) need not be sepa-
rable even if X is. Therefore we need to restrict ourselves to a subspace of
E(X) to maintain separability. This is the subspace of the finitely supported
admissible maps. These are defined as follows:

Definition 2.5. Let (X, δ) be a diversity and let S ⊆ X be any subset. If
f ∈ E(S) then we define the extension of f to X by

fXS (A) = inf
{
f(B) +

∑
b∈B

δ(Ab ∪ {b})
∣∣∣ B ⊆ S finite,

⋃
b∈B

Ab = A
}
,

where A ⊆ X is finite. We say that S is the support of fXS .
The set of all finitely supported admissible maps on X is the set of

all those h ∈ E(X) such that for some finite S ⊆ X and some f ∈ E(S) we
have h = fXS . This set will be denoted by E(X,ω).

Of course one needs to check that the extension map fXS is in fact ad-
missible. We refer the reader to [4, Lemma 6] for the details. It is also
easy to check that κx is supported on {x} for any x ∈ X and hence that X
embeds into E(X,ω). Therefore (E(X,ω), δ̂) is a diversity extension of X.
Moreover, E(X,ω) is separable.

Theorem 2.6 ([4, Theorem 9]). Let (X, δ) be a separable diversity. Then
(E(X,ω), δ̂) is a separable diversity as well.

One can then iterate this construction and obtain a Katětov tower on a
given diversity X consisting of a sequence (Xn, δn) where Xi embeds into
Xi+1. The union Xω of all of these diversities turns out to have an analogue
of the extension property for metric spaces that characterises the Urysohn
diversity. This extension property is defined as follows:

Definition 2.7. A diversity (X, δX) has the approximate extension prop-
erty if for any finite subset F ⊆ X, any admissible map f defined on F and
any ε > 0, there is x ∈ X such that |f(A)− δX(A ∪ {x})| ≤ ε for A ⊆ F .

If the above holds for ε = 0, (X, δX) has the extension property.

Just like in the metric setting, it turns out that complete diversities
with the approximate extension property actually has the extension property.
Moreover, the completion of any separable diversity with the approximate
extension property has the approximate extension property. Therefore we
have:

Proposition 2.8 ([4, Lemmas 16 and 17]). Suppose (X, δX) is a separable
diversity with the approximate extension property. Then its completion has
the extension property.
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Furthermore, as mentioned, this property characterises the Urysohn di-
versity, meaning that any two Polish diversities, i.e. with complete and sepa-
rable induced metrics, that have the extension property are isomorphic. This
is one of the main results of [4].

Theorem 2.9 ([4, Theorems 14 and 22]). Any two Polish diversities both
having the extension property are isomorphic. In particular, any Polish di-
versity with the extension property is isomorphic to the Urysohn diversity.

With these preliminaries established we move on to show that Aut(U)
is a universal Polish group. The strategy to show this is the following: any
Polish group G can be embedded into the automorphism group of a separable
diversity (X, δX). Denote the diversity Katětov tower on X by Xω. Then
Aut(X) embeds into Aut(Xω), which in turn embeds into Aut(U) because
the completion of Xω is isomorphic to U. Moreover, these embeddings are
all continuous with continuous inverses. Below we elaborate each of these
steps. First, a lemma:

Lemma 2.10. Let (X, δX) be a separable diversity and let X1 := E(X,ω)
denote the diversity of admissible maps on X with finite support. Then
Aut(X) embeds as a topological group into Aut(X1).

Proof. Let Φ: Aut(X)→ Aut(X1) be the map defined by Φ(g)(fXS ) = f ′Xg(S)

where f ′(g(A)) = f(A) for A ⊆ S. It is straightforward to check that Φ(g)
is a bijection of X1 extending g. Moreover, we note that

Φ(g)(fXS )(A) = fXS (g−1A) (1)

for any finite A ⊆ X. Using this it is straightforward to verify that Φ(g) is an
automorphism of X1 and that Φ is injective. Furthermore, continuity of Φ
follows either from Pettis’ theorem (cf. [23]) or simply by a direct argument
using (1). Finally, continuity of the inverse of Φ can be seen as follows:

Suppose (Φ(gn))n is a sequence converging to Φ(g) and let x ∈ X be
given. We must show that gn(x) → g(x). For this, let κx ∈ X1 denote the
image of x under the embedding of X into X1. Then Φ(gn)(κx)→ Φ(g)(κx)
which means that

sup
B finite

|Φ(gn)(κx)(B)− Φ(g)(κx)(B)| → 0.

In particular, this is true for B = {gx}. Therefore we have

|Φ(gn)(κx)({gx})− Φ(g)(κx)({gx})| = |δ({g−1
n gx, x})− δ({g−1gx, x})|

= δ({gx, gnx})→ 0,

where we have used that Φ(h)(κx) = κhx for any h ∈ Aut(X), which easily
follows from (1) above. We conclude that gn → g in Aut(X).
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With this lemma we can now show that Aut(U) is a universal Polish
group.

Theorem 2.11. Aut(U) is a universal Polish group.

Proof. First, any Polish group G can be embedded into the isometry group of
its left completion (GL, dL) equipped with a left-invariant metric dL (cf. [24]
for details on completions of Polish groups). We turn GL into a diversity by
using the diameter diversity, denoted here by δL, associated to dL, i.e. δL(A)
is simply the diameter of A. Then Aut(GL, δL) is still just Iso(GL, dL) so G
embeds into this group.

Given any separable diversity X, we let X1 denote E(X,ω) and for any
n ∈ N we let Xn denote E(Xn−1, ω). By Xω we denote the union

⋃
Xn. In

the lemma above we saw that Aut(Xi) embeds into Aut(Xi+1) for every i.
Hence we obtain a chain of embeddings

Aut(X)
ϕ0
↪−→ Aut(X1)

ϕ1
↪−→ Aut(X2)

ϕ2
↪−→ . . . ,

where ϕi(g) extends g ∈ Aut(Xi). It follows that we obtain a map

Φ: Aut(X)→ Aut(Xω),

where Φ(g) ∈ Aut(Xω) is defined by

Φ(g)(a) = Φn(g)(a),

where Φn denotes ϕn−1 ◦ · · · ◦ ϕ0 for n ∈ N such that a ∈ Xn for a ∈ Xω.
Note that this is well defined since if a ∈ Xm as well for m < n we must
have Φm(g)(a) = Φn(g)(a) because

Φn(g)(a) = (ϕn−1 ◦ · · · ◦ ϕ0)(g)(a)

= (ϕn−1 ◦ · · · ◦ ϕm ◦ Φm)(g)(a)

= Φm(g)(a).

It is easy to check that Φ is a topological group embedding and therefore it
follows that Aut(X) embeds into Aut(Xω).

Finally, by [4, Theorem 19], the completion of Xω is isomorphic to U.
Therefore, it follows from uniform continuity of δ (cf. Lemma 1.3) that
Aut(Xω) embeds into Aut(U).

In conclusion, we have seen that given any Polish group G, we can embed
G into Aut(GL, δL), which in turn may be embedded into Aut(U) using the
construction above. Hence, Aut(U) is a universal Polish group, which was
what we wanted.
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3 Fraïssé theory

In this section we briefly recall the Fraïssé theory that we will need to con-
struct the rational Urysohn diversity as the Fraïssé limit of the class of all
finite rational diversities. We will also define a useful free amalgamation of
diversities, that generalises the usual free amalgamation of metric spaces.

First let us fix some notation. Given two structures A and B in some
signature L, we denote by A � B that A embeds into B, i.e. that there
is an injective map f : A → B that preserves the structure on A. Fraïssé
classes for relational signatures are then defined as follows:

Definition 3.1. Let L be a countable relational signature for a first-order
language and let K be a class of finite L-structures. Then K is a Fraïssé
class if it has the following properties:

(i) (HP) K is hereditary, i.e. if B ∈ K and A � B then A ∈ K.

(ii) (JEP) K has the joint embedding property, i.e. if A,B ∈ K then
there is some C ∈ K such that A,B � C.

(iii) (AP) K has the amalgamation property, i.e. if A,B,C ∈ K and
f : A → B and g : A → C are embeddings, then there is D ∈ K and
embeddings hB : B → D and hC : C → D such that hB ◦ f = hC ◦ g.
In diagram form:

∀B

A 	 ∃D

∀C

∀f

∀g

∃hB

∃hC

We call such a structure D an amalgam of B and C over A.

(iv) K contains countably many structures (up to isomorphism), and con-
tains structures of arbitrarily large (finite) cardinality.

Remark 3.2. Note that if the class K above contains the empty structure,
then AP implies JEP.

The main reason for studying Fraïssé classes is that any Fraïssé class K
has a so-called Fraïssé limit K, which is universal and ultrahomogeneous.
Universality in this case means that the class of all finite structures that
embeds into K equals K. This class is the so-called age of K and is denoted
Age(K). Ultrahomogeneity is defined as follows:

Definition 3.3. A structure A is ultrahomogeneous if any isomorphism
between finite substructures of A extends to an automorphism of A.
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Fraïssé’s theorem then reads:

Theorem 3.4 (Fraïssé, [11, 10], cf. also [13, Theorem 7.1.2]). Let L be a
countable relational signature and let K be a Fraïssé class of L-structures.
Then there exists a unique (up to isomorphism) countable structure K satis-
fying:
(i) K is ultrahomogeneous.
(ii) Age(K) = K.

The structure K in the theorem above is the Fraïssé limit of K. Us-
ing this theorem we will show that there is a universal ultrahomogeneous
countable rational diversity. First we need a couple of definitions and an
amalgamation lemma to make it simpler for us to verify the AP for the class
of finite rational diversities.

Definition 3.5. Let Y be a set and let X ⊆ Y . A connected cover of
X is a collection {Ei} of subsets of Y such that X ⊆

⋃
Ei and such that

the intersection graph G defined on {Ei} by EiGEj ⇐⇒ Ei ∩ Ej 6= ∅ is
connected.

Remark 3.6. If (Y, δ) is a diversity and X ⊆ Y is finite, then for any finite
connected cover {Ei} ofX with each Ei finite, we have that δ(X) ≤

∑
δ(Ei).

This inequality is the main reason why we are interested in connected covers.

With this terminology established we can define a free amalgamation
of two diversities B and C sharing a common subdiversity A, i.e. where
A ⊆ B,C and where the inclusion is an embedding. This is a diversity
version of the free amalgamation of metric spaces.

Definition 3.7. Let (A, δA), (B, δB) and (C, δC) be non-empty finite di-
versities such that A = B ∩ C and such that A is a subdiversity of B and
C. The free amalgam of B and C over A is the diversity (D, δD)
where D = B ∪ C and where δD(X) is given by the minimum over all sums∑

i δ(Ei) for {Ei : i ≤ n} a connected cover of X ⊆ D such that for each i
either Ei ⊆ B or Ei ⊆ C.

Remark 3.8. If X has elements from both B and C, the definition of δD(X)
above requires the connected cover to include elements from A. Hence, if we
restrict δD to pairs we obtain the usual free amalgamation of metric spaces,
i.e.

δD(b, c) = min
a∈A
{δB(b, a) + δD(a, c)}

for b ∈ B and c ∈ C.

Of course it is not necessarily evident that δD above defines a diversity
map and that both (B, δB) and (C, δC) embeds into (D, δD). We proceed to
verify this.
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Lemma 3.9. δD defined above is a diversity map on B ∪ C extending both
δB and δC . It follows that (D, δD) is an amalgam of B and C over A.

Proof. First we show δD agrees with δB and δC on B and C, respectively.
Suppose therefore X ⊆ B (the other case is similar). Then {X} is a con-
nected cover of X so δD(X) ≤ δB(X). To show equality, let {Ei} be a
connected cover of X. Then we can assume Ei ⊆ B as well. By monotonic-
ity of δB we have

δB(X) ≤ δB(
⋃
Ei).

By connectivity we have

δB(
⋃
Ei) ≤

∑
δB(Ei).

We conclude that δB(X) ≤ δD(X) as well, so in fact δD(X) = δB(X). In
particular δD(X) = 0 if |X| ≤ 1.

Next we show monotonicity. Let therefore X ⊆ Y be given. Then any
connected cover of Y whose elements are contained in either B or C must
also cover X. Hence δD(X) ≤ δD(Y ).

Lastly we show connected sublinearity. Suppose therefore thatX∩Y 6= ∅.
Let {Ei} and {Fj} be connected covers realising δD(X) and δD(Y ), respec-
tively. Then, since Xand Y intersect, we have that {Ei, Fj} is a connected
cover of X ∪ Y whose elements are either contained in B or C. Hence we
must have

δD(X ∪ Y ) ≤
∑

δ(Ei) +
∑

δ(Fj) = δD(X) + δD(Y ).

It follows that δD is a diversity map.

Observe that if the diversities A, B and C above are all rational, then
the amalgam D will also be a rational diversity. It follows that the class of
finite rational diversities, denoted D , has the AP and hence that this class
is a Fraïssé class.

Proposition 3.10. D is a Fraïssé class with limit UQ. Moreover, the com-
pletion of UQ is (isomorphic to) the Urysohn diversity.

Proof. We first note that clearly there are rational diversities of arbitrarily
large finite cardinality. Moreover, up to isomorphism, there are only count-
ably many possible finite rational diversities. Hence D has property (iv) of
Definition 3.1 above. We verify that D has the three other properties: HP,
JEP and AP.

HP is clearly satisfied and JEP follows from AP since clearly the empty
diversity is rational. Therefore we proceed to show AP.

We claim that AP follows from Lemma 3.9 above. To see this, suppose
we are given A,B,C ∈ D with A � B,C via embeddings fB and fC . Then
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we let D = B ∪A C be the union of B and C where we identify fB(A) with
fC(A) while leaving B \ fB(A) and C \ fC(A) disjoint. Identifying A with
its image inside D we now have that A = B ∩ C. Therefore Definition 3.7
applies, and we obtain an amalgam (D, δD) of B and C over A.

Thus D is a Fraïssé class and hence that it has a Fraïssé limit which we
will denote by UQ.

The "moreover" part follows since UQ has the approximate extension
property: if F ⊆ UQ is finite, f ∈ E(F ) is admissible and ε > 0, we can
find an admissible map f ′ with rational values such that |f ′(A)− f(A)| < ε.
Then f ′ defines a rational diversity on F ∪ {z} for some new element z. By
universality and ultrahomogeneity of UQ we find x ∈ UQ such that for all
A ⊆ F we have |δ(A∪{x})−f(A)| = |f ′(A)−f(A)| < ε. It now follows from
Proposition 2.8 above that the completion of UQ has the extension property.
Moreover, from Theorem 2.9 it follows that this completion is isomorphic to
U as claimed.

4 A dense conjugacy class

With the existence of UQ established we set out to show that Aut(UQ) and
Aut(U) have a dense conjugacy class. First recall that the conjugacy action
of a group on itself is given by g · h := ghg−1. Having a dense conjugacy
class is then defined as follows.

Definition 4.1. A Polish group G is said to have a dense conjugacy class
if there is some element of G whose orbit under the conjugacy action of G
on itself is dense.

In [19] Kechris and Rosendal characterise when the automorphism group
of a Fraïssé limit of a class K has a dense conjugacy class. They do this in
terms of the JEP not for K itself, but for the class of all K-systems. Below,
A Ă∼ B denotes that A is a substructure of B, i.e. that A ⊆ B and that
the inclusion is an embedding of A into B.

Definition 4.2. Let K be a Fraïssé class. A K-system consists of a struc-
ture A in K together with a substructure A0 Ă∼ A and a partial automorphism
f : A0 → A. Such a system is denoted A = (A, (f,A0)). The class of all
K-systems is denoted Kp.

An embedding of a K-system A = (A, (f,A0)) into another K-system
B = (B, (g,B0)) is a map Φ: A→ B that embeds A into B, A0 into B0 and
f(A0) into g(B0) such that Φ ◦ f ⊆ g ◦ Φ. In diagram form:

A0

f(A0)

	
B0

g(B0)

f

Φ

Φ

g

11



Kechris and Rosendal then obtain the following characterisation of having
a dense conjugacy class.

Theorem 4.3 ([19, Theorem 2.1]). Let K be a Fraïssé class with limit K.
Then the following are equivalent:

(i) There is a dense conjugacy class in Aut(K).
(ii) Kp has the JEP.

As an immediate corollary to this, we obtain that Aut(UQ) has a dense
conjugacy class.

Corollary 4.4. Dp has the JEP. Hence Aut(UQ) has a dense conjugacy
class.

Proof. Let A = (A, (f,A0)) and B = (B, (g,B0)) be D-systems. Then let
C = (C, (h,C0)) be the system where C = AtB, C0 = A0tB0 and h = f ∪g
and where the diversity map δC is defined to be δA on A, δB on B and on
subsets with elements from both A and B, δC is constant, equal to some
rational N > δA(A), δB(B). It is easy to check that C is in Kp and that both
A and B embeds into C.

We now wish to show the same thing for the automorphism group of
the full Urysohn diversity. In order to do that, we will show that Aut(UQ)
embeds densely into Aut(U). This will follow from a homogeneity-like prop-
erty that the rational and complete Urysohn diversities and metric spaces
all share. In short, the property says that if two finite subspaces are close to
being isomorphic, then we can find an isomorphic copy of one space close to
the other space. In [32] the author refers to this property for metric spaces
as pair propinquity. To emphasise that we are working with diversities we
will call this property diversity propinquity. First we need to define what we
mean by "close to being isomorphic".

Definition 4.5. Let (X, δX) be a diversity and let ā = (ai)i∈I and b̄ = (bi)i∈I
be two tuples of elements of X. For ε > 0 we say that ā and b̄ are ε-
isomorphic if we have

|δX(āJ)− δX(b̄J)| < ε

for all J ⊆ I where b̄J := (bj)j∈J .

Diversity propinquity is then defined as follows:

Definition 4.6. Let (X, δX) be a diversity. We say that (X, δX) has di-
versity propinquity if for all ε > 0 there is an ε′ > 0 such that for all
ε′-isomorphic tuples ā and b̄ in X there is some ā′ isomorphic to ā and
pointwise within ε of b̄, i.e. maxi δX(a′i, bi) < ε.

12



We now have the following lemma, the proof of which is modelled on the
proof of the corresponding fact for the Urysohn metric space in [25, Lemma
6.5].

Lemma 4.7. The Urysohn diversity and the rational Urysohn diversity both
have diversity propinquity. Moreover the ε′ of the definition may simply be
chosen to be the given ε.

Proof. The proof for the two diversities is the same. In the rational case all
one needs to check is that the diversity maps defined below are rational, but
since we are dealing with finite sets this is easily verified.

Let n ∈ N and let ε > 0. The first thing we need, is to introduce some
notation for dealing with the various diversities one may assign to an n-
tuple. Thus let Dx̄ be the set of all diversity assignments to the n-tuple
x̄ = (x0, . . . , xn−1). That is, if we denote {xi : i ∈ I} by x̄I , then Dx̄ is
the set of those maps on the power set of x̄, r̄ : P(x̄)→ R (or into Q for the
rational case), such that

(i) r̄(∅) = 0 and r̄(x̄I) = 0 if and only if |I| ≤ 1,

(ii) For all I1, I2 and all I 6= ∅ we have r̄(x̄I1∪x̄I2) ≤ r̄(x̄I1∪x̄I)+r̄(x̄I∪x̄I2).

Of course any r̄ ∈ Dx̄ corresponds to an element of R2n that we will also
denote by r̄. Thus we will use the notation r̄(I) for r̄(x̄I) which will be
convenient below.

Let now d∞ denote the maximum metric on Dx̄, i.e.

d∞(r̄, r̄′) = sup
I⊆n
{|r̄(I)− r̄′(I)|}.

Next we define another metric on Dx̄ that measures how close together we
can embed two diversities with n elements into a third diversity. To define
this metric, let ȳ be another n-tuple of elements disjoint from x̄. Then define
d1 to be the metric given by

d1(r̄1, r̄2) = inf
r̄
{max
i≤n
{r̄(xi, yi)} : r̄ ∈ Dx̄∪ȳ, r̄ � x̄ = r̄1, r̄ � ȳ = r̄2}

where r̄1, r̄2 ∈ Dx̄ are two different diversity assignments. If r̄1 = r̄2 we set
d1(r̄1, r̄1) = 0. Of course here r̄ � ȳ = r̄2 means that the diversity assignment
on ȳ given by r̄2 (i.e. ȳI 7→ r̄2(x̄I)) is equal to r̄ � ȳ. That d1 is in fact a
metric follows from Lemma 1.3. We now claim that d1(r̄1, r̄2) ≤ d∞(r̄1, r̄2).
Moreover we claim that this will imply the lemma, but let’s do one thing at
a time.

Let therefore r̄1, r̄2 ∈ Dx̄ be two different diversity assignments and set
c := d∞(r̄1, r̄2). We need to define some r̄ ∈ Dx̄∪ȳ such that r̄ � x̄ = r̄1,
r̄ � ȳ = r̄2 and such that max r̄(xi, yi) ≤ c. In order to define such an r̄, we
need to introduce some notation. Given a subset s = {yi1 , . . . , yik} ⊆ ȳ, we
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denote the corresponding set {xi1 , . . . , xik} ⊆ x̄ by s′. A collection of subsets
{Ei} of x̄ or ȳ is said to be connected if the intersection graph on {Ei} forms
a connected graph. Let now r̄ be the diversity assignment where for each
s ⊆ x̄ ∪ ȳ, r̄(s) is defined to be the minimum over sums of the form∑

i

r̄1(Ei) +
∑
j

r̄2(F ′j) + c/2,

where

• Ei ⊆ x̄,
• Fj ⊆ ȳ,
• {Ei, F ′j} is connected,
• s ∩ x̄ ⊆

⋃
Ei,

• s ∩ ȳ ⊆
⋃
Fj .

Let us argue why r̄ is a diversity assignment. If s1 ⊆ s2 then any collection
satisfying the properties of the minimum above for s2 will also satisfy the
properties for s1. Hence r̄(s1) ≤ r̄(s2). If s1 ∩ s2 6= ∅ we let {E1

i }, {F 1
j }

realise r̄(s1) and {E2
l }, {F 2

k } realise r̄(s2). Then it is easy to check that
{E1

i , E
2
l }, {F 1

j , F
2
k } satisfiy the properties of the minimum for s1∪s2. There-

fore r̄(s1 ∪ s2) ≤ r̄(s1) + r̄(s2) as required. We conclude that r̄ is in fact
a diversity assignment. Moreover, we see that supi r̄(xi, yi) = c/2 since the
singletons {xi} and {yi} satisfy the properties of the minimum. This shows
that d1(r̄1, r̄2) ≤ c/2 < d∞(r1, r2) as we claimed.

It now follows that both U and UQ have diversity propinquity. Since
the argument for both diversities is the same, we only provide it for U.
Let n ∈ N and ε > 0 be given. Then we claim that ε works as the ε′

of Definition 4.6. To see this, let ā and b̄ be n-tuples of elements of U and
suppose supI⊆n |δ(āI)−δ(b̄I)| < ε. Let r̄ā and r̄b̄ be the diversity assignments
corresponding to ā and b̄. Then d∞(r̄ā, r̄b̄) < ε and so d1(r̄ā, r̄b̄) < ε as well.
Therefore we find a diversity assignment r̄ on ā ∪ b̄ such that restricted to
ā we get r̄ā and restricted to b̄ we get r̄b̄ and such that supi r̄(ai, bi) < ε.
By universality of U we find ā′, b̄′ ∈ Un isomorphic as diversities to ā and
b̄, respectively, such that sup δ(a′i, b

′
i) < ε. By ultrahomogeneity we find an

automorphism g of U such that δ(ai, g·bi) < ε which was what we wanted.

We can now show that Aut(UQ) embeds densely into Aut(U).

Theorem 4.8. Aut(UQ) continuously embeds into Aut(U) as a dense sub-
group.

Proof. Recall that UQ is dense in U by Proposition 3.10. Furthermore, since
the diversity map defines uniformly continuous maps on finite powers of U
(cf. Lemma 1.3 above), it follows that any g ∈ Aut(UQ) uniquely extends
to an autoversity of U. Thus Aut(UQ) embeds into Aut(U). Moreover, this
embedding must be continuous by Pettis’ theorem (cf. [23]).
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We move on to show that Aut(UQ) is dense in Aut(U). Recall that the
topology on Aut(U) is the pointwise convergence topology generated at the
identity by sets of the form

Uā,r := {g ∈ Aut(U) : δ(g(ā), ā) < r}

for a tuple ā = (a1, . . . , an) of elements of U and some r > 0. In each of
these sets we must find an autoversity extending a rational autoversity. Let
therefore Uā,r be given and let g ∈ Uā,r. Set ε := r−maxi δ(g(ai), ai) > 0 and
find a tuple x̄ of n elements of UQ with maxi δ(ai, xi) < ε/4. Let moreover ȳ
be an n-tuple of elements of UQ such that maxi δ(yi, g(xi)) < ε/(4n). Note
that g(xi) is not necessarily in UQ – hence this approximation. By Lemma 1.3
it follows that (ȳ, δ) is ε/4-isomorphic to (x̄, δ) and therefore, by propinquity
and ultrahomogeneity of UQ, we find an autoversity g0 of UQ such that
maxi δ(g0(xi), yi) < ε/4. We claim that the extension of g0 to U is in Uā,r.
Let therefore g̃0 denote this extension. We have

δ(ai, g̃0(ai)) ≤ δ(ai, g(ai)) + δ(g(ai), g(xi)) + δ(g(xi), yi) + δ(yi, g̃0(xi))

+ δ(g̃0(xi), g̃0(ai))

< r − ε+ ε/4 + ε/(4n) + ε/4 + ε/4

≤ r.

We conclude that g̃0 ∈ Uā,r and hence that Aut(UQ) is a dense subgroup of
Aut(U).

As an immediate corollary we obtain that Aut(U) has a dense conjugacy
class.

Corollary 4.9. Aut(U) has a dense conjugacy class.

Proof. This follows easily since Aut(UQ) has a dense conjugacy class and is
densely embedded into Aut(U).

5 Ample generics

We move on to our next endeavour: ample generics of Aut(UQ). Let us begin
by defining this notion.

Definition 5.1. A Polish group G has ample generics if for each n ∈ N
there is a comeagre orbit for the diagonal conjugacy action of G on Gn defined
by

g · (g1, . . . , gn) = (gg1g
−1, . . . , ggng

−1).

Ample generics turns out to be a very powerful property with many
interesting consequences. Before explaining some of these consequences, we
mention a few examples of groups that are known to have ample generics.
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Examples. The following groups have ample generics.

• The automorphism group of the random graph, [15], cf. also [14].
• The free group on countably many generators, [8].
• The group of measure preserving homeomorphisms of the Cantor space,
[19].

• The automorphism group of N<ω seen as the infinitely splitting regular
rooted tree, [19].

• The isometry group of the rational Urysohn metric space, [27].

In [19], where these examples are taken from, Kechris and Rosendal show,
as mentioned, a number of powerful consequences of ample generics. We have
collected the most important ones in the theorem below.

Theorem 5.2. Let G be a Polish group with ample generics. Then G has
the following properties:

(1) Automatic continuity property, i.e. any homomorphism from G
to a separable group H is continuous.

(2) Small index property, i.e. any subgroup of G of index < 2ℵ0 is open.
(3) G cannot be the union of countably many non-open subgroups.
(4) G has a unique Polish group topology.

Another important result from [19] is a characterisation of when the
automorphism group of a Fraïssé limit has ample generics in terms of the JEP
and a weak form of the AP. This weaker form of amalgamation is, naturally
enough, called the weak amalgamation property (or WAP for short) and is
defined as follows:

Definition 5.3. Let K be a class of finite structures. Then K has the weak
amalgamation property (WAP) if for any A0 ∈ K there is A ∈ K and an
embedding f0 : A0 → A such that whenever gB : A→ B and gC : A→ C are
embeddings into B,C ∈ K, there is D ∈ K and embeddings hB : B → D and
hC : C → D such that hB ◦ gB ◦ f0 = hC ◦ gC ◦ f0. In diagram form:

∀B

∃A 	 ∃D

∀C

A0

∃f0

∀gB

∀gC

∃hB

∃hC

However, it is not the Fraïssé class itself that must have the WAP and the
JEP in order for the automorphism group to have ample generics, but the
class of so-called n-systems for n ∈ N. This is the class of finite structures
A, together with n substructures of A and n partial automorphisms of A
defined on these substructures. The exact definition is as follows:
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Definition 5.4. Let K be a Fraïssé class and let n ≥ 1 be given. An n-
system in K consists of a structure A in K together with n substructures
A1, . . . , An Ă∼ A and n partial automorphisms f1 : A1 → A, . . . , fn : An → A.
We denote such a system by A = (A, (fi, Ai)i≤n). The class of all n-systems
in K is denoted Knp .

An embedding of an n-system A = (A, (fi, Ai)) into another n-system
B = (B, (gi, Bi)) is a map Φ: A→ B that embeds A into B, Ai into Bi and
fi(Ai) into gi(Bi) and such that Φ ◦ fi ⊆ gi ◦ Φ for each i ≤ n. In diagram
form, for each i ≤ n:

Ai

fi(Ai)

	
Bi

gi(Bi)

fi

Φ

Φ

gi

Note that since we have defined embeddings between n-systems, we can
talk about the WAP and the JEP for the class Knp . In [19] Kechris and
Rosendal show that these two properties for Knp actually characterise ample
generics.

Theorem 5.5 ([19, Theorem 6.2]). Let K be a Fraïssé class and let K denote
its limit. Then the following are equivalent:

(i) Aut(K) has ample generics.
(ii) For all n ≥ 1, Kpn has the JEP and the WAP.

Using this theorem, we can show that Aut(UQ) has ample generics. The proof
uses the following extension result inspired by [27, Theorem 2.1]. Below, a
partial isoversity of a diversity A is simply an isoversity f : A0 → B defined
on a subset A0 ⊆ A into some diversity B. A partial autoversity of A is a
partial isoversity into A. Our extension theorem for diversities now reads:

Theorem 5.6. Let (A, δA) be a finite diversity. Then there is a finite di-
versity (B, δB) containing A as a subdiversity and such that any partial au-
toversity of A extends to a full autoversity of B.

The proof of this theorem uses a theorem due to Herwig and Lascar from
[12]. For the convenience of the reader, we have included it here. However,
before we can state it properly, we need to make a few definitions.

Definition 5.7. A class of structures K has the extension property for
partial automorphisms (EPPA for short) if for any finite A ∈ K and any
B ∈ K such that A Ă∼ B and any partial automorphisms g1, . . . , gn of A that
extend to automorphisms of B, there is a finite C ∈ K and automorphisms
h1, . . . , hn of C such that hi extends gi.
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Loosely speaking, this property says that if it is possible to extend partial
automorphisms to full automorphisms of some structure, then there is a
finite structure where the partial automorphisms also extend.

Definition 5.8. Let L be a finite relational signature. A map between two
L-structures h : A → B is a weak homomorphism if for all predicates
R ∈ L and all tuples ā of elements from A such that A � R(ā), we have
B � R(h(ā)).

Definition 5.9. Let L be a finite relational signature and let T be a set of
L-structures. An L-structure A is said to be T -free if there is no structure
T ∈ T and weak homomorphism h : T → A.

Herwig and Lascar’s theorem then reads:

Theorem 5.10 ([12, Theorem 3.2]). Let L be a finite signature and T a
finite set of finite L-structures. Then the class of T -free L-structures has the
EPPA.

We are now ready to prove Theorem 5.6.

Proof of Theorem 5.6. We can of course assume without loss of generality
that |A| ≥ 2. Let D be the set

D := {(δA(X), |X|) : X ⊆ A} \ {(0, 1), (0, 0)}.

That is, D is all pairs of the non-zero values of δA together with the size of
the set the value comes from. For each (r, n) ∈ D, we let R(r,n) be an n-ary
relation symbol and let L be the (finite) relational language consisting of
these symbols. We call a tuple of elements of D, α = ((r0, n0), . . . , (rk, nk)),
a configuration if we have that

k∑
i=1

ri < r0 and 1 +
k∑
i=1

(ni − 1) ≥ n0.

Given a configuration α = ((ri, ni)) let Y0, Y1, . . . , Yk be sets such that

(i) Y0 ⊆
⋃k
i=1 Yi,

(ii) |Yi| = ni,

(iii) The intersection graph on {Y1, . . . , Yk} is connected.

We call such a family of sets {Yi : 0 ≤ i ≤ k} an α-family. Note that since α
is a configuration it is always possible to find at least one α-family. Moreover,
we note that there are only finitely many α-families.
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Given a configuration α = ((ri, ni) : 0 ≤ i ≤ k) and an α-family β = {Yi},
we define an L-structureMα,β with universe

⋃
Yi by declaring that the only

relations satisfied byMα,β are the following:

Mα,β � R(ri,ni)(σ(Yi))

for any permutation σ of the elements of Yi (considered here as an ordered
tuple and not just a set). The permutations merely ensure that the relations
are symmetric and do not really serve any other purpose. Let T denote the
family of allMα,β for all configurations α and all α-families β. Note that T
is finite.

Any diversity (X, δX) is naturally also an L-structure by letting

X � R(r,n)(Y )⇐⇒ δX(Y ) = r and |Y | = n

for any finite subset/tuple Y of elements of X, meaning that we are con-
sidering Y as a subset on the right-hand side and as an ordered tuple on
the left-hand side above. Note, however, that the order we choose on Y is
not important. Observe that any partial autoversity of X is also a partial
automorphism of X as an L-structure.

Suppose now we are given a configuration α = ((ri, ni) : 0 ≤ i ≤ k) and
an α-family β = {Y0, . . . , Yk}. We then claim that X is T -free, i.e. that there
are no weak homomorphisms h : Mα,β → X. To see this, suppose h is such
a map. Then since β is an α-family, we have that

h(Y0) ⊆
k⋃
i=1

h(Yi)

and so, by the monotonicity of the diversity map,

δX(h(Y0)) ≤ δX(

k⋃
i=1

h(Yi)).

Since the intersection graph on {Yi : 1 ≤ i ≤ k} is connected, it follows
that the intersection graph on the images {h(Yi) : 1 ≤ i ≤ k} is connected
too. Therefore, we can find Yi0 such that the intersection graph on the
family {h(Yi) : i 6= i0} remains connected (this is always possible for finite
connected graphs). Hence, by connected sublinearity of the diversity map,
it follows that

δX(
k⋃
i=1

h(Yi)) ≤ δX(h(Yi0)) + δX(
⋃
i 6=i0

h(Yi)).

By induction, we obtain that

δX(
k⋃
i=1

h(Yi)) ≤
k∑
i=1

δX(h(Yi)).
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However, since h is a weak homomorphism and β is an α-family, we have
that X � R(ri,ni)(h(Yi)). Hence, δX(h(Yi)) = ri for each i, and so we have
that

r0 = δX(h(Y0)) ≤
k∑
i=1

δX(h(Yi)) =
k∑
i=1

ri < r0,

which is of course a contradiction.
Next, by universality of (U, δU), we can embed (A, δA) into (U, δU). By ul-

trahomogeneity, we can extend each partial autoversity of A to an autoversity
of U. Note that sinceD includes all values of δA, any partial L-automorphism
of A is a partial autoversity of A (and vice versa of course). Hence, we can
extend any partial L-automorphism of A to a full L-automorphism of U
viewed as an L-structure. By Theorem 5.10 above, we can find a finite T -
free L-structure C containing A as a substructure such that each partial
L-automorphism of A extends to an automorphism of C. Given a partial
automorphism g of A, we will denote its extension to C by g̃. By convention,
we will assume that the empty map is extended to the identity map.

A sequence of subsets e1, . . . , ek ⊆ C is called a connection if the inter-
section graph on {ei} is connected and if there are (r1, n1), . . . , (rn, nk) ∈ D
such that for each i ≤ k

(i) |ei| = ni,

(ii) C � R(ri,ni)(σ(ei)) for any permutation σ of ei considered as an ordered
tuple.

Given c, c′ ∈ C, we say that they are connected if there is a connection
e1, . . . , ek such that c ∈ e1 and c′ ∈ ek. Let B ⊆ C be those b ∈ C that
are connected to some a ∈ A. Note that any b ∈ B is connected to all
a ∈ A, since if b is connected to a′ ∈ A via the connection e1, . . . , ek, then
{a, a′}, e1, . . . , ek is a connection between a and b. Moreover, clearly A ⊆ B,
since given a ∈ A, we pick a′ ∈ A \ {a} (remember that we have assumed
|A| ≥ 2) and see that {a, a′} is a connection between a and a′.

Given a partial automorphism g of A, we claim that g̃(B) = B. To show
this, it is enough to show that g̃(B) ⊆ B, since we are dealing with finite sets.
If g is the empty map, then we extend it to the identity and there is nothing
to show. If not, pick a in the domain of g and let b ∈ B. Then, as noted
above, we can find a connection between a and b. Let e1, . . . , ek denote such
a connection. Since g̃ is an automorphism, it follows that g̃(e1), . . . , g̃(ek)
is a connection between g̃(a) = g(a) ∈ A and g̃(b), because clearly the
intersection graph on {g̃(ei) : 1 ≤ i ≤ k} is connected and g̃ preserves the
relations. We conclude that g̃(b) ∈ B as we claimed.

Define now a diversity δB on B by letting δB(X) be 0 if |X| ≤ 1 and
otherwise letting it be the minimum over all sums

∑k
i=1 ri, where for some

connection e1, . . . , ek with ei ⊆ B, we have C � R(ri,|ei|)(σ(ei)) for any
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permutation of ei considered as a tuple and where X ⊆
⋃
ei. Note that

since X ⊆ B, each element of X is connected to the same element of a ∈ A.
Hence, the collection of all these connections, one for each x ∈ X, forms a
connection containing X. Therefore, this minimum is not over the empty
set and so δB is well-defined.

We must argue why δB is a diversity map, i.e. we must show that for
each X,Y, Z ⊆ B with Z 6= ∅ we have

δB(X ∪ Y ) ≤ δB(X ∪ Z) + δB(Z ∪ Y ).

Let {ei} and {ri} realise δB(X ∪Z) and let {fj} and {sj} realise δB(Z ∪Y ).
Then since Z ⊆ X ∪ Z ⊆

⋃
ei and Z ⊆ Z ∪ Y ⊆

⋃
fj , it follows that the

intersection graph on {ei} ∪ {fj} is connected. Hence, {ei} ∪ {fj} forms a
connection. Moreover, this connection covers X ∪ Y . Therefore, we have
that

δB(X ∪ Y ) ≤
∑

ri +
∑

si = δB(X ∪ Z) + δB(Z ∪ Y )

as we wanted. Moreover, if g is a partial autoversity of A, it follows that the
extension g̃ and its inverse g̃−1 maps connections to connections. Therefore,
we must have that g̃ : B → B is an autoversity with respect to δB.

Finally, we must show that δB extends δA. First of all, it is clear that we
must have δB(X) ≤ δA(X) for all X ⊆ A, since {X} is itself a connection
covering X as C � R(δA(X),|X|)(X).

Suppose towards a contradiction that we have δB(X) < δA(X). Then
let e1, . . . , ek be a connection with corresponding values r1, . . . , rk witnessing
this, i.e.

∑
ri < δA(X). It follows that

(δA(X), |X|), (r1, |e1|), . . . , (rk, |ek|)

is a configuration because X ⊆
⋃
ei, so

|X| ≤ |e1|+ |e2 \ e1|+ . . .+ |ek \ (

k−1⋃
i=1

ei)|

≤ 1 +
∑

(|ei| − 1),

where the second inequality follows since the first sum counts each element
of
⋃
ei exactly once and the second sum counts each element at least once

given that the intersection graph on {ei} is connected. If we denote this
configuration by α, then {ei, X : 1 ≤ i ≤ k} is an α-family β. Therefore,
Mα,β is in T and the identity map onMα,β is a weak homomorphism into
C. This contradicts that C is T -free. We conclude that δB(X) = δA(X).

All in all, we have extended each partial autoversity of A to an autoversity
of (B, δB), and this diversity contains (A, δA) as a subdiversity. This was
what we wanted.

We are now ready to prove that Aut(UQ) has ample generics.
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Theorem 5.11. Aut(UQ) has ample generics.

Proof. We show that for each n ∈ N, the class Dn
p of n-systems in D has the

WAP. Since it clearly has the JEP, it follows from Kechris and Rosendal’s
Theorem 5.5 above that Aut(UQ) has ample generics.

Let therefore A = (A, (fi, Ai)) be an n-system in Dn
p . By the extension

theorem above we find a rational diversity B containing A where the partial
isoversities of A extend to autoversities of B. Let f̃i denote the extension
of fi to B and let B denote the resulting n-system in Dn

p . Suppose now
that we are given n-systems C1 = (C1, (g

i
1, C

i
1)) and C2 = (C2, (g

i
2, C

i
2)) and

embeddings Φj : B → Cj , j = 1, 2. We need to construct an amalgam of C1

and C2 over B. To do that we apply the extension theorem to both C1 and
C2 and get C̃1 and C̃2 where the partial isoversities gi1 and gi2 extend to full
autoversities g̃i1 and g̃i2 of C̃1 and C̃2, respectively. Denote the resulting n-
systems by C̃1 and C̃2. As usual we can assume that B = C̃1 ∩ C̃2. Therefore
we can construct the free amalgam D of C̃1 and C̃2 over B. Moreover, we can
define an n-system using D by letting hi be g̃i1∪ g̃i2, which is an autoversity of
D. Denote the resulting n-system by D. In diagram form for the n-systems:

C1

B 	
C2

C̃1

C̃2

DA

and in diagram form for j = 1, 2 and each i:

B

B

Ai

fi(Ai)

		

Cij

gij(C
i
j)

C̃j

C̃j

	 	

D

D

f̃i gij g̃ij hifi

It is easy to check that D is an amalgam of C1 and C2 over B. Therefore,
we conclude that Dn

p has the WAP and hence that Aut(UQ) has ample
generics.
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