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ABSTRACT 28 

 29 

In December 2019, an outbreak of atypical pneumonia (Coronavirus disease 2019 -30 

COVID-19) associated with a novel coronavirus (SARS-CoV-2) was reported in Wuhan city, 31 

Hubei province, China. The outbreak was traced to a seafood wholesale market and human 32 

to human transmission was confirmed. The rapid spread and the death toll of the new 33 

epidemic warrants immediate intervention. The intra-host genomic variability of SARS-CoV-2 34 

plays a pivotal role in the development of effective antiviral agents and vaccines, as well as 35 

in the design of accurate diagnostics.  36 

We analyzed NGS data derived from clinical samples of three Chinese patients 37 

infected with SARS-CoV-2, in order to identify small- and large-scale intra-host variations in 38 

the viral genome. We identified tens of low- or higher- frequency single nucleotide variations 39 

(SNVs) with variable density across the viral genome, affecting 7 out of 10 protein-coding 40 

viral genes. The majority of these SNVs (72/104) corresponded to missense changes. The 41 

annotation of the identified SNVs but also of all currently circulating strain variations revealed 42 

colocalization of intra-host as well as strain specific SNVs with primers and probes currently 43 

used in molecular diagnostics assays. Moreover, we de-novo assembled the viral genome, 44 

in order to isolate and validate intra-host structural variations and recombination breakpoints. 45 

The bioinformatics analysis disclosed genomic rearrangements over poly-A / poly-U regions 46 

located in ORF1ab and spike (S) gene, including a potential recombination hot-spot within S 47 

gene. 48 

Our results highlight the intra-host genomic diversity and plasticity of SARS-CoV-2, 49 

pointing out genomic regions that are prone to alterations. The isolated SNVs and genomic 50 

rearrangements reflect the intra-patient capacity of the polymorphic quasispecies, which may 51 

arise rapidly during the outbreak, allowing immunological escape of the virus, offering 52 

resistance to anti-viral drugs and affecting the sensitivity of the molecular diagnostics 53 

assays.  54 
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Highlights 64 

• SARS-CoV-2 exhibits intra-host small- and large-scale genomic variability 65 

• SNVs are collocalized with probes and primers used in molecular diagnostic assays 66 

• SARS-CoV-2 Spike (S) gene host a potential recombination hot-spot  67 
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INTRODUCTION 70 

Coronaviruses (CoVs), considered to be the largest group of viruses, belong to the 71 

Nidovirales order, Coronaviridae family and Coronavirinae subfamily, which is further 72 

subdivided into four genera, the alpha- and betacoronaviruses, which infect mammalian 73 

species and gamma- and deltacoronaviruses infecting mainly birds [1,2]. Small mammals 74 

(mice, dogs, cats) serve as reservoirs for Human Coronaviruses (HCoVs), with significant 75 

diversity seen in bats, which are considered to be primordial hosts of HCoVs [3].  76 

Until 2002, minor consideration was given to HCoVs, as they were associated with 77 

mild-to-severe disease phenotypes in immunocompetent people [3–5]. In 2002, the 78 

beginning of severe acute respiratory syndrome (SARS) outbreak took place [6]. In 2005, 79 

after the discovery of SARS-CoV-related viruses in horseshoe bats (Rhinolophus), palm 80 

civets were suggested as intermediate hosts, and bats as primordial hosts of the virus [6,7]. 81 

In 2012, the emerging Middle East respiratory syndrome coronavirus (MERS-CoV) caused 82 

an outbreak in Saudi Arabia, which affected both camels and humans, with a high mortality 83 

rate of approximately 34,3% among humans [8]. MERS-CoV has zoonotic origins [9] and 84 

was transmitted to humans through direct contact with dromedary camels or indirect contact 85 

with contaminated meat or milk[10].  86 

On December 31st – 2019, a novel Coronavirus (SARS-CoV-2) was first reported 87 

from the city of Wuhan, Hubei province in China, causing severe infection of the respiratory 88 

tract in humans, after the identification of a group of similar cases of patients with pneumonia 89 

of unknown etiology [11]. Similarly to SARS, epidemiological links between the majority of 90 

COVID-19 cases and Huanan South China Seafood Market, a live-animal market, have 91 

been reported. A total of 76,775 confirmed cases of “Coronavirus Disease 2019” (COVID-19) 92 

were reported up to February 21st 2020, from which 2,247 died and 18,855 recovered. 93 

Notably, 75,447 of the confirmed cases were reported in China [12]. 94 

The size of the ssRNA genome of SARS-CoV-2 is 29,891 nucleotides, it encodes 95 

9860 amino acids and is characterized by nucleotide identity of ~ 89% with bat SARS-96 
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related (SL) CoV-ZXC21 and bat-SL-CoVZC45. However,  when compared to HCoVs, 97 

SARS-CoV-2 showed genetic similarity of ~ 80% with human SARS-CoVs BJ01 2003 and 98 

Tor2 [13] and and 50% with MERS-CoV [14,15].  CoVs are enveloped positive-sense RNA 99 

viruses, characterized by a very large non-segmented genome (26 to 32kb length), ready to 100 

be translated [2,4]. The genes arrangement on the SARS-CoV-2 genome is: 5′UTR -101 

replicase (ORF1/ab) -Spike (S) -ORF3a -Envelope (E) -Membrane (M) -ORF6 -ORF7a -102 

ORF8 -Nucleocapsid (N) ORF10 -3′UTR [13]. SARS-CoV-2 encodes proteins that are very 103 

similar in length compared to bat-SL-CoVZC45 and bat-SL-CoVZXC21. The SARS-CoV-2 S 104 

protein however is longer compared to those encoded by SARS-CoV, and MERS-CoV [15]. 105 

At inter-host level, adaptive mutations are essential for the newly emerging viruses in 106 

order to increase replication and facilitate onward transmission in the new hosts [16]. 107 

Particularly for MERS-CoV, SARS-CoV and SARS-CoV-2, the genetic diversity and frequent 108 

recombination events, lead to periodical emergence of new viruses capable of infecting a 109 

wide range of hosts [17]. Intra-host variability in viral infections, emerges from genomic 110 

phenomena taking place during error-prone replication, ending up to multiple circulating 111 

quasispecies of low or higher frequency [18].  These variants, in combination with the 112 

genetic profile of the host, can potentially influence the natural history of the infection, the 113 

viral phenotype, but also the sensitivity of molecular and serological diagnostics assays 114 

[19,20]. In the case of flu epidemics for example, de novo arising mutations and intra-host 115 

diversity not only forms intra-host evolution of Influenza A, but also greatly affects the 116 

pathogenesis of the virus [21–23]. Indeed, it is suggested that SARS-CoV-2 genomic 117 

variants that emerge from inter- and intra-host evolution might be associated with 118 

susceptibility to SARS-CoV-2 infection and the severity of COVID-19 [24].  119 

Viruses have developed multiple adaptive strategies to counteract the host 120 

immunological response, which are subject to inter- and intra-host selection pressures; 121 

“Selfish” strategies confer a selective advantage in a particular quasispecies, impair the 122 

immune response inside the infected cell and evolve by intra-host selection, while neutral or 123 

“unselfish” defence strategies impair the immune response outside the infected cell and 124 
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evolve by inter-host selection, preferentially in viruses with low mutation rates [25]. SARS-125 

CoV-2 mutation rate is moderate and similar to other RNA viruses (0.00084 per site per 126 

year) [26], but still generally higher compared to DNA viruses [27]. Moreover, most of the 127 

suggested immune escape mechanisms of SARS-CoV-2 involve intra-cellular interactions 128 

[28], thus expected to evolve by intra-host selective pressure. These observations highlight 129 

the importance of SARS-CoV-2 intra-host variability in the frame of viral evolution and host-130 

pathogen interactions. 131 

Intra-host genomic variability also leads to antigenic variability, which is of higher 132 

importance, especially for  pathogens that fail to elicit long-lasting immunity in their hosts, 133 

and remains a major contributor to the complexity of vaccine design [29,30]. To date, there 134 

are no clinically approved vaccines available for protection of general population from SARS- 135 

and MERS-CoV infections as there is no effective vaccine to induce robust cell mediated 136 

and humoral immune responses [31,32]. 137 

Here, we explore intra-host genomic variants and low-frequency polymorphic 138 

quasispecies in Next Generation Sequencing (NGS) data derived from patients infected by 139 

SARS-CoV-2. Intra-host genomic variability is critical for the development of novel drugs and 140 

vaccines, which are of urgent necessity, towards the containment of the pandemic.  141 

 142 

 143 

MATERIALS AND METHODS 144 

 145 

In this study NGS data derived from three Chinese patients (oral swabs) infected by 146 

SARS-CoV-2 were analysed (SRA projects PRJNA601736 and PRJNA603194). All datasets 147 

available in SRA up to February 20th, 2020 were analysed. The two patients (SRR10903401 148 

and SRR10903402/PRJNA601736), 39- and 21-year-old respectively, experienced unusual 149 

pneumonia. Despite his anti-viral treatment, patient 1 experienced more severe symptoms 150 

The two patients were admitted to the hospital on 25th and 22th December 2019 and were 151 
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discharged in stable condition on 12th and 11th January 2020, respectively [33]. The third  41-152 

year-old male patient (SRR1097138/PRJNA603194), presented acute onset of common 153 

COVID19 symptoms. A combinatory antiviral therapy was administered to the patient. 154 

However, he exhibited respiratory failure and was admitted to the intensive care unit. Six 155 

days after his admission, he was transferred to another hospital in Wuhan for further 156 

treatment [34]. Detailed clinical metadata of the patients are presented in Supplementary 157 

Material.  158 

The raw read data were aligned on the complete (29,891 bp) SARS-CoV-2 reference 159 

sequence (GenBank accession no. MN975262.1, isolate 2019-nCoV_HKU-SZ-005b_2020) 160 

using bowtie2 v2.3.0  [35], after quality check with FastQC v0.11.5 [36]. The resulting 161 

alignments were visualized with the Integrated Genomics Viewer (IGV) v2.3.60 [37]. After 162 

removing PCR duplicates, SNVs were called with a Bonferroni-corrected P-value threshold 163 

of 0.05 using samtools v1.7 (htslib1.7.2) [38] and LoFreq v2.1.5. LoFreq is a very accurate 164 

SNV caller especially designed for viral and bacterial genomes; its performance depends on 165 

the sequencing depth and the quality of the NGS reads. For the datasets analyzed in this 166 

study (average read depth 133.5x – 598.2x )  and based on the assessed read quality >Q30 167 

= 88.2 – 92.7%, LoFreq has calling sensitivity = ~1% and PPV=100 [39]. Variants supported 168 

by absolute read concordance (>98%) were filtered-out from intra-host variant frequency 169 

calculations. Four SNVs from sample SRR10903402 and 3 SNVs from sample 170 

SRR10971381 with statistically significant strand bias (P-value < 0.05) were also excluded 171 

from further analyses. Variations were annotated to the reference genome using snpEff 172 

v4.3p [40], SNVs effects were further filtered with snpSift v4.3p  [41] and the average 173 

mutation rate per gene across the viral genome was estimated using R scripts (v3.6.2) in 174 

RStudio v1.1.456. The colocalization of the intra-host SNVs and population level SNPs 175 

retrieved from www.GISAID.org on February 18th 2020, with primers and probes coordinates 176 

was also examined, to identify potential interferences with all currently available molecular 177 

diagnostic assays [42]. The impact of these SNVs on the binding affinity of primers and 178 

probes to their genomic targets, was predicted using FastPCR 3.3.28 [43] and DINAMelt 179 
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webserver [44].  To investigate intra-host genomic rearrangements, de novo assembly of the 180 

SARS-CoV-2 genomes was performed using Spades v3.13.1 [45]. Spades outperforms most 181 

modern de novo assemblers in terms of viral genome retrieval and coverage, presenting the 182 

highest sensitivity (99.48%) [46]. The resulting contigs were analyzed with BLAST v2.6.0 183 

[47] and confirmed by remapping of the raw reads, setting a threshold of 5 not replicated 184 

reads for contigs suggesting rearrangements. Smaller contigs (<200 bp) were elongated 185 

where possible, after pair-wise realignment of the corresponding mapped reads. Basic 186 

computations and visualizations were implemented in R programming language v3.6.2, 187 

using in-house scripts. The secondary structures of the genomic regions surrounding the 188 

recombination breakpoints were predicted using RNAfold webserver [48]. 189 

 190 

 191 

RESULTS 192 

The mapping assembly of the viral genome was almost complete for all samples. The 193 

genome coverage and the average read depth across the genome was 100.0% and 133.5x 194 

for sample SRR10903401, 100.0% and 522.5x for sample SRR10903402, and 99.9%, and 195 

598.2x for sample SRR10971381, respectively (Table 1). 196 

In all samples, the same 5 SNVs isolated with 98-100% read concordance, thus in 197 

total divergence with the reference genome (MN975262.1), were excluded from downstream 198 

analysis. For sample SRR10903401 34 lower frequency SNVs were isolated in total. Of 199 

these, 33 were present with frequencies ranking between 2 and 15%, while only one was 200 

present in 40% of the intra-host viral population. The sequencing depth, which is also 201 

evaluated during the SNV calling by the LoFreq algorithm, ranked between 39x and 290x at 202 

the corresponding SNV positions. The sequencing depth of sample SRR10903402 at the 203 

polymorphic positions was higher (103x – 1137x), allowing the isolation of 55 SNVs with 204 

frequencies distributed between 0.9% and 14%. The depth over the polymorphic positions of 205 
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sample SRR10971381 was between 159x – 1872x, allowing the isolation of 10 intra-host 206 

SNVs, with frequencies 1.1% - 6.8% (Figure 1.A, Suppl.Table 1). 207 

Intra-host variants were distributed across 7 out of the 10 protein-coding genes of the 208 

viral genome, namely ORF1ab, S, ORF3a, ORF6, ORF7a, ORF8 and N. After normalising 209 

for the gene length (variants/kb-gene-length, “v/kbgl”), the density of the SNVs for each gene 210 

was estimated (Table 2). The majority of the SNPs corresponded to missense changes 211 

(leading to amino-acid change) compared to synonymous changes (cumulatively 72 vs. 29 212 

respectively, ratio 2.48:1) (Table 2), while the average number of missense changes was 213 

marginally significantly higher compared to synonymous changes (23,3 vs. 8,0 respectively, 214 

Wilcoxon rank sum test, p=0.054). The average intra-host variant frequency did not differ 215 

significantly either between missense and synonymous polymorphisms (Wilcoxon rank sum 216 

test, p>0.05) (Figure 1.C), or between their hosting genes (pairwise Wilcoxon rank sum 217 

tests, p>0.05) (Figure 1.D). We did not detect any small-scale insertions or deletions in the 218 

samples (Suppl. Table 1).  219 

The comparison of all SNVs (intra-host and population level) with the genomic 220 

targets of the molecular diagnostics assays, revealed colocalization of 3 intra-host SNVs and 221 

2 isolate-specific SNVs with primers and probes currently in use in RdRP_SARSr, HKU-N, 222 

2019-nCoV-N1 and 2019-nCoV-N2 diagnostic reactions (Figure 2). The thermodynamic 223 

assessment of these SNVs revealed variable impact on the binding affinity of the 224 

corresponding primers and probes on the mutated genomic region (Suppl. Table 2) 225 

The de novo assembly of the viral genomes was almost complete for samples 226 

SRR10903401 and SRR10903402 covering 99.7 % of the genome with 4 overlapping 227 

contigs  and 99.5% of the genome with a single contig, respectively. The de novo assembly 228 

of sample SRR10971381 was complete, with one contig covering 100% of the genome. 229 

Alternative contigs revealed intra-host genomic rearrangements (Figure 3, Table 3). For 230 

samples SRR10903401 and SRR10903402, these large-scale structural events were 231 

systematically observed over poly-A / poly-U-rich genomic regions, located in ORF1ab and S 232 

genes. All rearrangements were validated by remapping of the raw reads on the 233 
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corresponding de novo assembled contigs, setting a threshold of at least 5 supporting reads 234 

of high mapping quality (>40) in each case. For sample SRR10903401 three 235 

inversions/misassemblies in ORF1ab (Suppl. Figure 1) and one inversion/misassembly in S 236 

gene (Figure 4-A) were isolated. Notably, we were able to validate the same inversion in S 237 

gene for sample SRR10903402 as well (Figure 4-B). Apart from 2 inversions in ORF1ab 238 

supported by only 2 reads each (not passing the validation threshold), there were no further 239 

large-scale intra-host events observed for sample SRR10903402. Similarly, one 240 

inversion/misassembly in sample SRR10971381 that was supported by only one read was 241 

identified. The alignment coordinates of all rearrangement-supporting contigs with respect to 242 

the reference strain are presented in Table 3. 243 

 244 

 245 

  246 
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DISCUSSION 247 

 248 

The rapid spread and the death toll of the new SARS-CoV-2 epidemic warrants the 249 

immediate identification / development of effective antiviral agents and vaccines, and the 250 

design of accurate diagnostics as well. The intra- and inter- patient variability affects the 251 

compatibility of molecular diagnostics but also impairs the effectiveness of the vaccines and 252 

the serological assays by altering the antigenicity of the virus.  253 

All samples analysed in this study were probably infected by the same viral strain 254 

since they shared the same set of consensus SNVs. However, apart from 3 intra-host SNVs 255 

that were common between SRR10903401 and SRR10903402, there was no other overlap 256 

observed between the low frequency variants of each sample (Figure 1-B). This indicates 257 

that these variations have occurred in a rather random fashion and are not subject to 258 

selective pressures, which is also supported by the fact that the missense mutations were 259 

systematically more, compared to the synonymous mutations [49]. On the other hand, 260 

missense substitutions are more common in loci involving pathogen resistance, indicating 261 

positive selection [50]. The analysed viral RNA might have originated from functional/packed 262 

virions, but also from unpacked viral genomes, unable to replicate and infect other host cells. 263 

Even if a viral genome is unable to replicate independently, its abundant presence in the 264 

pool of viral quasispecies implies some functionality regarding the intra-host evolution and 265 

adaptation. For example, defective viral genomes might affect infection dynamics such as 266 

viral persistence as well as the natural history of the infection [51,52].  At the same time, 267 

these variants may arise rapidly during an outbreak and can be used for tracking the 268 

transmission chains and the spatiotemporal characteristics of the epidemic [53–55]. More 269 

studies based on genomic datasets accompanied by clinical metadata are needed, in order 270 

to accurately define  associations between intra-host SARS-CoV-2 genomic variants, the 271 

progression and the clinical outcome of COVID19.  272 
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SNVs and quasispecies observed at low frequency could represent viral variations of 273 

low impact on the functionality of the genome. Bal et. al, suggest that development of 274 

quasispecies may promote viral evolution, however high depth of coverage is essential for 275 

the study of intra-host adaptation [56]. The abundance  of low-frequency variations is largely 276 

affected by the population size and the epidemic characteristics. For example, a neutral 277 

substitution in a region that represents a primer target for a molecular diagnostic assay can 278 

drift to fixation rather quickly in a rapidly spreading virus, jeopardizing the sensitivity of the 279 

assay [57,58]. Here, we highlight three intra-host but also two fixed variants that are 280 

colocalized with primers or probes of real-time PCR diagnostics assays that are currently in 281 

use (Figure 2). Since the binding affinity of these oligos to their genomic targets 282 

(Suppl.Table 2) is directly linked to the performance of the corresponding diagnostic assays, 283 

the community should pay extra attention in the evaluation of these potentially emerging 284 

variations and be alerted, in case redesigning of these oligos is needed.  285 

As it is well documented, recombination events lead to substantial changes in genetic 286 

diversity of RNA viruses [49,59]. In CoVs, discontinuous RNA synthesis is commonly 287 

observed, resulting in high frequencies of homologous recombination [60], which can be up 288 

to 25% across the entire CoV genome [61]. For pathogenic HCoVs genomic rearrangements 289 

are frequently reported during the course of epidemic outbreaks, such as HCoV-OC43 [62], 290 

and HCoV-NL63 [63],  SARS-CoV [64][62] and MERS-CoV [65]. We have isolated intra-host 291 

genomic rearrangements, located in poly-A and poly-U enriched palindrome regions across 292 

the SARS-CoV-2 genome (Figure 4). We conclude that these rearrangements do not 293 

represent artifacts derived from the NGS library preparation (e.g. PCR crosstalk artifacts), 294 

especially since all the supporting reads were not duplicated and, in some cases, differed in 295 

polymorphic positions (Suppl. Figure 1).  296 

Recombination processes involving S gene particularly, have been reported for 297 

SARS- and SARS-like CoV but also for HCoV-OC43. In the case of sister species HCoV-298 

NL63 and HCoV-229E, recombination breakpoints are located near 3’- and 5’-end of the 299 

gene [1][65]. S is a trimeric protein, which is cleaved into two subunits, the globular N-300 
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terminal S1 and the C-terminal S2 [66]. Our analysis revealed that similarly to other genomic 301 

regions, the S1 subunit hosts many low-frequency SNVs, characterized by higher density 302 

compared to the rest of the S gene sequence (Figure 1-E). The S2 subunit is highly 303 

conserved [13] and contains two fusion peptides (FP, IFP) [66]. In S gene, the same 304 

rearrangement event has taken place in two samples analyzed in this study, located in 305 

nt24,000, which corresponds to the ~200nt linking region between FP and IFP (aa 812-813). 306 

This observation highlights a potential recombination hot-spot. Examining closely the 307 

secondary structure of the RNA genome around the breakpoints, we suggest a model where 308 

the palindromes 5’-UGGUUUU-3’ and 5’-AAAACCAA-3’, have served as donor-acceptor 309 

sequences during the recombination event, since they are both exposed in the single-310 

stranded internal loops formed in a highly structured RNA pseudoknot (Figure 4-C). The RB 311 

domain of the S protein has been tested as a potential immunogen as it contains 312 

neutralization epitopes which appear to have a role in the induction of neutralizing antibodies 313 

[31]. It should be mentioned though that the S protein of SARS-CoV is the most divergent in 314 

all strains infecting humans [67], as in both C and N-terminal domains variations arise 315 

rapidly, allowing immunological escape [68]. Our findings support that apart from these 316 

variations, the N-terminal region also hosts a recombination hot-spot, which together with the 317 

rest of the observed rearrangements, indicates the genomic instability of SARS-CoV-2 over 318 

poly-A and poly-U regions.  319 

 320 
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FIGURE LEGENTS 336 

 337 

Figure 1: Intra – host SNVs: (A) Intra host SNV frequency vs sequencing read depth (X 338 

coverage) in the corresponding alignment position. (B) Venn diagram representing unique 339 

and common SNVs isolated from the three patients (C) Boxplot of intra-host SNVs frequency 340 

vs. SNV type – synonymous, missense, nonsense (stop gained) (low, moderate and high 341 

impact respectively). Average values are in red rhombs. (D) Intra-host SNVs frequency vs. 342 

all seven genes affected (ORF1ab, S, ORF3a, ORF6, ORF7a, ORF8, N). Average values 343 

are in red rhombs. (E) Density histogram of intra-host SNVs isolated from all patients (total 344 

number of SNVs / 100 bp - blue bars) and average sequencing read depth (X coverage – 345 

green line), across the SARS-CoV-2 genome map (genes in orange, 5’ and 3’ untranslated 346 

regions in light blue).  347 

 348 

Figure 2: Truncated map of SARS-CoV-2 genome illustrating a subset of intra-host (blue 349 

lines) and globally collected, isolate-specific SNVs (orange lines) with respect to the genomic 350 

targets of molecular diagnostics assays (red arrows – primers, red bars - probes). Three 351 

intra-host variants (orange triangles), and two strain specific variants (Wuhan/IVD-HB-352 

04/2020 and Chongqing/YC01/2020 - red triangles), are colocalized with the RdRP_SARSr 353 

probe (15,474 T > G), the 2019-nCoV_N1 forward primer (28,291 C > T), the HKU-N reverse 354 

primer (28,971 A > G) and the 2019-nCoV-N2 probe (29,188 T > C and 29,200 C > T). 355 

 356 

Figure 3: Alignment of the de novo assembled contigs on the genomic map (bottom). 357 

Concordantly aligned contigs (correct or gapped) are in green, while discordantly aligned 358 

contigs are in red. Sequencing read depth (X coverage) across the genome (blue 359 

histograms) and relative % GC content (green line) is presented for each sample.   360 

 361 

Figure 4: Recombination events in S gene. Samples (A) SRR10903401 and (B) 362 

SRR10903402. Alignments of the de novo assembled contigs with respect to the reference 363 

genome (MN 975262). Donor – acceptor palindrome sequences are indicated in green bars. 364 

Raw, non-duplicated NGS reads, validating the recombination event, are represented below 365 

the corresponding contig. (C): Prediction of the secondary structure of the genomic region 366 

spanning the rearrangement breakpoint (100 bases upstream and 100 bases downstream). 367 

The corresponding donor- acceptor sequences, exposed in internal loops, are indicated in 368 

green bars.  369 

  370 
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TABLES 

 
Table 1: NGS read alignment and genome coverage metrics 

 
 Sample 

SRR10903401 SRR10903402 SRR10971381 

Paired Reads, N (%)  

   Total Number 476632 (100) 676694 (100) 28282964 (100) 

   Aligned 13913 (2.94) 54723 (8.18) 62,288 (0.22) 

   Concordantly Aligned 11469 (2.40) 44176 (6.52) 59261(0.21) 

   Discordantly Aligned 2444 (0.53) 10547 (1.67) 3027 (0.01) 

Single Mates, N (%)  

   Aligned 244 (0.03) 1308 (0.11) 294(0.001) 

Overall Alignment Rate (%) 2.94 8.18 0.22 

    
Quality score >Q30 (%) 92.7 92.1 88.2 

Genome Coverage (%) 100.0 100.0 99.9 

Average read depth (X)  133.5 522.2 598.2 

 
 
 
Table 2: Impact of Intra-host SNVs on viral genes 
 
 

Intra-host Variants Impact, N 
  

Gene 
Low 
(synonymous) 

Moderate 
(missense) 

High (stop 
gained) 

Total, N 
(v/kbgl)* 

     

ORF1ab 19 53 2 74 (3.47) 

S 6 9 1 16 (4.18) 

ORF3a 0 1 0 1 (1.20) 

E 0 0 0 0 (0) 

M 0 0 0 0 (0) 

ORF6 2 1 0 3 (16.21) 

ORF7a 0 1 0 1 (2.73) 

ORF8 0 3 0 3 (8.21) 

N 2 4 0 6 (4.76) 

ORF10 0 0 0 0 (0) 

     

Total, N 29 72 3  
 
* normalised variants per 1 kb gene length (variants / gene-length *1000)  
 
 



Table 3: Alignment characteristics of de novo assembled contigs 

 
Contig Name 

 
Contig 
Length 

Reference* 
Coordinates 

Contig 
Coordinates 

 
Alignment 

Identity (%) 

 
Alignment 

Type 

 
Average 

Read 
Depth (x) 

 
QC 

Pass# 

  start end start end     

SRR10903401 
(99.7% coverage)          

Contig 1 23994 75 24068 23994 1 99.99 Correct 57.01 + 

Contig 2 5681 24246 29891 1 5646 99.96 Correct 71.40 + 

Contig 3 331 23992 24322 331 1 100 Correct 164.39 + 

Contig 4 179 24221 24399 179 1 100 Correct 97.56 + 

Contig 5 192 17816 17909 94 1 100 Inversion 7.22 + 

  17933 18030 95 192 100 Correct   

Contig 6 181 18052 18152 101 1 100 
Relocation, 

Inconsistency 8.12 + 

  17766 17845 102 181 100 Misassembly   

Contig 7 169 1707 1765 62 4 100 Inversion 7.62 + 

  1815 1903 63 151 97.75 Correct   

Contig 8 165 23992 24087 96 1 100 Inversion 18.04 + 

  23963 24031 97 165 100 misassembly   

SRR10903402 
(99.5% coverage)          

Contig 1 29842 133 29891 29842 84 99.98 Correct 234.32 + 

Contig 2 242 2075 2139 178 242 100 Partial 1.09 - 

Contig 3 242 21577 21629 242 190 100 Partial 1.06 - 

Contig 4 173 23992 24090 102 4 100 Inversion 39.30 + 

  23963 24033 103 173 100 Misassembly   

SRR10971381
(100.0% coverage)          

Contig 1 29902 1 29891 29897 7 99.98 Correct 267.59 + 

Contig 2 241 516 559 163 120 100 Inversion 1.00 - 

  472 501 119 90 100 Misassembly   

 

* Corresponding to reference MN975262 coordinates 

# contig supported by at least 5 non duplicated reads of mapping quality >40 

 




