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Introduction

Isoconversional methods are amongst the more reliable kinetic methods for the treatment of thermoanalytical data, see, for example [START_REF] Vyazovkin | Isoconversional kinetic analysis of thermally stimulated processes in polymers[END_REF][START_REF] Vyazovkin | ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[END_REF][START_REF] Vyazovkin | Isoconversional Kinetics of Thermally Stimulated Processes[END_REF][START_REF] Vyazovkin | ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics[END_REF]. They have the advantage of allowing the calculation of the effective activation energy, named Eα, without assuming any particular form of the reaction model, f(α) or g(α), i.e. in a "model-free" way. This is very interesting to obtain information on the reaction mechanism that we want to elucidate. A change in the Eα variation, called the Eα-dependency, can generally be associated with a change in the reaction mechanism or in the rate-limiting step of the overall reaction rate, as measured with thermoanalytical techniques. Most often, only Eα is calculated because to calculate the preexponential factor Aα or the mathematical function that describe the reaction mechanism f(α) or g(α) it is necessary to introduce a hypothesis on this mechanism in the equations. Thus, the resulting values are not model-free. However, in some cases it is very useful to know both Eα and Aα. Several examples where a chemical reaction occurred at lower temperature despite a higher value of Eα were explained by a higher value of Aα [START_REF] Alzina | Hybrid Nanocomposites: Advanced Nonlinear Method for Calculating Key Kinetic Parameters of Complex Cure Kinetics[END_REF][START_REF] Menager | Polymerization kinetic pathways of epoxidized linseed oil with aliphatic biobased dicarboxylic acids[END_REF]. Interestingly, the effect may appear in Aα only, when Eα remains unchanged. This was noticed for effect of inert gas pressure on reversible solid-state decomposition [START_REF] Stanford | Effect of Inert Gas Pressure on Reversible Solid-State Decomposition[END_REF]. The knowledge of f(α) is also very important for the elucidation of reaction mechanisms. The only method which allows the value of Aα to be determined in a model-free way is the method based on the so-called "compensation effect" (CE). The principle of this method is not straightforward because it uses a fit of the data to finally obtain model-free values of Aα. The validity of the method could be easily checked for a single-step reaction, using simulated data, because a single value of E and A is obtained in this case. Therefore, only one pioneering study reports the validity of the method for multi-step reactions [START_REF] Vyazovkin | False isokinetic relationships found in the nonisothermal decomposition of solids[END_REF]. Indeed, the theoretical Aα-dependency is not known in this case. Thus, the aim of this study is to use a simulated multi-step reaction for which the theoretical Aα-dependency can be determined, to check the accuracy of four methods to evaluate Aα and f(α) in a model-free way, and to determine the most accurate methods. The work is a completion of a previously published article [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF].

Theoretical part

Kinetic methods

The general form of the basic rate equation is usually written as [START_REF] Vyazovkin | Isoconversional kinetic analysis of thermally stimulated processes in polymers[END_REF]:
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where T is the temperature, f(α) is the differential form of the mathematical function that describe the reaction model that represents the reaction mechanism, E is the activation energy, and A is the pre-exponential factor. For integral methods the mathematical function that describe the reaction model is noted g(α).

The advanced non-linear isoconversional method (NLN) or Vyazovkin's method [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF][START_REF] Vyazovkin | Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature[END_REF][START_REF] Sbirrazzuoli | Comparison of several computational procedures for evaluating the kinetics of thermally stimulated condensed phase reactions[END_REF][START_REF] Vyazovkin | Modification of the integral isoconversional method to account for variation in the activation energy[END_REF] used in this study is presented in Equations ( 2) and ( 3) and has been derived from Equation

(1):
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where Eα is the effective activation energy. The Eα value is determined as the value that minimizes the function Φ(Eα) using a set of n experiments carried out under different arbitrary temperature programs Ti(t) and uses a numerical integration of the integral with respect to the time. For each i-th temperature program, the time tα,i and temperature Tα,i related to selected values of α are determined by an accurate interpolation using a Lagrangian algorithm [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF][START_REF] Sbirrazzuoli | Is the friedman method applicable to transformations with temperature dependent reaction heat?[END_REF].

Numerical integration is performed using trapezoidal rule. The method developed by N.

Sbirrazzuoli and implemented in his internally generated software [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF][START_REF] Sbirrazzuoli | Is the friedman method applicable to transformations with temperature dependent reaction heat?[END_REF][START_REF] Sbirrazzuoli | Different kinetic equations analysis[END_REF][START_REF] Sbirrazzuoli | Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3-peak maximum evolution methods and isoconversional methods[END_REF] can treat any kind of isothermal or non-isothermal data from DSC, calorimetry (C80), TGA, DMA, or rheometry [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF][START_REF] Sbirrazzuoli | Is the friedman method applicable to transformations with temperature dependent reaction heat?[END_REF][START_REF] Sbirrazzuoli | Different kinetic equations analysis[END_REF][START_REF] Sbirrazzuoli | Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3-peak maximum evolution methods and isoconversional methods[END_REF][START_REF] Falco | FA polymerization disruption by protic polar solvent[END_REF]. This software was used in this study to compute a value of Eα for each value of α lying in between 0.02 to 0.98 with a step of 0.02. This advanced non-linear isoconversional method (NLN) was applied in this study.

Another isoconversional method can be derived by linearization of Equation ( 1) and is known as Friedman's method (FR) [START_REF] Sbirrazzuoli | Is the friedman method applicable to transformations with temperature dependent reaction heat?[END_REF][START_REF] Friedman | Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[END_REF]:
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Application of this method requires the knowledge of the reaction rate (dα/dt)α,i and of the temperature Tα,i corresponding to a given extent of conversion α for the i temperature programs used. The advantages of differential methods such as Friedman's method are that they use no approximations and can be applied to any temperature program. This does not hold for usual integral methods but is also the case for the nonlinear advanced isoconversional method previously described. Nevertheless, simulations have shown that differential isoconversional methods can sometimes reveal numerical instability [START_REF] Sbirrazzuoli | Is the friedman method applicable to transformations with temperature dependent reaction heat?[END_REF], therefore before the use of Friedman method it was checked that the obtained results are consistent with those obtained with the NLN method.

Compensation effect

Model-free evaluation of the pre-exponential factor Aα and of the mathematical function f(α) that describes the reaction mechanism is not possible using Equations ( 2) and (4). Equation (4) permits the evaluation of the product [Aα f(α)], thus if one needs to evaluate the preexponential factor Aα this will require the knowledge of the reaction mechanism, i.e. f(α). In order to determine Aα and f(α) in a model-free way, i.e. without introduction of the mathematical expression of f(α), the use of the so-called compensation effect has been proposed [START_REF] Vyazovkin | False isokinetic relationships found in the nonisothermal decomposition of solids[END_REF][START_REF] Vyazovkin | Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters[END_REF][START_REF] Vyazovkin | The application of isoconversional methods for analyzing isokinetic relationships occurring at thermal decomposition of solids[END_REF][START_REF] Vyazovkin | Thermally induced reactions of solids: isokinetic relationships of non-isothermal systems[END_REF][START_REF] Budrugeac | The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data[END_REF][START_REF] Cadenato | Comparative kinetic study of the non-isothermal thermal curing of bis-GMA/TEGDMA systems[END_REF]. This method is based on the experimental statement that for multi-step processes, the same experimental curve can be fitted by several reaction models.

Transformation of Equation (1) into Equation ( 5) gives the mathematical justification of the apparent compensation effect that may exists when the model changes:
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where a and b are the compensation parameters and the subscript i refers to a factor producing a change in the Arrhenius parameters (conversion, temperature program). According to Equation ( 5) a pair of apparent parameters Ei and ln Ai can be computed using a model-fitting method, for each i reaction models f(α). Once the parameters a and b have been estimated the values of lnAα are evaluated using Equation ( 6):

lnAα = a Eα + b ( 6 
)
The Eα values used in Equation ( 6) are obtained with an isoconversional method which leads to model-free values of Aα.

Reaction model

The differential form of the mathematical function that describe the reaction model, f(α) is determined according to Equation [START_REF] Stanford | Effect of Inert Gas Pressure on Reversible Solid-State Decomposition[END_REF]:

f(α) = [Aα.f(α)] / Aα (7)
where [Aα.f(α)] is obtained from the intercept of the Friedman plot (Equation 4) and g(α), the mathematical function that describe the reaction model for integral methods, is obtained from Equation (8) [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF]:
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Pre-exponential factor dependency for a multi-step process

For a multi-step processes, it is not possible to obtain an exact solution for the Aα-dependency in the general case. Isoconversional methods assume that a multi-step process can be described by a single-step equation of the form of Equation ( 9) if the computation is made for a given value of the extent of conversion [START_REF] Vyazovkin | Isoconversional kinetic analysis of thermally stimulated processes in polymers[END_REF][START_REF] Sbirrazzuoli | Advanced Isoconversional Kinetic Analysis for the Elucidation of Complex Reaction Mechanisms: A New Method for the Identification of Rate-Limiting Steps[END_REF]:
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where kef,α is the effective (or apparent) rate constant and fef,α(α) the reaction model computed for a constant α value. In this case, the hypothesis of a single-step process is only applied for each constant α value used for the computation, which corresponds, for nonisothermal data, to a very narrow temperature range, thus the assumption of the validity of a single-step equation for given α value generally hold even for complex reactions. This was demonstrated using simulated data and it was concluded that the single-step approximation is quite accurate for typical temperature ranges related to a given value of α [START_REF] Vyazovkin | Modern Isoconversional Kinetics: From Misconceptions to Advances, The Handbook of Thermal Analysis & Calorimetry[END_REF].

For a multi-step reaction with two competing reactions, the overall reaction rate can be expressed as:
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In the peculiar case where
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Equation ( 14) gives the theoretical expression of the Aα-dependency for a model of two competing reactions with f1(α) = f2(α). This Equation will be used to evaluate the accuracy of the computations of the Aα-dependency with the compensation method (CE) in association with an isoconversional method (FR or NLN).

Effective activation energy dependency for a multi-step process

The effective activation energy can be determined by taking the logarithmic derivative of the reaction rate at a constant extent of conversion. This is achieved by application of the isoconversional principle represented by Equation [START_REF] Sbirrazzuoli | Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3-peak maximum evolution methods and isoconversional methods[END_REF], to Equation (10) [START_REF] Vyazovkin | Isoconversional Kinetics of Thermally Stimulated Processes[END_REF][START_REF] Sbirrazzuoli | Comparison of several computational procedures for evaluating the kinetics of thermally stimulated condensed phase reactions[END_REF]:
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Then,
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Data simulations

Simulated data were generated using a method described elsewhere [START_REF] Guigo | Modelling the non-isothermal crystallization of polymers: Application to poly(ethylene 2,5-furandicarboxylate)[END_REF] at four heating rates of 1, 2, 5 and 10 K.min -1 . A complex reaction involving two competing reactions was simulated using the following parameters:

A1 = 339703.2279 s -1 , E1 = 60 kJ mol -1 , f1(α) = (1 - α), A2 = 178482139.8 s -1 , E2 = 80 kJ mol -1 , f2(α) = (1 -α).
Compensation effect (CE) was performed using Achar-Brindley-Sharp (ABS) and Tang methods [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF] in the interval 20 < α < 80% for the heating rate of 2 K.min -1 . Models 6, 7, 8 and 9 of reference [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF] were selected as they lead to a correlation coefficient r 2 ≥ 0.99998 for each model. The parameters of the CE using ABS methods were a = 0.34863 mol. kJ -1 and b = -7.74462 with r 2 = 0.99984. This method will be noted as CE(ABS). These parameters were also computed using the 18 th models of reference [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF] (excepted model 14 that was not used because it contains an adjustable parameter). In this case, a = 0.32554 mol. kJ -1 , b = -6.90838 and r 2 = 0.99933. For the sake of comparisons, Tang method was also used. The CE parameters obtained were a = 0.35083 mol. kJ -1 and b = -7.85599 with r 2 = 0.99972. This method will be noted as CE(Tang). These parameters were used in the following to compute lnAα in a model-free way according to Equation [START_REF] Menager | Polymerization kinetic pathways of epoxidized linseed oil with aliphatic biobased dicarboxylic acids[END_REF]. Then, f(α) was determined according to Equation [START_REF] Stanford | Effect of Inert Gas Pressure on Reversible Solid-State Decomposition[END_REF] and G(α) was obtained from Equation (8).

Results

The simulated data are presented in Figure 1 in the form of (dα/dt)-T and α-T curves. Figure 2 gives the correlation obtained between lnA and E computed with CE(ABS) method.

The values of lnA and E obtained for 18 th models are also presented for comparisons. As expected a very good correlation between lnA and E is obtained when the "best" models (6,7,8,9) are used (r 2 = 0.99984). Interestingly, the values of the correlation coefficient is also close to one when all the models are used (r 2 = 0.99933) which attests to a good correlation between the parameters whatever the models used. This can lead to the conclusion that it is not necessary to proceed to the first stage of selection of the "best" models. Nevertheless, the use of these data to compute lnA and f(α) resulted in incorrect values (data not presented here). Compensation effect CE(ABS) for the 18 th models of reference [START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF]. Logarithm of the pre-exponential factor (lnA) as a function of activation energy (E) computed with ABS method. Triangle: values obtained for the selected models [START_REF] Menager | Polymerization kinetic pathways of epoxidized linseed oil with aliphatic biobased dicarboxylic acids[END_REF][START_REF] Stanford | Effect of Inert Gas Pressure on Reversible Solid-State Decomposition[END_REF][START_REF] Vyazovkin | False isokinetic relationships found in the nonisothermal decomposition of solids[END_REF][START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF].

In the following the accuracy of the computation of Aα and f(α) in a model-free way will be determined as well as the differences resulting of the use of FR, NLN, ABS or Tang methods.

The methods will be noted FR-ABS, NLN-ABS and NLN-Tang. The first term corresponds to the method used for the estimation of Eα and the second term to the method used for the CE.

Figure 3 presents the theoretical values of the logarithm of the pre-exponential factor (lnAα obtained from Equation 14) as a function of temperature (T) and extent of conversion (α) and the results obtained for the lnAα-dependency using NLN-ABS. To evaluate the accuracy of the method the reference values of Aα were computed according to Equation ( 14) and compared to the data obtained using CE and an isoconversional method.

The results are presented in Figure 4. The values of the Eα-dependencies computed with FR and NLN are presented in the inset of Figure 4 and compared to the reference values obtained from Equation [START_REF] Friedman | Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[END_REF]. Three different methods were compared, i.e. FR-ABS, NLN-ABS and NLN-Tang. The results indicate that all the methods give very accurate values for the lnAαdependency obtained using CE method. It is interesting to note that even if the CE parameters were evaluated for a limited interval of 20 < α < 80% we do not observe large deviations of the lnAα-dependency for values outside of this interval. Nevertheless, it is not possible to generalize this conclusion to the case where f1(α) ≠ f2(α). 14)), triangle: values obtained using NLN-ABS method, diamond: values obtained using FR-ABS method, cross: values obtained using NLN-Tang method. Inset: Eα-dependency with temperature (T).

Circle: reference values (Eq. ( 17)), triangle: NLN method, diamond: FR method.

Table 1 gives the relative errors on the logarithm of the pre-exponential factor (lnAα /s -1 ) for the three methods. The use the Tang integral method for CE is more suitable when the integral isoconversional method NLN is applied. The lowest errors are obtained with NLN-Tang method. Surprisingly, the mean relative error is lower when all the data are used with FR-ABS (including the values outside of the interval used for the CE), while it is the opposite with NLN (for NLN-ABS and NLN-Tang). Nevertheless, the difference is probably not significative. All the methods give an error less than 1% and thus, it is concluded that they are suitable for the determination of lnAα in a model-free way. The mathematical function f(α) that describes the reaction mechanism was computed using FR-ABS method and Equation [START_REF] Stanford | Effect of Inert Gas Pressure on Reversible Solid-State Decomposition[END_REF]. The resulting values are presented in Figure 5 and

show the very good agreement between computed values and reference values (model 6).

Normalized functions f(α)/f(α)max were represented in Figure 5 for more clarity. Each function was simply divided by the highest value found in the interval of computation. The same conclusion apply for the determination of G(α) using NLN-Tang method and Equation (8) as shown in Figure 6. Normalized functions G(α)/G(α)max were represented in Table 2 gives the relative errors on f(α) and G(α) obtained with FR-ABS, NLN-ABS and NLN-Tang. The lowest errors are obtained for FR-ABS with around 2-3% instead of around 6-8% for the two other methods. According to the results of Table 1, NLN-Tang method gives the lowest errors for the evaluation of lnAα, while the lowest errors for the reaction model are obtained using FR-ABS (Table 2). Thus, it is proposed to compute f(α) using the reaction rate evaluated at 2 K.min -1 for each α divided by the rate constant kα(T) and NLN-Tang method, to avoid the use of Equation [START_REF] Vyazovkin | False isokinetic relationships found in the nonisothermal decomposition of solids[END_REF]. Indeed, the Arrhenius rate constant can be obtained from Equation [START_REF] Vyazovkin | Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters[END_REF]:

kα(T) = Aα. exp(-Eα /RTα) (18) 
Then, f(α) can be obtained from Equation [START_REF] Vyazovkin | The application of isoconversional methods for analyzing isokinetic relationships occurring at thermal decomposition of solids[END_REF]:

f(α) = (dα / dt)α / kα(T) ( 19 
)
This method is referred as NLN-Tang-R and the results are presented in Table 2. As expected this method leads to the lowest errors for the determination of the mathematical function that describe the reaction model f(α). A value of 0.28% is obtained in this case for NLN-Tang-R, much lower to the value of 2.26% obtained with FR-ABS. The difference observed between the computations performed using the whole extent of conversion interval and the interval used for the CE method is weak. Evaluation of G(α) always lead to higher errors. Thus, it is recommended to compute f(α). Finally, it can be concluded that the CE method in association with an advanced isoconversional method allows for the determination of Aα and f(α) in a model-free way with a high accuracy. 2.26% 7.04% 7.50% 0.28% a) Relative error using CE(ABS) and FR method, CE parameters computed for 0.2 < α < 0.80 b) Relative error using CE(ABS) and NLN method, CE parameters computed for 0.2 < α < 0.80 c) Relative error using CE(Tang) and NLN method, CE parameters computed for 0.2 < α < 0.80 d) Relative error using CE(Tang), NLN method and Eq. ( 19), CE parameters computed for 0.2 < α < 0.80

Conclusion

Several methods to evaluate the pre-exponential factor Aα and the mathematical function that describe the reaction model f(α) in a model-free way were proposed. Three different methods were applied to simulated data of a multi-step process, i.e. FR-ABS, NLN-ABS, NLN-Tang.

The results indicate that all the methods give very accurate values. For the evaluation of lnAα the lowest errors are obtained with NLN-Tang (0.35%) and FR-ABS (0.51%). For the evaluation of f(α) the lowest errors are obtained with a modification of the NLN-Tang method referred as NLN-Tang-R (0.28%) and FR-ABS (2.26%). Evaluation of the integral form of the reaction model always lead to higher errors, but lower than 8%. The complementary of the information gained with the knowledge of the pre-exponential factor and function related to the reaction mechanism in addition with the effective activation energy, Eα can be very efficient for the elucidation of complex reaction mechanisms in the condensed phase. It was shown that the methods proposed in this work could be used for this purpose.

Figure 1 .

 1 Figure 1. Simulated data for a multi-step process of two competing reaction. The heating rate is indicated by the line in K.min -1 . Left (dα/dt)-T curves and right α-T curves.

Figure 2 .

 2 Figure 2.Compensation effect CE(ABS) for the 18 th models of reference[START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF]. Logarithm of the pre-exponential factor (lnA) as a function of activation energy (E) computed with ABS method. Triangle: values obtained for the selected models[START_REF] Menager | Polymerization kinetic pathways of epoxidized linseed oil with aliphatic biobased dicarboxylic acids[END_REF][START_REF] Stanford | Effect of Inert Gas Pressure on Reversible Solid-State Decomposition[END_REF][START_REF] Vyazovkin | False isokinetic relationships found in the nonisothermal decomposition of solids[END_REF][START_REF] Sbirrazzuoli | Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way[END_REF].

Figure 3 .

 3 Figure 3. Simulated values of the theoretical lnAα-dependency with temperature (T) and extent of conversion (α). Open circle: lnAα-dependency obtained for 1, 2, 5 and 10 K.min -1 using NLN-ABS method.

Figure 4 .

 4 Figure 4. lnAα-dependency with temperature (T). Circle: reference values (Eq. (14)), triangle: values obtained using NLN-ABS method, diamond: values obtained using FR-ABS method, cross: values obtained using NLN-Tang method. Inset: Eα-dependency with temperature (T). Circle: reference values (Eq. (17)), triangle: NLN method, diamond: FR method.

Figure 5 .

 5 Figure 5. Variation of the normalized function f(α)/f(α)max with extent of conversion (α) for the 14 reference models (1: open stars, 2: solid up triangles, 3: solid stars, 4: open left triangles, 5: solid left triangles, 6: solid squares, 7: open circles, 8: solid circles, 9: open squares, 10: open diamonds, 11: solid diamonds, 12: open down triangles, 13: solid down triangles, 14: open up triangles, 15: open right triangles, 16: solid right triangles, 17: cross (+), 18: open pentagone). Cross (X): f(α)/f(α)max value obtained using FR-ABS method at 2 K.min - 1 .
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 6 Figure 6 for more clarity. Each function was simply divided by the highest value found in the interval of computation.

Figure 6 .

 6 Figure 6. Variation of the normalized function G(α)/G(α)max with extent of conversion (α) for the 14 reference models (1: open stars, 2: solid up triangles, 3: solid stars, 4: open left triangles, 5: solid left triangles, 6: solid squares, 7: open circles, 8: solid circles, 9: open squares, 10: open diamonds, 11: solid diamonds, 12: open down triangles, 13: solid down triangles, 14: open up triangles). Cross (X): G(α)/G(α)max values obtained using NLN-Tang method at 2 K.min -1 .

Table 1 .

 1 Relative errors on the logarithm of the pre-exponential factor (lnA/s -1 ) α ) Relative error using CE(ABS) and FR method, CE parameters computed for 0.2 < α < 0.80 b) Relative error using CE(ABS) and NLN method, CE parameters computed for 0.2 < α < 0.80 c) Relative error using CE(Tang) and NLN method, CE parameters computed for 0.2 < α < 0.80

		RE (lnA)	RE (lnA)	RE (lnA)
		FR-ABS a	NLN-ABS b	NLN-Tang c
	0.02	0.0026	0.0133	0.0113
	0.10	0.0070	0.0106	0.0084
	0.20	0.0070	0.0093	0.0070
	0.50	0.0054	0.0053	0.0028
	0.80	0.0029	0.0033	0.0007
	0.98 Mean (0.02 < α < 0.98) Mean (0.2 < α < 0.80)	0.0001 0.42% 0.51%	0.0029 0.75% 0.59%	0.0003 0.51% 0.35%

a

Table 2 .

 2 Relative errors on f(α) and G(α)

	α	RE [f(α)]	RE [G(α)]	RE [G(α)]	RE [f(α)]
		FR-ABS a	NLN-ABS b	NLN-Tang c	NLN-Tang-R d
	0.02	0.0000	0.0716	0.0854	0.0000
	0.10	0.0225	0.1003	0.1096	0.0072
	0.20	0.0183	0.0975	0.1048	0.0062
	0.50	0.0080	0.0729	0.0772	0.0021
	0.80	0.0417	0.0408	0.0430	0.0002
	0.98 Mean (0.02 < α < 0.98) Mean (0.2 < α < 0.80)	0.0867 2.95%	0.0000 6.38%	0.0000 7.00%	0.0041 0.33%
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The effective activation energy (Eα) dependency is used to compute the dependence of the preexponential factor (Aα) and of the mathematical function that describe the reaction mechanism f(α) in a model-free way. The effective rate constant kα(T) depends on both temperature (T) and extent of conversion (α) for multi-step reactions in nonisothermal mode.