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This paper deals with a synthetic presentation of parallel iterative asynchronous algorithms and their extensions for the solution of large sparse linear or pseudo-linear algebraic systems eventually constrained. The behavior of these iterative parallel asynchronous algorithms is studied by three distinct methods : contraction property, partial ordering property linked to the discrete maximum principle and nested sets; the link between these three kinds of analysis is presented. Stopping tests of the iterations are presented both from computer science and from numerical analysis approach including in this last case approximate contraction property, partial ordering property linked to the discrete maximum principle and nested sets. The principle of implementation of these parallel asynchronous iterative methods is described for subdomain method without overlapping and for subdomain method with overlapping; the use of load balancing approach for asynchronous parallel algorithms is also discussed. Various applications modelled by linear equations or pseudo linear equations and solved by such parallel algorithms are presented as well as the uses of these methods in computer security and Boolean calculation. The efficiency of parallel iterative asynchronous algorithms is also discussed.

Introduction

Numerical simulation is an approach that has become essential in many scientific and industrial fields, thanks in particular to the current computing power and storage capacity of current computers. Thus, we are currently observing the development of studies of physical, chemical, biological, economic and medical phenomena, all of which have in common that they are mathematically modeled on the basis of the laws governing these various phenomena. Among the fields where numerical simulation is used, we can mention avionics, chemical engineering, fluid mechanics, nuclear applications, plasma physics, meteorology, oceanography, molecular biology and many other applications, this list being not exhaustive.

The mathematical models obtained can be extremely complex to solve. Solving the equations resulting from modeling can be a major source of difficulty due to the use of large data structures and calculation results to store and also due to prohibitive calculation times. For example, when phenomena are modeled by partial differential equations, discretization methods using classical finite differences methods, finite elements methods or finite volume methods lead to the resolution of very large algebraic systems; indeed, the complexity and number of unknowns are all the higher the more stringent the requirements on the accuracy of the results. To satisfy the growing need for computing resources, the joint development of parallel architectures and algorithms is a highly explored way of investigation at the present time.

In contrast to parallel applications such as data mining, the parallel resolution of large algebraic systems, mainly of an iterative nature, especially when the systems to solve are sparse, involves algorithms that require extensive data exchange between the different computing units. Efficient parallelization is then difficult to implement for the type of target problems to be solved, due to the latency time induced by remote data access. These accesses are an even greater handicap when the computing units have to be synchronized during the communication phases. Indeed, the fact of having to wait until a distant data becomes available before continuing a calculation necessarily causes a degradation of the performance of a parallel algorithm. The problem raised becomes all the more inextricable when the number of processors increases and the frequency of exchanges is high. Moreover, any mismatch between the computational loads assigned to the different processors contributes to reducing the efficiency of algorithm parallelization.

Powerful computing resources are needed for large-scale numerical simulation. For example, such simulations are particularly relevant for the solution of large scale algebraic systems derived from the discretization of coupled nonlinear boundary values problems arising in multi-physics. Nowadays, only massively parallel efficient computer architectures are able to offer this power of computation. In this context, grid computing, peer to peer computing and cloud computing appear to be a challenging paradigms in order to match the need in high speed computing. Concerning the efficient numerical algorithms to be implemented on such parallel architectures, it can be noted that parallel asynchronous iterative numerical methods deserve particular attention nowdays since it is difficult to synchronize large number of processors on heterogeneous and massively parallel architectures. Moreover this kind of particular methods are well adapted when the clusters are distant and heterogeneous. Nevertheless, among the many challenging issues related to the efficient use of asynchronous algorithms on new parallel or distributed architectures, such as convergence study, and performance analysis, the influence of roundoff errors and the derivation of stopping criteria is particularly hard to analyze and important to estimate.

In this presentation we will avoid as much as possible the use of too mathematical formalism to prefer the presentation of underlying ideas and, given the large number of scientific works published in the field, we refer to the main bibliographical references for additional information. Moreover, since the subject is large, and includes both numerical and computer aspects, the presentation of numerical methods will be preferred, without neglecting the computer aspects which will also be discussed.

In [START_REF] Spiteri | Synthetic presentation of iterative asynchronous parallel algorithms[END_REF] the parallel asynchronous methods were presented in a synthetic and didactic way, avoiding too abstract mathematical formalism. In this paper we use the same framework as in [START_REF] Spiteri | Synthetic presentation of iterative asynchronous parallel algorithms[END_REF] but by formalizing the presentation of these methods with precise criteria to study their behavior as well as the development of a certain number of examples that allow us to successfully consider a certain number of applications. Nevertheless in the present paper, the proofs of the theoretical results are omitted in most cases; so, if the reader is interested, he can refer to the many cited references.

The paper is organized as follows. In section 2 we describe the parallel iterative asynchronous algorithms accomplished first in pioneering works and then extended subsequently; various mathematical results will be given without proof. Section 3 presents the difficult problem of termination of parallel iterative asynchronous algorithms viewed both from computer science approach and also from numerical analysis approach. Section 4 presents some principles of implementation of parallel iterative asynchronous algorithms; implementation on multi -CPU and on multi -GPU are described and this section is ended by some considerations for load balancing of parallel asynchronous methods. Section 5 allows to present various applications of parallel iterative asynchronous methods while section 6 gives some details to obtain a good efficiency for using such parallel iterative method. Finally the presented paper is ending by a short conclusion.

Parallel asynchronous algorithms

Presentation of parallel asynchronous methods

For the solution of large linear algebraic systems

AU = B (1) 
or pseudo-linear singlevalued systems

AU + Φ(U) = B (2) 
where U → Φ(U) is an increasing diagonal application or a multivalued algebraic systems

AU + Ξ(U) -B 0 (3) 
where, classically, the formulation of problem [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF] takes into account some constraints on the solution U of the kind

U min ≤ U or U min ≤ U ≤ U Max or U ≤ U Max (4) 
and where U → Ξ(U) ≡ ∂Ψ(U) is the subdifferential of the indicator function Ψ of the convex set which defines the considered constraints (see [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF]). We associate a fixed point mapping to these three problems and we have to solve the following large fixed point problem U = F(U)

Remark 1. The formulation ( 3) is classical to model problems subject to constraints of an inequality type; the reader is referred to [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF] or [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF] for more details; in such theoretical formulation U → Ξ(U) denotes the subdifferential of the indicator function of the convex set K defining the constraints on the solution. In fact, this formulation has only a theoretical scope and simply allows to analyze in a convenient way the behavior of iterative algorithms that will be used to solve the multivalued problem. On the practical and algorithmic level, for the multivalued problem [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF], limiting ourselves to the situation of problems where the solution is subject to constraints such as (4), when using an iterative resolution algorithm, it will be necessary to judiciously combine alternately elementary operations of linear algebra and projections on the convex set defining the constraints. The most banal case corresponds to the successive resolution of discrete problems derived from discretized boundary value problems where the solution is subject to constraints of the type (4) corresponding to a very elementary situation of the solution of an affine unconstrained equation of a real variable, immediately followed by a projection on the convex set, which is then defined as a bounded or unbounded segment of the real line. However, in the case of structured matrices resulting from discretization by finite differences or finite volume methods of elliptic operators defined in two-dimensional or three-dimensional domains, thus containing tri-diagonal blocks, a non-linear variant of the Thomas algorithm may be implemented which respects the structure of this last algorithm corresponding to the classical Gaussian elimination method for the specific resolution of tri-diagonal linear unconstrained systems but where during the ascent phase the update obtained during the resolution of the unconstrained problem is projected on the convex set. Let us also mention a method, certainly not related to asynchronous computation, for problems of the type [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF], in which one alternately solves a series of linear problems, each time relative to the matrix of the unconstrained problem posed, thus freed of its constraints, in alternation with, at each update of one or more components of the problem without constraints and followed by a projection on the convex set of the constraints. Moreover, theoretically, there is a common point between the problems (2) and (3) since the operators are both diagonal and increasing (or more generally monotone), this last property playing an essential role in the analysis of algorithms. Finally, in the multivalued formulation [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF], the association of a fixed point application U → F(U) to the considered problem is done by taking an element ξ ∈ Ξ(U] and consider the following system AU + ξ(U) -B = 0, ξ(U) ∈ Ξ(U), F being then determined in a similar way to the operating mode considered for the problem [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF].

Due to the large size of these problems (1) to [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF] iterative methods are preferred to direct methods due to the propagation of rounding errors. Moreover the elapsed time required to solve these algebraic systems can be very important and, at present, parallel methods are being used. Concerning the asynchronous parallel iterations, they are defined from the fixed point equation [START_REF] Rosenfeld | A case study on programming for parallel processors[END_REF]. In fact the parallel solution of algebraic systems implies the decomposition of the problem into α interconnected subproblems, where α denotes the number of processors used.

Let us denote by N ∈ N the size of the matrix A. Let also E = R N be indifferently a Banach space normed by a nonhilbertian norm or an Hilbert space normed by an hilbertian norm. Taking into account of the decomposition of the problem the space E = α i=1 E i is decomposed in a finite product of α subspaces denoted E i = R n i , with α i=1 n i = N, where n i denotes the size of the i th -space E i ; note that E i is also a Banach space or an Hilbert space.

Let us consider the general fixed point problem [START_REF] Rosenfeld | A case study on programming for parallel processors[END_REF] where F : D(F) ⊂ E → D(F) is associated to a particular splitting of the matrix A. According to the decomposition of E, let us consider the corresponding α-block decomposition of F and U U = (U 1 , . . . , U α ) F(U) = (F 1 (U), . . . , F α (U)), where for all U ∈ E, we denote by U l ∈ E l for l ∈ {1, . . . , α} the associated block components of U. In order to solve the fixed point problem [START_REF] Rosenfeld | A case study on programming for parallel processors[END_REF], let us consider now the parallel asynchronous iterations defined as follows: let U 0 ∈ E be given; then for all r ∈ N, U r+1 is recursively defined by

U r+1 l =
F l (U t 1 (r) 1 , . . . , U t k (r) k , . . . , U t α (r) α ) if l ∈ s(r) U r l if l s(r)

The previous asynchronous iterative scheme models computations that are carried out in parallel without order nor synchronization; such algorithms describe a subdomain method. Particularly, it allows one to consider distributed computations whereby processors go at their own pace according to their intrinsic characteristics and computational load. In [START_REF] Chazan | Chaotic relaxation[END_REF], the set S = {s(r)} r∈N denotes a sequence of non void sub-sets of (1, .., α) modeling the parallelism and allows to precise the numbers of components updated at each relaxation step (r + 1) by each processor on a parallel way while the use of delayed components in [START_REF] Chazan | Chaotic relaxation[END_REF] labeled by T = (t 1 (r), . . . , t α (r)) allows one to model nondeterministic behavior between the processors and does not imply inefficiency of the considered distributed scheme of computation.

In order to analyze the behavior of these algorithms, S and T satisfy simple and natural following assumptions ∀r ∈ N, s(r) ⊂ {1, . . . , α} and s(r) ∅ ∀l ∈ {1, . . . , α}, Cardinal({r ∈ N | l ∈ s(r)}) = +∞ is countable [START_REF] Robert | Itérations chaotiques série-parallèle pour des équations non-linéaires de point fixe[END_REF] which means that each component is theoretically relaxed an infinite number of times, the iterative process being stopped by an appropriate stopping test; moreover ∀k ∈ {1, . . . , α},

       ∀r ∈ N, t k (r) ∈ N, 0 ≤ t k (r) ≤ r and t k (r) = r if k ∈ s(r) lim r→∞ t k (r) = +∞. ( 8 
)
the number t k (r) actually representing a relaxation number with no local delay, and then, with the possibility that this number can reach infinity.

Practically the choice of the relaxed components may be guided by any criterion, and, in particular, a natural criterion is to pick-up the most recently available values of the components computed by the processors; so the too old values of the components of the iterate vector must be definitively rejected as the calculations progress. The great interest of asynchronous parallel methods over synchronous ones lies in the fact that they eliminate processor latency when there are many unnecessary synchronizations, which causes periods of idle time of these latter. This situation is summarized in Figures 1 and2; in Figure 2 the grey area represents a phase of processor inactivity. Remark 2. Such asynchronous iterations describe various classes of parallel algorithms, such as parallel synchronous iterations if for k ∈ {1, . . . , α}, for all r ∈ N, t k (r) = r; thus synchronous parallel iterations correspond to a particular case of asynchronous parallel iterations. In addition, in the synchronous context, for particular choices of strategies s(r) for updating the components, then ( 6)-( 8) describe classical sequential algorithms; among them, the Jacobi's method if ∀r ∈ N, s(r) = {1, . . . , α} and the Gauss-Seidel's method if ∀r ∈ N, s(r) = {1 + r mod α} (see [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF]). So when we analyze the behavior of asynchronous parallel methods, we also analyze the behavior of synchronous parallel methods as well as that of classical sequential iterative relaxation methods, which are then particular cases.

It is in order to overcome these performance loss problems previously presented, particularly the failure of deadlock, that asynchronous parallel algorithms have been developed. This kind of method is nowadays currently one of the more explored for the use of massive parallelism because it naturally makes it possible to consider a great number of processors and avoids a rigorous load balancing. These asynchronous parallel methods, applicable to solve fixed point problems, aim to take full advantage of computing power by eliminating idle times due to blocking time waits.

These asynchronous iterative algorithms were therefore developed out of the desire to make maximum use of all the computing resources of new computer architectures and more particularly of Multiple Instructions Multiple Data (M.I.M.D.) architectures, or Single Program Multiple Data (S.P.M.D.), by eliminating the synchronization management time and the processor inactivity time resulting from synchronizations. This type of algorithm was tested in 1967 by J.L. Rosenfeld [START_REF] Rosenfeld | A case study on programming for parallel processors[END_REF] and the convergence of these methods was studied first in 1969 by D. Chazan and W. Miranker [START_REF] Chazan | Chaotic relaxation[END_REF] using contraction techniques to solve large linear systems. Subsequently, in 1975 other pioneering works were carried out on one hand by F. Robert and al. in [START_REF] Robert | Itérations chaotiques série-parallèle pour des équations non-linéaires de point fixe[END_REF] and on the other hand by J.C. Miellou [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF] which extended the work of D. Chazan and W. Miranker to certain classes of non-linear problems, also using contraction techniques with respect to a vectorial norm. Nevertheless F. Robert and al. did not fully consider the initial D. Chazan and W. Miranker model established in the linear case since they eliminated the introduction of delays in data transmission between processors. Beside, J.C. Miellou shows in [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF] how to take into account the delays introduced in the paper of D. Chazan and W. Miranker for the parallel solution of non-linear problems, always analyzed by contraction techniques with respect to a vectorial norm, the non-linearities being able to be either analytical in the mathematical model to be solved or due to constraints on the solution to be computed, which then leads to the solution of multivalued problems.

Remark 3. Whether it's D. Chazan and W. Miranker, F. Robert et all or J.C. Miellou it should be noted that the methods studied were called chaotic methods insofar as the information communicated between the processors was delayed in relation to each other by finite delays. An extension of chaotic parallel iterations was proposed in 1978 by G. Baudet [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF], who thus introduced asynchronous parallel iterations where the information communicated between the processors was no longer bounded but could have unbounded communication delays, which made it possible to take into account possible temporary failures of the multiprocessors; chaotic parallel methods then became a particular case of asynchronous parallel methods.

Contraction technique analysis

Contraction technique for convergence study of parallel asynchronous iterations associated to point decomposition

For sake of generality, let us consider the parallel solution by asynchronous iterations of problem [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF]. Assume that A is an M-matrix,

i.e. if A = (a i, j ) then the off-diagonal entries a i, j are non-positive, i.e. negative or null, and A is inverse-positive, i.e. A -1 ≥ 0. Many statements that are equivalent to this definition of nonsingular M-matrices are known, and any one of these statements can serve as a starting definition of a nonsingular M-matrix; so the reader is referred for example to [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] to [START_REF] Berman | Nonnegative matrices in the mathematical sciences[END_REF].

Remark 4. Let µ ∈ R and let us recall that the absolute value of µ, is defined by | µ |= µ.sign(µ) where the signum graph is defined by

sign(µ) =          -1 if µ < 0 [-1, 1] if µ = 0 +1 if µ > 0 ;
recall also that we can write the absolute value of µ like | µ |=< µ, sign(µ) >, where < ., . > denotes the the pairing between R and its dual space.

Let us also consider a point decomposition of the problem to solve. Let us write the problem for the exact value u ; then for i = 1, . . . N we have

a i,i u i + ξ i (u i ) + N j=1, j i a i, j u j = b i , ξ i (u i ) ∈ Ξ(U )
and also the corresponding value obtained when a relaxation U = F(V) is performed, so that we obtain

a i,i u i + ξ i (u i ) + N j=1, j i a i, j v j = b i , ξ i (u i ) ∈ Ξ(U)
where, in order to simplify the notations, the components v j of the vector V are equal to u t j (r) j . Then, by subtracting the two previous relationships, and by multiplying the difference of the two equations by sign(u iu i ) and taking into account the monotony of the mapping of W → Ξ(W) we finally obtain

| u i -u i |≤ N j=1, j i - a i, j a i,i . | u j -v j |, (10) 
since if u i > u i , then on one hand sign(u iu i ) > 0 and

ξ i (u i ) > ξ i (u i ), so that (ξ i (u i ) -ξ i (u i )).sign(u i -u i ) > 0; otherwise, when u i < u i , due to the fact that sign(u i -u i ) < 0 and ξ i (u i ) < ξ i (u i ), the same result is also achieved, i.e. (ξ i (u i ) -ξ i (u i )).sign(u i -u i ) > 0. Let J = - a i, j
a i,i be the Jacobi's matrix of A and let us also consider the vectorial norm q(U -V) with N components equal to | u jv j |; then (10) is a Lipschitz vector condition of the kind q(U -U) ≤ J. q(U -V); [START_REF] Berman | Nonnegative matrices in the mathematical sciences[END_REF] moreover since A is an M-matrix, then on one hand J is a non-negative matrix and on the other hand J has a spectral radius ρ( J) smaller than one; then J is a contraction matrix and, by applying a result of [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF] the asynchronous parallel methods converge toward U . Furthermore in [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF] we have stated a technical result allowing to obtain an upper bound of the p-norm of a nonnegative reducible or irreducible matrix J, p ∈ [1, ∞], thus generalizing the algebraic matrix formulation of the little theorem of Riesz (see [START_REF] Schaefer | Banach lattices and positive operators[END_REF]); then, according also to the Perron-Frobenius theory, it was shown that, for all real given positive number there exists a strictly positive vector Γ ∈ R N , and a positive scalar λ, satisfying J. Γ ≤ λ. Γ,

where λ ∈ [ ρ( J), ρ( J) + ] ⊂ [0, 1]
and where ρ( J) is the spectral radius of J; moreover if J is an irreducible matrix, then λ = ρ( J); in this case, Γ is a suitable Perron -Frobenius eigenvector of the nonnegative matrix J associated with its spectral radius. Then, since Ji,i = 0 and Γ > 0, we can also write the inequality [START_REF] Varga | Matrix iterative analysis[END_REF] as follows

| u i -u i |≤ N j=1 Ji, j . | u j -v j |= N j=1 | u j -v j | γ j . Ji, j .γ j
and thus since

N j=1 Ji, j .γ j = λ.γ i , | u i -u i |≤ max 1≤ j≤N ( | u j -v j | γ j ). N j=1 Ji, j .γ j = λ.γ i . max 1≤ j≤N ( | u j -v j | γ j ), which yields to max 1≤i≤N ( | u i -u i | γ i ) ≤ λ. max 1≤ j≤N ( | u j -v j | γ j ); (12) 
let us consider the following weighted uniform norm

V Γ,∞ = max 1≤ j≤N ( | v j | γ j );
then, inequality [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF] leads to

U -U Γ,∞ ≤ λ. U -V Γ,∞ (13) 
and applying a result of El Tarazi [START_REF] Tarazi | Some convergence results for asynchronous algorithms[END_REF] the associated fixed point mapping is a contraction and the asynchronous parallel methods converge toward U . 

-∆u = f everywhere in Ω, u = 0 everywhere in ∂Ω, ( 14 
)
where f is a sommable square function and ∂Ω denotes the boundary of Ω. The discretization of the previous problem by the finite difference method, or by the finite volume method, and also by the finite element method, using piecewise linear basis functions P1 or bilinear basis functions Q1 when any vertex angle of the elements constituting the mesh should be less or equal to π 2 in the case of piecewise linear interpolation and the classical conforming condition in the case of bilinear interpolation, corresponding in fact to the condition of non-degeneration of the angles of the elements (see [START_REF] Axelson | Finite element solution of boundary value problems[END_REF], Theorem 5.2 on page 203), leads to the solution of a linear algebraic system like problem [START_REF] Spiteri | Synthetic presentation of iterative asynchronous parallel algorithms[END_REF] where assumption (9) holds. Then according to the previous analysis, the parallel asynchronous or synchronous iterative methods are convergent. Note that this result is still true if the Laplacian operator is replaced by -∆u + θu, where θ > 0, and in this case, the boundary conditions may be more varied such as Neumann boundary conditions, Fourier boundary conditions or mixed boundary conditions. Moreover, we can also consider the solution of singlevalued or multivalued pseudo-linear problems like problem (2) or (3) obtained by the perturbation of the Laplacian operator by diagonal increasing operator.

Example 2 : Using the same notations, let us also consider the solution of the following convection -diffusion problem equipped with various boundary conditions, for example the Dirichlet ones

-ν∆u + a ∂u ∂x + b ∂u ∂y + c ∂u ∂z + du + φ(u) = f, everywhere in Ω, ν > 0, d ≥ 0, u = 0, everywhere in ∂Ω, (15) 
where u → φ(u) is a diagonal monotone increasing, convex and continuously differentiable nonlinear operator, for example φ(u) = e u . In order to respect assumption [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] we discretize the first derivative by considering backward or forward schemes respectively as follows

a. ∂u ∂x ≈ a. u(x,y,z)-u(x-h,y,z) h + O(h), if a > 0, a. u(x+h,y,z)-u(x,y,z) h + O(h), if a < 0. ( 16 
)
and accordingly for b. ∂u ∂y and c. ∂u ∂z . Thus the discretization matrix is an irreducible diagonal dominant matrix and then an M-matrix; due to the monotony of the diagonal operator φ we can conclude on the convergence of parallel asynchronous or synchronous iterative methods.

Remark 5. Note that the discretization of the first derivative by the following centered scheme is achieved by the following difference equation

∂u ∂x ≈ u(x + h, y, z) -u(x -h, y, z) 2.h + O(h 2 );
use of such centered scheme cannot provide any guarantee that the discretization matrix is an M-matrix, especially when the convection coefficients, i.e. the coefficients of the first derivatives, are dominant. However, when we consider block decompositions, we will see latter in subsection 2.2.2 (see Example 5) that the use of centered schemes can be used in a weakened theoretical framework and leads to the conclusion that parallel asynchronous or synchronous iterative methods converge.

Contraction technique for convergence study of parallel asynchronous iterations associated to block decomposition

We consider now a block decomposition of problems to solve, which lead to introduce new notions.

Notion of M-minorant and basic definitions. Let us consider the solution of problem (1) with a block decomposition of the matrix A into α blocks; with the same notations as the ones previously used in subsection 2.2.1 this block decomposition is defined as follows

A l,k ∈ L(R n k ; R n l ) = L(E k ; E l ), with α l=1 n l = N.
Moreover for l = 1, . . . , α, let us denote by < ., . > l the pairing between E i and E i its topological dual space; let | . | l the associated norm in E i , such that G l (U l ) being the duality map, we have

G l (U l ) = {g l (U l ) ∈ E i | < U l , g l > l = |U l | 2 l and |g l | * l = |U l | l },
where |g l | * l denotes the norm of g l ∈ E i .

Remark 6. Recall that the pairing between E and E is a bilinear form, from E × E onto R. If E is an Hilbert space, then the pairing is the inner product of E.

Then we can recall the notions of Z-minorant and M-minorant (see [START_REF] Comte | La notion de H-accrtivité, applications[END_REF] to [START_REF] Schröder | Nichtlineare Majoranten beim Verfahren der Schrittweisen Näherung[END_REF]) as follows Definition 1. The matrix A ∈ L R N admits a Z-minorant denoted N(A) with respect on one hand to the above α-block decomposition and on the other hand with respect to the norms defined in E l , l = 1, . . . , α if and only if

there exist α numbers η l,l > 0 such that < A l,l U l , g l > l ≥ η l,l |U l | 2 l , ∀U l ∈ E l , l = 1, . . . , α, (17) 
and for all l, k ∈ {1, . . . , α}, l k,

∀U l ∈ E l , ∀U k ∈ E k there exist η l,k ≤ 0 such that | < A l,k U k , g l > l | ≤ (-η l,k )|U k | k .|U l | l , (18) 
where N(A) = (η l,k ) is defined by

η l,k = η l,l , if l = k η l,k , if l k, η l,k ≤ 0 .
The Z-minorant N(A) is said to be an M-minorant of A if and only if N = N(A) is an M-matrix.

Definition 2. A fixed point mapping F : D(F) ⊂ E -→ D(F) associated to the algebraic linear system AU = B, is said to admit the majorant matrix J α (N(A)) ∈ L(R α ), with respect to the α-block decomposition of A and with respect to the norm defined on E l , where J α (N(A)) ≥ 0, if and only if for l = 1, . . . , α and for all U, U ∈ E

|F l (U 1 , . . . , U k , . . . , U α ) -F l (U 1 , . . . , U k , . . . , U α )| l ≤ α k=1 k l - η l,k η l,l |U k -U k | k , (19) 
where

U = {U 1 , . . . , U k . . . , U α } ∈ E ; U = {U 1 , . . . , U k . . . , U α } ∈ E,
and the entries J α l,k (N(A)) of the matrix J α (N(A)) associated with the minorant N(A) are defined by

J α l,k (N(A)) = 0, if l = k - η l,k η l,l , if l k . Remark 7. Note that J α (N(A)
) is a non-negative matrix.

Definition 3. If in addition the spectral radius of J α (N(A)) is less than one, then J α (N(A)) is a contraction matrix for the α-decomposition of E normed by any hilbertian or non-hilbertian norm l p -norm, p ∈ [1, ∞].

Thus, in the framework of the α-block decomposition, let us consider the vectorial norm q(.)

defined on E = α l=1 E l = R N by q(U) = {|U 1 | 1 , . . . , |U α | α }, (20) 
where |U l | l is the norm in E l . Then, using this notation, ( 19) is written as follows

q(F(U) -F(U )) ≤ J α (N(A)).q(U -U ). ( 21 
)
Remark 8. Clearly for the α-block decomposition J α (N(A)) is the Jacobi's matrix of N(A).

Then similarly to the consideration used in subsection 2.2.1 when we consider the point decomposition, we obtain similar results for the α-block decomposition. Indeed, consider the parallel solution of problems ( 1) -(3), when N(A) is an M-minorant; due to the monotony of the diagonal operator arising in problems ( 2) -(3), we obtain easily an inequality similar to [START_REF] Miellou | Sur une variante de la méthode de relaxation, appliquée à des problèmes comportant un opérateur somme d'un opérateur différentiable et d'un opérateur maximal monotone diagonal[END_REF] which ensures the convergence of parallel asynchronous iterative methods according to a result stated by J.C. Miellou [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF].

Proposition 1. Consider the problems (1) -(3) and assume that the matrix A admits an M-minorant denoted N(A) with respect on one hand to the α-block decomposition and on the other hand with respect to the norms defined in E l , l = 1, . . . , α and, in the nonlinear case that the affine operator AU -B is perturbed by a monotone maximal operator. Then, we can associate to these previous problems defined in the space E a contracting fixed point mapping denoted F, associated to the block -decomposition, and there exists one and only one fixed point U also unique solution of the discretized problems (1) - [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF].

On the other hand, in the same framework of Proposition 1, in this case by using once again the result based on the Perron-Frobenius theory (see [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF]) we have

J α (N(A))Γ ≤ λΓ, λ ∈ [ρ(J α (N(A))), ρ(J α (N(A))) + ] ( 22 
)
where ρ(J α (N(A))) is the spectral radius of the matrix J α (N(A)) and is a positive real number; according to [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF] λ = ρ(J α (N(A))) if J α (N(A)) is irreducible. Then, for the block decomposition, [START_REF] Ostrowski | On some metrical properties of operator matrices and matrices partitioned into blocks[END_REF] yields by a similar way to the result obtained in the case of point decomposition to

F(U ) -F(U) Γ,∞ ≤ λ U -V Γ,∞ , ∀V ∈ E,
where . Γ,∞ is the uniform weighted norm associated to the α-block decomposition and defined by

V Γ,∞ = max 1≤ j≤α ( | V j | Γ j ); (23) 
so, by applying Theorem's El Tarazi, we conclude once again to the convergence of parallel asynchronous iterative methods.

Remark 9. Note also that, instead of the α-block decomposition, we can consider also a point by point decomposition in a similar way as in subsection 2.2.1; then if A is an M-matrix it is always its own M-minorant with respect to the "by-point"-decomposition, which corresponds to the limit case in which we take

A i, j = (a i, j ) ∈ L(R) = L( Ēi ; Ē j ) with in this case i ≡ l; j ≡ k; i, j ∈ {1, . . . , N} and Ēi ≡ Ē j ≡ R.
Then, according to Proposition 1 and Remark 9, by a direct way, we have the following very usefull result Corollary 1. Consider the problems (1) -( 3) and assume that the matrix A is an M-matrix (see assumption [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF]) and, in the nonlinear case that the affine operator AU -B is perturbed by a monotone maximal operator. Then, according to subsection 2.2.1, we can associate to these previous problems defined in the space E a contracting fixed point mapping denoted F, associated to the point -decomposition, and there exists one and only one fixed point U also unique solution of the discretized problems (1) -(3). In addition, the parallel asynchronous iterative methods used to solve problems (1) -(3) converge toward U .

Remark 10. Note that, for the study of the behavior of the parallel asynchronous algorithms, it is not necessary that A was an M-Matrix. We will show below in Example 5, an illustration of the result of Proposition 1.

In fact, for the decomposition into α-blocke, the matrix N ≡ N(A) plays an important role in the analysis of convergence of previous iterative methods. It is therefore necessary to determine these matrices. The determination of the off-diagonal entries of N does not present any major difficulty since these coefficients are equal to the matrix norms of the off-diagonal blocks of A. However, to calculate the value of the diagonal entries of N one must take into account the norm of the subspace E l , l = 1, . . . , α; we then have the following result (see [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF] for a proof).

Lemma 1. Consider the following inequality

< A l,l U l , g l > l ≥ η l,l |U l | 2 l . ( 24 
)
1) If the subspace E l is normed by the Euclidean norm, then a necessary and sufficient condition for [START_REF] Schröder | Nichtlineare Majoranten beim Verfahren der Schrittweisen Näherung[END_REF] to be verified is that the submatrix A l,l is strongly positive definite, i.e. that there exists a positive real number η l,l verifying

< A l,l U l , U l > l ≥ η l,l |U l | 2 l , ∀U l ∈ E l , U l 0; η l,l
being in fact the smallest eigenvalue of A l,l , when A l,l is symmetric positive definite, 2) If the subspace E l is normed by the l 1 -norm, then a necessary and sufficient condition for [START_REF] Schröder | Nichtlineare Majoranten beim Verfahren der Schrittweisen Näherung[END_REF] to be verified is that the submatrix A l,l verify the following properties a l,l ≥ η l,l , ∀l ∈ {1, . . . , dim(A l,l )},

a l,l - dim(A l,l ) k l |a k,l | ≥ η l,l , ∀l ∈ {1, . . . , dim(A l,l )},
where dim(A l,l ) denotes the size of the diagonal block, this last inequality corresponding to a property of strict diagonal dominance by column, 3) If the subspace E l is normed by the uniform-norm, then a necessary and sufficient condition for [START_REF] Schröder | Nichtlineare Majoranten beim Verfahren der Schrittweisen Näherung[END_REF] to be verified is that the submatrix A l,l verify the following properties a l,l ≥ η l,l , ∀l ∈ {1, . . . , dim(A l,l }),

a l,l - dim(A l,l ) k l |a l,k | ≥ η l,l , ∀l ∈ {1, . . . , dim(A l,l )},
this last inequality corresponding to a property of strict diagonal dominance by row.

Remark 11. We refer to [START_REF] Spiteri | A new characterization of M-matrices and H-matrices[END_REF] for the determination of η l,l arising in [START_REF] Schröder | Nichtlineare Majoranten beim Verfahren der Schrittweisen Näherung[END_REF] in the general case where the space E l is normed by the l p -norm, p ∈ [1, ∞]. Nevertheless the criteria presented in Lemma 1 are most convenient to use practically in the study of applications.

In an hilbertian context, note that U is the Frechet derivative of the Euclidean norm 1 2 |U| 2 2 and in this case g(U) = U. Thus, if A l,l is a symmetric positive definite sub-matrix, as previously stated, η l,l is given by the smallest positive eigenvalue of A l,l , l = 1, . . . , α; in the case where A l,l is not symmetric but only positive definite, by using a compactness argument, it is possible to find a number η l,l such that the first inequality appearing in the Lemma 1 is verified. When E l , l = 1, . . . , α, are normed by classical non-hilbertian norms, i.e. by the uniform norm or by the l 1 -norm, we have to use more sophisticated mathematical tools. In this last case, since the mapping z → |z|, ∀z ∈ R, is not differentiable, we have to consider for g l an element of the sub-differential of 1 2

|U l | 2 ∞ or 1 2 |U l | 2 1
, respectively, instead of U l . Although this situation is complex from a mathematical point of view it leads to practical criteria easier to compute the diagonal entries η l,l , l = 1, . . . , α of the Z-minorant. According to the results developed in [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF], when in both case, the diagonal block matrices A l,l are strictly diagonal dominant matrices and have also strictly diagonal entries greater than η l,l , then, when the space E l is normed by the uniform norm, η l,l is given by η l,l = a l,l -

k l |a l,k |, η l,l > 0,
while when E l is normed by the l 1 -norm

η l,l = a l,l - k l |a k,l |, η l,l > 0,
where a l,k denote the entries of the diagonal submatrices. The computation of η l,k , k l is performed by the computation of the matricial norms of the off-diagonal blocks A l,k , k l with respect to the subordinate norm used in E k . By this way, we can compute all the entries of the Z-minorant. In the general case, note that such criteria linked to the properties of strict diagonal dominance of the block diagonal matrices is easier to apply than the one requiring the determination of the eigenvalues of the block sub-matrices. For more details the reader is referred to [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF].

Then we have the equivalent property of a Z-minorant for the α-block decomposition of the matrix A, constituting in fact a characterization of the Z-minorant. Proposition 2. Both assumptions [START_REF] Dahlquist | On Matrix Majorants and Minorants, with Applications to Differential Equations[END_REF] and ( 18) are equivalent to

< α k=1 A l,k U k , g l (U l ) > l ≥ α k=1 η l,k |U k | k .|U l | l , ∀l ∈ {1, . . . , α}. (25) 
Proof. We can verify by a direct way that ( 17) and ( 18) involve (25); indeed

< A l,l U l , g l > l ≥ η l,l |U l | l , ∀U l ∈ E l , l = 1, . . . , α,
and since η l,k ≤ 0 when l k

η l,k |U k | k ≤ | < A l,k U k , g l > l | ≤ -η l,k |U k | k , l, k = 1, . . . , α, l k;
then, by summing one obtains [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF]. For the reciprocal the reader is referred to [START_REF] Miellou | Un critère de convergence pour des méthodes générales de point fixe[END_REF].

Remark 12. Let us consider the solution of problem [START_REF] Spiteri | Synthetic presentation of iterative asynchronous parallel algorithms[END_REF] and consider an α-block decomposition of the matrix A; then, with such decomposition, we can write for all l ∈ {1, . . . , α}

< α k=1 A l,k (U k -U k ), g l (U l -U l ) > l = 0, g l (U l -U l ) ∈ G l (U l -U l ). ( 26 
)
The vectorial norm q(.) associated to the α-block decomposition, being defined by [START_REF] Miellou | Méthodes de Jacobi, Gauss-Seidel, sur-relaxation par blocs, appliquées à une classe de problèmes non linéaires[END_REF], then, when the matrix A admits an M-minorant, then thanks to ( 25) and ( 26), we obtain obviously by a direct way a property of contraction with respect of the vectorial norm q(.) like [START_REF] Miellou | Sur une variante de la méthode de relaxation, appliquée à des problèmes comportant un opérateur somme d'un opérateur différentiable et d'un opérateur maximal monotone diagonal[END_REF].

Consider now the solution of pseudo-linear problems (2) or (3) where the operator U → Φ(U) and U → Ξ(U) are diagonal monotone; assume first that for l ∈ {1, . . . , α} each space E l is normed by the Euclidean norm and, in the more general case of a multivalued operator we have obviously

< ξ l (U l ) -ξ l (U l ), U l -U l > l ≥ 0, ξ l (U l ) ∈ Ξ(U l ), ξ l (U l ) ∈ Ξ(U l ).
Similarly, if each space E l is normed by the uniform norm |U l | l,∞ or by the l 1,1 -norm |U l | l,1 , then recall that these two previous norms are defined by the way of the absolute value of the components of U l ; then, in accordance with what has been developed in subsection 2.2.1 the components of g l are equal (or proportional in the case where E l is normed by the uniform norm) to the signum graph of the components of U l -U l ; thus, by a similar way as the previous one we obtain in this non-hilbertian case

< ξ l (U l ) -ξ l (U l ), g l (U l -U l ) > l ≥ 0, ξ l (U l ) ∈ Ξ(U l ), ξ l (U l ) ∈ Ξ(U l ).
Consequently, in both cases, in the case singlevalued for problem [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF] and in the case multivalued for problem (3) if we consider in this last general case, the operator defined by

Λ l (U) = α k=1 A l,k U k + ξ l (U l ) -B l , for l = 1, . . . , α
then, due to the monotony of the diagonal operator, we obtain easily the following

< Λ l (U) -Λ l (U ), g l (U l -U l ) > l ≥ α k=1 η l,k |U k -U k | k .|U l -U l | l , ∀l ∈ {1, . . . , α}.
Thus, we are in a framework similar to the framework considered in the Remark 12 and, for the problems (2) or (3), we can conclude to the convergence of the parallel asynchronous or synchronous methods.

In order to illustrate the previous theoretical results, let us repeat the study of examples 1 and 2 in the context of the present sub-section.

Example 3 : We revisit the Example 1 and now, after discretization by all classical techniques of the boundary value problem [START_REF] Tarazi | Some convergence results for asynchronous algorithms[END_REF], we consider a block decomposition of the problem. We consider that the spaces of E l are indifferently normed by the Euclidean norm, or by the uniform norm or by the norm l 1 -norm; indeed we will see later that whatever be the norm used, the minorants N(A) obtained are identical. Lastly, we consider also two distinct cases of block decomposition: first the natural block decomposition and also the by-plane block decomposition where the diagonal sub-matrices are defined by considering the discretization obtained in a plane of Ω when the value of the the third coordinate z is fixed.

Note also that, in all cases of classical discretization, the matrix A of the problem leads to a sparse matrix with block structure, each block being of size m; the diagonal entries are equal to 6 and, in a line, at most six off-diagonal entries are equal to -1; the diagonal blocks are given by

A l,l =                     6 -1 -1 . . . . . . . . . . . . -1 -1 6                    
and, since Ω is the unit cube, the other non-zero off-diagonal blocks are equal to the identity matrix.

We consider first the natural block decomposition of the discretized problem. Then, when the sub-spaces E l are normed by non-hilbertan norms, by using the results recalled in Lemma 1 after very simple calculation we can find the entries of the matrix N b ≡ N(A), associated to the natural block decomposition in α blocks, the exponent b referring to this last decomposition; indeed, the diagonal sub-matrix can be written as follows

A l,l = C + 4.I
where I is the identity matrix of size m and C is the following matrix

C =                     2 -1 -1 . . . . . . . . . . . . -1 -1 2                    
and then η l,l = 4 while the matrix norm of the non-zero off-diagonal matrix are equal to 1. Moreover the structure of the matrix N b is similar to the one obtained for the Laplacian's discretization in the two-dimensional domain [0, 1] 2 ; with diagonal entries equal to 4 and non-zero off-diagonal equal to -1; in addition N b is obviously an M-matrix. So, for this block decomposition, we are again in the framework of Proposition 2 and Remark 12 and consequently the parallel asynchronous iterations applied to the solution of the Poisson equation equipped with homogeneous Dirichlet's boundary condition are convergent.

In addition, the spaces E l can also be normed with the Euclidean norm; since on one hand A l,l = C + 4.I and on other hand the matrix C is symmetric positive definite, then considering the inner product

< A l,l U l , U l > l =< CU l , U l > l +4.|U l | 2 l,2 ≥ 4.|U l | 2 l,2
where | . | l,2 is the Euclidean norm in E l ; let g l (U l ) = U l and the previous inequality can be written as follows

< A l,l U l , g l (U l ) > l ≥ 4.|U l | l,2 , for l = 1, . . . , α
which allows us to determine in this context the diagonal entries of N b , the non-zero off-diagonal entries of the minorant being obviously equal to -1. Thus, when E l is normed by all classical norm, we find the same Mminorant.

Let us consider now the by-plane decomposition of the discretization matrix A; in such decomposition the corresponding iterate vector is broken down into to α blocks of m 2 components. If I denotes the m 2 × m 2 identity matrix, then, ∀i ∈ {1, . . . , α}, A i,i±1 = -I, and A i,i = 2.I + Ci,i , where Ci,i denotes the discrete Laplacian operator defined in the two-dimensional domain [0, 1] 2 . By a straightforward and similar way as the one used for the natural block decomposition, using the results of Lemma 1 when E l are normed by the l 1 -norm or the uniform norm on one hand, or since the matrix C i,i are symmetric positive definite when the same space E l are normed by the Euclidean norm on other hand, the inequalities ( 17) and ( 18) can be verified and η l,l = 2 while η l,l±1 = -1, the other off-diagonal entries of the minorant being null.

When the plane decomposition is considered, let us denote by N p ≡ N(A), the matrix with diagonal entries equal to η l,l = 2 and the co-diagonal entries are equal to η l,l±1 = -1; thus for the by-plane decomposition of the discretization matrix and whatever be the classical norm used we obtain the following minorant

N p =                     2 -1 -1 . . . . . . . . . . . . -1 -1 2                    
and obviously N p is an M-matrix and we are again for this particular decomposition in the framework of Proposition 2 and Remark 12 and consequently the parallel asynchronous iterations applied to the solution of the Poisson equation equipped with homogeneous Dirichlet's boundary condition are convergent.

Example 4 : Let us consider again Example 2 and the non-linear convection -diffusion problem [START_REF] Axelson | Finite element solution of boundary value problems[END_REF]; the first derivatives are always discretized by backward or forward schemes [START_REF] Comte | La notion de H-accrtivité, applications[END_REF] which in fact allows to have discretization matrices that, on the one hand, are irreducible strictly diagonal dominant and, on the other hand, have positive diagonal entries and negative or zero off-diagonal entries. Taking into account the results of Lemmas 1, the spaces E l are normed by the uniform norm or by the l 1norm. In a similar way as in Example 3, we can consider a block decomposition associated with natural block decomposition or a more large block decomposition associated with a plane decomposition. If we consider this last plane decomposition, the minorant is still the same as the pentadiagonal discretization matrix of the two-dimensional convection -diffusion problem. For the natural blockdecomposition then, after very simple calculations, the diagonal entries of N b are equal to

η l,l = 4.ν + (b + c).h + d.h 2 ,
the co-diagonal entries are given by η l,l±1 = -1 while the entries of the co-diagonal blocks are equal to

η l,l-m = -(1 + c.h) ; η l,l-m = -(1 + b.h),
corresponding in fact to the discretization matrix of the convection -diffusion problem defined in the two-dimensional domain; the eigenvalues of the matrix J(N b ) are given by

λ k,l = - 2 4.ν + (b + c).h + d.h 2 ( √ 1 + ch.cos(k.π.h) + √ 1 + bh.cos(l.π.h)), k, l = 1, . . . , α
and the spectral radius of J(N b ) is obtained when k = l = 1 which leads to

ρ(J(N b )) = 2 4.ν + (b + c).h + d.h 2 ( √ 1 + ch + √ 1 + bh).cos(π.h).
and J(N b ) is a contraction matrix, since N b is an M-matrix.

Example 5 : If we consider once again the Example 2 but, when the first derivatives are discretized by centered schemes then the discretization matrix of the linear part of the problem is given by

A = Di f + Conv + d.h 2
where Di f is the discretization matrix of the Laplacian, while Conv is the discretization matrix of the convection terms; note that the matrix Conv is anti-symmetric. Then, whatever be the considered decomposition, if the spaces E l are normed by the Euclidean norms, taking into account of the anti-symmetric property of matrix Conv, then the minorant N b or N p associated to problem [START_REF] Axelson | Finite element solution of boundary value problems[END_REF] is the same as the one obtained for the diffusion problem studied in Example 3 and equal to N b +d.h 2 .Id when the natural block decomposition is considered and equal to N p +d.h 2 .Id for the plane decomposition.

Remark 13. For the linear convection -diffusion problem, when the convection terms are discretized by centered finite difference scheme, one can also analyze the behavior of asynchronous parallel iterations using the l 1norm or the uniform norm. Nevertheless, for this example, the discretization matrix A is not necessarily an M-matrix; A will be an M-matrix if A is diagonally dominant and if, furtheremore, the off-diagonal entries are nonpositive, which leads, after a very simple calculation to the following restrictive conditions

|a| + |b| + |c| ≤ 6 ν h + dh, (27) 
and |a| ≤ 2 ν h , |b| ≤ 2 ν h , |c| ≤ 2 ν h ; (28) 
thus, if the previous conditions are satisfied, the analysis of the convergence of parallel iterative methods using the result of the Proposition 1 is applicable in the theoretical context where E l are normed by these previous nonhilbertian norms. Moreover under similar assumptions verified by the block diagonal matrices, the criteria presented in Lemma 1 for the determination of the diagonal entries of the minorant seem more restrictive to use when the space E l are normed by these previous nonhilbertian norms. Indeed in these cases we obtain again restrictive conditions such that, for example

|a| ≤ 2 ν h ≤ 2 ν h + dh
and obviously the following condition (verified if the previous one holds)

|a| ≤ 6 ν h + dh,
that must be verified by one of the coefficients of the diagonal block of the linear discretized convection -diffusion problem; thus η l,l = 4 ν h + dh . On the other hand, the matrix-norm of the off-diagonal block of A are respectivelly given by

| ± ν h + b 2 | and | ± ν h + c 2 |
and, for a similar reason as the one considered for the point decomposition, the following restrictive conditions must be verified

|b| ≤ | ν h + b 2 | + | - ν h + b 2 | and |c| ≤ | ν h + c 2 | + | - ν h + c 2 |
so that the minorant is an M-matrix if it is diagonally dominant which imply

|b| + |c| ≤ 4 ν h + dh
corresponding again to previous restrictive conditions ( 27) and [START_REF] Partimbene | Asynchronous multi-splitting method for linear and pseudo-linear problems[END_REF]. Note that whatever be the values of a, b, c and ν it is always possible in this case to choose h sufficiently small such that the obtained minorant is an M-matrix. Now, if as previously seen, regardless of the value of the coefficients a, b, c, h and ν, when E l are also normed by the Euclidean norm it is very easy to obtain the diagonal entries of the minorant with no restriction; indeed these very restrictive conditions disappear when using such Euclidean norm. Thus, the results presented in Example 5 show that an appropriate choice of the norm in sub-spaces E l allows to take into account various situations. We will see in paragraph 5.1 the example of a mechanical problem modeled by the biharmonic equation where the discretization matrix is not an M-matrix but where the results of the Proposition 1 are still applicable using a simple change of variable.

A synthesis. In the case of the solution of large linear systems J.C. Miellou and P. Spiteri [START_REF] Miellou | Un critère de convergence pour des méthodes générales de point fixe[END_REF] (see also [START_REF] Partimbene | Asynchronous multi-splitting method for linear and pseudo-linear problems[END_REF] and [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF]) were able to establish convergence criteria that are very easy to use by applying the characterization given in [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF]; indeed, for example for the solution of a linear system (1) if, on the one hand, the diagonal blocks of the matrix A involved in the linear system to be solved are either strongly positive definite or with a strong diagonal dominance and that, on the other hand, the matrix norms of the off-diagonal blocks subordinated by the classical norms are relatively of weak modules compared to the value of η l,l determined thanks to Lemma 1, one could highlight a Lipschitz vector condition of the kind

q(U -U ) ≤ Jq(V -U ), ∀V ∈ E,
where q(.) is a vectorial norm that takes into account the decomposition of the problem into large blocks, J is a non-negative matrix, U is the solution to the fixed point problem associated to the problem to solve, U represents the current iteration and V represents the interaction values calculated by the other processors. If in addition this last matrix J has a spectral radius smaller than one, it is a contraction matrix and the asynchronous parallel methods are convergent. Note that the value of the spectral radius of the matrix J allows to evaluate the asymptotic convergence rate of the iterative method. This result can be extended to the case of singlevalued pseudo-linear problems (2) where the matrix A involved in the affine application has similar properties as in the linear case, the latter affine application being perturbed by an increasing diagonal application U → Φ(U); under these assumptions alone, the asynchronous parallel methods are convergent. In addition, the previous results still holds in the case of multivalued pseudo-linear problems like (3).

A general convergence result for a decomposition in large blocks. In fact, in parallel computation, the user does not access to as much processors as many block-components. Practically, the algebraic system to solve is split into β contiguous blocks, β ≤ α (in fact β << α), corresponding to a coarser subdomain decomposition of the problem to solve; thus the communications consist in exchanging only the useful values of the components computed by the neighboring processors. Under appropriate assumptions, corresponding in fact to the framework of the present sub-section, such situation, corresponding to consider for a given decomposition a coarser decomposition, has been studied in [START_REF] Miellou | Un critère de convergence pour des méthodes générales de point fixe[END_REF] (see also [START_REF] Partimbene | Asynchronous multi-splitting method for linear and pseudo-linear problems[END_REF]) where, it was proved that, under the assumptions considered in the present subsection, if the fixed point mapping is contracting for a given decomposition, then the fixed point mapping is also contracting for a coarser decomposition; then, in both cases the parallel asynchronous iterations converge. More specifically if assumption ( 25) holds for a decomposition in α blocs, then if a coarser decomposition in β blocks is considered (β << α), by considering on one hand a block decomposition of N(A) in β blocks and by using a technical argument based on the use of regular splitting of M-matrices (see [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF]) the fixed point mapping associated to the coarser decomposition, i.e. the β-decomposition is also contracting. This last result can then be further extended to the case where the matrix A is an M-matrix where, in this case A is its own minorant ; under these assumptions, using the same fairly technical proof, J.C. Miellou and P. Spiteri in [START_REF] Miellou | Un critère de convergence pour des méthodes générales de point fixe[END_REF] have shown that asynchronous parallel methods are convergent whatever be the considered block decomposition (see [START_REF] Miellou | Un critère de convergence pour des méthodes générales de point fixe[END_REF] to [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF]).

It should be noted that when we discretize the boundary value problems by classical finite differences method, variational finite differences method, finite volume method and under certain assumptions, especially if the angle conditions are verified, by finite element method, the discretization matrices obtained are M-matrices; if, in addition, parabolic or second order hyperbolic evolution problems are considered, these problems being discretized by implicit or semi -implicit time marching schemes, the global discretization matrices are still M-matrices. Note that in [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF] and [START_REF] Tarazi | Some convergence results for asynchronous algorithms[END_REF], when the fixed point mapping is contracting with respect to a uniform weighted norm, a sufficient condition of convergence was stated; such condition is verified when the fixed point mapping is contracting with respect to a vectorial norm [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF].

To summarize this sub-section it appears that the results stated in this paragraph are important from a practical point of view. The assumptions necessary to apply these results are identical to those considered in the Proposition 1 and in the Corollary 1, respectively, i.e.

-in a general framework the A matrix admits an M-minorant without assumption stating that A is an M-matrix, -or A is an M-matrix, the first situation corresponding to a less demanding formal framework as seen in Example 5.

Partial ordering technique for convergence study of parallel asynchronous parallel algorithms with flexible communications

On the other hand, J.C. Miellou in 1975 [START_REF] Miellou | Itérations chaotiques à retards, étude de la convergence dans le cas d'espaces partiellement ordonnés[END_REF] and in 1986 [START_REF] Miellou | Asynchronous iterations and order intervals[END_REF], and also other authors [START_REF] Baz | M-functions and parallel asynchronous algorithms[END_REF] - [START_REF] Frommer | On asynchronous iteration in partially ordered spaces[END_REF] analyzed the previous parallel asynchronous methods using the discrete maximum principle; then, if the iterative process is properly started, i.e. if an initial guess is properly chosen, by such a way, ordered iterations are obtained, i.e. the iterate vectors converge monotonously towards to U solution of the problem to be solved; such monotone convergence occurs either by decreasing from the initial guess U 0 when U 0 is a supersolution, or by increasing from a subsolution. For the reliability of such methods analyzed by partial ordering techniques the application arising in the formulation of the problem to solve, must verify appropriate assumptions. Let U → B(U) such that B(U) = 0, the mapping allowing to formulate the problem to be solved; such properties are verified if the function B allowing to formulate the problem is a continuous M-function introduced by J. Rheinbold [START_REF] Rheinboldt | On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows[END_REF] (see also [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF]) , i.e. a continuous surjective function, off diagonal decreasing and inverse monotone. The off diagonal decrease is defined when on one hand for any U ∈ R N , the functions defined as follows

B lk : {t ∈ R|U + te k ∈ R N } → R, B lk (t) = B l (U + te k ), l k, l, k = 1, . . . , N, (29) 
are monotone decreasing, where e k ∈ R M , k = 1, . . . , N, are the unit canonical basis vectors; on the other hand the mapping B is inverse monotone if

B(U) ≤ B(V) implies U ≤ V, for any U, V ∈ R N . ( 30 
)
If the mapping B is a linear M-function then B is an M-matrix. Note that a pseudo-linear operator built from an affine application where the matrix is an M-matrix and perturbed by a monotone maximal singlevalued operator is an M-function (see [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] and [START_REF] Rheinboldt | On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows[END_REF]); thus B(U) = AU + Φ(U) -B is an M-function and the operator associated to problem ( 2) is continuous if the mapping U → Φ(U) is continuous. The operator associated to problem ( 3) is also off diagonal decreasing and inverse monotone (see [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] and [START_REF] Rheinboldt | On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows[END_REF]); but this operator is not continuous due to the fact that a multivalued operator is not continuous; nevertheless note that the operator associated to problem (3) satisfies weak continuous properties seemingly irrelevant from an algorithmic point of view specifically for the convergence of iterative methods. So, to our knowledge, the behavior analysis by partial ordering technique of iterative parallel asynchronous methods for the solution of multivalued problems, like problem ( 3), is at the present time an open question.

In the sequel we will consider more general parallel asynchronous iterations extended to more general situations corresponding to parallel asynchronous iterations with flexible communications; so, in what follows, we will present such extension and the particular case of parallel asynchronous iterations analyzed by partial ordering technique as a particular case. In terms of flexibility of asynchronous parallel methods, using first partial ordering techniques, various studies was performed (see [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF] - [START_REF] Spiteri | Asynchronous Schwarz alternating methods with flexible communication for the obstacle problem[END_REF]); in the paper presented in 1998 by J.C. Miellou, P. Spiteri and D. El Baz [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF] processors exchange data in a flexible way with the particularity of closely integrating the communications into the calculation aspects; in this kind of method, communications occur during the re-updating of the components of the iterate vector and no longer at the end of each relaxation as was previously the case in the classical asynchronous parallel methods; in addition, component updates are performed using partial values of the component blocks of the iterate vector. According to ( 7) -( 8), the only imposed constraints is that: -on one hand, components of the iterate vector continues to be permanently updated when the problem is iteratively solved, -on the other hand, the most recent values of the iterate vector must be used as the calculations progress.

Consider the numerical solution by parallel asynchronous method with flexible communications of problem (2) only; so, in the sequel let us define the mapping U → B(U) by

B(U) = AU -B + Φ(U)
and assume that assumption (9) is verified; we will also assume that

B is a continuous mapping of R N into R N , (31) 
and

B is a surjective M-function. ( 32 
)
Lemma 2. Let A be an M-matrix, G ∈ R N and Φ a continuous diagonal monotone maximal univalued operator. Then, the mapping U → B(U) is a continuous M-function.

Proof. Indeed, consider first the linear part A of the operator B, i.e. A(U) = AU -B; in this case, for l k, let us consider a point decomposition of A l (U + τe k ) given by α j=1 a l, j u j + a l,k τ; let us assume that τ 1 and τ 2 are two real numbers such that τ 1 ≤ τ 2 ; then, since a l,k ≤ 0,

A l (U + τ 2 e k ) = α j=1 a l, j u j + a l,k τ 2 ≤ α j=1 a l, j u j + a l,k τ 1 = A l (U + τ 1 e k ),
and A is off-diagonally antitone; moreover A being an M-matrix, then A -1 is a nonnegative matrix and then AU ≤ AV implies U ≤ V, so that A is inverse monotone. Then, in a similar way, we can verify that B(U) is offdiagonally antitone; moreover, applying the Theorem 3.4 of [START_REF] Rheinboldt | On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows[END_REF] on page 286, since B(U) is obviously continuous and off-diagonally antitone, then B(U) is a surjective M-function.

For the solution of the system (2) the parallel asynchronous method with flexible communications, corresponds to the more general model of parallel asynchronous iterations. Consider first the following definitions (see [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF])

Definition 4. A vector U ∈ R N is a B-supersolution if B(U) ≥ 0. Definition 5. Let B be an M-function. F B is an B-supermapping associated with F if for all i ∈ {1, . . . , α} and U ∈ E such that B i (U) ≥ 0, there exists F B i (U) ∈ E i , such that F B i (U) ≤ U i , B i (F B i (U); U) ≥ 0 and F B i (U) U i if F i (U) U i .
Remark 14. In a similar way B(U) ≤ 0 allows to define a B-subsolution.

Asynchronous iterations with flexible communications

We consider now the parallel asynchronous fixed point iterations with flexible communications {U r } r∈N . In what follows we introduce the sequence {K r i }, i ∈ {1, . . . , α}, r ∈ N defined by (see [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF] - [START_REF] Spiteri | Asynchronous Schwarz alternating methods with flexible communication for the obstacle problem[END_REF])

K r i = { j ∈ N | s( j) = i, 0 ≤ j < r};
the elements of the set K r i correspond to the iteration numbers between 0 and r at which the i-th block component of the iteration vector is updated. Note that {K r i } is a denumbrable sequence of finite elements of the set of parts of

N; moreover {K r i } is nested since K r i K r+1 i .
Definition 6. The general class of asynchronous iterative methods with flexible communications is defined recursively as follows: for all r ∈ N and i ∈ {1, . . . , α}, we have

U r+1 i = F B i ( Ũr ) if i ∈ s(r), U r i elsewhere (33) 
where

Ũ0 = U 0 is a B-supersolution, (34) 
Ũr ∈ U r , min (U t(r) , Ũq ) if r ≥ 1, ( 35 
)
where the vector U t(r) denotes an element of E with block-components U t i (r) i , i ∈ {1, . . . , α} and q = Max{ j ∈ K r s(r) } where K r s(r) represents the iteration numbers lower than r which are relative to the computation of the i-th blockcomponent.

Remark 15. In the particular case where K r i = ∅, we have Ũr ∈ U r , U t(r) .

Remark 16. Asynchronous iterations with flexible communications defined recursively by [START_REF] Frommer | On asynchronous iteration in partially ordered spaces[END_REF] to [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF] are general iterative methods whereby iterations are carried out in parallel by up to α processor without any order nor synchronization. The main feature of this class of iterative methods is to allow very flexible communication between the processors. In a typical update of the i-th block-component of the iterate vector at iteration r + 1, all the values Ũr j of the block-components of the iterate vector can be taken anywhere in the order interval U r j , min (U t j (r) j , Ũq j ) j , where Ũq j was the value used in the last update of the i-th block-component and U t j (p) j models the nondeterministic behavior of the iterative scheme and are not explicitly labeled by an iteration number. Thus, the values of the block-components of the iterate vector which are used in a computation may come from updates which are still in progress. It is important to note that the values of the components of the same block of the iterate vector which are used in such a typical update, can be relative to different iteration numbers as opposed to the classical case (see [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF], [START_REF] Chazan | Chaotic relaxation[END_REF], [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF] and [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF]); thus there is a better coupling between communications and computations. Practically, one will choose partial update corresponding to the last available value of each component.

We recall now an important result (see [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF]). Proposition 3. Let B be a continuous surjective M-function, F the fixed point mapping associated with B, F B a B-supermapping associated with F, U 0 ∈ E a B-supersolution. Then, for the solution of problem (2) only, the asynchronous iteration {U r } given by ( 33) to ( 35) is well defined and satisfies

U r ↓ U , r → ∞, ( 36 
)
where U is a B-supersolution equal to U solution of problem ( 2) and ( 36) means that lim

r→∞ U r = U and U ≤ • • • ≤ U r+1 ≤ U r ≤ • • • ≤ U 0 .
If we consider the solution of problem ( 2) by parallel asynchronous method with flexible communications, U 0 , B-supersolution, can be chosen such that B(U 0 ) = AU 0 -B + Φ(U 0 ) ≥ 0, and in this case we obtain a convergence such that the sequence of iterate vectors is decreasing; if U 0 is chosen like a B-subsolution then B(U 0 ) = AU 0 -B + Φ(U 0 ) ≤ 0, with in this last case a convergence such that the sequence of iterate vectors is increasing. Since the perturbation of the affine mapping AU -B by a continuous monotone diagonal operator involves that B(U) is a continuous surjective M-function, thus, the convergence of these parallel methods, obtained by partial ordering techniques, is derived from the result presented in Proposition 3. It can be noted that, in the present context, the values of the components of the iterate vector generated by the other process, can be accessed while the computations are still in progress. For more details the reader is referred to [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF].

Let us indicate below a process of choice of B-supersolution and a B-subsolution. Consider the discretized problem (2); assume that A verifies assumption (9), i.e. A is an M-matrix and that U → Φ(U) is a diagonal monotone operato. Consider the block decomposition of problem (2)

α k=1 A l,k U k + Φ l (U l ) = B l , ∀l ∈ {1, . . . , α}, (37) 
and the following application

U → B(U) B(U) = AU + Φ(U) -B, (38) 
where, due to the considered assumptions,

U → B(U) is an M-function. Let A i (U i ; W) defined by A i (U i ;W) = A i,i • U i + Φ i (U i ) + α j i A i, j W j -B i , ∀i ∈ {1, . . . , α}. (39) 
We can define implicitly a fixed point mapping F from R M in R M associated to the sub-problem [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF]. Let W, U 0 and V 0 three vectors of R M such that

A i (W i ;W) ≥ 0, U 0 i = W i and V 0 i = F i (W), ∀i ∈ {1, . . . , α}. (40) 
For i ∈ {1, . . . , α}, let

θ i = min(A i (W i ;W), 0) et ζ i = max(A i (W i ;W), 0
). Due to the first inequality of (40) note that

θ i = 0; then ζ i = A i W i ;W). Since V 0 i verify A i,i • V 0 i + Φ i (V 0 i ) = B i - α j i A i, j W j ,∀i ∈ {1, . . . , α}
and according to the first inequality of ( 40)

A i,i • W i + Φ i (W i ) ≥ B i - α j i A i, j W j ,∀i ∈ {1, . . . , α}, then A i,i • W i + Φ i (W i ) ≥ A i,i • V 0 i + Φ i (V 0 i ),∀i ∈ {1, . . . , α}, which implies W i ≥ V 0 i ,∀i ∈ {1, .
. . , α}, since due to the fact that A is an M-matrix, then A i,i , ∀i ∈ {1, . . . , α} are also M-matrices and the mapping

W i → A i,i • W i + Φ i (W i ),∀i ∈ {1, . . . , α}, is an M-function. In addition A i (W i ;W) ≥ 0 = A i (U i ;U ),∀i ∈ {1, . . . , α}, which finally implies W i ≡ U 0 i ≥ U i ,∀i ∈ {1, . . . , α}. Let now V 0 = B -1 (θ) with θ = 0 or equivalently B(V 0 ) = 0 and U 0 ≡ W = B -1 (ζ) or equivalently B(U 0 ) = B(W) ≥ 0. Note also that V 0 ≡ U . Conversely in the opposite case where A i (W i ;W) ≤ 0 , V 0 i = W i and U 0 i = F i (W), ∀i ∈ {1, . . . , α}, then θ i = A i (W i ;W), and ζ i = 0; thus, in the same way B(V 0 ) = B(W) ≤ 0 and U 0 ≡ U . So, in both cases, we have B(V 0 ) ≤ B(U ) = 0 ≤ B(U 0 ), (41) 
and in addition, based on the above assumptions, the application B i is an M-function on the order interval V 0 i , U 0 i i ,∀i ∈ {1, . . . , α}. So, starting with any W vector verifying the first inequality of (40), we get a B-supersolution and a Bsubsolution.

Remark 17. In practical implementation, this type of initialization is made possible because the matrix A is an M-matrix. Indeed, we can use the following property of M-matrices : if A is an M-matrix, then there exists a vector e > 0, e ∈ R M , such that τ = Ae > 0. Then consider now the vector τ = (1 + µ)e where µ is a positive number chosen such that

(1 + µ)Ae -B = (1 + µ)τ -B > 0.
If U → Φ(U) is a positive vector, then the previous value of µ allows to define the positive vector W = (1 + µ) • e. Otherwise, if Φ(U) is a negative vector, then, since the mapping U → Φ(U) is increasing, we can then further increase the value of µ so that B(W) ≡ B((

1 + µ) • e) = AW + Φ(W) -B > 0.
Note alsa that instead of choosing the vector τ = (1 + µ)e we can choose the vector µ • e, with µ > 1, and sufficiently large.

Remark 18. A particular class of parallel asynchronous method with flexible communications corresponds to the one where the updates are performed at the end of any relaxation. In this case, according to the parallel asynchronous model described by ( 6)-( 8), the values of U j , j i, are given by U t j (r) j . This case corresponds to the classical parallel asynchronous iterations as defined in [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF], [START_REF] Chazan | Chaotic relaxation[END_REF] and [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF]. Then, starting from any initial guess corresponding to a B-supersolution U 0 , since A is an M-matrix, it can be proved by a similar and straightforward way, that the sequence of iterate vector is also decreasing and lower bounded and converge to U , the numerical solution of problem [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF]. If U 0 is a B-subsolution the sequence of iterate vector is increasing.

Remark 19. A similar study on flexible asynchronous parallel algorithms was conducted on one hand by A. Frommer and D.B. Szyld in 1998 for linear problems [START_REF] Frommer | Asynchronous iterations with flexible communication for linear systems, Calculateurs Parallèles[END_REF] and in 2004 by A. Frommer, P. Spiteri and D. El Baz for nonlinear problems [START_REF] Baz | Asynchronous iterations with flexible communications : contracting operators[END_REF]; in this new study the authors proposed a slightly different formulation of asynchronous parallel methods with flexible communications for which the analysis of their behavior is performed by contraction techniques using weighted uniform norms in accordance with the Perron -Frobenius theorem.

Monotone acceleration

In the context of analyzing the convergence of classical asynchronous parallel iterations by partial ordering techniques, J.C. Miellou in [START_REF] Miellou | Extrapolation aggregation algorithm of monotone kind. Application to one obstacles stationnary problems[END_REF] proposed an algorithm for accelerating fixed point methods that preserves monotony. This acceleration process is based on extrapolation techniques and is applicable to the resolution of problems modeled by an affine operator. Under appropriate assumptions, especially if the affine operator is an M-function, the process consists in searching a number θ r such that

Ũ = U r + θ r (U r -U r-1 ).
For more details the reader is referred to [START_REF] Miellou | Extrapolation aggregation algorithm of monotone kind. Application to one obstacles stationnary problems[END_REF].

Approach of D. Bertsekas analyzed by nested sets

According to subsections 2.2 and 2.3 convergence analysis could be carried out either by contraction techniques or by partial ordering techniques when, in this last case, the function defining the problem to solve is a continuous surjective M-function. Another distinct approach to analyze the behavior of asynchronous parallel algorithms was also considered by D. Bertsekas [START_REF] Bertsekas | Distributed asynchronous computation of fixed points[END_REF] in 1983 (see also D. Bertsekas and J. Tsitsiklis [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF]); in this last study the successive iterations of the method were located in nested sets centered on the solution. Thus, at the limit these nested sets belong to smaller and smaller sets and the parallel iterative method converges. Then D. Bertsekas established in [START_REF] Bertsekas | Distributed asynchronous computation of fixed points[END_REF] the following general result Theorem 1. Assume that there are sets

E r ⊂ E satisfying (a) E r = E r 1 × . . . × E r α , r ∈ N, (box condition) (b) F(E r ) ⊂ E r+1 ⊂ E r , r ∈ N, (nested set condition) (c) there exists U such that for U r ∈ E r , r ∈ N ⇒ lim r→∞ U r = U , (synchronous convergence condition)
Then, provided assumptions ( 7)-( 8) hold, the sequence of asynchronous iterates U r converges to U , unique fixed point of F. Corollary 2. In the previous result, let us replace (b) by: (b ) F r (E r ) ⊂ E r+1 ⊂ E r , r ∈ N, where F r results from r compositions of F with itself; then the asynchronous non-stationary iterates U r converges to U unique common fixed point of all F r .

In fact Theorem 1 provides an abstract framework for analyzing asynchronous parallel iterative algorithms. This result does not apply directly since it is necessary to define the sets E r ; thus this general result is not easy to use directly. Nevertheless there are particular situations that illustrate this general result in practice; these particular situations have already been encountered in subsections 2.2 and 2.3 which are therefore practical criteria for the analysis of asynchronous parallel methods.

The first particular situation is constituted by the case of contracting mapping with respect to a weighted uniform norm like [START_REF] Robert | Recherche d'une M-matrice parmi les minorantes d'un opérateur linéaire[END_REF]; in this case the sets E r can be defined as follows

E r = {V ∈ E | V -U Γ,∞ ≤ λ r V 0 -U Γ,∞ }
where U is the unique fixed point of F and λ < 1 is the contraction constant. The sets E r being defined by this way, the assumptions of Theorem 1 are clearly verified since these sets are nested.

The second particular situation is constituted when the fixed point mapping is monotone; in this case there are two vectors of E, noted V 0 and W 0 , which are respectively subsolution and supersolution, and then verifying

V 0 ≤ F(V 0 ) ≤ F(W 0 ) ≤ W 0 such that lim r→∞ F r (V 0 ) = lim r→∞ F r (W 0 ) = U .
It then results from the monotony of F that

F r (V 0 ) ≤ F r+1 (V 0 ) ≤ . . . ≤ U = F(U ) ≤ . . . ≤ F r+1 (W 0 ) ≤ F r (W 0 ), ∀r.
Thus, the sets E r satisfying the assumptions of Theorem 1, can be defined as follows

E r = {V ∈ E | F r (V 0 ) ≤ U ≤ F r (W 0 )}.

The Stein-Rosenberg theorem

The analysis of the behavior of the asynchronous parallel methods by contraction, partial ordering and nested techniques are the main techniques for studying the iterative behavior of these methods. It should be noted that the convergence criteria given by the Bertsekas's Theorem as well as those resulting from contraction or partial ordering properties are interconnected. As we have seen, Bertsekas's Theorem does not provide practically useful criteria. When the matrix A admits an M-minorant, without necessarily A being an M-matrix, then we get a first criterion allowing to analyze the convergence of parallel asynchronous algorithm.

Note that, the second criterion allowing an analysis of asynchronous parallel algorithms by contraction techniques, i.e. when an affine application built with an M-matrix A and perturbed by a continuous increasing univalued diagonal application, is such that the resulting operator B is a continuous surjective M-function. So, only in this case, for practical criteria, the analysis in partial order is similar on this point to the contraction analysis. But an additional interest of the analysis by contraction techniques is that one can take into account situations corresponding to the resolution of the problem (3) whereas the analysis by partial order techniques suffers from the fact that in this case the assumption of continuity of the operator B is no longer verified. Moreover, from a practical point of view, the contraction analysis provides additional information on the convergence rate defined by

R ∞ = -Log(λ);
so if λ is close to one per lower value, then the slower the convergence will be, while if λ is close to zero per higher value, the faster the convergence will be. In the case of an affine application built with an M-matrix A and perturbed by an increasing diagonal application, we can easily obtain an estimate of λ as follows

λ = max i ( N k=1,k i | a i,k a k,k | (42) 
Moreover if the matrix A admits an M-minorant N, then an estimate of λ is given by

λ = max i ( α k=1,k i | J i,k J k,k | ( 43 
)
where J is the contraction matrix, in fact the Jacobi's matrix of N.

On the other hand, the analysis of asynchronous methods by partial ordering techniques makes it possible to accelerate convergence by extrapolation [START_REF] Miellou | Extrapolation aggregation algorithm of monotone kind. Application to one obstacles stationnary problems[END_REF].

More generally, in the linear case, by considering various splitting of matrices associated to classical iterative methods we can compare the spectral radii of the iteration matrices and then obtain an estimate of the asymptotic rate of convergence of the associated iterative methods. For example for the comparison of the classical Jacobi's matrix and Gauss-Seidel's matrix in the case where the iteration matrices are nonnegative, we refer to [START_REF] Varga | Matrix iterative analysis[END_REF]. More generally for the comparison of the asymptotic rate of convergence of two different iterative methods or equivalently there associated spectral radii of the iteration matrices, the answer to this problem is provided by the Stein-Rosenberg theorem. For singlevalued or multivalued pseudo-linear problems like (2) or (3) respectively, we have to compare the spectral radius of the contraction matrices resulting from the splitting of algebraic systems to solve and associated to the iterative methods. In [START_REF] Musy | Sur le théorème de Stein-Rosenberg[END_REF], for the solution of nonlinear algebraic systems, F. Musy and M. Charnay have established an extension of Stein's theorem -Rosenberg for chaotic iterations in the case where the delays in data transmission between the processors are not taken into account. Also for nonlinear problem, this work has been extended by C. Jacquemard in the case of chaotic iterative methods with delays [START_REF] Jacquemard | Sur le théorème de Stein-Rosenberg dans le cas des itérations chaotiques à retards[END_REF]. Finally, M. Bahi and J.C. Miellou give in [START_REF] Bahi | Contractive mappings with maximum norms : comparison of constants of contraction and application to asynchronous iterations[END_REF] some expansion of the Stein-Rosenberg's theorem for parallel asynchronous iterations. Given a first fixed point mapping, they consider after re-decomposition of the problem to solve, a more implicit second fixed point mapping, and show that this last fixed point mapping has a constant of contraction lower or equal (but not strictly lower) to the constant of contraction of the first fixed point mapping. In particular if a point decomposition of the problem is considered and if a block decomposition of the same problem is also considered, then the constant of contraction of the second decomposition is lower or equal to the one associated to the initial decomposition. The result is then applied to the case of an algebraic multivalued system analogous to (3).

Remark 20. Asynchronous parallel methods have been studied by many authors in many laboratories on all continents. The aim was on the one hand to highlight more general computation methods by using various methods to analyze the behavior of asynchronous parallel methods and on the other hand to obtain more flexibility in interprocessor exchanges. Note that B. Lubachewski and D. Mitra [START_REF] Lubachevski | A chaotic asynchronous algorithm for computing the fixed point of nonnegative matrix of unit spectral radius[END_REF] have also established a sufficient condition for convergence of asynchronous parallel iterations when delays are bounded; this study was applicable to the solution of singular Markovian systems. In this case, the matrix used in the model is irreducible, nonnegative and of spectral radius equal to one; it is a stochastic matrix, i.e. the sum of the coefficients of each line is equal to one, and B. Lubachewski and D. Mitra further assume that one of its diagonal coefficients is positive.

Extensions of parallel asynchronous methods

Subdomain methods

For a good efficiency of the implemented parallel algorithms, it is necessary that the decomposition has a sufficiently high granularity. Indeed, too small calculation process sizes will have a negative effect on the efficiency of methods, an increase in communication cost and synchronizations between computation processes, which will degrade the performance of parallel methods. Therefore developers gather computational tasks together in order to avoid this type of algorithmic behavior.

For example in the case of the numerical solution of partial differential equations, this type of grouping of computational tasks leads to the development of subdomain methods. There are various kinds of subdomain methods; on the one hand, subdomain methods without overlapping and on the other hand, subdomain methods with overlapping.

Subdomain methods without overlap consist in grouping several adjacent blocks of the vector to be calculated to obtain a block of larger size. The analysis of the behavior of the iterative process with high granularity thus obtained follows from the results obtained previously and mentioned in previous paragraphs in the context of convergence analysis both by contraction techniques presented in subsection 2.2 for the solution of problem (2) or (3) and by partial ordering techniques presented in subsection 2.3 for the solution of problem (2) only. Indeed, if the discretization matrix is an M-matrix, a situation to which we can often reduce ourselves by choosing discretization schemes properly, we have seen that in this case the asynchronous parallel methods analyzed by contraction techniques were convergent whatever be the coarser decomposition (see [START_REF] Miellou | Un critère de convergence pour des méthodes générales de point fixe[END_REF] to [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF]). This result can also be extended to situations where the discretization matrix is not an M-matrix, but has the appropriate property to verify assumption [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF] for a given decomposition in α blocks so that the fixed point mapping associated to a coarser decomposition, i.e. a β-decomposition (β << α) is also a contraction. As an illustration, we have seen in Example 5 that this is particularly the case for a convection -diffusion problem discretized by a centered scheme where this property of M-matrix is not necessarily verified, especially when convection is dominant (see also [START_REF] Partimbene | Calcul haute performance pour la simulation d'interactions fluide-structure[END_REF]).

On the other hand, for the convection -diffusion problem, if a forward or backward scheme is used, depending on the sign of the convection coefficient, the M-matrix character of the discretization matrix of the problem is verified as seen in Example 4 and in [START_REF] Chau | MPI implementation of parallel subdomain methods for linear and nonlinear convectiondiffusion problems[END_REF]. With regard to the analysis of the convergence of asynchronous parallel methods in the linear case, thanks to the properties of the M-matrices, similar convergence results can be obtained by using partial ordering techniques (see [START_REF] Miellou | Itérations chaotiques à retards, étude de la convergence dans le cas d'espaces partiellement ordonnés[END_REF]- [START_REF] Miellou | Asynchronous iterations and order intervals[END_REF]); indeed, the subproblems obtained by grouping the diagonal blocks of the discretization matrix are also M-matrices since any principal minor of an M-matrix is also an Mmatrix (see [START_REF] Varga | Matrix iterative analysis[END_REF]); so the results established in the contraction framework also extend to this case.

In addition, subdomain methods with overlapping can also be used, such as Schwarz's alternating method. Such subdomain methods with overlapping leads to solve the following pseudo-linear singlevalued problem Ā Ū + Φ( Ū) = B instead of system (2) and for the following multivalued problem Ā Ū + Ξ( Ū) -B 0 instead of system (3), where Ā, Ū, B, Φ( Ū) and Ξ( Ū) result from the Schwarz's augmentation process.

In this case, to analyze the behavior of these asynchronous methods, a result of D.J. Evans and J. Van Deeren [START_REF] Evans | An asynchronous parallel algorithm for solving a class of nonlinear simultaneous equations[END_REF] is used. These last authors established that, if A is an M-matrix, the matrix Ā is also an M-matrix. Therefore, since the diagonal operators Φ or Ξ are still monotone operators, the behavior of the asynchronous Schwarz method can be immediately analyzed both by contraction techniques for problems (2) and (3) and by partial ordering techniques, only for the solution of problem [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF], by applying the results presented in subsection 2.2 and 2.3.

Due to the monotony properties of increasing diagonal operators, both when using subdomain methods without overlapping and subdomain methods with overlapping, in a suitable framework corresponding to contraction or partial ordering techniques, the convergence of these methods applied for solving singlevalued and multivalued pseudo-linear problems is trivially obtained. Finally, this analysis of subdomain methods with or without overlapping is still valid for the block numberings usually used, whether it is the lexicographic numbering of the blocks or the red-black numbering of these latter [START_REF] Chau | Asynchronous Schwarz methods applied to constrained mechanical structures in grid environment[END_REF].

Remark 21. To be complete, it would also be necessary to mention the sub-structuring methods. F. Magoules [START_REF] Magoules | From synchronous to asynchronous substructuring methods[END_REF] and F. Magoules and C. Vernet [START_REF] Magoules | Asynchronous iterative sub-structuring methods[END_REF] extend asynchronous iterations models to the case of substructuring framework for the solution of linear algebraic systems derived from the classical discretization of linear boundary values problems. By considering an appropriate partitioning with non-overlapping subdomains of the domain Ω where the partial differential equations is defined, F. Magoules et all consider the matrix S obtained at the interface of the subdomains, S corresponding to the classical Schur complement; by showing convergent splitting of S , the goal is then to yield an iterative mapping which does not require to compute explicitly the entries of S , contrarily to classical splitting such as Jacobi or Gauss-Seidel ones. Thanks to theoretical results based mainly on the properties of M-matrices and H-matrices, and also by stating new estimation between spectral radii and weighted uniform norms, F. Magoules et all provide first practical splitting of the Schur complement and propose a result allowing the possibility of a general unified framework for both asynchronous convergence analysis of Schwarz's method and substructuring methods. Moreover F. Magoules et all propose also an original result corresponding to new convergent efficient asynchronous iterative substructuring methods requiring barely stronger assumptions than the ones required for the convergence of classical asynchronous algebraically non-overlapping additive Schwarz methods.

Multisplitting methods

To highlight more general calculation methods, we can mention the joint work carried out by European, American and Asian laboratories, which has sometimes been carried out within the framework of collaborations to solve large scale problems, either linear or presenting non-linearities. For the solution of problem (1) or ( 2), in order to analyze the behavior of these new parallel methods algebraic approach are essentially used, based, in the beginning, on the application of the Perron -Frobenius theorem. These studies performed by J. Arnal, R. Bru, A. Frommer, V. Migalon, D. P. O'Leary, D. P. O'Leary and R.E. White, J. Penades D. Szyld, and many other authors (see [START_REF] Arnal | Parallel Newton two-stage multisplitting iterative methods for nonlinear systems[END_REF]- [START_REF] White | Parallel algorithms for nonlinear problems[END_REF]) have lead to introduce the multisplitting methods where several contracting fixed point applications are considered simultaneously and a weighted average is made between all these iterates. Note that partial ordering techniques are also considered in [START_REF] Spiteri | Parallel asynchronous Schwarz and multisplitting methods for a non linear diffusion problem[END_REF] for the parallel asynchronous with flexible communications solution of singlevalued pseudo-linear problems of the kind (2). This type of method has also been studied by Z.Z. Bai and also Chinese scientists (see [START_REF] Bai | Asynchronous multisplitting AOR methods for a class of systems of weakly nonlinear equations[END_REF]- [START_REF] Bai | The monotone convergence rate of the parallel nonlinear AOR method[END_REF]) who, to accelerate the speed of convergence, have introduced several relaxation parameters. In addition, J. Bahi J.C. Miellou and K. Rhofir [START_REF] Bahi | Asynchronous multisplitting methods for nonlinear fixed point problems[END_REF] have extended by contraction techniques the previous results for the resolution of pseudo-linear problems without or with constraints corresponding in the latter case to the solution of multivalued problems.

Multisplitting methods actually allow an unified presentation of subdomain methods with or without overlap. Thus, after analysis, we can conclude on the behavior of both these two types of subdomain methods. As for these latter subdomain methods, the properties of M-matrices play an important role; however, the study framework can be weakened in the case of the H-matrices, the latter context being studied, for example, in [START_REF] Han | Convergence of multisplitting methods with preweighting for an H-matrix[END_REF].

Let us first recall the following definition (see [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF])

Definition 7. Let E a vectorial space and A ∈ L(E); the decomposition A = M -N is called a splitting if M is non-singular. It is called a convergent splitting if the spectral radius of M -1 N, denoted in what follows λ satisfies λ < 1. A splitting A = M -N is called (i) regular if M -1 ≥ 0 and N ≥ 0, (ii) weak regular if M -1 ≥ 0 and M -1 N ≥ 0.
Remark 22. Clearly, a regular splitting is a weak regular splitting, but the converse is not true.

More precisely we consider now the solution of the discretized problem (2) and also the solution of problem (3) when assumption ( 9) is verified, and for problem (2) the mapping Φ being in addition continuous and monotone; note that for problem (3) the subdifferential mapping of the indicator function of the convex set defining the constraints is classically monotone.

Let the following regular splittings of matrix

A A = M l -N l , l = 1, ..., m, m ∈ N (44) 
where (M l ) -1 ≥ 0 and N l ≥ 0. Let F l : R N → R N , l = 1, ..., m be m fixed point mappings associated with problem (2) or (3) , respectively, denoted by:

F l (V) = U (45) 
and defined explicitly by

M l U = N l V -Φ(V) + B for problem (2), or M l U = N l V -ξ(V) + B
for problem [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF] where ξ(V) ∈ Ξ(V).

In both cases, for all l = 1, ..., m, the mapping F l associated with problem (2) or problem (3) are also implicitly defined by

B + N l V = M l U + Φ(U) ⇔ U = F l (V), ∀V ∈ E = R N ). ( 46 
)
B + N l V ∈ M l U + ∂Ξ(U) ⇔ U = F l (V), ∀V ∈ E = R N . (47) 
A formal multisplitting associated with problem (2) or problem (3) is defined by the collection of fixed point problems (see [START_REF] Bahi | Asynchronous multisplitting methods for nonlinear fixed point problems[END_REF])

U * -F l (U * ) = 0, l = 1, ..., m. (48) 
Let now E = (R N ) m ≡ E m and consider the following block-decomposition of

E E = m l=1
Ẽl ,

where Ẽl = R N ≡ E.

Let Ũ ∈ E. We have the following block-decomposition of Ũ

Ũ = {U 1 , . . . , U l , . . . , U m } ∈ m l=1
Ẽl .

Definition 8. The extended fixed point mapping T : E → E associated with the formal multisplitting is given as follows

T ( Ṽ) = Ũ, such that U l = F l (V l ) with V l = m k=1 D lk V k , l = 1, ..., m,
where D lk are nonnegative diagonal weighting matrices satisfying for all l ∈ {1, . . . , m} m k=1 D lk = I l , I l being the identity matrix in L( Ẽl ).

Note that considerable saving in computational work may be possible, since a component of V k needs not be computed if the corresponding diagonal entries of the weighting matrices are zero; then, in parallel computing, the role of such weighting matrices may be regarded as determining the distribution of the computational work of the individual processors.

Note also that for a particular choice of the weighting matrices D lk , we can obtain various iterative methods and particularly on one hand a subdomain method without overlapping and on the other hand the classical Schwarz alternating method (see [START_REF] Bahi | Asynchronous multisplitting methods for nonlinear fixed point problems[END_REF]); then this last point establish a link between these subdomain methods and the multisplitting methods. According with [START_REF] Bahi | Asynchronous multisplitting methods for nonlinear fixed point problems[END_REF] the block -Jacobi method corresponds to the following choice of M l M l = diag(I 1 , . . . , I l-1 , A l,l , I l+1 , . . . , I n ) , and to the choice of D lk ≡ Dl given by Dl = diag(0, . . . , 0, I l , 0, . . . , 0), which in other words means that the entries of the weighting matrices are equal to one or to zero.

For the additive Schwarz alternating method more than one processor computes updated values of the same component, and the matrices D l have positive entries smaller than one.

Contraction analysis of multisplitting method. Assume first that the space E is normed by the uniform weighted norm, defined by a similar way than (23) by

V θ,∞ = max l=1,...,m ( max i=1,...,α ( |V l i | ( θl ) i )), θl > 0, (49) 
where here |V i | denotes any hilbertian or non-hilbertian norm of V i in Ẽi , i = 1, . . . , α, subspace of E; assume that for l = 1, ..., m, F l is contractive with respect to U * , its fixed point, with constant 0 ≤ λ l < 1, so that the following inequality is verified Proof. Indeed, if assumption ( 9) is verified, and if the other assumption concerning the monotony of the disturbing diagonal operator are satisfied, then each fixed point mapping F l is contractive, for l = 1, . . . , m and then the proof is complete.

F l (V) -U * θl ,∞ ≤ λ l . V -U * θl ,∞ , for l = 1, ..., m. (50) 
Then, for l = 1, . . . , m, and for i = 1, . . . , α, for the general problem (3) such asynchronous multisplitting method can be given by

           M l i U l,r+1 i + ξ i (U l,r+1 i ) = (N l ( n k=1 D lk V k,t k (r) i ) + B) i , if i ∈ s(r) U l,r+1 i = U l,r i if i s(r)
where

ξ i (U l,r+1 i ) ∈ Ξ i (U l,r+1 i
) and accordingly for problem [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF].

Partial ordering analysis of multisplitting method. Assume now that each subspace Ẽl is always endowed with the natural (or componentwise) partial ordering considered in subsection 2.3. Let the following blockdecomposition of the mapping

T T ( Ṽ) = { T 1 ( Ṽ), . . . , T l ( Ṽ), . . . , T m ( Ṽ)} ∈ m l=1
Ẽl .

The extended fixed point mapping T is associated with the following extended nonlinear problem

a e ( Ũ * ) = 0, (51) 
where the mapping a e : E → E is given by

a e ( Ũ) = A e Ũ + Φ e ( Ũ) -G e ,
the mapping Φ e : E → E being the extended monotone perturbation operator of Φ and for all l ∈ {1, . . . , m}

A e,l Ũ = M l U l -N l m k=1 D lk V k . (52) 
In the sequel a e l (V 1 , . . . , V l-1 , U l , V l+1 , . . . , V m ) = A e,l Ũ + Φ e l ( Ũ) -G e l , l = 1, . . . , m, will also be denoted by a e l (U l ; V).

Proposition 5. Let the above assumptions (9) holds and assume that the mapping Φ is continuous and increasing.

Then the mapping a e associated to problem (2) is a continuous surjective M-function.

Proof. Indeed, we can verify that a e ( Ũ) is continuous and off-diagonally antitone since a e l (U l ; V) is also offdiagonally antitone by applying the Theorem 3.4 of [START_REF] Rheinboldt | On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows[END_REF] (on page 286). Then a e ( Ũ) is a surjective M-function. Note also that the continuity and surjectivity of a e (.) follows from the continuity and maximal monotonicity of Φ e (.).

Then it follows from Proposition 5 that we are in the theoretical framework of the study previously developed in subsection 2.3. Thus, the monotone convergence of asynchronous multisplitting iterations can be derived from the result of Proposition 3. So, for problems (2) only, it follows from Proposition 5 that For all l ∈ {1, . . . , m} and all Ũ ∈ E, the mapping: U l → a e l (U l , V), is a continuous surjective M-function from Ẽl onto Ẽl ; for more details the reader is refered to theorem 3.5 of [START_REF] Rheinboldt | On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows[END_REF]. Moreover it follows from Proposition 5 that for all l ∈ {1, . . . , m} and Ũ ∈ E, the problem: a e l (U l ; V) = 0, has a unique solution U l .

Moreover it follows also from the above assumptions that T is isotone on E (see [START_REF] Miellou | Asynchronous iterations and order intervals[END_REF]). Then the parallel asynchronous multisplitting method associated to the Newton method for the singlevalued problem [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF], with an initial guess constituted by an a-supersolution or a-subsolution converge monotonically to the solution of the discretized problem (2).

Remark 23. We refer to [START_REF] Spiteri | Parallel asynchronous Schwarz and multisplitting methods for a non linear diffusion problem[END_REF] for parallel asynchronous Schwarz alternating and multisplitting methods with flexible communications between the processors, corresponding to a more general model of parallel asynchronous iterations. Nevertheless the implementation of such parallel iterative methods can be delicate due to the fact that it is very hard to minimize the weight of communications between the processors.

Two levels iterative methods. A particular case of multisplitting method is constituted by the two-level methods where an asynchronous parallel external iteration corresponding to a coordination of the subsystems to be solved is considered, these latter subsystems being themselves solved by an iterative method. A particular case of a two-level method is constituted by the coupling of a block relaxation method, each block being solved by a point relaxation method leading then to the two-stage method (see for example [START_REF] Garcia | Behavior of parallel two-stage method for the simulation of steel solidification in continuous casting[END_REF]); another example of a two-level method is constituted by an external iteration of Newton and an internal iteration of relaxation (see for example [START_REF] Arnal | Parallel Newton two-stage multisplitting iterative methods for nonlinear systems[END_REF], [START_REF] Bahi | Asynchronous multisplitting methods for nonlinear fixed point problems[END_REF], [START_REF] Bai | Block and asynchronous two-stage methods for mildly nonlinear systems[END_REF], [START_REF] Garcia | Behavior of parallel two-stage method for the simulation of steel solidification in continuous casting[END_REF]).

Let us assume that we have m regular splittings A = M l -N l , l = 1, ..., m, of the matrix A; in such splitting for l = 1, ..., m, M l refers as previously said to a α-block diagonal matrix. Then we have α subproblems related to the decomposition of M l in α blocks. When the subsystems are solved iteratively by a point asynchronous relaxation method, such as asynchronous point Jacobi or Gauss-Seidel methods, and so we consider in addition the splitting of M l defined by

M l = P l -Q l , l = 1, ..., m,
where P l are diagonal matrices. From an algorithmic point of view we can perform a fixed number q of inner iterations or alternatively, under the previous assumptions, perform iterations until convergence. Using such additional decomposition, we can define implicitly an asynchronous two-stage method as follows for the solution of problem (2)

P l U l,r+1 + Φ(U l,r+1 ) = Q l U l,r + N l Ũl + B,
and similarly for problem (3), only when the behavior of the iterative algorithms are analyzed by contraction techniques,

P l U l,r+1 + ξ(U l,r+1 ) = Q l U l,r + N l Ũl + B, ξ(U l,r+1 ) ∈ Ξ(U l,r+1 )
where Ũl = (U l,t 1 (r) 1 , . . . , U l,t α (r) α

). From a theoretical point of view, in the sequel, let us also assume that for l = 1, ..., m, M l = P l -Q l is a weak regular splitting while, as previously said, A = M l -N l is a regular splitting according to Definition 7.

Then, for problem (2), for l = 1, . . . , m, and for i = 1, . . . , α, such asynchronous two-stage multisplitting method is given by

           P l i U l,r+1 i + Φ i (U l,r+1 i ) = (Q l U l,r ) i + (N l ( m k=1 W lk V k,t k (r) ) + B) i , if i ∈ s(r) U l,r+1 i = U l,r i if i s(r)
while for problem (3) the algorithm is given by

           P l i U l,r+1 i + ξ i (U l,r+1 i ) = (Q l U l,r ) i + (N l ( m k=1 W lk V k,t k (r) ) + B) i , if i ∈ s(r) U l,r+1 i = U l,r i if i s(r)
where

ξ i (U l,r+1 i ) ∈ Ξ(U l,r+1 i
). In order to prove the convergence of the two-stage method, we have to use the Perron -Frobenius Theorem by using similarly the following adapted inequality (see [START_REF] Garcia | Behavior of parallel two-stage method for the simulation of steel solidification in continuous casting[END_REF])

J θ = P -1 (Q + N) θ ≤ λ θ where 0 ≤ λ < 1.
Thus, the asynchronous two-stage methods include well in internal loop the asynchronous point Jacobi or Gauss -Seidel methods. So, using the previous inequality, similarly to Corollary 3, we obtain that the fixed point mapping associated to the two-stage method is contractive, and we can conclude briefly on the convergence of the sequential and parallel synchronous and asynchronous two-stage methods applied to the model problems.

Corollary 4. Consider the solution of the algebraic system (2) or the solution of the constrained algebraic systems (3); then, if assumption ( 9) is verified and in addition for algebraic system (2) Φ is a diagonal increasing operator, the sequential and parallel synchronous and asynchronous two-stage method starting from every initial guess U 0 converge to the solution U * of the target problems.

Remark 24. As previously mentioned the two-stage method corresponds to a computational algorithm where the subsystems are solved by an inner relaxation method while the coordination between the subsystems is achieved by an outer parallel asynchronous iteration. Note that, for the inner iteration, we can also consider another iterative method, like for example the conjugate gradient method and its variants; for more details, the reader is referred to [START_REF] Couturier | A scalable multisplitting algorithm to solve large sparse linear systems[END_REF] or [START_REF] Partimbene | Asynchronous multi-splitting method for linear and pseudo-linear problems[END_REF].

Chaotic discrete iterations

A discrete dynamic system like a network of cellular automaton is a finite set of elements, each taking a finite number of states, and evolving, in a discrete time, through mutual interactions. The study previously undertaken in [START_REF] Robert | Les Systèmes Dynamiques Discrets[END_REF]- [START_REF] Robert | Discrete Iterations, a metric study[END_REF] by F. Robert therefore includes discrete discontinuous dynamic aspects since the frame of a chaotic iteration is essentially discontinuous, independent of the initial continuous numerical context. Assuming that the general results established for numerical iterative algorithms had to have a transcription in discrete iterative processes where the fixed point operator applies a product of finite sets in itself (rather than in R N ), F. Robert had to reconsider and to reconstruct the analysis with metric tools and context-specific proof that replaced the notion of vectorial norm, the notion of contraction, the passage from the "parallel" (corresponding to Jacobi's iteration) to the "series" (corresponding to Gauss-Seidel's iteration) via the specific theorems of Perron -Frobenius and Stein-Rosenberg Boolean, the notion of discrete derivative and its application to the local convergence of discrete chaotic iterations. To achieve these objectives, the vectorial norm becomes a Boolean vector distance. All this leads F. Robert to establish an important and simple result, namely that any discrete operator F is Lipchitzian in relation to the discrete Boolean distance considered and then verify

d( F(U), F(V)) ≤ J.d(U, V)
where J = J( F) is the incidence matrix of F with Ji, j = 1 if the i-th component of F actually depends on the discrete variable U j and Ji, j = 0 otherwise. Thus, results of global convergence (Boolean contraction) or local convergence towards a fixed point or towards a cycle are established for different operating modes (parallel, series, parallel-series, chaotic).

To establish global convergence F. Robert shows that the classical Perron -Frobenius and Stein-Rosenberg theorems are perfectly adaptable to the discrete framework. It then establishes that the discrete fixed point application is contracting, which is equivalent to state that the spectral radius of the incidence matrix is zero and makes possible to show that the "series" iterations will converge globally faster than the "parallel" iterations.

With regard to local convergence towards a fixed point U of F, F. Robert naturally introduces a notion of discrete derivative corresponding to the Jacobian discrete matrix; it establishes the basic and simple metric relationships specific to the discrete framework that links the vectorial distance d, the discrete derivative F and the incidence matrix J( F) as follows

d( F(U), F(V)) ≤ J( F)d(U, V) where J = sup W ( F (W)).
A basic local convergence result then establishes that for a fixed point U of the fixed point mapping F considered to be attractive in its first neighborhood, it is necessary and sufficient that the discrete Jacobian F (U ) of F in U has at most one "one" per column and has a zero Boolean spectral radius.

An important particular case is that of Newton's discrete method, which is defined and studied in a similar way to the classical numerical method, but with particularities related to the discrete context [START_REF] Robert | Les Systèmes Dynamiques Discrets[END_REF].

Once these global or local convergence results had been established in "parallel" and in "series", the convergence of chaotic iterations had yet to be discretely transposed. Thanks to tools and a specific approach, similar to the continuous framework, and by establishing results on Boolean matrix products in advance, convergence results have been established within this framework. These results constituted one way (among others) to analyze the dynamic behavior of networks of automaton that prefigured the emergence of neural networks that appeared in 1982. The reader is referred to [START_REF] Robert | Les Systèmes Dynamiques Discrets[END_REF]- [START_REF] Robert | Discrete Iterations, a metric study[END_REF] for many illustrative examples.

The difficult problem of stopping tests for asynchronous parallel iterations

If convergence detection for parallel synchronous iterations does not present any major difficulties, whereas the asynchronous case is a real challenge due to the nondeterministic behavior of such methods. Indeed the problem of termination of asynchronous parallel iterations is an extremely difficult problem to code since it concerns both computer science and also applied mathematics aspects, when the iterate vector is sufficiently close to the solution of the problem. Nevertheless, in the computer science field, the specificity of multiprocessor architectures must currently be taken into account, particularly on distributed systems where communications are carried out by message passing and in this context the processors have local information only. This kind of study is all the more an interesting contribution as parallel asynchronous methods are very interesting to use when there are very much synchronizations between the processors in the synchronous case, expectations producing thus phases of inactivity of the processors. Moreover such use of parallel asynchronous methods present an additional interest when the interconnection network has a slow flow, situation that can be found for example in the use of large computing grids or cloud computing when distant and heterogeneous clusters are used.

Empirical methods

The most commonly termination methods used in preliminary works are often empirical. They are constituted by the observation by a particular processor of the local termination conditions on each processor. The iterative algorithm is then stopped when all local termination conditions are satisfied. This kind of termination will only give satisfactory results only if the degree of asynchronism is low. On the contrary, when delays between the processors are significant, due in particular to the imbalance of calculation tasks, this method can lead to false termination detection. Another possible method of termination is obtained by sending termination and reboot messages by each processor and by using a special processor that collects and centralizes the termination messages (see [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF]). In a different approach [START_REF] Miellou | Stopping criteria for parallel asynchronous algorithms[END_REF], the termination scheme periodically samples the state of the processors and associates to each one a Boolean value depending on whether or not the local termination criterion is satisfied. This local value is then transmitted to the other processors. The overall state is deduced by calculating the fixed point of a Boolean operator using an asynchronous iterative algorithm. However, this termination method requires that each processor has an estimate of the start and end times of the fixed point asynchronous algorithm using the Boolean operator. Another termination method uses termination messages and acknowledgements of termination messages [START_REF] Chajakis | Synchronous and asynchronous implementations of relaxation algorithms for nonlinear network optimization[END_REF]. In this case, a processor completes its calculations provided that the local termination criterion is satisfied and that it has received termination and acknowledgement messages from all other processors for all its own termination messages. Note that there is no formal proof of validity for the previous termination methods. Indeed, for a message passing machine architecture, all processors have local information; in particular, there is no global clock and moreover, messages can be arbitrarily delayed for long periods of time.

In what follows we will distinguish on one hand the computer science approach and on the other hand the numerical analysis approach.

Computer sciences approach

Subsequently, the work carried out in this context has provided formal proof of validity. In the present subsection we will distinguish a centralized approach and a decentralized approach.

Centralized approach

We present first the centralized approach. In the centralized approach of termination detection, a processor receives the state of the other processors and detects the global convergence when all processes have converged locally. Several studies have been undertaken by many authors. D. Bertsekas and J. Tsitsiklis approach. D. Bertsekas and J. Tsitsiklis [START_REF] Bertsekas | Parallel and distributed iterative algorithms: a selective survey[END_REF] consider that "each data communicated on a link is correctly received with a finite but unspecified delay". The method of terminating iterative asynchronous algorithms is then based on the decomposition of the problem into two distinct parts: 1) the iterative algorithm is modified so that it ends in a finite time and converges to a fixed point sufficiently close to the solution of the problem to be solved, 2) a computer procedure for detecting the termination is applied. It should be noted that the asynchronous algorithm is modified and that it is different from the classical asynchronous algorithm since the value of one or more components of the iterate vector becomes fixed in a finite time, in contrast to what the calculation algorithm produces due to the fact that the components can change with each relaxation. D. Bertsekas and J. Tsitsiklis therefore introduce a new fixed point application defined either by the updated value deduced from the algorithm if the value of the component has changed, or by the old value if the update is not significant. This context leads D. Bertsekas and J. Tsitsiklis to modify the iterative algorithm as follows: if the update of a component of the iterate vector does not significantly change its value then the new updated value is not modified and is not communicated to other processors; the termination of the modified iterative algorithm occurs when an update modifies the value of the components of the iterate vector regardless of the processor and no message is in transit in the communication network. Thus, as far as the non-modification of the components of the iterate vector is concerned, all local termination conditions are satisfied. Several procedures for detecting the termination of the modified asynchronous iterative algorithm can be used. These include the following -the Dijkstra and Scholten procedure [START_REF] Dijkstra | Termination detection for diffusing computation[END_REF], -the Chandy and Lamport snapshot algorithm [START_REF] Chandy | Distributed snapshots : determining global states of distributed systems[END_REF]. The Dijkstra and Scholten procedure is based on the acknowledgement of all messages and the generation of a hierarchical activity graph. Processors communicate two kinds of information: -the new value of the components of the iterate vector, -the acknowledgment of messages containing a new value. In an inactive state, a processor does not calculate and transmit any messages or acknowledgments. This inactive processor P changes state when a message is received containing a new value of a subset of components of the iterate vector from another processor that then becomes the father in the hierarchical activity graph. The message that has activated P has a particularly important role until the next inactivity phase; it is called a critical message. In an active state, a processor updates the components of the iterate vector assigned to it, transmits the updated values to other processors, or at least, to save communications, those who need these values, and systematically sends an acknowledgment for any message received excluding the critical message that receives special processing. An active processor P changes state when its local termination condition is satisfied, acknowledgments have been sent for all received messages except the critical message, and an acknowledgment has been received for all sent messages. When the transition is complete, the processor P sends to its father the acknowledgment of the critical message. In the initial phase, only one processor, called the root processor, denoted R, is active. In the following, all processors are gradually activated by the reception of messages. The activity graph evolves according to the critical messages received, the satisfaction of local termination conditions and the receipt of acknowledgements. D. Bertsekas and J. Tsitsiklis have identified two main classes of methods for which the modified asynchronous iterative algorithm converges in a finite time: 1) the case where the asynchronous iterative algorithm is associated with a fixed point application contracting F for a uniform weighted norm, 2) the case where the asynchronous iterative algorithm is associated with an increasing monotonous fixed point application F. The validity of the method of D. Bertsekas and J. Tsitsiklis can be formally proved. However, this method has drawbacks insofar as -it requires the use of a complex protocol and twice as many communications as a traditional asynchronous iterative algorithm, -in addition, more restrictive conditions must be satisfied in order to ensure the convergence of the modified asynchronous algorithm. The other termination procedure, the Chandy and Lamport snapshot algorithm, is based on the production of snapshot obtained by tagging messages and the recording of the status of links and processors when tagging messages are delivered. The states recorded in a snapshot do not necessarily correspond to the real global state of the system at a given time. However, the information contained in a snapshot is sufficient to detect certain properties of the overall state of the system, in particular the termination. D. Bertsekas and J. Tsitsiklis have established a formal proof of validity of this termination method. S.A. Savari and D. Bertsekas approach. Another particularly interesting termination method has been proposed by S.A. Savari and D. Bertsekas [START_REF] Savari | Finite termination of asynchronous iterative algorithms[END_REF]. In this procedure, the model describing asynchronous iterations is slightly modified; the result of each new update of a component of the iterate vector is taken into account and communicated to the other processors if it is different from the last calculated value. In addition, requests are sent to all processors in the system whenever a non-local termination condition is not satisfied. A processor performs the calculations and forwards messages and requests to other processors as long as its local termination condition is not satisfied or it receives requests from other processors. Termination occurs when all processors have satisfied their local termination condition and no message relating to a request or a result of a refresh is in transit in the system. S.A. Savari and D. Bertsekas have given formal proof of the validity of this termination algorithm. The main advantage of this method is that it can be successfully applied to a larger class of iterative algorithms than the method of D. Bertsekas and J. Tsitsiklis. Its main drawback is that it requires a very large number of communication requests and require restrictive assumptions such as, for example, ordered communications.

J. Bahi et all approach.

Let us also quote the works of J. Bahi et all in [START_REF] Bahi | Parallel iterative algorithms: from sequential to grid computing[END_REF]; they have also studied a centralized termination of asynchronous parallel methods. In asynchronous context the convergence detection is even hardened by the difficulty to get a correct image of the global state at any time during the iterative process. The most common techniques used in distributed computing to recover such information are centralized and synchronous. These detection methods are not suited to large scale and / or distant distributed systems and also to asynchronous iterative algorithms. The convergence detection algorithm must also be asynchronous. Moreover the centralization of such detection method may generate the classical problem of bottlenecks. Indeed in a classical centralized algorithm, all processors directly communicate their information to the central one. However, such communication scheme, implying that one machine can directly be contacted by all the others, is not possible in all parallel systems, particularly in a distributed clusters in which each site may have restricted access policies for security reasons. In most cases, only one machine of a given cluster is reachable from the outside. In order to bypass that problem, an explicit forwarding of the message can be performed from any node in the system toward the central one. Such method presents the advantage of only involving communications between neighboring nodes and is well adapted to the hierarchical communication systems that can be found in distributed clusters. Unfortunately, this last scheme implies more communications, slowing down the network and indirectly the iterative process itself. Moreover, it also implies larger delays toward the central node.

Decentralized approach

The decentralized approach presented below is better suited to the termination of asynchronous parallel iterative algorithms M. Chau et all approach. For the parallel asynchronous methods, in [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF]- [START_REF] Chau | MPI implementation of parallel subdomain methods for linear and nonlinear convectiondiffusion problems[END_REF] for stopping criterion M. Chau et all used a decentralized algorithm where asynchronous convergence detection is achieved with a token circulation technique. Each processor updates the components of the iterate vector associated with each one's own block and computes the residual norm attached to this block in order to participate to the convergence detection. Convergence detection was performed via a snapshot algorithm (see [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF], section 8.2 and [START_REF] Chandy | Distributed snapshots : determining global states of distributed systems[END_REF]), corresponding to a variant of Lamport's method. Convergence occurs when a given predicate on a global state is true. A usual predicate corresponds to the fact that the iterate vector generated by the asynchronous iterative algorithm is sufficiently close to a solution of the problem (see [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF], page 580); then, on every process, the norm of the local residue remains under a given threshold after two successive updates of the component (see [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF], [START_REF] Miellou | Stopping criteria, forward and backward errors for perturbed asynchronous linear fixed point methods in finite precision[END_REF]). Due to the termination and the detection of the global state of the processes, the implementation of each variant of parallel asynchronous method is then more complex than the synchronous one. In the case of asynchronous iterations, point to point communications between two processes have been implemented using nonblocking MPI1 send and receive subroutines. MPI TEST is used in order to allow any processor to continue the computations without having to wait for the completion of any pending send or receive operations. Idle times due to synchronizations in message passing are suppressed in this way. On the other hand, the parallel synchronous iterative schemes are implemented by using MPI WAIT. One has to take care about the deadlock issue when implementing synchronous communications using blocking MPI subroutines. For more details concerning the implementation and the convergence detection of the considered parallel asynchronous methods, the reader is referred to [START_REF] Chau | MPI implementation of parallel subdomain methods for linear and nonlinear convectiondiffusion problems[END_REF].

J. Bahi et all approach. Another approach more flexible is proposed by J. Bahi et all in [START_REF] Bahi | Parallel iterative algorithms: from sequential to grid computing[END_REF]; this approach do not use a token circulation. So, the most suitable detection algorithm must not only be asynchronous but also completely decentralized. Such decentralized algorithm for the global convergence detection works on all parallel iterative algorithms, either asynchronous or synchronous, with, in this last case, some minor modifications. The major difficulty with termination detection lies in the proof that the proposed algorithm does not detect convergence prematurely. Indeed, in asynchronous methods, the delays between iterations could lead to a false realization of the convergence criterion. This situation typically occurs in heterogeneous contexts, for example when a processor computes a new iteration whereas a slower processor computes a former iteration. Such difficulty is increased with distant processors where the communication / computation ratio may be important. As a consequence the principle of the decentralized detection algorithm is based on two distinct classical steps. The first one consists in detecting the local convergence on each processor while the second one properly consists in the global convergence detection. The local convergence detection step is quite similar to the one used in the synchronous mode. Since there is no information between the current state of the iterative process and the fixed point to be found, so, in place, the norm of the residual is used to get an idea of the termination of the iterative process. So, the local iteration is ended when the norm of the residual is less than a given threshold. Nevertheless, it can be noted that, in all iterative algorithms and not especially in asynchronous algorithms, false detection of the global convergence can occur if no care is taken.

The common heuristic for the detection of a definitive local convergence is then to assume that such local convergence has performed a given number of successive iterations with a norm of residual less than the given threshold. Such required value of number of successive iterations exists and is finite since the iterative process converges; the result of [START_REF] Miellou | Stopping criteria, forward and backward errors for perturbed asynchronous linear fixed point methods in finite precision[END_REF] allows to give an estimate of such value. Global convergence will occur when all local processes have converged. Unfortunately if the asynchronism is not responsible for the difficulty in evaluating the local convergence, it hardens the global convergence detection by making the building of a representative image of the global state of the system more difficult. The decentralization of the detection of the termination algorithm is based upon a scheme quite similar to the leader election protocol. Such protocol consists in dynamically designating one processor to perform a given task, namely in our case, the global convergence detection. However, in the specific context of global convergence detection, the leader election process requires some specific adaptations which imply the use of a tree graph. Then a message informs the receiver that all the processors located in the subtree depending on the sender have reached local convergence. Hence, on each processor, the algorithm considers the number of neighbors in the tree from which no convergence message has already been received. So a node will detect the global convergence when it has received the convergence message from all its neighbors and is itself in local convergence. The correctness of this procedure of global convergence detection is proved in the context where contraction techniques are used (see [START_REF] Bahi | Parallel iterative algorithms: from sequential to grid computing[END_REF]); in other cases, the process is still correct but an additional verification step is necessary after the global detection to ensure that the system was in the global context state at the detection.

F. Magoules et all approach.

In a recent study F. Magoules and Guillaume Gbikpi-Benissan [START_REF] Magoules | Distributed convergence detection based on global residual error under asynchronous iterations, Parallel and Distributed Systems[END_REF]- [START_REF] Magoules | JACK2: An MPI-based communication library with non-blocking synchronization for asynchronous iterations[END_REF] present original results concerning the problem of convergence detection for classical parallel asynchronous iterations. In this study convergence detection problem is classically presented in terms of a consistent estimation of the residue thanks to the use of sequences of single vectors generated by each processor. The snapshot algorithm introduced by K.M. Chandy and L. Lamport constitutes a way of building the global state of any distributed system by recording states of processes and communication channels; it allows in the sequel to propose two possible extensions for asynchronous iterations termination in First-In-First-Out (FIFO) communication environments. According to the point of view developed by S.A. Savari and D.P. Bertsekas where computation data are included into snapshot messages, the authors propose to extend the two protocols previously considered and to consider non-FIFO environments; then no coordination phase is introduced by the new two proposed protocols. Then, considering a communication model where at least computation messages are FIFO-ordered, the authors propose another method without snapshot messages, based only on computation data. The main idea is to record a channel state when two successively received messages are very close. Processes therefore need twice more memory for received messages. At last, the authors introduce a communication environment where the non-FIFO message delivering can be characterized, due to performance level requirements on the computation platform. They therefore derive two new other protocols which build an approximate global iterations vector. With appropriate assumptions, a formal analysis is conducted when the space is normed by any norm, to bound the error between the exact and the computed approximate residual; particularly an analogous result is stated when the weighted uniform norm is used. Presentation of parallel experiments show the effectiveness and the efficiency of the study applied to a target problem solved on supercomputers with 48 to 504 processors cores on one hand and to 1024 to 5600 processors cores on the other hand. These experiments show clearly that the residue is accurately estimated. With respect to previous contributions developed by other authors, the present study show that only one reduction operation at each iteration (instead of two in other contributions) is sufficient to the computation of the residual error; thus, compared to existing supervised termination algorithms, the present study minimizes both delays of termination detection and communication overhead costs.

Numerical analysis approach

In fact, all the stopping criteria presented in sub-sections 3.1 and 3.2 do not really take into account the numerical aspects related to the mathematical analysis of the behavior of these parallel iterative methods. Several works related to the study of the convergence of asynchronous parallel methods has also highlighted numerical termination criteria. Thus a realistic implementation of termination of parallel asynchronous methods must combine both the aspects of computer science with the aspects derived from numerical analysis.

Various numerical test

Use of a secondary error control algorithm. For parallel asynchronous methods J.C. Miellou proposed in [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF] a termination detection method based on the use of a secondary error control algorithm derived from the secondary algorithm of F. Robert [START_REF] Robert | Blocs H-matrices et convergence des méthodes itératives classiques par blocs[END_REF] and G. Schroeder [START_REF] Schroeder | Computing error bounds in solving linear systems[END_REF]. In the framework of study of convergence by contraction techniques, this secondary algorithm allows to solve a system of small dimension z = Jz, where J is the contraction matrix with a spectral radius smaller than the unit. Obviously, for the solution of the problem z = Jz, whatever be the initial guess z 0 , the secondary algorithm will converge to zero. So, by choosing at each step r for the principal algorithm and also for the secondary algorithm the same strategy for choosing the components to relax and the same delayed values, J.C. Miellou [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF] has established that if the secondary algorithm is initialized by a vector z 0 verifying z 0 ≥ q(U 0 -U ), then at each step r of the principal algorithm the following inequality

z r ≥ q(U r -U )
is verified; so we can terminate the principal asynchronous parallel algorithm, when all the components of z r are of modulus less than a given tolerance η. The secondary algorithm requires significantly fewer calculations than the principal algorithm and can be very well implemented with the latter at a lower cost; it therefore provides a reliable and economical method for terminating asynchronous parallel methods. We refer to [START_REF] Miellou | Algorithmes de relaxation chaotique à retards[END_REF] for a practical determination of z 0 .

Remark 25. Note that in [START_REF] Miellou | A cheap method of performance evaluation for subdomain decomposition parallel algorithms of three dimensional elliptic problems[END_REF], in order to study the behavior of asynchronous parallel algorithms, we performed parallel execution simulations on a mini computer at a lower cost using only the secondary algorithm.

Use of the discrete maximum principle. Related to the works performed in [START_REF] Miellou | Itérations chaotiques à retards, étude de la convergence dans le cas d'espaces partiellement ordonnés[END_REF]- [START_REF] Miellou | Asynchronous iterations and order intervals[END_REF] (and [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF]- [START_REF] Spiteri | Asynchronous Schwarz alternating methods with flexible communication for the obstacle problem[END_REF] also [START_REF] Spiteri | Parallel asynchronous Schwarz and multisplitting methods for a non linear diffusion problem[END_REF]) we have seen that convergence analysis can be carried out using partial ordering techniques; we can then take advantage of the properties of a decrease of the iterate vector W p calculated from a supersolution W 0 and of the growth of the iterate vector V q calculated from a subsolution V 0 , to obtain at each step a control of the error with respect to the exact solution U ; indeed due to the monotone convergence we obtain the following framework for the exact solution

V q ≤ U ≤ W p .
Thus, if the components of the vector W p -V q are all less than a given tolerance η, we can conclude to the the convergence of asynchronous parallel methods. However, it should be noted that this process, although very reliable, is not economical in terms of the amount of calculation and calculation time. But such process can also be used for the termination of parallel asynchronous methods with flaxible communications.

Use of nested sets

General basic notions. Based on the consideration of perturbation by floating point errors [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF] and [START_REF] Miellou | Perturbation of fixed point iterative methods[END_REF], another approach to dynamically terminating parallel iterative asynchronous algorithms in a general situation of topological context was developed by J.C. Miellou, P. Spiteri et all in [START_REF] Miellou | A new stopping criterion for linear perturbed asynchronous iterations[END_REF] to [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF]; this approach is based on considerations involved in the analysis of the numerical behavior of these iterative methods. This study essentially uses the notion of nested sets studied by D. Bertsekas et all (see [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF] - [START_REF] Bertsekas | Distributed asynchronous computation of fixed points[END_REF] ) to analyze the convergence of these methods. The principle of this approach is the same whether the problem is linear or non-linear. However, for linear problems the effect of rounding errors is taken into account by using an approximate contraction notion introduced by J. Wilkinson (see [START_REF] Wilkinson | Rounding error in algebraic processes[END_REF]- [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF]) and extended in [START_REF] Miellou | Perturbation of fixed point iterative methods[END_REF] in the context of parallel asynchronous iterations; in the non-linear case such approximate contraction notion is more complex to apply. In order to give some estimate of the distance between the exact solution and the current iterate and then to propose several on line original stopping criteria for parallel asynchronous iterations usable for general fixed point methods defined in a product space, the previous authors develop a complete study allowing to obtain, when the considered stopping tests are satisfied, upper bounds of the error and also sharp estimates of bounds of the residue very useful for efficient various stopping criteria. Note that these bounds depend on the chosen topology, and specifically on the equivalence norm constants between the chosen norm and a specific use of the general formulation of the result related to the use of Perron-Frobenius norm (23) (or uniform weighted norm) when the matrices arising in the problem are reducible or irreducible [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF]. These methods of termination are relative to an estimation of the diameter of appropriate nested sets E r , centered on the solution required, and that contain the selected iterate vectors necessary to achieve the stopping criterion; the construction of such sets is possible when the convergence of the asynchronous parallel iterative methods results of contraction or approximate contraction techniques, corresponding to the fact that the fixed point mapping is contracting with respect to a vectorial norm and admits a contraction matrix J, i.e. a Lipschitz matrix with nonnegative entries and spectral radius strictly less than one. In other words the considered stopping criteria are formulated with respect to the distance of the extremities of a segment order containing the selected iterates necessary to achieve the stopping criterion. Thus, if the size of this segment order is lower or equal to an appropriate threshold associated to the considered stopping test, then the iterations stop. In [START_REF] Miellou | A new stopping criterion for linear perturbed asynchronous iterations[END_REF] to [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF] this property of stopping the iterations is proved rigorously thanks to the convergence property of asynchronous iterations when contraction or approximate contraction properties of the fixed point mapping are considered (see [START_REF] Miellou | Perturbation of fixed point iterative methods[END_REF]). Moreover to obtain a correct estimation of the segment order considered to stop the iterative algorithm it is necessary to enclose several successive iterates which then allow to construct by a dynamical way the nested sets. This is made possible thanks to the use of the notion of sliding macro-iteration. The proposed stopping criteria correspond to the three following cases 1) a stopping criterion with respect to the absolute error, 2) a stopping criterion with respect to the relative error,

3) a mixed stopping criterion with respect to a vectorial norm error, i.e. combining the absolute error and the relative error and using a "mixed weighted uniform norm absolute value-relative value vectorial norm stopping test". The previous three stopping criteria are described with respect to the general distances defined on the N-dimensional space. It can be also noted that the stopping criterion with respect to the absolute error and the stopping criterion with respect to the relative error can be formulated by using general norms defined in the N-dimensional space while the mixed stopping criterion with respect to a vectorial norm error is defined in a more particular context. In all cases and in the considered theoretical and general framework, it has been shown that each termination test is coherent and bounds of the residue and of the error, for the absolute value stopping test, relative value stopping test and for the mixed stopping criterion with respect to a vectorial norm are established. Finally some criteria related to dynamic termination such as absolute errors and errors in vectorial norm are particularly well suited to specific contexts such as the use of distributed memory machines, grid computing, peer to peer and cloud computing.

The proofs of the various stopping tests are here omitted; so, the reader is referred to [START_REF] Miellou | A new stopping criterion for linear perturbed asynchronous iterations[END_REF] to [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF] for a theoretical justification of the following results.

Remark 26. Beside, note also, that in a previous study [START_REF] Miellou | Stopping criteria, forward and backward errors for perturbed asynchronous linear fixed point methods in finite precision[END_REF], we have considered an analogous study using the same theoretical framework of approximate contraction in the case of linear fixed point parallel asynchronous iterations, taking into account the influence of rounding errors; in this work the stopping test is not achieved by a dynamic way, but is predictive, i.e. allows to predict, taking into account the value of the parameters used to estimate the convergence rate, how many macro-iterations, corresponding to update at least one time all components of the iterate vector, will be required to obtain a given accuracy. Lastly let us also mention a study concerning the termination of parallel asynchronous iteration for nonlinear problems [START_REF] Spiteri | Mathematical study of perturbed asynchronous iterations designed for distributed termination[END_REF]. For more details, the reader is referred to [START_REF] Miellou | Stopping criteria, forward and backward errors for perturbed asynchronous linear fixed point methods in finite precision[END_REF] and [START_REF] Spiteri | Mathematical study of perturbed asynchronous iterations designed for distributed termination[END_REF].

General background. In asynchronous iterations the concept of iteration doesn't really make sense even if such concept has sense in synchronous or sequential mode; as stated just above, in the asynchronous case this concept is replaced by the notion of macro-iteration. In a macro-iteration all components of the iterate vector are updated at least one time according to (6) to (8) using available values of the components associated with this sequence of computation. The formal definition of macro-iteration is complex to be presented but plays a major role; nevertheless, in order to understand what follows, we summarize hereafter some basic useful notions and we refer to [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF] and [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF] for more theoretical details; let

t(r) = min p≥r min 1≤k≤N (t k (p));
then the notion of macro-iteration can be defined rigorously as follows

         r 0 = r0 , r k+1 = min{r| r k ≤t(r)≤p≤r s(r) = {1, .., N}}; (53) 
which allow to gather several relaxations and all components of the iterate vector updated at least one time using other computed available values. Moreover we will also consider the notion of sliding macro-iteration which corresponds to an adaptation of the notion of macro-iteration allowing to take into account all necessary useful informations used to produce the r-th update and then achieved the stopping test; thus the sliding macro-iteration is defined by

σ(r) = max({p | p≤s(p)≤p≤r t(p) = {1, . . . , N}}), ∀r ≥ r 1 ;
then σ(r) refers to all components of the r-th update using values belonging to the same sliding macro-iteration; in other words a sliding macro-iteration corresponds to the consideration of successive iterate vectors including those with just refreshed components and the previous iterate vectors directly used for getting them. Then a sliding macro-iteration is distinct to a macro-iteration used for the study of convergence of asynchronous parallel iteration. So updates labeled by an index smaller than σ(r) are not used anymore in the computation of the r-th update. Similarly we have also to define σ(r) which refers to the upper bound of the index taken into account in the sliding macro-iteration; σ(r) is then defined by

σ(r) = min({p | σ(r) ≤ t(p) ≤ p ≤ r}), ∀r ≥ r 1 ,
and such that σ(r) ≤ σ(r), r = 1, 2, . . . , so that lim

r→∞ (σ(r)) = +∞ imply lim r→∞ (σ(r)) = +∞.
Then updates labeled by an index greater than σ(r) are not used anymore in the computation of the r-th update. So σ(r) corresponds to the greatest index arising in the computation of a component of the (r + 1)-th update.

In conclusion σ(r) and σ(r) allow to take into account all necessary informations used to produce the (r + 1)-th update. An other concept namely the concept of diameter of a set [U, V] between two elementsU and V is used and the diameter of this set is then defined for any norm, for example the weighted uniform norm [START_REF] Robert | Recherche d'une M-matrice parmi les minorantes d'un opérateur linéaire[END_REF]; so the diameter of [U, V] is defined by

Diameter([U, V]) = U -V Γ,∞ .
For the solution of linear system (1) or non-linear systems (2) or (3), to which a fixed point mapping is associated, we place ourselves in the framework defined by [START_REF] Berman | Nonnegative matrices in the mathematical sciences[END_REF] or [START_REF] Miellou | Sur une variante de la méthode de relaxation, appliquée à des problèmes comportant un opérateur somme d'un opérateur différentiable et d'un opérateur maximal monotone diagonal[END_REF] corresponding to a property of contraction with respect to a vectorial norm

q(F(U ) -F(V)) ≤ J.q(U -V); (54) 
where J is a non-negative matrix with spectral radius ρ(J) strictly less than one, such that the mapping F is contractive. According to Proposition 1 such previous property implies the convergence of parallel asynchronous fixed point method.

According to [START_REF] Spiteri | Perturbation of parallel asynchronous linear iterations by floating point errors[END_REF], for all positive real number , let us consider the positive number λ ∈]ρ(J), ρ(J) + [ if J is a reducible matrix and λ = ρ(J) if J is an irreducible matrix.

We consider first the general case of parallel asynchronous iterations in the perturbed case of round off errors for the solution of linear problem [START_REF] Spiteri | Synthetic presentation of iterative asynchronous parallel algorithms[END_REF]. In this case of perturbed computation where each arithmetic operation is affected by round off errors, according to the books of Highamm [START_REF] Higham | Accuracy and stability of numerical algorithms[END_REF] and Golub -Van Loan [START_REF] Golub | Matrix Computations[END_REF] , we can define the following quantity

Float(ζ) = ζ(1 + γ), |γ| ≤ χ
where β denotes the basis, γ models the effect of round off errors and χ = 0.5 β(1-θ) in case of rounding and χ = β(1-θ) in case of chopping.

where θ denotes the precision. Let us define the number τ = µ(κ + 1)χ = 1.0101(κ + 1)χ where κ is the maximum number of nonzero elements in a row of J.

In the perturbed case, let ν = (1 + τ).λ and assume that is chosen sufficiently small such that ν < 1. For example, in the non perturbed linear case, E r is defined by

E r = {V| U -V Γ,∞ ≤ νr U -U 0 Γ,∞ };
while in the perturbed linear case, E r is defined by

E r = {V| U -V Γ,∞ ≤ νr U -U 0 Γ,∞ + 1 -νr 1 - ν .δ} where δ = τ 1 -λ . B Γ,∞
and due to the fact that ν < 1, in the perturbed case the set E r admits a limit set defined by

E ∞ = r∈N E r = {V| U -V Γ,∞ ≤ 1 1 - ν .δ}
Relative error criterion. Perturbed linear case: In this paragraph, firstly for the solution of linear system (1), we propose several stopping criterion for asynchronous iterations with respect to the relative error. We begin this section with technical results which give a bound of the forward error.

Lemma 4. Let the assumptions of Proposition 6 hold, except assumption (55) replaced by : for a given positive real number η, the following inequality holds

∃V ∈ [U r , U r ] such that Diam([U r , U r ]) ≤ η V Γ,∞ (58) 
where

η satisfies η < 1-ν 1+ν ; then V -U Γ,∞ U Γ,∞ ≤ (1 + ν) η + τ(1 + 2λ) 1 -ν -(1 + ν) η . ( 59 
)
Let ω and κ λ defined by ω = (1+ν) η+τ.λ

(1-λ)(1-η) and κ λ = 1+λ 1-λ . Moreover, if η < 1-ν 2+τλ , then η < 1 - ν 2 + τλ < 1 - ν 1 + ν ( 60 
)
and ω satisfies 0 < ω < 1; furthermore for all V ∈ [U r , U r ])

V -U Γ,∞ U Γ,∞ ≤ ω + τ.κ λ 1 -ω = (1 + ν) η + τλ + τ(1 + λ)(1 -η) (1 -λ)(1 -η) -(1 + ν) η -τλ (61) 
Remark 29. As previously said, the case where τ = 0, corresponds to the one without roundoff errors; then let us observe the differences between the assumption η < 1-ν 1+ν and (60) on the one hand and also the differences on the bound ( 59) and ( 61) on the other hand. Note that, when τ = 0, then η < 1-λ 1+λ and (60) becomes η < 1-λ 2 . If λ < 1, with λ ≈ 1, the two previous constraints are very close. If this situation is usual for many problems occurring practically in linear algebra, this situation does not happen always when we have to solve, for example, a second order elliptic boundary value problems with Dirichlet's boundary conditions, by the asynchronous Schwarz alternating methods. Then, let us compare now the right hand side of ( 59) and (61); indeed (59) becomes

V -U Γ,∞ U Γ,∞ ≤ (1 + λ) η 1 -λ -(1 + λ) η = 1 ( ηκ λ ) -1 -1 ,
while the right side of (61) becomes

V -U Γ,∞ U Γ,∞ ≤ ω 1 -ω = 1 ( η -1 -1)κ -1 λ -1 , since in such context ω is equal to ω = κ λ η -1 -1 .
Then, by using very simple calculations, we obtain

ω 1 -ω - 1 ( ηκ λ ) -1 -1 = κ -1 λ (( η -1 -1)κ -1 λ -1)(( ηκ λ ) -1 -1)
.

Note that when asynchronous Schwarz's alternating methods is used in order to solve elliptic partial differential equations, then since κ λ is not very large, then κ -1 λ is not very small.

Note that the stopping criteria proposed in the sequel, makes sense if the fixed threshold is greater than the diameter of the ball E ∞ . Thus, for the considered stopping criteria it is necessary to introduce an additional assumption allowing to verify η ≥ Diam ,∞ (E ∞ ). In fact such technical assumption can be proved mathematically speaking and the reader is referred to [START_REF] Spiteri | Finite precision computation for linear fixed point methods of parallel asynchronous iterations[END_REF] for further details. So, in what follows, assume that the positive real number η verifies the following inequality:

2τκ λ 1 -ν -τκ λ < η < 1 - ν 1 + ν ; (62) 
Then the following statement proved in [START_REF] Spiteri | Finite precision computation for linear fixed point methods of parallel asynchronous iterations[END_REF] allows to propose a stopping criterion with respect to relative error for the solution of linear system (1) in the perturbed case. Proposition 8. J being a nonnegative matrix, assume that ( 22) is valid with λ ∈ [ρ(J), ρ(J) + ]. Assume also that ρ(J) < 1 1+τ and is chosen sufficiently small such that ν = (1 + τ)λ < 1. If ( 62) is satisfied, then there exists a sequence of intervals

[U r , U r ] such that 1) U r+1 ∈ [U r , U r ]
2) the following condition is satisfied for r ≥ r0 , sufficiently large,

∃V ∈ [U r , U r ]such that Diameter([U r , U r ]) ≤ η V Γ,∞ (63) 
3) (63) being verified, and η < 1-ν 1+ν , then

V -U Γ,∞ U Γ,∞ ≤ (1 + ν) η + τ(1 + 2λ) 1 -ν -(1 + ν) η , ∀V ∈ [U r , U r ] (64) 
4) If the conditions (63) and η < 1-ν 2+τλ are satisfied, then

U q -U Γ,∞ U Γ,∞ ≤ (1 + ν) η + τλ + τ(1 + λ)(1 -η) (1 -λ)(1 -η) -(1 + ν) η -τλ , ∀U q ∈ [U r , U r ] (65) 
Remark 30. The inequality ( 63) is given, not only for one element V ∈ [U r , U r ] but for all vectors belonging to this set and for r sufficiently large. Nevertheless the stopping criterion needs only (63) to be used. Thus this stopping criterion with respect to the specifically considered vector V holds for a smaller value of r and can give the error bounds obtained in Proposition 8. Moreover it is important to note that we can freely choose the set [U r , U r ] in order to establish a stopping criterion [START_REF] Frommer | On asynchronous iterations[END_REF].

Let us give now a more concrete stopping criterion. If σ(r), ∀r ∈ N is such that lim r→∞ (σ(r)) = +∞, consider a vector V ∈ [U r , U r ]; then the parallel asynchronous iterative method can be stopped at iteration (r + 1) such that

U q -U r Γ,∞ V Γ,∞ ≤ η, ∀q, r such that σ(r) ≤ q, r ≤ r + 1. ( 66 
)
Corollary 6. If the assumptions of Proposition 8 hold 1) there exists an index r ≥ r0 , such that for any r ≥ r, the condition (66) is true, 2) if the condition (66) is true, the bounds ( 64) and ( 65), respectively, hold when η < 1-ν 1+ν and η < 1-ν 2+τλ , respectively.

Non perturbed non-linear case: Similarly to the case of absolute error, the previous stopping criterion related to the relative error can be also extended to non-linear case in the non-perturbed case. In this case the relative error stopping criterion is formulated as follows

Diameter([U r , U r ]) = U r -U r Γ,∞ ≤ η. U r Γ,∞ , U r ∈ [U r , U r ], ∀r ∈ N, (67) 
where once again η is a given positive real number.

Remark 31. In such stopping test we have to choose a vector U r in the right hand side of the previous inequality to be satisfied. Practically we can choose any vector of {U p } p∈{σ(r),...,r,r+1} . But, in order to simplify the writing of such inequalities, without loss of generalities, we make rather choose U r ∈ [U r , U r ].

In the case of non-linear problem, we can derive also the stopping criterion with respect to the relative error; then we have the following result (see [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF]). Proposition 9. Assume that assumption [START_REF] Bahi | Asynchronous multisplitting methods for nonlinear fixed point problems[END_REF] holds and moreover that assumptions [START_REF] Chazan | Chaotic relaxation[END_REF] to [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF] are satisfied. If the fixed point U verify U > 0, which imply that U 0, then for any given positive real number η their exists an index r such that for all r ≥ r, the stopping criterion (67) is satisfied.

3) if the condition η < 1-ν 2+τλ is satisfied and if the condition (70) holds, then, ∀U q ∈]U r , U r ] we have

U q -U Γ,∞ U Γ,∞ ≤ max( (1 + λ)(1 -η) (1 + ν) η + τλ τ + 1 (1 -λ)(1 -η) (1 + ν) η + τλ -1 ; ηκ l λ + 1 B Γ,∞ + (2λ + 1)τ 1 - ν ). (72) 
If the following conditions σ(r), ∀r ≥ r0 , is such that lim r→∞ (σ(r)) = +∞, hold, let us set the following criterion called concrete mixed absolute error vectorial norm stopping criterion, ∃V ∈ [U r , U r ] such that qU q -U p ) ≤ max( η.q(V); η.Γ), ∀q, r and σ(r) ≤ q, p ≤ r + 1;

then we have the following result Corollary 7. Under the assumptions of Proposition 10 in which the condition ( 70) is replaced by the condition (73) 1) there exists an index r ≥ r0 , such that for all r ≥ r the condition ( 73) is true, i.e. for the two positive constants η and η the concrete mixed absolute error vectorial norm stopping criterion is satisfied, 2) the condition η < 1-l 1+l (respectively η < 1-l 2+τλ ) being satisfied, if the condition ( 73) is verified, then the estimations (71) (respectively (72)) holds.

Remark 34. On the one hand, in the framework of Lemma 4, if the error bound is equal to η.q(V) in ( 70) or ( 73), then the corresponding estimate ( 71) and ( 72) can be simplified and correspond to ( 64) and ( 65) respectively. On the other hand, if the error bound is equal to ηΓ in ( 70) or [START_REF] Han | Convergence of multisplitting methods with preweighting for an H-matrix[END_REF], then the corresponding estimate ( 71) and ( 72) can be simplified and correspond to (56) (and also [START_REF] Bai | Block and asynchronous two-stage methods for mildly nonlinear systems[END_REF]).

Non perturbed non-linear case: For the non-linear problem in the non perturbed case, we consider now, with a similar approach than the one considered in the linear case with perturbation, the vectorial norm formulation of stopping criteria and also the mixed absolute error vectorial norm stopping criterion. So, we consider two distinct cases, corresponding on one hand to the relative error with respect to vectorial norm and on the other hand a mixed absolute value-relative value vectorial norm.

Relative error with respect to vectorial norm stopping criterion. This stopping criterion is formulated in a componentwise form, as follows max p,p ∈{σ(r),...,r,r+1}

(|U p i -U p i |) ≤ η|U r i |, i = 1, . . . , N, U r i ∈ {U p i } p∈{σ(r),...,r,r+1} , (74) 
where η is a given positive real number. Note that, the stopping criterion ( 74) is independent of the specific norm considered in R N . Using the definition of U r and U r , we have max p,p ∈{σ(r),...,r,r+1}

(|U p i -U p i |) = U r i -U r i = |U r i -U r i |, i = 1, . . . , N;
therefore the stopping criterion (74) can be formulated as follows

U r -U r = q(U r -U r ) ≤ η.q(U r ), U r ∈ [U r , U r ]. (75) 
Nevertheless, like in the linear perturbed case, the previous tests (75) can be difficult to manage, especially when some component of the vector U r is zero. It is the reason why, we introduce once again the mixed absolute value-relative value vectorial norm stopping criterion.

Mixed absolute value-relative value vectorial norm stopping criterion. Consider now that the space R N is normed indifferently by any general norm or by the weighted uniform norm. Let us introduce now the mixed absolute value-relative value vectorial norm stopping criterion, as follows : any couple η, η of real numbers, satisfying η > 0 and η ≥ 0 stop the iterations if, for i = 1, . . . , N if max p,p ∈{σ(r),...,r,r+1}

(|U p i -U p i |) ≤ max( η.|U r i |, η.γ i ), U r i ∈ {U p i } r∈{σ(r),...,r,r+1} , (76) 
or equivalently in a vectorial form

U r -U r = q(U r -U r ) ≤ max( η.q(U r ), η.Γ), U r ∈ {U p i } * p∈{σ(r),...,r,r+1} ; (77) 
note that the previous test can be written as follows

U r -U r = q(U r -U r ) ≤ max( η.q(U r ), η.Γ), U r ∈ [U r , U r ]. (78) 
Remark 35. 1) In the previous formulation of the mixed absolute value-relative value stopping criterion we have to choose a vector U r in the right hand side of the inequality to be satisfied. Practically we can choose any vector of {U p } p∈{σ(r),...,r,r+1} . But, without loss of generalities, in order to simplify the writing of such inequalities, we choice rather U r ∈ [U r , U r ]. This choice can be performed even if the space R N is normed by a general norm V → V .

2) Let us observe that the previous stopping test [START_REF] Miellou | Stopping criteria for parallel asynchronous algorithms[END_REF] or equivalently [START_REF] Chajakis | Synchronous and asynchronous implementations of relaxation algorithms for nonlinear network optimization[END_REF] or ( 78) becomes a particular occurrence of absolute value stopping test when η = 0.

Moreover, in the non perturbed case, and for the non-linear problem we can prove a similar result than the one of Corollary 7.

Remark 36. In the presentation of all the previous result, we have considered that the space is normed by the weighted uniform norm; nevertheless all norms of the N-dimensional space being equivalent, the stopping criteria with respect to absolute and relative errors can be also considered with respect to an other norm of R N . Example 6. In this example, we consider the following problem

-∆u + u = f everywhere in Ω = [0, 1] 3 , u = 0 everywhere in ∂Ω.
This previous model problem is discretized by an uniform mesh with 160 3 = 4096000 points. The parallel experiments are conducted on the cluster CHINQCHINT of GRID 5000 [START_REF] Bolze | Grid5000: A large scale and highly reconfigurable experimental grid testbed[END_REF] located in Lille and constituted with 32 machines with 2 C.P.U. per node and 4 cores per C.P.U.; the type of processors are Intel Xeon with a RAM size of 4 MB and a speed of 1333 MHZ. To compare the stopping tests presented in the present subsection 3.3.2 the following threshold values are considered in [99] η = 1.010 -8 or η = 1.010 -10 or η = 1.010 -12 or η = 1.010 -14 ; moreover we consider the values of q = r + 1 denoted in Table 1 sliding 1, allowing to show the parallel results, and also q = r + 4 and q = r + 16 respectively denoted by sliding 4 and sliding 16. In the previous Table 1 we give for each kind of stopping test the elapsed time, the number of relaxations to reach convergence and the value of the residue. Note also that the diameter of the order interval is estimate by using the uniform norm. The examination of the Table 1 allows us to note on the one hand that the value of the residue increases when the threshold decrease and on the other hand that mainly the relative stopping test error and the vectorial stopping test error are the more efficient for all kind of sliding. Note also that the increase in the number of relaxations induced by relative stopping test error and vectorial stopping test error allows a significant improvement in the value of the residue and consequently in the quality of the solution obtained.

Remark 37. Note that we can also use a weighted uniform norm where the vector Γ is equal to the eigenvector associated to the the greatest eigenvalue of matrix J, since for the considered example, such eigenvector is wellknown. The stopping tests performed using this weighted uniform norm give slightly similar results. 

Implementation of asynchronous parallel algorithms

Scientists who have carried out theoretical studies on asynchronous parallel methods have obviously been very interested in testing these methods in real scale. However, at the time these studies were started, there were practically no multi-processor machines.

The first experiments were therefore carried out by simulating parallel executions. The first simulations were carried out in the late 1960s by J.L. Rosenfeld [START_REF] Rosenfeld | A case study on programming for parallel processors[END_REF]. Further asynchronous parallel execution simulations were performed in the late 1970s by P. Spiteri et all (see [START_REF] Miellou | A cheap method of performance evaluation for subdomain decomposition parallel algorithms of three dimensional elliptic problems[END_REF] - [START_REF] Spiteri | Simulation d'exécutions parallèles pour la résolution d'inéquations variationnelles stationaires[END_REF]) where these authors simulated the actual running of parallel asynchronous executions on a single-processor machine. At the same time G. Baudet was able to test these methods on CMMP at the Carnegie Mellon Institute [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF]. Subsequently, other more appropriate and realistic methods of implementation were used, such as the use of Transputers [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF], which made it possible to evaluate the performance of asynchronous parallel algorithms. The beginning of the 1980s also saw the emergence of multiprocessor machines, first with shared memory machines, such as Aliant or Cray machines [START_REF] Giraud | Implementations of parallel solutions for nonlinear boundary value problems, Parallel Computing'91[END_REF], and also with distributed memory machines [START_REF] Guivarch | Implantation de méthodes de sous-domaines asynchrones avec PVM et MPI sur IBM-SP2, Calculateurs Parallèles[END_REF]. It should be noted that currently parallel runtime simulations are still used to estimate at a low cost the computation cost of an application to be carried out later on a multiprocessor machine (see [START_REF] Ramamonjisoa | Simulation of Asynchronous Iterative Algorithms Using SimGrid[END_REF]). These studies then lead also the researchers to implement these parallel methods as efficiently as possible on peer-to-peer architectures, on a computing grid and on the cloud. It would be cumbersome to make an exhaustive presentation of all the experiments carried out and the efforts made by programmers to use as efficiently as possible these new architectures. We briefly present below several recent contributions on the implementation of asynchronous parallel algorithms and we refer the reader to the bibliography for other implementation works.

Principle of implementation

This section is devoted to the presentation of the principle of implementation of parallel algorithms. The implementation of parallel algorithms have been carried out on clusters in [START_REF] Chau | MPI implementation of parallel subdomain methods for linear and nonlinear convectiondiffusion problems[END_REF] and in heterogeneous and distant clusters constituting a Grid platform in [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF]. The principle of implementation of parallel asynchronous and synchronous iterative methods can be summarized as follows:

Do until global convergence For each block do -Perform communications of block boundary values -Perform block relaxation End For End Do

The method without overlapping corresponds to a straightforward block relaxation method, with communications of the values of the components associated to the boundaries of a block; so such method does not present any difficulty. Thus, sequences of smaller subproblems are solved on each processor of the parallel computer in order to compute a solution of the global problem; practically more accuracy is obtained. Several blocks are assigned to each processor in order to implement a strategy which is close to the multiplicative one. To obtain a faster convergence of the parallel computations, each processor handles contiguous blocks, numbered according to red-black or lexicographic ordering ; note that such red-black ordering is more appropriate for parallel computations and, in this case the convergence results of convergence still hold by a straightforward way [START_REF] Chau | Asynchronous Schwarz methods applied to constrained mechanical structures in grid environment[END_REF].

In the case of asynchronous iterations, point to point communications between two processes have been implemented using nonblocking MPI send and receive subroutines. MPI TEST is used in order to allow any processor to continue the computations without having to wait for the completion of any pending send or receive operations. Idle times due to synchronizations in message passing are suppressed in this way. On the other hand, the parallel synchronous iterative schemes are implemented by using MPI WAIT. One has to take care about the deadlock issue when implementing synchronous communications using blocking MPI subroutines.

For simplicity, with respect to the block decomposition considered the block partitioning retained for the assignation of the large blocks to the processors is very simple; in fact, in order to define a large block, we have gathered several adjacent blocks of the natural block decomposition. So, on each large block associated to each process, a classical and sequential block relaxation method is used in order to solve each subproblem ; this kind of method is implemented by solving each tridiagonal block, associated to classical discretized boundary value problems, by the TDMA method, corresponding to the Gauss's elimination method applied for tridiagonal block; in order to reduce the elapsed time of computation, note that the implementation of the block relaxation method is optimized by elimination of sequences of redundant code. Indeed in this implementation the LU decomposition of each diagonal block is performed only once in the initialization phase. Then, this optimization allows to decrease the elapsed time. For more details concerning the implementation and the convergence detection of the considered parallel asynchronous methods, the reader is referred to [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF] and [START_REF] Chau | MPI implementation of parallel subdomain methods for linear and nonlinear convectiondiffusion problems[END_REF]. Note also that, instead of using block relaxation methods on each large block, it is also possible to implement various efficient numerical method for the solution of each large block; so, we refer to [START_REF] Garcia | Behavior of parallel two-stage method for the simulation of steel solidification in continuous casting[END_REF] for the use of the point relaxation method or also to [START_REF] Partimbene | Asynchronous multi-splitting method for linear and pseudo-linear problems[END_REF] and [START_REF] Partimbene | Calcul haute performance pour la simulation d'interactions fluide-structure[END_REF] for the use of preconditioned conjugate gradient method and multi-grid method.

The simulation algorithm is based on master/slave paradigm which is a commonly used approach for parallel and distributed applications. In our case, a master process controls the distribution of work to a set of slave processes.

Algorithm if (master) compute discretization matrix and right hand side send input data to slaves compute SPMD parallel algorithm to solve the algebraic system receive output data from slaves else receive input data from master compute SPMD parallel algorithm to solve the algebraic system send output data to master endif Algorithm 1: General algorithm. This process is used for the solution of the system that arises in the numerical simulation of the target problem. Matrix and right hand side creation can be implemented sequentially since this part of computation is not very intensive and except particular cases, are computed once. In this way, the master process can be seen as a matrix and vector filler that feeds a parallel solver. In other words, only intensive computations have been parallelized with MPI facilities.

In the case of parallel Schwarz alternating method, subdomains may overlap each other. For the implementation of the Schwarz alternating method, the domain Ω, where the boundary value problem is defined, is split into overlapping parallelepiped or subdomains of any form. Minimal values are chosen for overlapping between them (about one or two mesh points). The parallel synchronous and classical asynchronous Schwarz's alternating method have been implemented as follows do until global convergence for each subdomain assigned to the processor do if local convergence is not reached then receive the latest boundary values solve the subsystems send the boundary values to the neighbors end if end for end do Algorithm 2: Schwarz alternating method. subdomains are assigned to each processor following for example a red-black ordering. For the solution of the target problem, note that in each subdomain is considered the implementation of the block Gauss-Seidel method which has the advantage of having a multiplicative behavior; other numerical methods can also be used.

The library Jack 2

F. Magoules and Guillaume Gbikpi-Benissan present in [START_REF] Magoules | JACK2: An MPI-based communication library with non-blocking synchronization for asynchronous iterations[END_REF] and [START_REF] Magoules | JACK: An asynchronous communication kernel library for iterative algorithms[END_REF] a new object-oriented communication library Jack2, developed to ease the implementation of both classical, synchronous and asynchronous iterative methods in this two last cases for distributed architectures. In the case of asynchronous iterative methods and in order to reduce the calculation times, the weight of idle times due to synchronizations between the processes is decreased. Then the goal is to allow a full overlapping of communication and computation phases during the parallel processing, in contrary of the parallel synchronous algorithms where, for example, a processor must wait for updates from another processor that has not completed its own calculations. In the case where many synchronizations are necessary, and if in addition the communication network is slow, such situation of synchronous methods could therefore considerably decrease the parallel computational efficiency. The implementation of asynchronous methods is not easy to achieve regarding particularly to the management of communication requests and the evaluation of stopping criterion; such implementation needs to be carried out carefully and optimally. For the realization of Jack2 a precise specification has been carefully drawn up; with respect to previous works, additional contributions concerning (1) the protocol termination, (2) flexibility and usability improvements in the architectures in the design of the library, (3) complete details of implementations including parts of code, (4) additional parallel experimental results obtained in an homogeneous computational environment, allowing to measure efficiency impacts of various configurations and accuracy.

For asynchronous iterations convergence detection, the termination of the iterative process is accomplished with the same principle than the one presented by the same authors at the end of subsection 3.2.2.

Following these principles of implementation, and using the MPI programming framework, the Jack2 programming framework is carefully and progressively presented. Various choice of implementation, such as several levels of encapsulation of the different operations to be performed, are presented. In a distributed environment, in order to avoid memory overhead costs, for the design of Jack2, the authors opts for MPI persistent requests in a similar way than the one considered for example in [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF] or [START_REF] Chau | MPI implementation of parallel subdomain methods for linear and nonlinear convectiondiffusion problems[END_REF], rather than using collective procedures; in such persistent communications message buffers and neighbor process are specified once for all before beginning the iterations. Then a complete initialization part for communication parameters is defined where variables of communication graph, communication buffers and residual evaluation are specified; this initialization phase allows non-blocking reception requests between neighbors. Such Application Programming Interface (A.P.I.) allows to handle communications requests during asynchronous computations. Correct termination is ensured by adding partial snapshot operation in accordance with the same principle than the one presented at the end of subsection 3.2.2. Finally, to produce a unique code for both overlapping and asynchronous schemes the top front-end of Jack2 provides two classes, which manage communication requests and convergence detection. The management of communications and detection of convergence, in both cases synchronous or asynchronous, is achieved following the same pattern. Then function pointers are used according to the communication mode without using "if "conditions. For pointto-point communications Jack2 is configured to activate several MPI reception requests on each same reception buffer defined by the user application; then processes can use more recent data for last updated local components, instead of only benefiting from data received at the beginning of the computation phase, allowing more flexibility during the computation. Then such a mechanism of reception of the messages, compared to a conventional put / get semantics, allows a finer management of the delayed relaxations. Moreover, the author shows that the inhibition of message transmissions on an already busy communication link does not degrade the performance more than those obtained by a put mechanism, because such a mechanism is reproducible by means of synchronous non-blocking MPI. The FIFO delivering on communication links considered in subsection 3.2.2 is then assured by the MPI specification. For the communications point-to-point messages sending and reception request are carefully handled in order to minimize delays of communication data and then obtain the more possible multiplicative behavior of the iterative distributed algorithm; such situation is realized when the updates are sent at the beginning of the iterations according to a solution proposed in [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF] or [START_REF] Chau | MPI implementation of parallel subdomain methods for linear and nonlinear convectiondiffusion problems[END_REF], even if the destination process is still computing; then the Gauss principle is respected to obtain the fastest convergence. Finally, last updates are transmitted when only explicitly requested into computation reception buffer. This feature is realized in Jack2 by adding supplementary buffers.

Implementation in multi-GPU architecture

Some works has been also focused on the implementation of synchronous and asynchronous iterative parallel methods on multi-GPU architecture (see [START_REF] Bahi | Parallel GMRES implementation for solving sparse linear systems on GPU clusters[END_REF]- [START_REF] Ghidouche | Efficient high degree polynomial root finding using GPU[END_REF]). For example this implementation make possible to solve a problem of a highly non-linear partial differential equation intervening in finance or mechanics [START_REF] Ziane-Khodja | Parallel solution of American options derivatives on GPU clusters[END_REF]; this last reference concerns the obstacle problem that corresponds to a boundary value problem where the solution is subjected to constraints. It is then necessary at each step to project the result of intermediate relaxations onto the convex set defining the constraints. Therefore, the Richardson projected point method and the projected block relaxation method were used. It appears that asynchronous parallel implementation reduces the downtime of parallel processes due to blocking messages and synchronization barriers. It was necessary to consider two levels of parallelization: a synchronous multi-threaded parallelization in a computing node and parallelization between the different nodes of the cluster that communicate with each other by passing messages in synchronous or asynchronous mode. A comparison of the performances of algorithms implemented on multi-CPU and multi-GPU architectures is achieved, and then one can measure the influence of the architecture on the performance of the computation methods. In particular, the Richardson projected method, although having a slow convergence rate compared to the projected block relaxation method, is more efficient in terms of restitution time on multi-GPU architecture; this is due to the vectorial nature of the Richardson method which allows good multi-threaded parallelization. On the other hand, on a multi-CPU architecture, the performances are reversed, since considering the good speed of convergence of this method, the projected block relaxation methods allow to obtain better elapsed times. It has also been found that, thanks to the computing power of GPUs, their use reduces the ratio of computing time to communication time.

Always using multi-GPU architectures, synchronous and asynchronous methods have been implemented for the solution of large scale linear systems. The approach adopted consists in considering coarse-grained algorithms based on the two-level multi-decomposition method using the iterative parallelized Krylov GMRES method well adapted to GPU clusters [START_REF] Bahi | Parallel GMRES implementation for solving sparse linear systems on GPU clusters[END_REF]. This combines the performance of synchronous parallel iterations to solve linear subsystems by the GMRES method and, for data exchanges, the flexibility of asynchronous iterations between GPU clusters for the overall resolution of the large linear system. This type of method is well suited to the use of distributed architectures composed of geographically remote computing nodes interconnected by a high latency communication network.

Let us also refer to [START_REF] Ghidouche | Efficient high degree polynomial root finding using GPU[END_REF] - [START_REF] Ghidouche | A parallel implementation of the Durand-Kerner algorithm for polynomial root-finding on GPU[END_REF] for the determination of the roots of high degree polynomial using GPU.

Load balancing for parallel asynchronous algorithms

To take into account the heterogeneity of the machines, it is necessary to balance the processor load, especially in synchronous mode but also in asynchronous mode. In the asynchronous mode, a properly distributed load allows an efficient recovery of communications by calculations. Load balancing can be applied in two different ways: either static or dynamic. In the case of dynamic load balancing, the evolution of the computing power available on each machine during the execution of the algorithm is taken into account. We therefore iteratively balance the load of each processor with its neighbors until the overall balance of the entire system is achieved. Thus asynchronism appears both at the application level and at the balancing method level.

In addition, it becomes less and less interesting to design balancing algorithms specific to a given context. Therefore there is a strong demand for fully adaptive algorithms that can be used on any type of parallel architecture without significant modification. This is due to the fact that we are currently witnessing the emergence of increasingly dynamic systems. This dynamic aspect is typically found in communications where the links between the calculation units are only intermittent. D. Bertsekas and J. Tsitsiklis [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF] proposed an asynchronous model for decentralized balancing based on the fact that each processor has its own load estimate and that of its neighbors. Thus each processor searches if it has neighbors less loaded and in this case it distributes part of its load to them. The work of D. Bertsekas and J. Tsitsiklis then evolved; thus, one variant was to transfer the calculation load only to the least loaded neighbor; this point of view has the advantage of generating only load transfers per pair of neighbors, which makes balancing easier to implement and above all much lighter because the network is much less congested by message transfers.

This point of view was also adopted by J.C. Miellou et all [START_REF] Miellou | A survey on Asynchronous Iterations[END_REF] and also by J. Bahi and S. Contassot -Vivier (see [START_REF] Bahi | Parallel iterative algorithms: from sequential to grid computing[END_REF] and [START_REF] Bahi | Dynamic load balancing and efficient load estimators for asynchronous iterative algorithms[END_REF]). Thus the most suitable strategies for such asynchronous use contexts are neighborhood strategies based on diffusion algorithms. In this context, the method proposed by J.C. Miellou et all and by J. Bahi and S. Contassot -Vivier is based on an algorithm based taking into account an asynchronous dynamic diffusion of information over time on a network where the link between processors is intermittent. The original point of view of this approach, based on the use of dynamic and/or decentralized distributions, is therefore different from the traditional methods used in load balancing algorithms where static and centralized distributions are taken into account. This point of view therefore takes into account the emerging evolution of multiprocessor architectures, which are increasingly complex and often include heterogeneous computing units and various interconnection networks. This approach therefore makes it possible to design load balancing schemes that take full advantage of the ever-increasing computing power and takes also into account the modularity of systems due to the increase in the number of possible parallel processes. The load estimator chosen by the second team of authors is the residue between two successive iterations because this latter estimator makes possible to take into account the progress of the iterative solution of the problem; indeed, when two neighboring processes have very different residues, it means that one progresses faster than the other and therefore has a lower contribution to the overall progress of the calculation. To balance the contributions, a transfer of elements from the processor with the largest residue to the one with the smallest residue is then performed. In this context of use the previous authors have established a convergence theorem. Experimental results on SimGrid confirm the effectiveness of the algorithm.

Applications of asynchronous parallel algorithms

Application in high performance computing

Asynchronous parallel iterative algorithms have been successfully applied to a large number of problems; more generally numerical solution of algebraic systems in several references, numerical solution of ordinary differential equations as well as numerical resolution of differential equations at both ends, algebraic differential equations and waveform relaxation methods for the simulation of electronic circuits (see for example [START_REF] Frommer | On asynchronous iterations[END_REF], [START_REF] Bahi | Parallel treatment of a class of differential algebraic systems[END_REF] to [START_REF] Rhofir | Résolution d'un système différentiel algébrique raide par une méthode de multidécomposition asynchrone, Proceedings of JNB 97 , Calculateurs Parallèles, special issue[END_REF]), Markovian systems [START_REF] Lubachevski | A chaotic asynchronous algorithm for computing the fixed point of nonnegative matrix of unit spectral radius[END_REF], and also linear asynchronous iterations when the spectral radius of the modulus matrix is one [START_REF] Frommer | On linear asynchronous iterations when the spectral radius of the modulus matrix is one[END_REF], optimization problems, in particular convex flow problems in networks that have many applications in distribution and information routing (see [START_REF] Baz | Asynchronous iterative algorithms with flexible communications for non linear network flow problems[END_REF]- [START_REF] Baz | Mise en oeuvre de méthodes itératives asynchrones avec communications flexibles : Application la résolution d'une classe de problèmes d'optimisation[END_REF]), finance and other various applications, and also determination of the root of polynomials [START_REF] Couturier | Iterative algorithms on heterogeneous network computing: Parallel polynomial root extracting[END_REF] - [START_REF] Rhofir | Perfectionnement de la méthode asynchrone de Durand -Kerner pour des polynomes complexes, Proceedings of JNB 97, Calculateurs Parallèles, special[END_REF]. Other very varied problems studied at MIT [START_REF] Bertsekas | Parallel and Distributed Computation, Numerical Methods[END_REF]: dynamic programming, searching for minimum paths, assignment type optimization problems, flow problems in networks, optimal routing in communication networks. The list of applications is therefore large and it is difficult to be exhaustive.

Many studies have also been achieved concerning numerical solution of linear and non linear partial differential equations. In section 2 some simple examples concerning the solution of Poisson equation, or convection -diffusion problem; from these examples more complex applications can be processed. For example other mathematical model like heat equation, wave equation, all discretized with respect to the time by implicit or semi-implicit schemes can be solved by parallel asynchronous methods since the discretization matrices are M-matrices. So, in what follows, we will select two of them that are commonly used in applications.

The first application is related to the computation of vertical displacements u along the oz axis of a 2D thin elastic plate with simply supported boundary condition and subject to a force f perpendicular to this plate. Then the corresponding mathematical model of this elasticity problem is represented by the biharmonic equation given by

∆ 2 u = f, in Ω u = ∆u = 0 on ∂Ω where ∆ 2 = ∆(∆) = ∂ 4 ∂x 4 + 2 ∂ 4 ∂x 2 ∂y 2 + ∂ 4 ∂y 4 .
Note that the discretization matrix of the operator ∆ 2 u is not an M-Matrix, so that the theoretical results presented in section 2 are not directly applicable; moreover the discretization matrix A of the biharmonic operator do not admit an M-minorant. Nevertheless the criteria presented in section 2 can be applied by using a change of variable. Indeed for the solution of the previous problem, the idea is based on the decomposition of the bilaplacian operator into two coupled laplacians. Then let ∆u = v; thus the problem is reduced to solving the following problems successively

-∆v = -f, in Ω, v = 0, on ∂Ω -∆u = -v, in Ω, u = 0, on ∂Ω
Note that we can easily verify that conversely the combination of the two decoupled problems is equivalent to the initial problem. The numerical advantage is, after discretization, to allow the solution of coupled algebraic systems built with M-matrix property; note that the two previous systems are linear. Thus, such algebraic systems derived from disretization of the coupled boundary value problems can be solved successfully by parallel asynchronous methods.

The second application concerns the solution of the Navier -Stokes equation by the PISO method (i.e. Pressure-Implicit with Splitting of Operator) proposed by R.I. Issa [START_REF] Issa | Solution of the implicitly discretised fluid flow equations by operator splitting[END_REF]. Recall that the incompressible Navier -Stokes equation is given by

ρ f ∂u ∂t + u • ∇u -f f + ∇p -µ f ∇ 2 u = 0, (79) 
∇ • u = 0, (80) 
where ρ f , u and f f are the fluid density, velocity and the external force (per unit mass), p is the pressure and µ f the dynamic viscosity. All bold variables refer to vectors. Equations ( 79) and ( 80) represent the momentum and mass conservation respectively. In order to explain the process of the PISO method, the transport equation can be expressed in finite-difference form with the Euler semi-implicit difference scheme for an easy and clear presentation. If n and n + 1 denote successive time levels, the system of governing equations for an incompressible fluid may be expressed in difference form for each mesh point as

ρ f δt (u n+1 -u n ) = H(u n+1 ) -δp n+1 , (81) 
and δu n+1 = 0.

In Equations ( 81) and ( 82), the operator δ is the finite-difference equivalent to ∂/∂x, and in Equation ( 81) H is the discretization matrix by finite volume method of the convection-diffusion operator resulting from the semi-implicit time marching scheme. It usually takes the form

H(u) = A m u m ,
where suffix m is a grid identifier and the summation is over all the nodes involved in the formulation of the finitedifference representation of the spatial fluxes. The A coefficient is function of the velocities, densities, etc. The pressure equation is derived by taking the divergence of Equation ( 81) and after substitution in Equation ( 82) we obtain

δ 2 p n+1 = δH(u n+1 ) + ρ f δt δu n . ( 83 
)
Let the superscripts * , * * , and * * * denote intermediate field values obtained during the splitting process. The PISO method has one predictor step and two corrector steps Predictor step. The pressure field prevailing at t n is used in the discretized momentum Equation (81) to get the velocity field u * :

ρ f δt (u * -u n ) = H(u * ) -δp n . ( 84 
)
This algebraic system can be solved by a standard techniques to yield the u * field which may not satisfy the continuity Equation ( 82); thus, it needs to be corrected. Due to the fact that the value of the pressure is fixed at its previous value at t n , then, if for example, these momentum equations are solved by a semi-implicit time marching scheme where the non-linearity in the convection term u • ∇u is handled by taking u = u n on one hand for the first argument and u = u * on the other hand for the second one, which is a valid procedure when the time discretization step is chosen small, we have to solve three decoupled convection-diffusion equations.

First corrector step. A new velocity field u * * and pressure field p * are sought to satisfy the continuity condition

δu * * = 0. ( 85 
)
The corresponding momentum system is

ρ f δt (u * * -u n ) = H(u * ) -δp * , (86) 
which is of explicit type since H operates on u * . This explicit form is useful to solve the following algebraic system to find the pressure p * :

δ 2 p * = δH(u * ) + ρ f δt δu n , (87) 
since the right-hand side contains terms in the known field u * . The p * field is then inserted in Equation ( 86) to get u * * which now satisfies Equation [START_REF] Magoules | JACK2: An MPI-based communication library with non-blocking synchronization for asynchronous iterations[END_REF].

Second corrector step. Similarly to the first corrector step, a new velocity field u * * * and pressure field p * * are sought to satisfy the continuity condition δu * * * = 0,

with the corresponding momentum explicit-type system

ρ f δt (u * * * -u n ) = H(u * * ) -δp * * , (89) 
and the corresponding pressure system

δ 2 p * * = δH(u * * ) + ρ f δt δu n . ( 90 
)
In a similar way as in the first corrector step, the p * * field can be easily determine since the right-hand side of the algebraic system (90) is known, and, once introduced in system (89), the u * * * field can be evaluated. More corrector steps can be used but, as shown by Issa [START_REF] Issa | Solution of the implicitly discretised fluid flow equations by operator splitting[END_REF], the accuracy with which u * * * and p * * approximate the exact solution u n+1 and p n+1 is sufficient for most practical purposes. Note that ( 87) and ( 90) lead to solve two diffusion equations. As already mentioned, the previous diffusion and convection -diffusion equations are discretized by the finite volume method. However, for this type of method, the diagonal coefficient of the discretization matrix is positive and the off-diagonal coefficients are negative; moreover, the diagonal coefficient is equal to the sum of the absolute values of the off-diagonal coefficients, which reflects the conservation property. So all discretization matrices are irreducible dominant diagonal matrices, which, taking into account the signs of the coefficients, are M-matrices. This property is conserved whether the mesh is structured or unstructured.

Then in both cases we are in the theoretical framework developed in section 2 and then the parallel asynchronous methods can be used for the numerical simulation.

To illustrate some applications, let us cite for example non-linear diffusion problems involved in plasma physics or in the modeling of solar ovens [START_REF] Giraud | Résolution parallèle de problèmes aux limites non linéaires[END_REF] and [START_REF] Spiteri | Parallel asynchronous Schwarz and multisplitting methods for a non linear diffusion problem[END_REF], the Hamilton -Jacobi -Bellman problem involved in image processing [START_REF] Miellou | A new class of asynchronous iterative algorithms with order interval[END_REF], the obstacle problem modelling financial mathematics problems or mechanical problems (see [START_REF] Ziane-Khodja | Parallel solution of American options derivatives on GPU clusters[END_REF] and [START_REF] Magoules | Asynchronous Parareal time discretization for partial differential equations[END_REF] to [START_REF] Spiteri | Parallel solution of the discretized and linearized G-heat equation[END_REF]), the Navier -Stokes equation modeling hydrodynamic problems and also, on various architectures, various applications in biology such as protein separation by electrophoresis modeled by problems coupled from this equation with one or more convection -diffusion equations to calculate the various protein concentrations as well as a potential equation describing the electrical behavior of the process (see [START_REF] Guivarch | Schwartz alternating parallel algorithm applied to incompressible flow computation in vorticity stream function formulation[END_REF] to [START_REF] Chau | Asynchronous grid computing for the simulation of the 3D electrophoresis coupled problem[END_REF] or fluid interaction -structure problems where the Navier -Stokes equation is coupled to the Navier equation describing the behavior of the structure [START_REF] Partimbene | Asynchronous multi-splitting method for linear and pseudo-linear problems[END_REF] and [START_REF] Partimbene | Calcul haute performance pour la simulation d'interactions fluide-structure[END_REF]. Other applications related to P.D.E. resolution have been solved in medical image processing to perform filtering of noisy images as well as segmentation to detect contours and thus highlight homogeneous areas in ultrasound or PET images [START_REF] Chau | Parallel Schwarz alternating methods for anisotropic diffusion of speckled medical images[END_REF]- [START_REF] Tauber | Parallel Methods for 3D+t Anisotropic Diffusion of Dynamic Positron Emission Tomography Images[END_REF]. Parallel asynchronous methods were also used to solve to porous medium equation and various classical applications have been also studied (see [START_REF] Khochemane | Parallel solution of the porous medium equation[END_REF]- [START_REF] Spiteri | Parallel asynchronous algorithms for solving boundary value problems[END_REF]). Asynchronous Schwarz's alternating method was also extended to the case of overlapping multisubdomain asynchronous fixed point methods for solution of elliptic boundary value problems in [START_REF] Miellou | Overlapping multi-Subdomain asynchronous fixed point methods for elliptic boundary value problems[END_REF]; note also a recent study concerning asynchronous optimized Schwarz method in [START_REF] Magoules | Asynchronous optimized Schwarz methods with and without overlap[END_REF].

Note that parallel asynchronous relaxation procedures are also common in non-numerical applications and we refer to [START_REF] Uresin | Sufficient conditions for the convergence of asynchronous iterations[END_REF] for a study giving sufficient conditions for the convergence of such iterations defined on any set of data, finite or infinite, countable or not ; then the sufficient conditions are then applied to the scene-labeling problem. The associated multitasked implementation algorithm in a distributed global memory system is then presented and such coding no synchronization nor critical sections are necessary to enforce correctness of execution.

Application of chaotic iteration in security

Another application distinct from high-performance computing objectives has been developed by C. Guyeux et all [START_REF] Bahi | Hash Functions Using Chaotic Iterations[END_REF] - [START_REF] Bahi | Suitability of chaotic iterations schemes using XORshift for security applications[END_REF] to solve computer security problems. While most of the studies so far conducted are related to the analysis of their convergences, in this works, C. Guyeux et all does not seek to study the convergence properties of chaotic iterations but divergence properties in relation to chaos theory for iterative discrete dynamic systems. The combination of these two concepts is well suited to various target applications such as computer security, where chaos is linked to information concealment techniques, mainly tattooing and steganography. This activity leads them to develop various theoretical and practical studies. Moreover, still based on chaotic iterations, C. Guyeux et all define a new class of hash function. Subsequently, this work was continued in a similar direction, while refining the theoretical points of view already developed and broadening the application points of view, particularly towards applications such as neural networks, the generation of pseudo-random numbers that play an important role in encryption systems where messages are hidden and encryption keys are generated, the implementation having been carried out either physically with a laser or implemented on FPGA or GPU. Still in the same formal framework, the study of security by wireless sensor networks, in particular video surveillance, but also indistingability, nonmalleability, routing, etc., has been developed. Finally, a final aspect of C. Guyeux's works concerns the study, by asynchronous parallel methods, of complex dynamics systems appearing in bioinformatics, with in particular the analysis of the spatial dynamics of protein folding and the study of the temporal dynamics of genome evolution.

The efficiency of asynchronous parallel algorithms

In the present section we analyze, with reference to parallel applications and simulations, the cases where synchronous or asynchronous methods are interesting to use.

Efficiency of asynchronous parallel methods

We consider for example a kind of problem arising in applications related to financial mathematical applications, structural mechanics with constraints or unilateral constraint problems. To illustrate this comment, let us consider the following application [START_REF] Duvaut | Les inéquations en mécanique[END_REF] related for example to the solution of a nonlinear boundary value problem studied in [START_REF] Chau | Grid solution of problem with unilateral constraints[END_REF]. For this last kind of problem, i.e. a unilateral constraint problem, we have considered a flow in a bounded domain Ω ⊂ R 3 with Γ the boundary of Ω; moreover assume that Γ = Γ 0 Γ 1 ; in the physical application Γ 0 is assumed to be permeable and Γ 1 semipermeable, in the following way: the fluid (assumed to be less compressible) is free to enter in Ω through Γ 1 . Let us denote by u(x, t) the pressure of the fluid at the point x = {x 1 , x 2 , x 3 } and at time t, then u = u(x, t) is the solution of the heat equation; the boundary condition associated to the previous parabolic equation can be formulated as follows : if a known pressure ϕ(x) is applied on the boundary Γ = Γ 0 Γ 1 , then we have u(x, t) = ϕ(x), ∀x ∈ Γ 0 and ∀t > 0;

on Γ 1 we have two distinct cases:

• first case: if ϕ(x) < u(x, t), ∀x ∈ Γ 1 and ∀t > 0, the fluid is inclined to come out of Ω, which is impossible; so the output is zero and then ∂u(x, t) ∂n = 0, ∀x ∈ Γ 1 and ∀t > 0, where ∂ ∂n is the outward normal derivative with respect to Γ 1 ; thus the normal derivative is equal to zero if the constraint is not active;

• second case: if ϕ(x) ≥ u(x, t), ∀x ∈ Γ 1 and ∀t > 0, the fluid is inclined to come in Ω, which is possible since it is free to enter in Ω; then we have a continuous flow, and consequently there is no jump of pressure. Thus, we have ϕ(x) = u(x, t) and ∂u(x, t) ∂n ≥ 0, ∀x ∈ Γ 1 and ∀t > 0.

Let us denote by u(x, 0) = u 0 (x) the initial pressure. Then, we can summarize the problem of hydrodynamic in semipermeable environment as follows

               ∂u(x,t)
∂t -∆u(x, t) = f (x, t), everywhere in Ω and for 0 < t ≤ T, u(x, t) ≥ ϕ(x), ∂u(x,t) ∂n ≥ 0, (u(x, t) -ϕ(x)) ∂u(x,t) ∂n = 0, ∀x ∈ Γ 1 and ∀t > 0, u(x, t) = ϕ(x), ∀x ∈ Γ 0 and ∀t > 0, u(x, 0) = u 0 (x), ∀x ∈ Ω, [START_REF] Spiteri | Finite precision computation for linear fixed point methods of parallel asynchronous iterations[END_REF] where f ∈ L 2 (Ω × [0, T ]), T is the final time and ∆ is the Laplacian operator defined in the three-dimensional space.

Problem [START_REF] Spiteri | Finite precision computation for linear fixed point methods of parallel asynchronous iterations[END_REF] is currently solved by an implicit time marching scheme. Consider now the associated stationary problem and let us denote by v = v(x) the solution of this problem; then we have to solve the following problem

        
-∆v(x) + σv(x) = g(x), everywhere in Ω, σ > 0, v(x) ≥ ϕ(x), ∂v(x) ∂n ≥ 0, (v(x) -ϕ(x)) ∂v(x) ∂n = 0, ∀x ∈ Γ 1 , v(x) = ϕ(x), ∀x ∈ Γ 0 , [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF] where g ∈ L 2 (Ω) is derived from the implicit time marching scheme and from the discretization of the right-hand side f (x, t) of ( 91) and σ is a positive parameter, in fact the inverse of the time step.

For one stationary problem (92), computational parallel experiments have been carried out on the french GRID 5000 platform [START_REF] Bolze | Grid5000: A large scale and highly reconfigurable experimental grid testbed[END_REF] composed of several distant and heterogeneous clusters clusters with different architectures and computing performances. So we access to a large amount of resources: 15358 cores, 840 compute nodes grouped into 37 homogeneous clusters on 8 sites, connected to a dedicated 10 Gbps high-speed network. On each local machine the communication speed is about one Gigabit Ethernet. In Table 2 we present the results of synchronous and asynchronous parallel simulations performed on three sites and using 4, 8, 16, 32, 64 and 128 machines. For this experiments the domain Ω is discretized with N = 320 3 = 32 768 000 points. The discrete vector is split into blocks without overlapping between them and a set of adjacent sub-blocks is assigned to each node and is updated using a parallel relaxation method. In Table 2 the number of relaxations is mentioned in the synchronous case and, only for the asynchronous case min., max. and average number of relaxations. The parameter τ represents the ratio of synchronous and asynchronous computation time; it allows to measure the efficiency of the asynchronous method compared to the synchronous ones.

We can notice that for the considered application and architecture used, the asynchronous scheme of computation scales better than the synchronous one. Between 4 to 128 machines, the asynchronous computation scheme clearly performs between 2.41 to 6.84 faster, respectively with about 15 times when 64 machines are used.

Note also that in [START_REF] Ziane-Khodja | Parallel solution of American options derivatives on GPU clusters[END_REF] we have used a projected Richardson's method, analyzed by contraction technique, for the solution of an obbstacle problem arising in finance. Since this iterative method has slow convergence, the parallel asynchronous algorithms implemented on a multi-GPU architecture are faster about 24 times than the synchronous ones when N = 256 3 .

From the benchmarks previously presented, it appears that asynchronous parallel methods are of real interest when parallel processing involves a large number of synchronizations. This occurs in particular when convergence is slow, and especially when communications between processors is slow due to the fact that the bandwidth is shared by all the remote machines communicating with each other, these latencies can become penalizing and affect the simulation results. This slowdown is accentuated by the distance between machines that are not connected by direct lines. These aspect increases in the case of massive parallelism. So, correlatively the performance in term of elapsed time of asynchronous parallel methods is much higher than that of synchronous ones. This phenomenon of superiority of asynchronous parallel methods is therefore accentuated when the processors are heterogeneous and distant, which is the case for example with computing grids or cloud computing; we can therefore see here the influence of machine architecture on algorithm performance. In addition, for better performance of iterative parallel asynchronous algorithms, it is necessary to achieve a decomposition of the problem in large tasks, so that the numerical behavior of the iterative method is rather multiplicative like the Gauss -Seidel method and no additive like the Jacobi's method.

Efficiency of synchronous parallel methods

On the other hand, when convergence is fast, this situation corresponding to a low number of synchronizations between processors, and when the communications between processors and/or clusters is fast, synchronous parallel methods are still of interest.

To illustrate this comment, let us consider the parallel simulation of steel solidification in continuous casting studied in [START_REF] Garcia | Behavior of parallel two-stage method for the simulation of steel solidification in continuous casting[END_REF]. The problem consists to find successively the temperature u I , in three subdomains Ω I , I = 1, 2, 3, the first one Ω 1 being a liquid zone, the second Ω 2 being a mushy zone and the third Ω 3 being a solid zone. The main governing equations modeling the physical problem is constituted by the heat equation equipped to appropriate boundaries conditions; in particular on some parts of the border the temperature is subject to radiation phenomena described by Stefan's law which involves the temperature at power four; the problem is therefore highly non-linear. Moreover on the boundaries conditions for temperature transmission between adjacent areas Ω I are described. An other characteristic feature of this problem is due to the fact that, in each zone, the coefficient of the derivative of the temperature with respect to the time is very high. For more details on the model problems, the reader is referred to [START_REF] Garcia | Behavior of parallel two-stage method for the simulation of steel solidification in continuous casting[END_REF]. Then after discretization of the problems we obtain three coupled algebraic pseudo-linear systems in which the discretization matrix is a strongly diagonal dominant matrix. Then according to [START_REF] Musy | Sur le théorème de Stein-Rosenberg[END_REF] fast rate of convergence is expected.

Numerical simulation on a cluster on one hand and on GRID 5000 on other hand allow to determine the interest of using synchronous methods compared to asynchronous ones, but with slightly different behavior due to the rate of convergence on one hand and on the other hand due to the speed of communication in GRID 5000.

Parallel simulation without overlapping for the problem with constants coefficients on cluster

The performance obtained on a cluster are summarized in Tables 3 and4, where n = 3 √ N. We can notice the high speed of convergence of the iterative algorithms in synchronous mode. Thus, few synchronizations occurs during the computations. Moreover in these parallel simulations on each cluster, the speed of communication is about a Gigabit Ethernet network for local machine Then, due to these two features and characteristics, synchronous parallel schemes give better efficiencies compared to asynchronous schemes. ), relaxations and communications on cluster (parasilo cluster) with asynchronous parallel subdomain method without overlapping .

Parallel simulation without overlapping for the problem with constants coefficients on grid

With the same algorithm and the same codes of computation used at present on GRID 5000 which gives access to a large amount of resources recalled in sub-section 6.1, resources connected to a dedicated 10 Gbps high-speed network and with a speed of communication of about a Gigabit Ethernet network for local machine, the performances are completely different; the corresponding results of parallel simulations are summarized in Tables 5 and6. Synchronous algorithm converge faster than asynchronous one. But, due to the slowness of the communications, and to the fact that the bandwidth is shared by all the distant machines communicating with each other, the performance of asynchronous algorithm are better. The parameter τ is between about 4 to 6.4 when 4 distant machines are used and between 4.2 to 12 when 8 distant machines are used. So, in this environment, asynchronous methods are interesting to use.

Distinct applications leads to the same observation. For example, we refer also to [START_REF] Chau | Parallel Schwarz alternating methods for anisotropic diffusion of speckled medical images[END_REF]- [START_REF] Tauber | Parallel Methods for 3D+t Anisotropic Diffusion of Dynamic Positron Emission Tomography Images[END_REF] corresponding to applications for the treatment of medical images where the authors theoretically show that convergence is fast, due to the fact that the step size of discretization corresponds to the distance between two pixels and then is greater or equal to one; experimentally they observe also better performance of synchronous parallel methods in the case where the simulation is achieved on a cluster with fast communications between the processors.

Conclusion

In this paper we have synthetically and as fully as possible presented the asynchronous parallel iterative methods, trying to identify the essential points. References to numerous works will allow readers to explore this large subject in full evolution. However, it was difficult to cite all the works carried out in at least 50 laboratories around the world. Nevertheless, a bibliographical search on the Internet makes it possible to enrich the list of references mentioned in this study.
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Figure 1 :

 1 Figure 1: Behavior of parallel asynchronous iterations

Figure 2 :

 2 Figure 2: Behavior of parallel synchronous iterations

Example 1 :

 1 Let us consider the solution on the domain Ω = [0, 1] 3 or more generally an open domain included in R 3 , of the following Poisson equation equipped with homogeneous Dirichlet's boundary condition

Let us recall now a result of [ 54 ] 4 . 3 .

 5443 Proposition Let us denote by Ũ * = {U * , . . . , U * } where U * is the solution of (2) (or problem (3)); then if assumption (50) is verified, T is . θ,∞contractive with respect to Ũ * , where . θ,∞ is defined by (49) the associated constant of contraction beingλ = max 1≤l≤m (λ l ) < 1.Then, using the result of Proposition 4, we have the following resultCorollary Consider the solution of problem (2) or problem (3); then if assumption (9) is verified and for problem (2) if Φ is a diagonal increasing operator the formal multisplitting T is contractive with respect to Ũ * and any sequential, parallel synchronous or asynchronous multisplitting method starting from Ũ0 ∈ D( T ) converge to the solution of problem (2) or problem (3).

Table 1 :

 1 Comparison of absolute, relative and mixed stopping tests

	η	10 -8	10 -10	10 -12	10 -14
			Sliding 1		
	Absolute				
	Time	179	303	432	553
	Relaxations	384013	650337	924442	1183466
	Residue	3.571.10 -02 4.125.10 -04 4.015.10 -06 3.326.10 -08
	Relative				
	Time	302	425	541	672
	Relaxations	656084	923668	1174398	1458662
	Residue	1.539.10 -04 1.591.10 -06 8.675.10 -09 1.472.10 -10
	Mixed				
	Time	304	422	551	551
	Relaxations	655189	908236	1185766	1188045
	Residue	2.107.10 -04 9.131.10 -07 3.760.10 -08 3.642.10 -02
			Sliding 4		
	Absolute				
	Time	130	199	271	339
	Relaxations	613796	943572	1282704	8160536
	Residue	9.886.10 -03 1.283.10 -04 9.810.10 -07 1.019.10 -08
	Relative				
	Time	195	268	336	408
	Relaxations	931880	1275352	1599884	1943484
	Residue	9.489.10 -05 8.777.10 -07 1.034.10 -08 7.859.10 -11
	Mixed				
	Time	202	267	336	336
	Relaxations	959644	1268588	1596728	1596712
	Residue	6.971.10 -05 9.390.10 -07 1.033.10 -08 1.016.10 -08
			Sliding 16		
	Absolute				
	Time	197	286	380	478
	Relaxations	1333296	1940688	2579872	3244304
	Residue	2.385.10 -03 3.208.10 -05 8.347.10 -07 8.669.10 -09
	Relative				
	Time	290	378	478	572
	Relaxations	1972736	2572320	3251920	3895632
	Residue	3.847.10 -05 3.729.10 -07 3.881.10 -09 1.138.10 -11
	Mixed				
	Time	289	384	468	475
	Relaxations	1959520	2606288	3181776	3228272
	Residue	5.052.10 -05 3.878.10 -07 8.575.10 -09 1.979.10 -09

Table 2 :

 2 Elapsed time (sec.), average number of relaxations for parallel subdomain methods without overlapping on 3 sites.

Table 3 :

 3 Elapsed time (sec.), relaxations and communications on cluster (parasilo cluster) with synchronous parallel subdomain method without overlapping.

			Asynchronous results on 4 machines	
				communication times
	n	elapsed time	relaxations	compute barrier % comms
	454	730.07	41 765 926 816	1.21	25.42	3.65
	622	2 468.83	95 460 312 639	1.89	64.59	2.69
	766	3 690.04	157 983 117 530	2.45	153.52	4.23
	1051	10 555.37	484 882 141 547	4.29	320.40	3.08
			Asynchronous results on 8 machines	
				communication times
	n	elapsed time	relaxations	compute barrier % comms
	454	478.49	25 845 178 762	1.20	34.62	7.49
	622	1 284.29	52 967 005 140	1.88	99.87	7.92
	766	2 499.15	95 242 392 077	2.62	160.81	6.54
	1051	6 326.46	242 032 746 961	4.44	543.65	8.66

Table 4 :

 4 Elapsed time (sec.

Table 5 :

 5 Elapsed time (sec.), relaxations and communications on grid (grisou and parasilo clusters) with synchronous parallel subdomain method without overlapping .

			Asynchronous results on 4 machines		
				communication times	
	n	elapsed time	relaxations	compute barrier % comms	τ
	454	1 525.64	52 970 504 781	154.86	404.46	36.66	3.90
	622	2 470.52	79 629 301 202	192.46	406.64	24.25	3.70
	766	2 973.57	116 046 621 407	68.20	294.66	12.21	6.39
	1051	6 460.73	234 481 794 735	388.15	987.49	21.29	6.37
			Asynchronous results on 8 machines		
				communication times	
	n	elapsed time	relaxations	compute barrier % comms	τ
	454	1 580.60	35 328 315 313	146.23	752.44	56.85	4.20
	622	3 237.46	80 906 705 721	185.29	978.56	35.94	4.09
	766	4 808.17	138 818 706 436	187.60	999.70	24.69	4.34
	1051	6 287.62	237 240 794 600	115.82	628.88	11.84	12.08

Table 6 :

 6 Elapsed time (sec.), relaxations, communications, and τ on grid (grisou and parasilo clusters) with asynchronous parallel subdomain method without overlapping.

Message Passing Interface

Obviously in each case the sets E r are centered at the fixed point U and verify E r+1 ⊂ E r ⊂ . . . ⊂ E 0 and then are nested sets according to the works of D. Bertsekas [START_REF] Bertsekas | Distributed asynchronous computation of fixed points[END_REF] recalled in Theorem 1.

Remark 27. δ takes account of round off errors and the non perturbed case corresponds to τ = 0 and then δ = 0.

Then, if we are able to determine an estimate of the values of the extremities of E r Diameter(E r ) ≤ η provides a basic way in order to define efficient stopping criterion of the iterative process. Then the nested set E r are constructed by a dynamic way and the problem is reduced to obtain an over-estimation of Diameter(E r ) during the iterative process.

So, for all r ∈ N let us consider M vectors {W 1,r , . . . , W M,r }, of R N where the components of each vector W j,r are denoted W j,r i , i = 1, . . . , N, j = 1, . . . , M. Let

thus we can define the following set, also called segment order, [W r , W r ] associated to the M vectors W j,r as

Then, for any norm the Diameter of [W r , W r ] is given by W r -W r . Now, using the above concepts, we can define and analyze different stopping tests.

Absolute value stopping criterion. Perturbed linear case: In the perturbed linear case, we have the following estimate of the residue (see [START_REF] Miellou | A new stopping criterion for linear perturbed asynchronous iterations[END_REF] and [START_REF] Spiteri | Finite precision computation for linear fixed point methods of parallel asynchronous iterations[END_REF])

Lemma 3. Assume that is chosen sufficiently small such that ν = (1 + τ)λ < 1. Then in the perturbed linear case the residue satisfies the approximate contraction property

where F denotes here the perturbed mapping of F by round off errors.

Then, we can now present the absolute value stopping criterion Proposition 6. J being a nonnegative matrix, assume that ( 22) is valid with λ ∈ [ρ(J), ρ(J) + ]. Assume also that ρ(J) < 1 1+τ and is chosen sufficiently small such that ν = (1 + τ)λ < 1. The real number η satisfying Diameter(E ∞ ) < η, there exists a sequence of interval

If ( 55) is satisfied, then for all U q ∈ [U r , U r ] with q sufficiently large, we have the following estimations:

Then, consequently, taking into account the definition of the nested sets E r in the perturbed case and the fact that F(E r ) ⊂ E r+1 we have the following absolute value stopping criterion Corollary 5. Assume that the assumptions of the previous Proposition 6 hold. Then there exists an integer r sufficiently large, such that for r ≥ r, we have U q -U r Γ,∞ ≤ η, for all q, r, r ≥ r and q r where q, r are sufficiently large. So, there exists an integer r such that for all q, r U q -U r Γ,∞ ≤ η, r ≤ σ(r) ≤ q, r ≤ (r + 1) and lim r→∞ (σ(r)) = +∞, for all r ≥ r Moreover the two previous estimates given in the previous Proposition 6 are satisfied and constitute an over estimation of the absolute error.

Remark 28. Note that we can consider the limit case where q = r + 1. Consequently, for any given real number η, as small as desired, there exists an index r such that the absolute value stopping criterion is satisfied for all r ≥ r, in particular when q = r + 1. However, we can also consider values of q very far from the value of r; in this case if the norm of U q -U r is less than η, we have detected the convergence of the asynchronous parallel iterations and the precision achieved is much better than in the case q = r + 1.

Note that the previous estimates concerning the behavior of parallel asynchronous iterations for the solution of algebraic linear systems like (1) in the perturbed case can be extended in the non perturbed case always for linear problem when τ = 0 and δ = 0 (see [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF]).

Non perturbed non-linear case: In the nonlinear case, for all r ∈ N, let us again consider similarly M vectors {U 1,r , . . . , U M,r }, of R N . Then, when the fixed point mapping F is J-contracting with respect to a vectorial norm, we can also obtain some uniform bounds of the residue and of the error when the space is normed by any uniform weighted norm according to subsection 2.2.2 (see [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF] for more details). In this case if the M vectors of R N satisfy {U 1,r , . . . , U M,r } ⊂ [U r , U r ] and moreover if the set {F 1 (U j,r ), . . . , F N (U j,r )} is such that {F 1 (U j,r ), . . . , F N (U j,r )} ⊂ [U r , U r ] for j = 1, . . . , M, then the vectorial norm of the residue associated to two successive iterates V and F(V), is given by q(V -F(V)) ≤ (Id + J).q(U r -U r ), for all V ∈ [U r , U r ],

and the associated uniform weighted norm of the residue is given by

where ](Id + J)[ denotes the associated matrix norm of (Id + J). In addition, since the fixed point mapping F is J-contracting, then the vectorial norm of the bound of the error is given by

while the associated uniform weighted norm of the error is

where ] . [ denotes again a matrix norm. Then in the computational process we will use also a set of iterates larger than the one strictly included in a macro-iteration and associated with a larger set of indices (see [START_REF] Miellou | Stopping criteria for parallel asynchronous iterations for fixed point methods, in Developments in parallel, distributed, grid and cloud computing for Engineering[END_REF]). Then, similarly to the perturbed linear case, we can now present the absolute value stopping criterion associated to a threshold η

Proposition 7. For any given real number η, as small as desired, it exists an index r such that the previous absolute value stopping criterion is satisfied for al r ≥ r.

Remark 32. If the condition U > 0 is not satisfied, i.e. U = 0, the result of Proposition 9 is not true, since using the definition of U r the situation where U r = 0 and Diameter(E p ) p∈{σ(r),...,r,r+1} ) > 0 can occur at any index p.

Vectorial norm formulation of stopping criteria and mixed test. The above criteria [START_REF] Frommer | On asynchronous iterations[END_REF] needs specifically the use of global information, namely the vector U. Ensuring the knowledge of this global information seems more easy on shared memory and distributed memory multiprocessors; on the contrary, it is more difficult in peer to peer, grid and cloud environment. In this paragraph, based on the use of vectorial norm, we present convenient criteria for such previous framework. Perturbed linear case: In the linear perturbed case we present first a vectorial norm formulation of stopping criterion based on the following result (see [START_REF] Miellou | A new stopping criterion for linear perturbed asynchronous iterations[END_REF] and [START_REF] Spiteri | Finite precision computation for linear fixed point methods of parallel asynchronous iterations[END_REF]): Lemma 5. Let the assumptions of Lemma 4 hold, where we substitute the condition (58) by the following condition componentwise

Then, ( 58) is valid and the results of Lemma 4 still hold.

Let us now substitute ( 58) by ( 68) and ( 66) by the following condition

with lim r→∞ (σ(r)) = +∞.

We will call (68) abstract stopping criterion with respect to the vectorial norm. Similarly (69) will be called concrete stopping criterion with respect to the vectorial norm.

Remark 33. Note that the above criterion is better suited to peer to peer, grid and cloud computing than the relative error stopping criterion; so the use of vectorial norm permits one to consider a decentralized test which does not need global information.

In the case where some components of the vector V are null, the criterion (69) cannot be applied necessarily. But if we can apply such criterion, the error bounds of Proposition 8 remain valid. Then, in order to avoid this drawback, let us substitute ( 68) - [START_REF] Spiteri | Parallel asynchronous Schwarz and multisplitting methods for a non linear diffusion problem[END_REF], by the following componentwise criterion Analogously to the previous terminology, ( 70) is then called abstract mixed absolute error vectorial norm stopping criterion. Thus, we have the following result Proposition 10. J being a nonnegative matrix, assume that ( 22) is valid with λ ∈ [ρ(J), ρ(J) + ]. Assume also that ρ(J) < 1 1+τ and is chosen sufficiently small such that ν = (1 + τ)λ < 1. For two positive constant η and η such that Diameter(E ∞ ) ≤, min( η, η) then we have 1) there exists an index r ≥ r0 , such that for all r ≥ r the condition (70) is true, 2) if the condition η < 1-ν 1+ν is satisfied and if the condition (70) holds, then, ∀V ∈]U r , U r ] we have