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ABSTRACT (197 words) 

Background 

Lung cancer in women is on the rise, with a higher proportion occurring in lifelong 

never-smokers. Lung cancer in never-smokers (LCINS) exhibits a high frequency of 

driver oncogene alterations. In this study, we aimed to investigate whether exposure 

to reproductive factors in women with LCINS may modulate the molecular pattern. 

Methods 

All newly diagnosed LCINSs were included in a prospective, observational study 

(IFCT-1002 BioCAST). Each patient responded to a questionnaire including 

reproductive factors. Biomarker test results were also collected.  

Results 

260 women were included in this analysis, and 166 alterations were characterized. 

EGFR mutation frequency proved greater among patients with late menarche (74% in 

age >14 vs. 40% and 41% for 12-14 and ≤12 years, respectively; p=0.020) and 

tended to decrease with increasingly late age at menopause. In multivariate analysis, 

EGFR mutation frequency increased by 23% per increment of 1 year of age at 

menarche (p=0.048), and by 9% for each year at age at first birth (p=0.035). ALK 

alteration frequency was greater in women with high parity (50% in ≥5 vs. 12% and 

7% for 1-4 and nulliparity, respectively; p=0.021).  

Conclusion 

In a cohort of women LCINSs, female hormonal factors appear to impact molecular 

pattern. 

 

Trial registration: The IFCT-1002 BioCAST study was registered on the US National 

Institutes of Health website, at www.clinicaltrials.gov, under the identifier 

NCT01465854 (date of registration: November 7, 2011) 



Keywords: Lung cancer; Female hormonal factors; Oncogenic drivers; Never-

smoker 
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BACKGROUND 

Lung cancer in never-smokers (LCINS) constitutes an interesting model to assess 

risk factors for lung cancer excluding active smoking (1). Since LCINS exhibits an 

original pattern of driver gene mutation or alteration, this population is also of interest 

for evaluating the association between molecular abnormalities and risk factor 

exposure (2,3).  

A high proportion of LCINS occurs in women (1,4). Within our French LCINS 

IFCT-1002 BioCAST cohort, 81% of LCINS cases were female (2). The high 

prevalence may suggest that female hormones and/or reproductive factors play a 

role in lung carcinogenesis, which is further supported by many biological and 

epidemiological findings. It is also well-demonstrated that lung cancer cells express 

estrogen receptors (ER) more frequently than normal lungs, and that this expression 

is associated with patient outcomes (5). Data regarding molecular pattern in terms of 

reproductive and hormonal factor exposure in women is sparse, but a potential 

association between EGFR mutation and ER expression has been suggested (6–8). 

The IFCT-1002 BioCAST study is a nationwide cohort aiming to collect LCINS 

cases over 1 year in France. Risk factor exposure was recorded via a standardized 

questionnaire investigating several variables regarding reproductive factors and the 

use of estrogen-based treatment. In this paper, we aim to examine whether exposure 

to reproductive factors and/or hormonal intake in women with LCINS modulates the 

somatic profile. 

 

PATIENTS AND METHODS 

Population 



We utilized data from the IFCT-1002 BioCAST cohort. The analysis was restricted to 

women who completed the questionnaire and were tested for at least one biomarker. 

The study design has been reported elsewhere, as is the case for the cohort overall 

description (2). In short, BioCAST is a prospective, multicenter, observational study 

designed to describe the clinical, pathological, and molecular epidemiology of LCINS 

in a French population. It enrolled consecutive, newly diagnosed NSCLC patients 

claiming to be never-smokers (less than 100 cigarettes in their lifetime). Patients 

were surveyed using a standardized questionnaire during a phone interview with a 

study team member. This 17-page questionnaire requested information on 

demographics, and exposure to risk factors including hormonal, and reproductive 

factors (women only). Additional medical data was collected directly from 

participating physicians. 

The study was conducted in 75 centers throughout France, from November 1, 

2011, to January 31, 2013, and sponsored by the French Cooperative Thoracic 

Intergroup (IFCT).  

 

Reproductive Factors and Hormonal Intake 

Data collected included age at menarche, age at menopause, age at first live birth, 

number of pregnancies and live births (parity). We also record the oral contraceptive 

(OC) drug(s) and post-menopause hormone replacement therapies (HRTs) used 

during lifetimes (See Supplemental File 1). All were self-reported. 

 

Tumor Somatic Mutation Analysis 

Each participating physician was asked to systematically order tests for somatic 

mutations in EGFR and KRAS, as well as ALK alterations, as routinely performed in 



France (9,10). Investigator sites were also encouraged to request BRAF, HER2, and 

PI3KCA mutation analyses. Assuming most mutations to be mutually exclusive, 

centers were allowed to forgo further mutation testing if one mutation was found (11). 

The final results were collected for each patient. Taking into account the most 

frequent mutations among never-smokers, we considered patients with no 

established mutation after testing for at least EGFR, KRAS, and ALK to be “wild 

type/unknown”. 

 

Statistics 

Categorical variables were expressed in percentages. Proportion comparison was 

conducted via the Chi-squared test or with Fisher’s exact test. We employed the one-

sample Kolmogorov-Smirnov test to assess the plausibility of the normal distribution 

assumption for continuous variables. Normally distributed continuous variables were 

expressed in mean and standard deviation. Comparison of means was performed via 

the two-sided Student’s t-test. Differences in continuous variable distribution between 

two independent samples were assessed using the Mann–Whitney U test. 

Continuous variables were categorized according to relevant categories or tertile 

categories. We applied a binary logistic regression model to assess the risk of 

mutation for each considered gene. We generated a model adjusted for age 

(continuous), total years of passive smoking (continuous), and body mass index 

(BMI) (continuous). For EGFR mutations, we performed two additional multivariate 

models, setting all reproductive variables as continuous. The first model was adjusted 

for age at diagnosis, BMI, total duration of passive smoking exposure (3), age at 

menopause, parity, number of pregnancies, and age at first birth. The second model 

was additionally adjusted for family history of lung cancer (number of relatives), 



personal history of cancer (n), total duration of exposure to cooking oil fumes (years), 

exposure to fumes of solid fuels for cooking/heating (% of lifetime). All variables were 

continuous. 

Missing values were reported as such, and all tests were two-sided. All statistics 

were performed using the SPSS V20 software (IBM SPSS Statistics, New York, 

USA). 

 

RESULTS 

Population 

Among the 384 patients included in IFCT-1002 BioCAST, 260 were analyzed in this 

study (Fig 1). The main descriptive results of the population are displayed in Table 1. 

Differences between men and women were previously reported (2). Data regarding 

cancer and diagnosed somatic alterations is reported in Table 2. We observed a 44% 

prevalence for EGFR mutations (n=109), 13% for ALK alterations (n=19), 7% for 

KRAS mutations (n=15), 5% for BRAF mutations (n=8), 4% for HER2 mutations 

(n=6), and 2% for PI3K (n=3). Six patients (3%) exhibited at least two alterations in 

two different genes.  

 

Mutation Frequency According to Reproductive Factors and Hormonal Intake 

Table 3 reports mutation rates for EGFR, KRAS, ALK, BRAF, and HER2 regard-

ing relevant reproductive variables. 

We found an increase in EGFR mutation frequency for patient exhibiting late 

menarche (74% in age >14 vs. 40% and 41% for 12-14 and ≤12 years, respectively; 

p=0.020). By contrast, a non-significant descending trend of EGFR mutations was 



observed with increasing age at menopause and increasingly long duration of sex life 

(Additional files 1-3). Although not significant, we determined a higher rate of EGFR 

mutations in patients with older age at first birth (62% for those >30y) compared to 

other categories (40% for 20-30y, 41% for ≤20y; p=0.216) (Additional file 4). We 

found no significant trend or association with regard to HER2 mutations.  

ALK alteration frequency was greater in patients with the highest parity (50% in 

≥5; p=0.021), and marginally so with increased number of pregnancies (31% in ≥5; 

p=0.075) (Additional files 5-6). 

KRAS mutation frequency increased with rising age at menopause (2% in age 

category ≤45y, 8% in 45-55y, and 24% in >55y, respectively; p=0.024), but was not 

associated with age at menarche and marginally with sex life duration. We also ob-

served a non-significant KRAS mutation frequency decrease associated with rising 

number of pregnancies and parity. We found the same trends with regard to BRAF 

mutations. In particular, BRAF mutation frequency proved higher in cases of long sex 

life duration (3% in ≤40y category and 13% in >40y, respectively; p=0.024). 

Use of OC alone (used vs. never used / duration of use), use of HRT alone (used 

vs. never used / duration of use) (Table 3), and dose of ethinylestradiol (EE) (divided 

into 3 tertile categories) showed no association with any mutational pattern (not 

shown). 

 

Logistic Regression Analysis 

Logistic regression analysis results are presented in Table 4. Interestingly, significant 

associations in univariate analysis as well as tendencies all remained significant after 

adjustment. 



Thus, the risk of EGFR mutation was five times greater for patients with menar-

che after 14 years ([95%CI 1.5-17.0]; p=0.008). EGFR mutation frequency also 

proved 2.7 times greater [0.9-8.1] (p=0.071) for patients of the highest age at first 

birth (>30y).  

The risk of ALK alteration was significantly greater in case of high parity (adjusted 

odds ratio (AOR)=20.6 [95%CI 1.4-301.5]; p = 0.027) and marginally elevated in case 

of high pregnancy. 

KRAS mutations were more frequent in case of menopause after 55 years 

(AOR=16.0 [1.5-167.6]; p=0.021), and increased risk of BRAF mutations was ob-

served in correlation with a sex life exceeding 40 years (AOR=7.8 [95%CI 1.4-44.5]; 

p=0.021).  

In our additional adjusted analysis using reproductive variables, EGFR mutation 

frequency was associated significantly with age at menarche, with an AOR of 1.231 

([95%CI 1.002-1.512]; p=0.048), as well as age at first birth (AOR=1.094 [95%CI 

1.006-1.189]; p=0.035), both as continuous variables (for an increment of 1 year in 

each variable). These associations remained significant after a more comprehensive 

adjustment for lifestyle variables (Table 5). No significant associations were found 

with these models in other biomarkers due to the low mutation numbers (not shown). 

 

DISCUSSION 

Female reproductive factors were associated significantly with specific patterns of 

mutation in never-smoker women with lung cancer. In particular, EGFR mutations 

were associated significantly with increasing age at menarche and age at first birth. 

In addition, ALK alterations were associated positively with both parity and number of 

pregnancies. 



Many studies report gender differences in clinical presentation and biology of 

lung cancer. The epidemiology appears different in women, with an increasing inci-

dence worldwide, as compared to men1, and with a highest proportion of lung cancer 

occurring in lifelong never-smokers (1,4). Moreover, lung cancer prognosis appears 

slightly more favorable for women than men (12), while female lung cancer exhibits a 

highest frequency of EGFR mutations (13). These differences suggest a potential 

role of hormonal factors in lung carcinogenesis of women (8,14). Indeed, early 

(and/or long) exposure to hormones may favor the emergence of hormone-

dependent cancers, by directly promoting tumorigenesis and/or by exacerbating a 

pre-existing cancer. Moreover, early menopause leads to early senescence and thus 

to greater risk of malignancies. Epidemiologically, the role of hormones is the subject 

of many studies. In the American NIHAARP cohort (185,017 women), late menarche 

was a protective factor, while early menopause was identified as a risk factor for lung 

cancer (15). The link between parity and age at first birth remains unclear (1,15). Bio-

logically, ERs are known to be expressed in normal lung tissue, as well as in lung 

tumors in both men and women (5,8). Several in vitro and in vivo studies yielded evi-

dence supporting the hypothesis that estrogens stimulate non-small cell lung cancer 

(NSCLC) cell proliferation through ER-mediated signaling, while anti-estrogens inhibit 

NSCLC cell growth. That said, data remains contradictory regarding the role of the 

two ER isoforms (α and β), the range of antibodies used, and the absence of a vali-

dated threshold or score (7,8,16–18). Similarly, there is evidence concerning the fre-

quent expression of progesterone receptors in NSCLC tumor cells (18). Interactions 

between the ER and EGFR pathways have been investigated. EGFR protein expres-

sion is down-regulated in response to estrogens and up-regulated in response to an-

                                                           

1 WHO/IARC Globocan 2012 database; available at 
http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx; last accessed on 03/16/2017.  



ti-estrogens, suggesting a reciprocal control between EGFR and ER pathways (5). 

Estrogen directly stimulates transcription of estrogen-responsive genes in lung cell 

nucleus, but also trans-activating growth factor signaling pathways, such as the 

EGFR pathway (19). A meta-analysis of five studies also found a positive association 

between high ERβ expression in lung cancer cells and EGFR mutation (20). No cor-

relation was determined between ERα expression and EGFR mutation by contrast to 

findings by Mazieres et al. and Raso et al.(7,18). Nose et al. also reported a correla-

tion between EGFR mutation and ERβ, and proposed that ER expression might be 

associated with a response to EGFR tyrosine kinase inhibitor (6,21). However, the 

IFCT-1003 LADIE trial (NCT01556191), aiming to test anti-estrogen in addition to 

EGFR TKI in EGFR mutated or naïve post-menopausal women with advanced stage 

lung adenocarcinoma, showed no benefit of the combo (22).  

We found EGFR mutation frequency to be associated with shorter estrogen ex-

posure. These results might be explained by the role of estrogen in the down-

regulation of EGFR expression, although not consistent with findings between higher 

ER expression and EGFR mutation frequency (5,20). Nonetheless, we can hypothe-

size that an EGFR mutation may interact with normal negative control between ER 

and EGFR and thus enhance tissue ER expression (Additional file 7). At last, the as-

sociation between EGFR mutation and shorter lifetime estrogen exposure is probably 

more complex, additionally entailing imbalance between the two ER isoforms as well 

as progesterone receptors, and the role of genomic polymorphisms (23). Our findings 

may furthermore be put into perspective by taking into account the decreasing secu-

lar trends in terms of age at menarche worldwide. This decrease seems to have 

reached a plateau in Europe and the US (24,25), but not yet in Asia (26–29), were 

women still display a higher age at menarche. This observation and our results may 



partially explain ethnic disparities regarding EGFR mutation frequency (4,30). Finally, 

we can only hypothesize regarding the role of high estrogen/progesterone exposure 

in senescent maternal tissues in order to explain the association between later age at 

first birth and EGFR mutations. 

We found ALK alterations to be consistently associated with high parity and an 

elevated number of pregnancies. Interestingly, although not expressed in normal 

lungs, ALK plays a key role in early embryogenesis of nervous system development 

(31). Thus, ALK expression is high during embryogenesis and down-regulated during 

later pregnancy and after birth (31). We might hypothesize that ALK+ fetal cells circu-

lating in maternal blood lead to fetal cell microchimerism, promoting ALK-dependent 

tumorigenesis. Therefore, repeated pregnancies may increase this risk of fetal 

chimerism tumorigenesis (33,34). We have learned from ALK+, anaplastic, large-cell 

lymphomas that a normal anti-ALK immune response exists in adults (35,36). Thus, 

repeated pregnancies and maternal immune system exposure to ALK+ fetal cells 

may increase the immune tolerance of ALK+ tumor cells in multiparous women (Addi-

tional file 8) (37). Such assumptions are supported by the findings by Dagogo-Jack et 

al., who observed a high frequency of ALK rearrangements in their series of lung 

cancers diagnosed during pregnancy or the peripartum period (n=6/8) (38). 

We found a correlation between long sex life duration and BRAF mutations, sug-

gesting a potential role of estrogen impregnation. This is consistent with findings in 

thyroid cancer, with estrogen being known to stimulate the RAS/RAF/MAP kinase 

signaling pathway in this cancer (39). Moreover, a study showed that BRAF muta-

tions were correlated with ER and progesterone receptor expression in thyroid cancer 

cells (40). 



Our study exhibits certain limitations. Except for EGFR, the absolute number of 

mutations/alterations was low (N=19 ALK fusions; N=15 KRAS mutations) or very low 

(N=8 BRAF mutations; N=6 HER2 mutations), thus limiting our statistical power and 

ability to conduct comprehensive multivariate analysis, while reproductive factors are 

possibly correlated with each other and synergistic. In addition, reporting of 

reproductive factors was declarative and possibly entailed recall bias. That said the 

low rate of missing values and high quality of questionnaire responses for other 

variables indicate that this bias is probably weak. Finally, we performed multiple 

statistic tests in this analysis. Thus, the risk of alpha risk inflation is significant. In this 

analysis, we used 5 independent variables suggesting that the p value threshold 

should be 0.01 (0.05 / 5) instead of 0.05 using the Bonferonni’s correction. However, 

our study is exploratory and this kind of correction is usually not performed (41). Our 

study also exhibits certain strengths. To our knowledge, our cohort is the only one to 

comprehensively assess five driver oncogenes with several detailed reproductive 

factors in women. In addition, these findings were observed in the setting of never-

smoker patients, thereby ruling out the potential confounding role of active smoking. 

CONCLUSION 

Although our findings are observational and not explanatory, female reproductive 

factors appear to impact molecular pattern in never-smoker women with lung cancer. 

Our findings provide a unique and comprehensive overview of the relationship 

between female reproductive factors and lung cancer molecular pattern and may 

advance new conjectures in order to explain gender and ethnic differences regarding 

lung cancer epidemiology. Our findings also underline the significance of gender 

effects, with possible therapeutic impact, in patients with targetable oncogenic driver. 

For instance, we found a negative association between duration to estrogen 



exposure and EGFR mutation frequency. This observation is in line with the findings 

of the IFCT-1003 LADIE trial showing that anti-estrogen may be interesting in EGFR 

WT patient but not in EGFR mutated patients.  
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Table 1. Main Characteristics of the Analyzed Population 

Variable Category n=260 % 

Sex Women 260 100% 

Age at diagnosis Mean±SD 69.8±11.1 

Origin in terms of global 

region 

Europe 237 91% 

Africa 11 4% 

Asia 8 3% 

Caribbean 4 2% 

Education level High school and above 108 42% 

Secondary school 58 23% 

None / primary school 91 35% 

Missing 3  

Marital status Married / common-law 152 58% 

Divorced/separated 28 11% 

Widowed 64 25% 

Single 15 6% 

Other 1 0% 

Body mass index (kg/m2) Median/IQR 23.9/5.7 

Underweight/normal 153 60% 

Pre-obese 69 27% 

Obese 34 13% 

Missing 4  

Alcohol intake (standard 

glasses per day) 

0-1 249 96% 

≥2 10 4% 

Missing 1  

Exposure to passive smok-

ing (at home/workplace) 

Yes 180 70% 

No 79 30% 

Missing 1  

Mean duration* (±SD), in 

years 

31.5±21.7 

Exposure to cooking oils 

(cooking dish year) 

<10 CDY 195 78% 

≥10 CDY 54 22% 

Missing 11  

Exposure to solid fuels (at 

home) 

≥50% of lifetime 50 25% 

Missing 7  

Family history of lung can-

cer (≥2 relatives) 

Yes  63 24.3% 

Missing 1  

Personal history Lung infection**  90 35% 

Chronic bronchial disease*** 36 14% 

Cancer (≥1 cancer diagnosis) 47 18% 

Occupational exposure ≥1 carcinogen 21 8% 

Age at first birth Mean±SD 23.9±4.0  

Missing 8  

Number of pregnancies Mean±SD 2.6±1.7  

Missing 9  

Parity Mean±SD 2.2±1.4  



Nulliparity 27 10.4% 

Missing 7  

Age at menarche Mean±SD 13.0±1.7  

Missing 20  

Menopause Menopaused 239 92% 

Not reached 20 8% 

Missing 1  

Age at menopause Mean±SD 49.3±5.6  

Missing 25  

OC Never 150 58% 

At least once 109 42% 

Missing 1  

Mean duration (±SD), in years 10.5±9.0  

Mean cumulat. EE dose (mg) 9.8±7.1  

HRT (oral/local routes) Never 193 75% 

At least once 65 25% 

Missing 2  

Mean duration (±SD), in years 10.0±8.6  

Abbreviations: EE, ethinylestradiol; SD, standard deviation; IQR, interquartile range; CDY, cooking 

dish year; OC, oral contraceptive; HRT, hormone replacement therapy. 

*Exposed only. 

**Pertussis or tuberculosis or pneumonia. 

***Asthma or emphysema or COPD or bronchiectasis. 

  



Table 2. Cancer Data and Somatic Alterations 

Variable Category n=260 % 

Histological 

subtype 

Squamous cell 

carcinoma 
18 7% 

Adenocarcinoma 225 87% 

Large-cell carcinoma 10 4% 

Adenosquamous 

carcinoma 
3 1% 

Sarcomatoid carcinoma 2 <1% 

Carcinoma NOS 2 <1% 

TNM stage at 

diagnosis 

Stage I 22 8% 

Stage II 15 6% 

Stage III 33 13% 

Stage IV 188 73% 

Missing 2  

Somatic 

aberrations 

BRAF 8 5%* 

EGFR 109 44%* 

KRAS 15 7%* 

HER2 6 4.1%* 

ALK 19 13%* 

PI3KCA 3 2%* 

No mutation* 59 28%* 

Multiple 6 3%* 

Abbreviations: NOS, not otherwise specified. 

*Tested for at least EGFR, KRAS, and ALK, and optionally HER2, BRAF, and PIK3. 



Table 3. Univariate Analysis of Somatic Mutation Rate Regarding Reproductive Factors and Hormonal Intake 
Biomarker 

 

EGFR KRAS ALK BRAF HER2 

WT Mt 
P 

WT Mt 
P 

WT Mt 
P 

WT Mt 
P 

WT Mt 
P 

Variable       Category N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 

Age at 

first birth 

≤20 30 (60%) 20 (40%) 

0.216 

39 (91%) 4 (9%) 

0.316 

21 (78%) 6 (22%) 

0.262 

35 (97%) 1 (3%) 

0.717 

29 (94%) 2 (6%) 

0.607 20-30 85 (57%) 65 (43%) 124 (95%) 6 (5%) 81 (89%) 10 (11%) 97 (95%) 5 (5%) 90 (97%) 3 (3%) 

≥30 8 (38%) 13 (62%) 14 (88%) 2 (13%) 7 (78%) 2 (22%) 11 (92%) 1 (8%) 8 (100%) 0 (0%) 

Total 123 (56%) 98 (44%)  177 (94%) 12 (6%)  109 (86%) 18 (14%)  143 (95%) 7 (5%)  127 (96%) 5 (4%)  

Number of 

pregnan-

cies 

None 15 (63%) 9 (38%) 

0.561 

15 (83%) 3 (17%) 

0.236 

14 (93%) 1 (7%) 

0.075 

11 (92%) 1 (8%) 

0.531 

12 (92%) 1 (8%) 

0.744 1 to 4 106 (54%) 89 (46%) 155 (93%) 11 (7%) 97 (88%) 13 (12%) 127 (95%) 7 (5%) 110 (96%) 4 (4%) 

≥5 17 (63%) 10 (37%) 24 (96%) 1 (4%) 11 (69%) 5 (31%) 18 (100%) 0 (0%) 18 (95%) 1 (5%) 

Total 138 (56%) 108 (44%)  194 (93%) 15 (7%)  122 (87%) 19 (13%)  156 (95%) 8 (5%)  140 (96%) 6 (4%)  

Parity None 15 (58%) 11 (42%) 

0.728 

17 (85%) 3 (15%) 

0.260 

14 (93%) 1 (7%) 

0.021 

13 (93%) 1 (7%) 

0.753 

13 (93%) 1 (7%) 

0.727 1 to 4 116 (55%) 94 (45%) 168 (93%) 12 (7%) 107 (88%) 15 (12%) 136 (95%) 7 (5%) 121 (96%) 5 (4%) 

≥5 8 (67%) 4 (33%) 10 (100%) 0 (0%) 3 (50%) 3 (50%) 8 (100%) 0 (0%) 7 (100%) 0 (0%) 

Total 139 (56%) 109 (44%)  195 (93%) 15 (7%)  124 (87%) 19 (13%)  157 (95%) 8 (5%)  141 (96%) 6 (4%)  

Age at 

menarche 

≤12 61 (59%) 43 (41%) 

0.020 

81 (92%) 7 (8%) 

0.937 

50 (85%) 9 (15%) 

0.892 

63 (93%) 5 (7%) 

0.266 

67 (97%) 2 (3%) 

0.415 12-14 68 (60%) 45 (40%) 89 (93%) 7 (7%) 58 (87%) 9 (13%) 75 (97%) 2 (3%) 56 (93%) 4 (7%) 

>14 5 (26%) 14 (74%) 17 (94%) 1 (6%) 9 (90%) 1 (10%) 14 (100%) 0 (0%) 13 (100%) 0 (0%) 

Total 134 (57%) 102 (43%)  187 (93%) 15 (7%)  117 (86%) 19 (14%)  152 (96%) 7 (4%)  136 (96%) 6 (4%)  

Age at 

meno-

pause 

≤45 27 (56%) 21 (44%) 

0.932 

41 (98%) 1 (2%) 

0.024 

19 (79%) 5 (21%) 

0.424 

30 (97%) 1 (3%) 

0.433 

29 (97%) 1 (3%) 

0.624 45-55 81 (58%) 58 (42%) 108 (92%) 9 (8%) 74 (89%) 9 (11%) 84 (94%) 5 (6%) 76 (94%) 5 (6%) 

>55 14 (61%) 9 (39%) 13 (76%) 4 (24%) 10 (83%) 2 (17%) 14 (88%) 2 (13%) 10 (100%) 0 (0%) 

Total 122 (58%) 88 (42%)  162 (92%) 14 (8%)  103 (87%) 16 (13%)  128 (94%) 8 (6%)  115 (95%) 6 (5%)  

Sex life 

duration 

≤40y 88 (56%) 68 (44%) 
0.396 

126 (93%) 10 (7%) 
0.463 

77 (87%) 12 (13%) 
0.860 

100 (97%) 3 (3%) 
0.024 

86 (95%) 5 (5%) 
0.684 

>40y 31 (63%) 18 (37%) 32 (89%) 4 (11%) 23 (85%) 4 (15%) 26 (87%) 4 (13%) 27 (96%) 1 (4%) 

Total 119 (58%) 86 (42%)  158 (92%) 14 (8%)  100 (86%) 16 (14%)  126 (95%) 7 (5%)  113 (95%) 6 (5%)  

Duration 

of OC 

and/or 

HRT use 

0-10y 93 (57%) 71 (43%) 
0.402 

126 (91%) 12 (9%) 
0.366 

82 (89%) 10 (11%) 
0.538 

105 (95%) 5 (5%) 
0.957 

89 (95%) 5 (5%) 
0.427 

≥10y 35 (51%) 34 (49%) 57 (95%) 3 (5%) 35 (85%) 6 (15%) 44 (96%) 2 (4%) 42 (98%) 1 (2%) 

Total 
128 (55%) 105 (45%)  183 (92%) 15 (8%)  117 (88%) 16 (12%)  149 (96%) 7 (4%)  131 (96%) 6 (4%)  

Abbreviations: WT, wild type; Mt, mutated; OC, oral contraceptive; HRT, hormone replacement therapy. 



Table 4. Results of Multivariate Analysis for Biomarker Mutation Occurrence Regarding Exposure to Reproductive Factors 

(Categorical Variable). For All Categories, the First Patient Group Is the Reference. Adjusted for Age (Continuous), Total Exposure 

to Passive Smoke in Years (Continuous), and body mass index (Continuous) 

Biomarker  EGFR KRAS ALK BRAF HER2 

Variable Categ. AOR 95%CI P AOR 95%CI P AOR 95%CI P AOR 95%CI P AOR 95%CI P 

Age at first 

birth (years) 

≤20 1.00   1.00   1.00   1.00   1.00   

20-30 1.19 [0.61-2.33] 0.605 0.54 [0.13-2.18] 0.385 0.39 [0.12-1.24] 0.111 2.61 [0.25-27.63] 0.425 0.34 [0.06-2.79] 0.352 

≥30 2.74 [0.92-8.18] 0.071 2.01 [0.28-14.15] 0.485 0.52 [0.05-5.31] 0.584 4.86 [0.23-101.61] 0.308 0.00  0.999 

Pregnancies 

(N) 

0 1.00      1.00   1.00   1.00   

1-4 1.50 [0.62-3.61] 0.369 0.33 [0.08-1.39] 0.131 1.77 [0.21-15.09] 0.601 0.75 [0.08-7.25] 0.807 0.54 [0.05-5.46] 0.600 

≥5 1.06 [0.33-3.34] 0.927 0.12 [0.01-1.41] 0.092 8.65 [0.81-92.00] 0.074 0.00  0.998 0.69 [0.04-13.36] 0.805 

Parity (N) 

0 1.00   1.00   1.00   1.00   1.00   

1-4 1.16 [0.51-2.67] 0.727 0.35 [0.09-1.46] 0.149 1.92 [0.23-16.19] 0.549 0.74 [0.08-6.98] 0.791 0.62 [0.06-6.02] 0.681 

≥5 0.71 [0.17-3.04] 0.649 0.00  0.999 20.63 [1.41-301.48] 0.027 0.00  0.999 0.00  0.999 

Age at  

menarche 

(years) 

≤12 1.00   1.00   1.00   1.00   1.00   

12-14 1.07 [0.60-1.89] 0.824 0.88 [0.28-2.80] 0.828 0.77 [0.26-2.24] 0.628 0.40 [0.07-2.45] 0.324 3.57 [0.54-23.79] 0.189 

>14 5.11 [1.53-17.01] 0.008 0.67 [0.07-6.31] 0.726 0.00  0.999 0.00  0.999 0.00  0.999 

Age at  

menopause 

(years) 

≤45 1.00   1.00   1.00   1.00   1.00   

45-55 0.91 [0.46-1.80] 0.787 4.23 [0.50-35.96] 0.186 0.31 [0.08-1.15] 0.079 1.96 [0.21-18.23] 0.556 2.18 [0.24-20.07] 0.491 

>55 0.85 [0.30-2.38] 0.755 16.01 [1.53-167.57] 0.021 0.32 [0.03-3.21] 0.332 4.94 [0.39-62.40] 0.217 0.00  0.999 

Sex life dura-

tion (years) 

≤40 1.00   1.00   1.00   1.00   1.00   

>40 0.74 [0.38-1.46] 0.387 1.51 [0.43-5.34] 0.519 0.86 [0.22-3.40] 0.830 7.81 [1.37-44.48] 0.021 0.60 [0.06-5.80] 0.659 

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval. 



Table 5. Results of Multivariate Analysis for EGFR Mutation Occurrence Regarding 

Age at Menarche and Age at First Birth (Continuous Variable) in Two Multi-Adjusted 

Models 

Biomarker Variable 
Model A Model B 

AOR 95%CI P AOR 95%CI P 

EGFR 

mutation 

Age at menarche 1.231 [1.002-1.512] 0.048 1.273 [1.023-1.585] 0.031 

Age at first birth 1.094 [1.006-1.189] 0.035 1.13 [1.033-1.236] 0.008 

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval. 

Model A: Adjusted for age at menarche, age at diagnosis, body mass index, total duration of passive 

smoking exposure (years), age at menopause, parity, number of pregnancies, and age at first birth. All 

variables are continuous. 

Model B: Additionally adjusted for family history of lung cancer (number of relatives), personal history 

of cancer (n), total duration of exposure to cooking oil fumes (years), exposure to fumes of solid fuels 

for cooking/heating (in % of lifetime). All variables are continuous. 
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