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Abstract 

Despite advances in single-cell and molecular techniques, it is still unclear how to best quantify 

phenotypic heterogeneity in cancer cells that evolved beyond normal, known classifications. We 

present an approach to phenotypically characterise cells based on their activities rather than static 

classifications. We validated the detectability of specific activities (Epithelial-mesenchymal transition, 

glycolysis) in single cells, using targeted RT-qPCR analyses and in vitro inductions. We analysed 50 

established activity signatures as a basis for phenotypic description in public data, and computed 

cell-cell distances in 28,513 cells from 85 patients and 8 public datasets. Despite not relying on any 

classification, our measure correlated with standard diversity indices in populations of known 

structure. We identified bottlenecks as phenotypic diversity reduced upon colorectal cancer 

initiation. This suggests that focusing on what cancer cells do rather than what they are can quantify 

phenotypic diversity in universal fashion, to better understand and predict intra-tumour 

heterogeneity dynamics. 

 

Introduction 

Somatic evolution naturally occurs in all multicellular organisms, as cells accumulate genetic 

alterations upon replication and exposure to mutagenic environments (Gatenby and Brown, 2017). 

This can eventually  select for highly adapted cells breaking free of the constraints imposed by 

homeostatic regulation on proliferation and motility, leading to cancer (Greaves and Maley, 2012; 

Trigos et al., 2018). This evolutionary nature implies that cancer cells originating from a common 

ancestor can display extensive diversity at both the genetic and phenotypic level (Gerlinger et al., 

2012). This diversity, known as intra-tumour heterogeneity (ITH) (McGranahan and Swanton, 2015), 

can foster resistance and facilitate adaptation upon the environmental changes induced by 

therapeutic regimens (Nowell, 1976). To limit the risk of resistant populations emerging upon 

treatment and predict cancer evolution, it is thus necessary to better understand the dynamics of ITH 

(Maley et al., 2006; Lässig, Mustonen and Walczak, 2017). 
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Being able to follow the evolution of ITH first implies to be able to reliably quantify it. Although there 

exist multiple methods for genetic ITH thanks to alteration frequencies in the population (Nik-Zainal 

et al., 2012; Andor et al., 2014; Fischer et al., 2014; Martinez et al., 2017; Williams et al., 2018), 

phenotypic ITH is more challenging. Many studies have relied on the identification of static 

classifications (Frazer et al., 2007; Patel et al., 2014; Zhang et al., 2019), often based on lineage 

markers (Almendro et al., 2014; Nguyen et al., 2018), allowing the calculation of standard diversity 

metrics such as the Shannon (Bertucci et al., 2019), Simpson (Martinez et al., 2016) or GINI (Ferrall-

Fairbanks et al., 2019) indices. While these classifications make perfect sense in the context of 

normal tissue homeostasis, they may not be relevant in cancer cells bypassing the host’s regulatory 

mechanisms through abnormal transcriptional programmes. Cancer cells drift away from well-

characterised normal phenotypes according to evolutionary trajectories specific to each tumour. 

They however display strong convergence at the phenotypic level, with key pathways and cellular 

activities recurrently dysregulated across both patients and tumour types (Hanahan and Weinberg, 

2000, 2011). Aside from static subtype classifications, other methods have focused on expression 

variation among specific gene sets (Davis-Marcisak et al., 2019) and uneven repartition of expressed 

transcripts per gene (Hinohara et al., 2018). Yet, there is no golden standard approach to quantify 

phenotypic diversity in cancer. 

Here we investigated the feasibility of predicting the activities that a single cell partakes in, and the 

relevance of considering them as traits to describe the cell’s overall phenotypic profile. We 

performed targeted single-cell experiments on 3 cellular activities induced in vitro (Epithelial-

mesenchymal transition, DNA repair, glycolysis), which suggested that targeted panels can reliably 

identify the presence of a given activity from single cell RNA expression data. To expand on this 

limited data, we then analysed 50 hallmark activity signatures from the Molecular Signature 

database (MSigDB) in 8 publicly available single-cell tumour datasets. We used leave-one-out 

procedures to avoid overfitting, along with Principal Component and clustering analyses to account 

for the redundancy among the 50 activities. By using activity-based phenotypic profiles to quantify 

cell-cell divergence and sample-wise phenotypic diversity, we report that such an approach is 

relevant in pan-cancer fashion. It could furthermore recapitulate diversity indices based on known 

population structures, independently of tissue and cell types. Finally, such a method allowed a 

glimpse into the evolutionary dynamics of phenotypic diversity, hinting at the existence of 

evolutionary bottlenecks reducing phenotypic diversity upon colorectal cancer initiation. Although 

more work is necessary to provide specific and accurate quantitative tools and software, our results 

suggest that focusing on cell activities to measure phenotypic ITH can provide a more relevant angle 

than standard classification and marker-based methods. 

 

Results 

Detecting hallmark signatures in single cells 

 We assessed the relevance of 3 MSigDB hallmark gene signatures in single cells via in vitro 

inductions: Epithelial-mesenchymal transition (EMT), DNA repair and glycolysis. We aimed to take 

advantage of the higher accuracy of single-cell RT-qPCR compared to whole transcriptome scRNA-seq 

(Mojtahedi et al., 2016), and designed reduced panels of 9 to 13 marker genes to detect each activity 

in single cells (see Methods). To do so, we first analysed gene expression in 1,036 cell lines samples 

from the CCLE (Barretina et al., 2012) for marker gene discovery and 10,885 pan-cancer samples 

from the TCGA (Chang et al., 2013) for cross-validation. The activity-specific markers respectively 

achieved Areas Under the Curve (AUC) of 0.96, 086 and 0.79 in teasing out the top and bottom 



 

 

scoring TCGA samples for EMT, DNA repair and glycolysis, respectively (Supplementary Table 3).This 

suggested that these reduced gene panels satisfactorily recapitulated the signal from whole-geneset 

enrichment analyses, implying that analysing the expression of few marker genes could help quantify 

the presence of activity-based phenotypic traits in single cells. 

We analysed the expression of 48 selected markers genes in 48 single epithelial mammary cells 

(MCF10A), in which each activity had been induced or not (12 EMT-induced, 12 DNA-repair-induced, 

12 Glycolysis-induced, 12 control cells with no-induction, Figure 1a). Significantly differentially 

expressed genes could be identified in all experiments (Figure 1b). We inferred Beta-Poisson 

expression distributions for each gene in active/inactive conditions, which we used to calculate the 

likelihood that expression values from marker genes corresponded to cells in which the related 

activity was induced (Figure 1c). Differentially expressed genes, generalised linear models and leave-

one-out procedures were used to predict cells undergoing each activity induction (see 

Supplementary Methods). We could achieve AUCs of 0.99, 0.72 and 0.86 for respectively the EMT, 

DNA repair and glycolysis activities (Figure 1d, Supplementary Figures 2-3, Supplementary Table 4). 

The absence of expression patterns clearly separating DNA repair cells from the other 3 types, for 

most DNA repair genes, impaired prediction for this activity (Supplementary Figure 3). This targeted 

experiment however suggests that the expression of adequate marker genes can be used to identify 

whether an activity is present in a given cell with satisfying accuracy. 

Whole transcriptome cell activity scores 

Following these targeted in vitro results supporting the feasibility of predicting the activities of single 

cells, we investigated the relevance of an activity-centred approach to quantify phenotypic diversity 

in high-throughput patient datasets. In absence of single-cell inference methods tailored to each of 

the 50 hallmark cell activities, we used standard tools to investigate the behaviour of the related 

signatures in patient data. We used the AUCell (Aibar et al., 2017) software to score the enrichment 

of all MSigDB hallmark gene sets in all cells from the 8 datasets. We normalised these data per set 

and merged them into a meta-dataset of 50 activity scores per cell in 28,513 cells from different 

cancer types (See Methods). No major batch effect could be observed as samples didn’t specifically 

cluster according to their sets of origin , while similar cell types appear to cluster together (Figure 2). 

However, the most common cell types (T cells, macrophages and malignant cells) segregated into 

more than one cluster each. This suggests that cells with similar identity tend to behave similarly 

across batches and tissues, but that different subset of activity profiles could also be observed among 

cells of identical classification.  

Our analysis however revealed extensive redundancy among the 50 activities scored (Figure 3a), 

suggesting that the signal from the hallmark signatures likely corresponded to fewer than 50 distinct 

activity-based phenotypic traits. We furthermore assigned cell cycle phases (G1/S/G2M) to cells using 

the cyclone software (Scialdone et al., 2015). The cell-cycle phase in which a cell is influences its 

transcriptome, which can in turn bias cell-type assignment. However, because our approach is 

cancer-oriented and based on cellular activities rather than identities, we considered this information 

as part of the phenotypic state of a cell and purposely did not correct for it. Cell-cycle phase 

assignment was found to correlate with the G2M Checkpoint, E2F Targets and Mitotic Spindle 

signatures, highlighting that such cycle phase information was indeed taken into account in our 

phenotypic profiling of cells (Supplementary Figure 4). 

Redundancy reduction to obtain phenotypic profiles 

We designed two methods to tackle redundancy, based on Principal Component (PC) and clustering 

analyses (see Methods). The first 3 PCs of the entire meta-dataset respectively explained 25.9%, 



 

 

12.8% and 7.7% of the variance in the data, while 11 PCs explained more than 2% of the variance 

(Figure 3b). For the clustering analyses, we investigated the relevance of splitting the data into 2 to 

15 clusters. Using the consensus indices from bootstrapping experiments, we defined an optimal 

range between 6 and 10 clusters, after which increasing the number of clusters would not improve 

consensus (Figure3c-d). 

We defined phenotypic profiles for each cell based on either the PC scores or the average activity 

scores per cluster. We analysed the 6 sets that provided metadata describing the predicted (sub)type 

of each cell (Filbin, Li, Neftel, Tirosh melanoma & oligodendroglioma, Venteicher), using leave-one-

out procedures to prevent overfitting. In line with our observations that cells clustered according to 

their type rather than set of origin, defining PC weights and optimal cluster compositions on all sets 

but the one analysed still allowed to identify patterns differentiating cell types (Supplementary 

Figures 5-10). 

Cell-cell divergence across tissue and cancer types 

Pairwise Euclidean distances between phenotypic profiles then served to measure the phenotypic 

divergence between cells. We used different thresholds to calculate PCA- and cluster-based 

divergence, respectively based on the minimum percentage of variance for a PC to be included in 

phenotypic profiles (0, 1, 2, 3 and 5%), and on the numbers of clusters to summarise all 50 activities 

(6 to 10 clusters).Phenotypic heterogeneity measures were highly correlated regardless of the 

thresholds in both methods (all Spearman’s rho >= 0.72, all p< 0.001, Supplementary Tables 5-5), 

suggesting they are nearly equivalent. However, we observed less redundancy between PC scores 

than between cluster scores, independently of the number of clusters (Supplementary Figure 10). 

We therefore use PCA-based phenotypic heterogeneity measures hereafter, with a 2% minimum 

threshold on explained variance for PC inclusion. 

We investigated the pan-cancer relevance of our activity-based phenotypic divergence measure, 

using the 6 datasets for which cell type metadata were available. We report differences in cell-cell 

divergence distributions, according to whether two cells are of the same type or not and what that 

cell type is (Figure 4, Supplementary Figure 11). In agreement with our pan-cancer observations that 

cells clustered by type more than dataset, the divergence between cells of different cell types was 

always the highest distribution (compared to same-type distributions) in all 6 datasets. This suggests 

that our metric will assign smaller divergence scores to cells from the same cell type. Using 

bootstrapped clustering analyses, we also investigated if different recurrent activity profiles could be 

observed among cancer cells only, in each set (Supplementary Figures 12-16, see Methods). Clusters 

related to proliferation and immune response could be observed in most analyses, while the most 

discriminant activities, and PC scores derived from them, varied between datasets. In the Venteicher 

astrocytoma dataset, a discernible sub-population tied to immune activities can be distinguished on 

the left, with marked differences in interferon alpha and gamma signatures (Figure 5). A separate 

sub-population with strong proliferation signalling can be observed in the centre, whereas cells on 

the right side do not display particularly strong proliferation nor immune-related signal. This suggests 

that activity-based distances can separate distinct subpopulations of malignant cells presenting 

different phenotypic characteristics. 

Phenotypic diversity quantification 

We further analysed the relevance of activity-based approaches on two subsets with extended 

characterization in a large number of patients: 7 non-malignant cell types (Tcell, Bcell, Macrophage, 

Endothelial, Fibroblast, NK, Undefined) in 19 patients from the Tirosh melanoma dataset; 6 malignant 

subtypes (AC-like, OPC-like, MES1-like, MES2-like, NPC1-like, NPC2-like) in 28 patients from the 



 

 

Neftel glioma dataset. The average divergence in a group of cells was used as a surrogate for the 

group’s phenotypic heterogeneity. We observed differences across the average profiles calculated 

for the distinct cell types, suggesting they are each characterized by specific activity patterns. The 

differences between the most divergent cells in each category however exemplify that individual 

cells can strongly deviate from these overall profiles (Figure 6a-b, Supplementary Figure 17). Such 

variability, possibly due to the stochastic nature of gene expression, would be absent from standard 

classifying methods. 

We proceeded to reclassify all cells according to the smallest Euclidean distance between their PCA-

based profiles and the average profiles of each classification in both datasets. We observed a 

stronger concordance (p=0.022, Wilcoxon test) when reclassifying cells from established normal cell 

types in melanoma samples according to their activities (Figure 6c, 82% ± 14 correctly reclassified 

samples), compared to subtypes of malignant glioma cells (Figure 6d, 54% ± 23). This confirmed that 

cells of similar type tend to partake in similar activities. However, in the glioma samples we analysed, 

the differences between marker-based malignant subtypes were not as closely reflected by activity 

profiles as was observed in normal cell types. 

We then computed the standard Simpson diversity index on a per-patient basis, according to the 

repartition of all cells from a patient into the relevant categories in both subsets. We found that it 

correlated very significantly with our divergence-based phenotypic heterogeneity score in both non-

malignant cells from melanoma samples and malignant glioma cells (Figure 6e-f, Spearman’s 

rho=0.73 and rho=0.49; p=0.001 and p=0.009, respectively). This suggests that this approach, 

although not relying on cell classification, can accurately capture the diversity of populations whose 

structure is known, both for malignant and normal cells from different tissues. Similar observations 

were reported using cluster-based distances (Supplementary Figure 18). 

Using the average activity-based divergence between malignant cells, we quantified intra-tumour 

phenotypic heterogeneity in all samples from the 6 datasets with metadata and compared them 

(Figure 7a). The mean phenotypic divergence of colorectal cancers (Li et al.) was significantly higher 

than others datasets, while melanoma heterogeneity was significantly lower (Wilcoxon test, 

Benjamini-Hochberg correction, p<0.001 and p=0.004, respectively). We furthermore report that 

between-samples variation in phenotypic diversity was the highest in melanoma (i.e. most 

heterogeneous in heterogeneity levels) and the lowest in oligodendroglioma (Figure 7b-c). 

Phenotypic diversity evolution 

We finally took advantage of cancer samples paired with normal tissue in the colorectal dataset, to 

investigate the evolution of phenotypic diversity. In the 5 colorectal cancer patients from Li et al. for 

which we could find paired tumour-normal data, diversity stayed at similar levels in 3 cases (CRC04, 

CRC06, CRC10), while it decreased very significantly in the tumour material in 2 cases (Figure 7d, 

CRC05, CRC08, p<0.001, Wilcoxon test). Such decrease in diversity was not observed in other cell 

types in these patients (Supplementary Figure 19). This fits a scenario in which cells go through a 

phenotypic bottleneck at tumour initiation, followed by the expansion of few selected clones. 

 

Discussion 

Better understanding the dynamics of intra-tumour heterogeneity will help tailor better therapeutics 

to control and funnel cancer evolution. During malignant somatic evolution, cells drift away from 

their well-characterised normal ancestors by following trajectories unique to each patient (Tokutomi 



 

 

et al., 2019), while there is convergence across patients to (de)activate the necessary cellular 

activities (Hanahan and Weinberg, 2000, 2011).  Consequently, we investigated the relevance of 

focusing on what cancer cells do, rather than what they are, to measure phenotypic diversity in the 

cancer context. We considered cellular activities as traits describing the phenotypic state of cells and 

used pairwise distances to quantify cell-cell divergence and overall diversity. Unlike many existing 

methods (Almendro et al., 2014; Ferrall-Fairbanks et al., 2019; Zhang et al., 2019), such an approach 

does not rely on classifying cells into putative, static identities that cancer cells drift away from in 

patient-specific fashion. It furthermore encompasses the temporal variability inherent to populations 

of cells replicating asynchronously and exhibiting stochastic differences in gene expression, which 

can itself foster resistance (Shaffer et al., 2017). In addition, such a method is not tissue-type specific 

and was relevant in all investigated datasets.  

We first performed in vitro analyses, which revealed that it was possible to reliably predict in which 

cells a given activity had been induced, using targeted panels based on the MSigDB hallmark gene 

sets and the literature. This was done using single-cell RT-qPCR technology, which is more precise 

than RNA-seq on specific genes of interest (Mojtahedi et al., 2016). Our analysis however revealed 

that some of the best markers for activity detection were absent from the hallmark gene sets. 

Although this is likely to be attenuated when using entire gene sets rather than targeted panels, it 

exemplifies the need for more reliable gene signatures, particularly ones taking into account single-

cell level specificities (Hwang, Lee and Bang, 2018; Larsson et al., 2019). 

We then scored 50 hallmark activity signatures in 28,513 cells from 8 publicly available datasets using 

the AUCell software. AUCell is based on a ranking procedure, which efficiently deals with 

normalisation and is not affected by the dissimilarity in using either FPKM or TPM units across the 

datasets (Aibar et al., 2017). This was illustrated by cells not clustering according to their dataset of 

origin in the meta-dataset. “Dropouts” occurring when transcripts are not captured before 

sequencing, can however affect ranking in low-expressed genes (Davis-Marcisak et al., 2019). Gene 

set enrichment analyses, in which multiple genes can contribute to the overall enrichment signal for 

an activity in each cell, are however less affected by dropouts than gene-specific differential 

expression analyses. 

We reported high redundancy among the 50 activities scored, which we addressed by using PC and 

clustering analyses. We found that both methods were by and large equivalent. Importantly, 

hallmark activities do not focus on lineage-specific markers. Using their output, which summarises 

multiple genes, is thus less likely to separate cells according to the expression of few highly 

discriminating lineage markers, such as can occur when focusing on the entire transcriptome. This is 

particularly relevant for cancer cells that broke free of homeostatic control and differentiation 

hierarchies, in which lineage markers inherited from ancestors may no longer correlate with 

phenotype and behaviour.  

We applied such an activity-based approach to investigate the divergence between and among cell 

types in 6 datasets with available metadata. We found that cells of the same type were less divergent 

than cells of different types. This can be explained by the fact that most reported cell types are non-

malignant, with cells from the same type thus likely to partake in similar activities. We also observed 

that activity profiles recapitulated normal cell types better than malignant subtypes, although with 

very limited data (n=1 in both cases). Furthermore, we could identify distinct clusters of malignant 

cells showing marked differences in their activity profiles in all datasets. Therefore, although same 

cell identity often implied similar activities, it was not always the case, especially in cancer cells for 

which our activity-based approach was aimed. This also indicated that this approach could reflect the 



 

 

divergence between cells similarly considered malignant using a blanket classification, but who 

appeared to engage in different activities. 

Interestingly, the divergence between malignant cells were not recurrently higher nor lower than 

those between normal subtypes, and patterns varied according to tumour type. In the two datasets 

with high numbers of both patients and cell type sub-classifications, the mean cell-cell divergence 

correlated significantly with standard diversity indices based on the repartition of individuals into 

subpopulations. These results suggest that avoiding the use of known lineage markers did not 

hamper the relevance of this approach across the investigated tissue types. Although we used a 

leave-one-out design to avoid overfitting, it is however worth noticing that brain cell and tumour 

data are likely overrepresented in this study. Finally, using this approach on 5 patients with paired 

tumour-normal data, suggested the existence of evolutionary bottlenecks on phenotypic diversity at 

tumour initiation. This would be in agreement with the genetic diversity decrease observed at this 

stage in orthogonal studies (Cross et al., 2020). 

In this work, we focused on the quantification of phenotypic diversity according to cancer’s atavistic 

evolutionary nature, as cells deviate from normal healthy cell types and regress towards ancestral 

unicellular growth (Davies and Lineweaver, 2011). We used single-cell expression analyses to 

quantify activity-based traits for each cell to create individual phenotypic profiles differing from static 

subtype classifications. This provides an alternative to marker-based methods, which can rely on 

markers not relevant anymore in the cancer context, and that often cannot allow to quantify the 

differences between cells classified similarly. Not relying on markers furthermore bypasses tissue-

specificity and provides a universal approach applicable to all tumour types.  

 

Limitations of the study 

In this study we used pre-defined activity signatures based on bulk data that were not specifically 

designed for relevance in cancer studies. More work is therefore needed to provide standardised 

tools to reproducibly measure phenotypic ITH from single-cell RNA data. The development of 

accurate single-cell-specific expression signatures for the most recurrently dysregulated pathways in 

cancer would provide enhanced precision to build per-cell phenotypic profiles. This will require to 

determine the most relevant activities that contribute to the convergence towards the “cancer 

hallmarks” (Hanahan and Weinberg, 2011) dysregulation common to most cancer types. It will also 

be necessary to reliably assess their predictability in single cells, taking into account the specificity of 

single cell expression data, and design methods accounting for the redundancy among them. Finally, 

it will also be critical to understand how intra-tumour heterogeneity at single-cell level can be 

extrapolated from bulk samples, how this reflects inter-patient heterogeneity and how it ties to 

genetic and clinical features. 

Successful implementations will improve future similar activity-based approaches to quantify 

phenotypic diversity in the evolutionary context of cancer. This will in turn allow to better monitor 

the evolution of phenotypic diversity over time and space, and facilitate the identification of 

therapeutic opportunities to control intra-tumour heterogeneity. This would ultimately help thwart 

the emergence of resistant populations and thereby enhance clinical outcomes. 

 

 

Data and code availability 



 

 

The R scripts and data for this project are available on github: 

https://github.com/pierremartinez/PhDiv. 
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Figure legends 

Figure 1 – Detection of selected activities induced in vitro using single-cell expression of targeted 

genes. a) Overall scheme. EMT (blue), DNA repair (green) and glycolysis (red) activities are induced in 

vitro in MCF10A cells, prior to single-cell analysis and RNA quantification. Targeted marker genes 

expression is used to assess the likelihood that an activity, considered as a phenotypic trait, is 

present in a cell. All quantified traits are used to create cell-specific phenotypic profiles and serve as 

a basis to calculate pairwise cell-cell divergence and overall phenotypic diversity. b) Row-normalised 

single-cell expression for the marker genes of EMT (left), DNA repair (centre) and glycolysis (right). 

Blue: lower expression; red: higher expression. Cells in which the activity was induced are on the left 

and indicated by coloured bars below. Control cells having undergone no induction are on the right 

and indicated by a grey bar. Significantly differentially expressed genes in bold (p<0.05, BPglm 

function). c) PFKM marker gene expression in glycolysis and control conditions. Blue curve: number 

of transcripts in cells in which glycolysis cells was induced; grey curve: control conditions. Confidence 

intervals around the observed values are used to calculate the probability that a value comes from 

glycolytic (pglyco, blue) and control (pctrl, grey) conditions. The pglyco / (pglyco+pctrl) ratio gives the 

likelihood that the observed value comes from a cell in which glycolysis was induced. d) Glycolysis 

prediction in single-cells from all 4 populations: glycolysis (red), EMT (blue) and DNA repair (green) 

inductions and control (grey). Black and white bar underneath indicates the reported probability of 

each cell to be glycolytic (log10 scale). Black: missing values. 

 Figure 2 – Normalised activity scores in the meta-dataset. Heatmap of activity scores in the 

metadataset, normalised per activity per set. Dendrograms highlight relationships between activities 

(left) and cells (top). The dataset of origin of each cell is reported by the bottom colour bar. The top 

row below the score heatmap indicates the dataset of origin of each cell, while the bottom one 

indicates its reported type. 

Figure 3 – Principal Component and clustering analyses to circumvent hallmark activity 

redundancy. a) Correlation heatmap between all 50 MSigDB hallmark activities on a meta-dataset 

comprising 28,513 cells from 8 different datasets. b) Importance of the 15 Principal Components (PC) 

for each activity (squared cosine, indicated by increasing circle size and blueness). Below, the 

proportion of total variance in the dataset explained by each PC. c) Relative increase in measure of 

clustering consensus as the number of clusters is increased. CDF: cumulative distribution function. d) 

Cluster assignment of all 50 activities, for a number of 2 to 15 clusters. 

Figure 4 – Pan-cancer phenotypic cell-cell divergence. Pairwise cell-cell divergence distributions per 

cell type in each of the 6 datasets with curated metadata. Inter: inter-type divergence (between cells 

of different subtypes). All other distributions are between cells of the reported type. Dashed 

horizontal line: total average; broad horizontal lines: individual distribution averages. 

Figure 5 – Isolated activity profiles of significant clusters of malignant cells in the Venteicher et al. 

astrocytoma dataset. Top: distinct significant clusters are identified by alternating black and grey 

colour bars. Cells are ordered left to right according to the overall cluster data including all cells, 

although only significant clusters of 5 cells or more are displayed. Middle: Heatmap of PCA-based 

activity scores. All principal components were used for clustering analyses, but only those explaining 

>3% of total variance are displayed. PCA scores are ordered top to bottom according to complete 

hierarchical clustering based on Euclidean distances. Bottom: Heatmap of normalised activity scores, 

ordered top to bottom according to complete hierarchical clustering based on Euclidean distances. 

Figure 6 – Phenotypic diversity in populations of known structure. PCA-based phenotypic profiles of 

a) 7 non-malignant cell types from the Tirosh et al. melanoma dataset and b) 6 glioma subtypes from 



 

 

the Neftel et al. H3K27M-glioma dataset. Average profiles on top were obtained by averaging all cells 

from a given subtype across all patients. The outlier profiles at the bottom were obtained from the 

same-type cell pairs displaying the highest activity-based divergence for each cell type. Only the first 

five principal components are shown. c) Barplots showing the breakdown of how non-malignant cells 

from melanoma samples would be re-categorised, based on the average activity profiles of each 

category in the Tirosh melanoma dataset. d) Barplots showing the breakdown of how malignant 

glioblastoma cells would be re-categorised, based on the average activity profiles of each category in 

the Neftel dataset. e) Relationship between mean phenotypic divergence between non-malignant 

cells in the melanoma dataset and the Simpson diversity index calculated on the repartition of cells 

into the 7 non-malignant classes. f) Relationship between mean phenotypic divergence between 

malignant cells in the glioma dataset and the Simpson diversity index calculated on the classification 

of cells into the 6 glioma subtypes. Black lines: linear models. 

Figure 7 – Differences and dynamics of phenotypic diversity. a) Distribution of phenotypic 

divergence between malignant cells in each sample across 6 datasets. Samples ordered by sample-

wise phenotypic diversity (average divergence). ***: p<0.001; *: p<0.05 (Wilcoxon test, BH 

correction). Boxes represent the middle quartiles; black horizontal bars represent the median of each 

distribution; whiskers extend up to 1.5 times the interquartile range (box height) away from the box. 

Outliers (beyond the whiskers) are not displayed. b) Per-sample phenotypic diversity in all 6 sets. c) 

Coefficient of variation in phenotypic diversity across samples in each set. d) Phenotypic divergence 

distributions in normal and cancerous epithelia in 5 patients from the Li et al. dataset. Dashed 

horizontal line: total average; broad horizontal lines: individual distribution averages. 
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PC 1
PC 3
PC 2
PC 4
PC 5
PC 6

WNT Beta Catenin Signaling
Notch Signaling

Hedgehog Signaling
UV Response DN

Fatty Acid Metabolism
Pancreas Beta Cell

Myc Target V2
Myc Target V1

Oxidative Phosphorilation
Glycolysis

Mitotic Spindle
G2M Checkpoint

E2F Targets
DNA Repair

Spermatogenesis
Pi3k/AKT/MTOR Signaling

Interferon Alpha Response
Interferon Gamma Response

Complement
Coagulation

Il6 / Jak−Stat signaling
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Kras Signaling UP
TNFA signaling via NKKB
In�ammatory Response

TGF Beta Signaling
Hypoxia

P53 Pathway
Apoptosis

UV Response UP
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Estrogen Response Early
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Apical Surface
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