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Abstract 11 
The prediction of cardiac disease helps practitioners make more accurate decisions regarding patients' health. 12 
Therefore, the use of machine learning (ML) is a solution to reduce and understand the symptoms related to heart 13 
disease. The aim of this work is the proposal of a dimensionality reduction method and finding features of heart 14 
disease by applying a feature selection technique. The information used for this analysis was obtained from the 15 
UCI Machine Learning Repository called Heart Disease. The dataset contains 74 features and a label that we 16 
validated by six ML classifiers. Chi-square and principal component analysis (CHI-PCA) with random forests 17 
(RF) had the highest accuracy, with 98.7% for Cleveland, 99.0% for Hungarian, and 99.4% for Cleveland-18 
Hungarian (CH) datasets. From the analysis, ChiSqSelector derived features of anatomical and physiological 19 
relevance, such as cholesterol, highest heart rate, chest pain, features related to ST depression, and heart vessels. 20 
The experimental results proved that the combination of chi-square with PCA obtains greater performance in 21 
most classifiers. The usage of PCA directly from the raw data computed lower results and would require greater 22 
dimensionality to improve the results. 23 

Keywords: Machine Learning, Heart Disease, Apache Spark, PCA, Feature selection.  24 

1 Introduction 25 

The World Health Organization (WHO) [1] lists cardiovascular diseases as the leading cause of death globally with 26 

17.9 million people dying every year. The risk of heart disease increases due to harmful behavior that leads to 27 
overweight and obesity, hypertension, hyperglycemia, and high cholesterol [1]. Furthermore, the American Heart 28 
Association [2] complements symptoms with weight gain (1-2 kg per day), sleep problems, leg swelling, chronic 29 

cough and high heart rate [3]. Diagnosis is a problem for practitioners due the symptoms’ nature of being common 30 
to other conditions or confused with signs of aging.  31 

The growth in medical data collection presents a new opportunity for physicians to improve patient diagnosis. In 32 

recent years, practitioners have increased their usage of computer technologies to improve decision-making support. 33 
In the health care industry, machine learning is becoming an important solution to aid the diagnosis of patients. 34 
Machine learning is an analytical tool used when a task is large and difficult to program, such as transforming 35 

medical record into knowledge, pandemic predictions, and genomic data analysis [4]. 36 
Recent studies have used machine learning techniques to diagnose different cardiac problems and make a 37 

prediction. Melillo et al. [5] contributed to an automatic classifier for patients with congestive heart failure (CHF) 38 

that separates patients with minimal risk from those at high risk. The classification and regression tree (CART) 39 
computed a sensitivity and specificity of 93.3% and 63.5%, respectively. Rahhal et al. [6] proposed a deep neural 40 
network (DNN) classification of electrocardiogram (ECG) signals to learn the best set of features and improved the 41 

performance. Guidi et al. [7] contributed to a clinical decision support system (CDSS) for the analysis of heart 42 
failure (HF). They compared the performance of different machine learning classifiers, such as neural network 43 
(NN), support vector machine (SVM), a system with fuzzy rules that uses CART, and random forests (RF). The 44 

CART model and RF obtained the best performance with an accuracy of 87.6%. Zhang et al. [8] found a NYHA 45 
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class for HF from unstructured clinical notes using natural language processing (NLP) and the rule-based method, 1 
calculating an accuracy of 93.37%. Parthiban et al. [9] scrutinized an SVM technique to diagnose heart disease in 2 

patients with diabetes, obtaining an accuracy of 94.60% and predicting features such as age, blood pressure, and 3 
blood sugar.  4 

A major problem of machine learning is the high dimensionality of the dataset [10]. The analysis of many 5 

features requires a large amount of memory and leads to an overfitting, so the weighting features decrease redundant 6 
data and processing time, thus improving the performance of the algorithm [11-15]. Finding a small set of features 7 
characterizes different diseases of health management, genome expression, medical images, and IoT. 8 

Dimensionality reduction uses feature extraction to transform and simplify data, while feature selection reduces the 9 
dataset by removing useless features [16]. 10 

In the literature, the use of feature selection techniques improved the prediction of heart disease. Dun et al. [17] 11 

studied the presence of heart disease through deep learning techniques, random forests, logistic regression, and SVM 12 
with hyperparameter tuning and feature selection. NN had the best accuracy at 78.3%. Sewak et al. [18] reduced 13 
cardiovascular features using the Fisher ranking method, generalized discriminant analysis (GDA), and a binary 14 

classifier as extreme learning machine (ELM). They detected coronary heart disease with an accuracy improvement 15 
of 100%. Yaghouby et al. [19] classified arrhythmias with heart rate variability (HRV). They achieved 100% 16 
accuracy using GDA for feature reduction and multilayer perceptron (MLP) neural network as a classifier. 17 

Mohammadzadeh et al. [20] classified 15 features from HRV signal. GDA reduced the features to five and 18 
computed 100% precision using SVM. 19 

Principal component analysis (PCA) creates new components that store the most valuable information of the 20 

features by capturing a high variance [21]. Recently, several studies have used PCA as a feature extraction technique 21 
for classification in health care. Rajagopal et al. [22] compared an automatic classification of cardiac arrhythmia 22 
using five different linear and non-linear unsupervised dimensional reduction techniques with the neural network 23 

(PNN) classifier. With a minimum of 10 components, fastICA computed an F1 score of 99.83%. Zhang et al. [23] 24 
detected breast cancer using an AdaBoost algorithm based on PCA. Negi et al. [24] combined PCA with a feature 25 
reduction technique called uncorrelated linear discriminant analysis (ULDA) to obtain the best features that control 26 

upper limb motions. Avendaño-Valencia et al. [25] applied PCA to time frequency representations (TFR) to reduce 27 
heart sounds and improve performance. Kamencay et al. [26] presented a new method using PCA-KNN called the 28 
scale-invariant feature transform (SIFT) descriptor in different medical images, which resulted in an accuracy of 29 

83.6% when training 200 images. Ratnasari et al. [27] reduced X-ray images using a threshold-based ROI and PCA. 30 
They obtained the best gray-level threshold of 150. 31 

Earlier studies worked with a heart disease subset of 13 features (Subset-A). The aim of classification was to 32 

predict whether a patient had heart disease using, in most cases, the dataset of Cleveland [28]. Some remarkable 33 
results were presented: decision tree with an accuracy of 89.1% [29], random forests with an accuracy of 89.2% 34 
[30], artificial neural network with an accuracy of 92.7% [30], 89.0% [31], and 89.7% [32], and SVM with an 35 

accuracy of 88.0% [32]. GA+NN [33] computed the most notable hybrid model with 94.2% accuracy. 36 
PCA+regression and PCA1+NN [34] obtained the best PCA models with an accuracy of 92.0% and 95.2%, 37 
respectively.  38 

The classification learning models combined with dimensionality reduction seek to achieve three primary 39 
objectives: (i) to learn the best feature representation of the dataset used; (ii) to validate the performance of PCA in 40 
conjunction with a feature selection technique; and (iii) to learn the classification model that computes the best 41 

performance. Six classifiers compute the 74 features: logistic regression, decision tree, random forest, gradient-42 
boosted tree, multilayer perceptron, and Naïve Bayes. 43 

We propose a model based on chi-square and PCA for the detection of heart disease. Experimental results have 44 

shown that PCA delivers a better prediction concerning the high dimensional classification problem by setting the 45 
features provided by chi-square, as seen when comparing PCA with raw data. Chi-square ranks the independent 46 
features most compatible with the label. We selected k=13 to perform a comparison with the subset of 13 features 47 

(Subset-A) used in the literature [28]. For PCA, we tried for the raw data a latent dimensional k greater than a 48 
variance of one. This implies k=13 for Cleveland, k=14 for Hungarian, and k=11 for CH (the datasets of Cleveland 49 
and Hungarian). Considering the results, the proposed approach improved most of the machine learning techniques. 50 

 51 

 52 
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Table 1. Features of the Heart Disease Data set 

Serial  

Number 

Group Feature 

Names 

Features Descriptions 

1  ID Patient identification number 

2  CCF Social security number (replaces this with a dummy value of 0) 

3 Patient record data AGE Age in years 

4 Patient record data SEX 1=male; 0 =female 

5 Patient record data PAINLOC Chest pain location (1=substernal; 0=otherwise) 

6 Patient record data PAINEXER 1=provoked by exertion; 0=otherwise 

7 Patient record data RELREST 1= relieved after rest; 0=otherwise 

8 Patient record data PNCADEN Sum of 5, 6, and 7 

9 Patient record data CP Chest pain type: 1= typical angina; 2=atypical angina; 3=non-angina 

pain; 4=asymptomatic 

10 Patient record data TRESTBPS Systolic blood pressure at rest (in mm Hg on admission to the hospital) 

11 Patient record data HTN History of hypertension  

12 Patient record data CHOL Serum cholesterol in mg/dl 

13 Patient record data SMOKE 1=yes; 0=no (is or is not a smoker) 

14 Patient record data CIGS Cigarettes per day 

15 Patient record data YEARS Number of years as a smoker 

16 Patient record data FBS Fasting blood sugar > 120 mg/dl (1=true; 0= false) 

17 Patient record data DM 1=history of diabetes; 0=no such history 

18 Patient record data FAMHIST Family history of coronary artery disease (1=yes; 0=no) 

19 Patient record data RESTECG Resting electrocardiographic results: 0=normal; 1=having ST-T wave 

abnormality (T wave inversions and/or ST elevation or depression of > 

0.05 mV); 2=showing probable or definite left ventricular hypertrophy 

by Estes’ criteria 

20 Patient record data EKGMO Month of exercise ECG reading 

21 Patient record data EKGDAY Day of exercise ECG reading 

22 Patient record data EKGYR Year of exercise ECG reading 

23 Medication during 

exercise test 

DIG Digitalis is used during exercise ECG (1=yes; 0=no) 

24 Medication during 

exercise test 

PROP Beta blocker used during exercise ECG (1=yes; 0=no) 

25 Medication during 

exercise test 

NITR Nitrates used during exercise ECG (1=yes; 0=no) 

26 Medication during 

exercise test 

PRO Calcium channel blocker used during exercise ECG (1=yes; 0=no) 

27 Medication during 

exercise test 

DIURETIC Diuretic used during exercise ECG (1=yes; 0=no) 

28 Exercise test PROTO Exercise protocol: 1=Bruce; 2=Kottus; 3=McHenry; 4=Fast Balke; 

5=Balke; 6=Noughton; 7=bike 150 kpa min/min; 8=bike 125 kpa 

min/min; 9=bike 100 kpa min/min; 10=bike 75 kpa min/min; 11=bike 

50 kpa min/min; 12=arm ergometer 

29 Exercise  

electrocardiogram 

THALDUR Duration of exercise test in minutes 

30 Exercise  

electrocardiogram 

THALTIME Time when ST measure depression was noted 

31 Exercise  

electrocardiogram 

MET Mets achieved 

32 Exercise  

electrocardiogram 

THALACH Maximum heart rate achieved 

33 Exercise  

electrocardiogram 

THALREST Resting heart rate 

34 Exercise  

electrocardiogram 

TPEAKBPS Peak exercise systolic blood pressure (first of 2 parts) 

35 Exercise  

electrocardiogram 

TPEAKBPD Peak exercise systolic blood pressure (second of 2 parts) 

36 Exercise  

electrocardiogram 

DUMMY The same value as trestbps 

37 Exercise  

electrocardiogram 

TRESTBPD Resting blood pressure 

38 Exercise  

electrocardiogram 

EXANG Exercise-induced angina (1=yes; 0=no) 
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Table 1. Features of the Heart Disease Data set (continuation) 

Serial  

Number 

Group Feature Names Features Descriptions 

39 Exercise  

electrocardiogram 

XHYPO Exercise-induced hypotension (1=yes; 0=no) 

40 Exercise  

electrocardiogram 

OLDPEAK E'xercise-induced ST depression relative to rest  

41 Exercise  

electrocardiogram 

SLOPE The slope of the peak exercise ST segment: 1=upsloping; 2=flat; 

3=downsloping 

42 Exercise  

electrocardiogram 

RLDV5 Height at rest 

43 Exercise  

electrocardiogram 

RLDV5E Height at peak exercise 

44 Cardiac fluoroscopy CA Number of major vessels (0-3) colored by fluoroscopy 

45 Cardiac fluoroscopy RESTCKM Irrelevant 

46 Cardiac fluoroscopy EXERCKM Irrelevant 

47 Cardiac fluoroscopy RESTEF Rest radionuclide ejection fraction 

48 Cardiac fluoroscopy RESTWM Rest wall motion abnormality: 0=none; 1=mild of moderate;  

2= moderate or severe; 3=akinesis or dyskinesis 

49 Cardiac fluoroscopy EXEREF Exercise-induce radionuclide ejection fraction 

50 Cardiac fluoroscopy EXERWM Exercise-induce wall motion abnormalities 

51 Exercise thallium 

scintigraphy 

THAL Exercise Thallium heart scan: 3=normal; 6= fixed defect; 

7=reversible defect 

52 Exercise thallium 

scintigraphy 

THALSEV Not used 

53 Exercise thallium 

scintigraphy 

THALPUL Not used 

54 Exercise thallium 

scintigraphy 

EARLPUL Not used 

55 Coronary 

angiograms 

CMO Month of cardiac cath 

56 Coronary  

angiograms 

CDAY Day of cardiac cath 

57 Coronary  

angiograms 

CYR Year of cardiac cath 

58 Coronary  

angiograms 

NUM Diagnosis of heart disease (angiographic disease status): 

-0= <50% diameter narrowing 

-1= >50% diameter narrowing 

(in any major epicardial vessel attributes 59 through 68 are vessels) 

59 Blood Vessels LMT Left main truck  

60 Blood Vessels LADPROX Proximal left anterior descending artery 

61 Blood Vessels LADDIST Distal left anterior descending artery 

62 Blood Vessels DIAG Diagonal branches 

63 Blood Vessels CXMAIN Circumflex  

64 Blood Vessels RAMUS Ramus intermedius 

65 Blood Vessels OM1 First obtuse marginal branch 

66 Blood Vessels OM2 Second obtuse marginal branch 

67 Blood Vessels RCAPROX Proximal right coronary artery 

68 Blood Vessels RCADIST Distal right coronary artery 

69  LVX1 Not used 

70  LVX2 Not used 

71  LVX3 Not used 

72  LVX4 Not used 

73  LVF Not used 

74  CATHEF Not used 

75  JUNK Not used 

 



Table 3. Features not included 

Category Features not included in the model 

Irrelevant  ID (patient identification number), social security number (CCF), 

PNCADEN (sum of PAINLOC, PAINEXER and RELREST), EKGMO 

(month of exercise ECG reading), EKGDAY (day of exercise ECG 

reading), EKGYR (year of exercise ECG reading), CMO (month of 

cardiac cath), CDAY (day of cardiac cath), CYR (year of cardiac cath) 

Repeated  DUMMY (same as TRESTBPS) 

Unexplained RESTCKM, EXERCKM, THALSEV, THALPUL, EARLOBE, LVX1, 

LVX,2 LVX3, LVX4, LVF, CATHEF, JUNK, NAME 

Null data RESTCKM, EXERCKM, RESTEF (rest raidonuclide ejection fraction), 

RESTWM (rest wall motion abnormality), EXEREF (exercise radinalid 

ejection fraction), EXERWM (exercise-induce wall motion abnormalities), 

THALSEV, THALPUL, EARLOBE 

2 Materials and Methods 1 

2.1 Description of the dataset 2 

The dataset used in the research was the “Heart Disease Dataset” of the UCI Machine Learning Repository [28] as 3 

shown in Table 1. It had a label called coronary angiography (NUM) and 74 independent features. NUM specified 4 
whether a patient has the presence or absence of heart disease. The presence of heart disease combined the values 1, 5 
2, 3, and 4 from the original datasets. For the examination, patients supplied historical data and were physically 6 

examined by practitioners [42]. Three non-invasive tests were part of the protocol: exercise electrocardiogram, 7 
exercise thallium scintigraphy, and coronary calcium fluoroscopy. The cardiologist interpreted the coronary 8 
angiogram results without knowing the non-invasive results. Previous research [43] has explained some features as 9 

well as the complete protocol.  10 
In the literature, a subset of 13 features [28] was used to create an algorithm relevant to clinical situations. The 11 

clinical variables considered relevant were AGE, SEX, CP, and TRESTBPS; the routine test data CHOL, FBS, and 12 

RESTECG; the exercise electrocardiography test with the features THALACH, EXANG, SLOPE, and OLDPEAK; 13 
and the non-invasive test, THAL, and CA. In addition, the label was NUM. For comparison, we call this set of 13 14 
features as “Subset-A”.  15 

The datasets used for the analysis were Cleveland, Hungarian, and a combination of both called CH (Cleveland-16 
Hungarian). Table 2 displays the data distribution. Cleveland had a more uniform distribution than Hungarian and 17 
CH for both healthy individuals and patients with heart disease.  18 

2.2 Proposed approach for the dimensionality reduction and classification 19 
     The proposed approach was applied to the three datasets referred in Section 2.1. We pre-processed and cleaned 20 

the datasets from Cleveland, Hungarian, and CH, as mentioned in Section 2.3. In addition, some of the features were 21 

not considered for the analysis, as stated in Table 3. Further, we performed four type of experiments for analysis. 22 

We assessed the raw data first with all six classifiers. In the second experiment, we applied the feature selection 23 

technique of chi-square to obtain a unique and reduced set of ranking-based features with the diagnosis of the heart 24 

disease (NUM) and validate them with the classifiers. The third test used the reduced datasets obtained by chi-25 

square and then applied PCA. The final experiment was the use of PCA directly from raw data. The validation and 26 

analysis module used the performance metrics mentioned in Section 2.6, such as accuracy, precision, recall, F1 27 

score, Matthews correlation coefficient (MCC), and Cohen’s Kappa coefficient (ĸ). The representation of this 28 

approach is illustrated in Figure 1. 29 

 30 

Table 2. Datasets distribution 

Dataset Total # of instances Presence HF Absence HF 

Cleveland 283 157 (55%) 126 (45%) 

Hungarian 294 188 (64.9%) 106 (35.1%) 

CH 577 345 (59.8%) 232 (40.2%) 



2.3 Preprocessing information and cleansing considerations 1 

The datasets had irrelevant, unexplained, null, or repeated features. Table 3 shows the features not included in the 2 
analysis. For this investigation, Cleveland contained 41 features, Hungarian contained 45 features, and CH 3 

contained 38 features. The most important considerations for cleansing were to assign a single category for missing 4 
values called ‘null value’ and to create rules that consider data consistency. An example of this is that a patient 5 
cannot have cholesterol or age equal to zero. If this occurs, the value will be changed to the ‘null value’ category. 6 

The complete considerations of the cleaning process were: (1) classes 1, 2, 3, and 4 were converted to the same 7 
class (patient with heart disease); (2) null values were replaced by a unique label; (3) zero was unacceptable in 8 
continuous results, therefore it was changed as null; (4) if SMOKE was unanswered but CIGS or YEARS were, 9 

SMOKE was changed from null to number 1 (patient is a smoker). If CIGS and YEARS had a value of 0, SMOKE 10 
was converted to 0; (5) if THALTIME had a value greater than THALDUR, the response was removed; (6) 11 

THALACH could not be lower than THALREST; (7) if OLDPEAK had a value of 0, THALTIME was changed to 12 
0; and (8) DUMMY was the same feature as TRESTBPS, so it was eliminated. 13 

2.4 Dimensionality reduction 14 

Dimensionality reduction [10] is the process of reducing the number of variables considered. It can be used to 15 
extract latent features from raw datasets or to reduce the data while maintaining the structure. This research 16 
proposed two different dimensionality reduction methods, for feature selection was selected the chi-square test of 17 

independence and for feature extraction, the principal component analysis (PCA). 18 

2.4.1 Chi-square 19 

Chi-square test (CHI) sorts features based on the class and filters out the top features on which depends the class 20 
label. ChiSqSelector (CHI) of Apache Spark MLlib is used for feature selection in the model construction. CHI 21 
filters the features and sorts them, through repeated iterations, for selection. For this study, we selected the top 13 22 

features using CHI to make a comparison with the literature. Table 4 contemplates the amount of complete data and 23 
the correlation between the features and the label. Of the first 13, Cleveland and Hungarian selected 4 vessel 24 
features, while CH selected 5; the vessels were LADDIST, RCAPROX, OM1, CXMAIN, and LADPROX. 25 

Cleveland used the non-invasive test features, THAL, and CA, while Hungarian selected EXANG. Chest pain values 26 
included CP, RELREST, and PAINEXER. The patient records incorporated only CHOL. Exercise 27 

 
Figure 1. Schematic Diagram of Proposed Approach 



electrocardiogram features indicated THALACH, THALDUR, and ST segment values such as THALTIME, 1 
OLDPEAK, and SLOPE. The uncorrelated features involved medications during exercise test, PAINLOC, HTN, 2 

SMOKE, FBS, DM, FAMHIST, RESTECG, RAMUS, and OM2. Overall, the common features across the three 3 
datasets should be considered as risk factors for heart disease, including CHOL, THALACH, LADDIST, 4 

OLDPEAK, THALTIME, RCAPROX, CP, and CXMAIN. 5 

2.4.2 Principal components 6 

To determine the number of meaningful components to be retained, we select the eigenvalue-one criterion for the 7 

analysis. With this, we kept all the components with an eigenvalue greater than 1.00. As individual variables, each 8 
component counts for one unit of variance. Therefore, components with an eigenvalue greater than 1.00 stood for a 9 
higher variance than their contribution as individual variables. In contrast, components with eigenvalues less than 10 

1.00 contributed less than their individual value and were removed from analysis. 11 
The first 13 components of Cleveland had a variance greater than 1.00 and an accumulated proportion of 0.678. 12 

The first two components had a cumulative proportion of 0.246; the amount of variance in component 1 was 5.445 13 

and 4.396 in component 2. The principal components of Hungarian were represented in the first 14 components and 14 
had a variance greater than 1.00 and an accumulated proportion of 0.694. The amount of variance in component 1 15 
was 6.340 and in component 2 was 4.451, with a cumulative of 0.240. The first 11 components of CH contained a 16 

variance of more than 1.00 and a cumulative proportion of 0.729 of the information. The first two components had 17 
an accumulated proportion of 0.399; the amount of variance in component 1 was 14.614 and in component 2 was 18 
4.547. Hence, selecting components with an eigenvalue greater than 1.00 was the best choice, so we selected 13 19 

components for Cleveland, 14 components for Hungarian, and 11 components for CH. 20 

2.5 Classifiers proposed 21 

For this research, ML Spark libraries were selected for feature validation. The version of Apache Spark used was 22 
2.2.0 in Java language. MLlib has tools for preprocessing, basic statistics, dimensionality reduction, classification, 23 
regression, clustering, and association rules. This work used the CHI for feature selection and PCA for feature 24 

extraction. The most important parameter was the “Selection method”, which chose the main features according to 25 
CHI as shown in Table 5. The other settings were the default ones. 26 

The classification models use the default value for most of the hyperparameters. The models were: (1) decision 27 

tree (DT); (2) gradient-boosted tree (GBT); (3) logistic regression (LOG); (4) multilayer perceptron (MPC); (5) 28 

Table 4.  Features selected by CHI from raw data 

#SF LF %DC Corr LF %DC Corr LF %DC Corr 

 Cleveland Dataset Hungarian Dataset CH Dataset 

1 CHOL 100.0 0.12 CHOL 93.2 0.20 CHOL 96.5 0.17 

2 THALACH 100.0 -0.40 SLOPE 35.4 0.54 OLDPEAK 100.0 0.48 

3 RLDV5E 100.0 0.07 THALTIME 35.4 0.49 CP 100.0 0.46 

4 LADDIST 100.0 0.57 CXMAIN 100.0 0.59 CXMAIN 100.0 0.54 

5 OLDPEAK 100.0 0.42 LADPROX 100.0 0.56 THALTIME 55.0 0.38 

6 THALDUR 100.0 -0.25 EXANG 99.7 0.41 LADDIST 100.0 0.53 

7 THALTIME 75.5 0.24 OLDPEAK 100.0 0.55 RCAPROX 100.0 0.52 

8 THAL 99.3 0.44 THALACH 99.7 -0.30 LADPROX 100.0 0.52 

9 RCAPROX 100.0 0.51 CP 100.0 0.51 EXANG 99.8 0.41 

10 CP 100.0 0.40 PAINEXER 100.0 0.54 THALACH 99.8 -0.32 

11 OM1 100.0 0.49 RCAPROX 100.0 0.52 SLOPE 67.0 0.35 

12 CA 99.3 0.34 LADDIST 100.0 0.34 RLDV5E 100.0 0.11 

13 CXMAIN 100.0 0.48 RELREST 100.0 0.45 OM1 100.0 0.44 

#SF= # of selected features; LF=List of Features; %DC=# of data complete; Corr= correlation 



Table 5. Parameter for feature selection techniques 

Feature selection technique Basic Hyperarameters 

ChiSqSelector Selection method=numTopFeatures;  

Top features= default set to 50 

Naïve Bayes (NB); and (6) random forests (RF). Table 6 describes the parameter settings for each classifier. The 1 
GBT and RF trees used several DT parameters as default values, except for Gini impurity. DT hyperparameters are 2 

the maximum depth of a tree equal to 5, and the maximum number of bins used when the discretization of 3 
continuous features was 32. In addition, LOG had an elasticity of 0.8 and a binomial family parameter. The 4 
parameters of MPC were set at a maximum iteration of 100. MPC had two hidden layers, the first with 5 neurons 5 

and the second with 4 neurons. The model type selected for NB was multinomial. 6 
The 6 classifiers were run 10 times, the best result was added for this research, and the performance of the label 7 

evaluated, in compliance with the percentage of the correct classification. For the experiment, the Heart Disease 8 

datasets were divided into two datasets: (1) training dataset with the 70% of the information (80% for training and 9 
20% for validation); and (2) testing dataset with 30% of the information.  10 

 11 

2.6 Evaluation process 12 

The confusion matrix helps practitioners to form a clear idea of whether the results have a high performance. The 13 
confusion matrix elements were: (1) true positive (TP), which were patients who had heart disease and were 14 
correctly diagnosed; (2) true negative (TN), which were patients who did not have heart disease and were correctly 15 

diagnosed; (3) false negative (FN), which were patients who had heart disease and were misdiagnosed; and (4) false 16 
positive (FP), which were patients who did not have heart disease and were misdiagnosed. In the medical field, false 17 
negatives are the most dangerous predictions. 18 

The different performance metrics were calculated using a confusion matrix. Accuracy (Acc) measured the 19 
properly classified instances [1]. The formula for calculating accuracy was given by 20 

                                                                �������� = 	
�	�
	
���
�	�                                                               (1) 21 

Precision was the positive predictive value defined by 22 

                                                  
 
      ��������� = 	


	
�
                                                                         (2) 23 

Recall identified the proportion of patients with heart disease given by 24 

 25 

Table 6. Parameters tuning for classifier in Apache Spark 

Classifier Basic Parameters 

DT algo=”Classification”; numClasses=2; maxDepth=5;                                     

minInstancesPerNode=”auto”; minInfoGain=”auto”; maxBins=32; 

maxMemoryInMB= 256 MB; subsamlingRate= “auto”; impurity “gini” 

GBT Loss=”Log Loss”; numIterations=”auto”; learningRate=”auto”;                     

algo=”Classification” 

LOG numClasses=2; MaxIter=10; RegParam=0.3; ElasticNetParam=0.8;                

Family=”binomial” 

MPC Layers=”number of features, 2”; BlockSize=128; Seed=1234L; 

MaxIter=100;  

two hidden layers, the first with 5 neurons and the second with 4 

neurons. 

NB Lambda=”false”; ModelType=”false” 

RF numClasses=2; numTrees=”auto”; featureSubsetStrategy=”false”; 

subsamblingRate=”auto”; impurity=”gini”; seed=”false” 
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The F1 score considered a harmonic average between precision in Eq. (2) and recall in Eq. (3) defined by 3 
 4 
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 6 

Matthews correlation coefficient (MCC) was introduced by Brian W. Matthews to predict the performance of 7 
protein secondary structure [52]. The results of MCC are in percentage. Therefore, MCC becomes a widely used 8 
performance metric in medical research for imbalanced data expressed by 9 
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 11 

Cohen’s Kappa coefficient (ĸ) was introduced by J. Cohen [53] in 1960 to correlate the measurement of inter-12 

rater reliability. Kappa measures the percentage of agreement between two raters. The formula to calculate Kappa is 13 
represented by 14 

                                                              ĸ = ./).0
1).0

                                                                              (6) 15 

where 23 is the percent of agreement among raters, as in Eq. (1), and 2� is the chance agreement. 16 

3 Results 17 

Significant observations revealed that the use of the selected features of CHI with PCA had the best results with the 18 
classifiers across all three datasets in most cases. All performance metrics are in percentage.  19 

 

 
Figure 2. Comparison of ML classifiers for Cleveland using accuracy and F1 score 
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3.1 Results comparing raw data with CHI-PCA 1 

In this section, we will compare the best results of the raw data with CHI and PCA. For CHI, we selected 13 2 

features, as shown in Table 4. PCA created the principal components using the same CHI features. Overall, 3 
Cleveland dataset obtained the best results using CHI-PCA (Figure 2 and Figure 3). Nevertheless, DT and GBT 4 
presented better results using raw data. Compared to the raw data, CHI and CHI-PCA improved in the computations 5 

of LOG, MPC, NB. However, the performance decreased with DT, and GBT. The greatest improvement was in 6 
MPC using the features of CHI-PCA. MPC had an 8.1% accuracy increase, and an F1 score of 9.1%, respectively. 7 
RF behavior was the same with raw data and CHI, computing a recall of 100%, an accuracy of 98.9%, an F1 score 8 

of 98.8%, an MCC of 97.7%, and a Kappa of 97.7%. CHI-PCA-NB presented the worst value, with an accuracy of 9 
68.4%, an F1 score of 75.7%, an MCC of 37.7%, and a Kappa of 33.7%. GBT presented a pattern when applied with 10 
CHI and PCA as shown in Figure 2. The values of MCC and Kappa are consistent among them.  11 

Figure 4 and Figure 5 present the best computations in the Hungarian dataset. The greatest result was CHI-PCA-12 
RF with 99.0% accuracy, 100.0% precision, 96.8% recall, 98.4% F1 score, 97.7% MCC, and 97.6% Kappa. 13 
Therefore, CHI-PCA presented the most remarkable performance. GBT, LOG, and RF obtained equivalent results 14 

when using CHI-PCA. Even with a lower accuracy, CHI-PCA-GBT computed a perfect recall of 100% and an F1 15 
score of 98.5%, only RF exceeds the result by obtaining a better MCC and Kappa. The computations of DT and NB 16 
decreased compared to the raw data. CHI computed the highest values using MPC and DT. Likewise, GBT, LOG, 17 

and RF calculated greater results than raw data with CHI features.  18 
Figure 6 and Figure 7 show the performance of the CH dataset. GBT with raw data, CHI-DT, CHI-PCA-LOG, 19 

and CHI-PCA-RF computed the highest accuracy of 99.4%. The F1 score was similar in all cases, with a variation 20 

of 0.2%. Most models performed better with CHI and CHI-PCA, except for GBT and NB. The greatest 21 
improvements between raw data and CHI-PCA were LOG with accuracy increase of 4.5%, F1 score of 4.8%, MCC 22 
of 7.5%, and Kappa of 7.5%, respectively. In addition, the values of MCC and Kappa using CHI and CHI-PCA are 23 

similar in some cases. 24 
 25 
 26 

 27 
 28 
 29 

 
Figure 3. Comparison of ML classifiers for Cleveland using MCC and Kappa 
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3.2 Results of the comparison of PCA using raw data and CHI 1 

Table 7 displays a comparison between PCA performance using the features of CHI and the raw data. The use of 2 
PCA in raw data had poor results in Cleveland and CH. The performance of the classifiers was reduced to around 3 

30% except for NB and MPC. NB was 3.4% higher in Cleveland and 2.7% higher in Hungarian; MPC computed an 4 
accuracy 1.5% greater in Hungarian. Although Hungarian computed lower results in raw data, they were closer to 5 
CHI-PCA. Except for MPC, the classifiers were between 4% and 9% lower in accuracy and 6% and 15% inferior in 6 

F1 score. As can be seen, PCA retained enough information from the raw data when k was adequate and became 7 
less competitive when k was too low or too high. For a large number of features and instances, PCA performance 8 
was superior when using CHI features. 9 

 10 
 11 
 12 

 
Figure 5. Comparison of ML classifiers for Hungarian using MCC and Kappa 
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Figure 4. Comparison of ML classifiers for Hungarian using accuracy and F1 score 
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3.3 Results of the classifiers comparing non-invasive test features 1 

We tested the results obtained by the non-invasive test in Table 8. The features involved were the thallium heart 2 

scan (THAL), the number of major vessels colored by fluoroscopy (CA), and whether exercise-induced angina 3 
(EXANG). In the case of Cleveland, these features had high data quality. If the results are compared to the Subset-A 4 
of Cleveland, some classifiers computed greater values than logistic regression, NB, and SVM. For Hungarian, CA 5 

did not exist, and THAL had a weak representation with only 9.5% completed. As a result, a deficient performance 6 
is reasonable considering the lack of information. In the case of CH, the representation of THAL was 53.5%. Some 7 
classifiers, such as DT, GBT, and NB, achieved competitive results. 8 

 
Figure 7. Comparison of ML classifiers for CH using MCC and Kappa 
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Figure 6. Comparison of ML classifiers for CH using accuracy and F1 score 
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4 Discussion 1 

4.1 Discussion comparing raw data with CHI-PCA 2 

Promising results were obtained with the use of CHI and PCA. In the first part of Section 3, only DT and GBT 3 

lacked improvement in some of the tests. This suggests that tree performance improves when using a large number 4 
of features due to supplying more options for the trees. NB dropped the worst results in all the tests. The classifiers 5 
LOG had remarkable results when using CHI-PCA. The MPC classifier obtained better results with CHI than CHI-6 

PCA, however the performance was below the rest of the classifiers in most tests due to a network overfit on the 7 
training dataset. When we increased the layers or neurons, the performance of the metrics decreased, suggesting that 8 
for a small input, such as the datasets in this study, MPC is more stable when using a smaller number of layers. 9 

Despite Cleveland, RF made an improvement using CHI-PCA. CHI obtained a remarkable result, and the 13 10 
features selected were prominent for heart disease detection. Significant observations revealed that PCA works best 11 
using LOG and CHI using MPC. Overall, LOG, and RF were the classifiers with the best performance and 12 

improvement with a smaller number of features. 13 
In most models, the precision value exceeded the recall. Thus, the classifiers computed models that were more 14 

sensible to false negatives than false positives. As false positives are examined by practitioners, it is more dangerous 15 

to have false negatives. Even so, the value of precision should not be diminished, so it is important to use the F1 16 
score to obtain the optimal balance between precision and recall.  17 

Table 7. Performance of the raw data and CHI-PCA 

 
 

Performance 

 

DT 

 

GBT 

 

LOG 

 

MPC 

 

NB 

 

RF 

Cleveland 

CHI-PCA  

Accuracy (%) 97.3 96.1 97.6 92.1 68.4 98.7 

Precision (%) 100.0 97.1 100.0 95.2 65.0 100.0 

Recall (%) 92.3 94.3 94.1 88.9 90.7 97.1 

F1 (%) 96.0 95.7 97.0 92.0 75.7 98.6 

Raw Data-PCA 

Accuracy (%) 62.8 74.7 73.3 74.0 70.7 67.9 

Precision (%) 57.1 59.5 60.0 74.2 67.9 77.1 

Recall (%) 66.7 73.3 77.8 65.7 55.9 58.7 

F1 (%) 61.5 65.7 67.7 69.7 61.3 66.7 

Hungarian 

CHI-PCA  

Accuracy (%) 95.5 98.8 98.8 94.0 82.8 99.0 

Precision (%) 90.3 97.0 100.0 88.9 84.4 100.0 

Recall (%) 96.6 100.0 96.6 94.1 71.1 96.8 

F1 (%) 93.3 98.5 98.2 91.4 77.1 98.4 

Raw Data-PCA 

Accuracy (%) 88.8 89.7 94.9 95.5 78.0 93.2 

Precision (%) 88.0 87.0 91.4 92.6 63.6 93.1 

Recall (%) 78.6 80.0 94.1 92.6 72.4 87.1 

F1 (%) 83.0 83.3 92.8 92.6 67.7 90.0 

CH 

CHI-PCA  

Accuracy (%) 98.4 98.9 99.4 88.6 68.8 99.4 

Precision (%) 100.0 97.3 100.0 87.1 70.8 100.0 

Recall (%) 96.3 100.0 98.6 83.6 55.3 98.6 

F1 (%) 98.1 98.6 99.3 85.3 62.1 99.3 

Raw Data-PCA 

Accuracy (%) 73.7 74.3 78.6 80.5 71.5 75.1 

Precision (%) 70.8 63.6 71.4 74.6 62.7 66.2 

Recall (%) 52.3 60.3 70.4 72.3 88.1 70.8 

F1 (%) 60.2 61.9 70.9 73.4 73.2 68.5 



Contrary to accuracy and F1 score, MCC and Kappa show the susceptibility of imbalanced data. In addition, the 1 

results were similar between MCC and Kappa in each classifier. LOG computed the best results using CHI-PCA. 2 
The Hungarian and CH datasets presented an imbalanced classification problem in which the rate of healthy patients 3 
was higher. The raw data in the imbalanced datasets had a greater difference in performance between accuracy and 4 

F1 score than the dimensionality reduction results (Table 9). The performance between accuracy and F1 score 5 
decreased in the datasets. The difference in Cleveland was not noted in the raw data due to the balance between the 6 
two classes. The greatest difference on average was when CHI was used. Even so, each result was lower than the 7 

overall average of 0.9%. Hungarian had the biggest difference between accuracy and F1 score due to an imbalance. 8 
The CHI and CHI-PCA averages decreased by 0.5% compared to the raw data. CH computed a 1.2% difference in 9 
raw data, which was higher than the average. The CHI and CHI-PCA values were 0.5% and 0.7%, respectively. 10 

MPC performed better on a balanced dataset such as Cleveland with an average of 0.4%, while Hungarian and CH 11 
had the worst performances with 2.0% and 2.7%, respectively. The models with the smallest differences between 12 
accuracy and F1 score were GBT, MPC, and RF. NB obtained the poorest results and was excluded from the 13 

average results. 14 

4.2 Discussion of the features selected by chi-square and the PCA results 15 

As in other studies [21, 44-46], the use of PCA after a reduction technique improved the results. The raw dataset 16 
produced poorer results in most of the cases (Table 7). The experiment in Section 3.2 compared the performance of 17 

raw data with our method. Like the other results, RF improved the computation when using raw data, while MPC 18 

Table 9. Comparison of the difference in performance between accuracy and F1score 

Dataset Method DT GBT LOG MPC RF Average 

Cleveland 

Raw data % 0.3 0.0 1.2 1.1 0.1 0.54 

CHI % 0.5 2.1 1.0 0.1 0.1 0.76 

CHI-PCA % 1.3 0.4 0.6 0.1 0.5 0.58 

Hungarian 

Raw data % 1.3 1.1 2.5 2.5 1.6 1.8 

CHI % 1.6 0.6 1.7 1.0 0.8 1.14 

CHI-PCA % 2.2 0.3 0.6 2.6 0.6 1.26 

CH 

Raw data % 0.3 0.0 1.4 2.7 1.3 1.14 

CHI % 0.1 0.1 0.3 2.0 0.4 0.58 

CHI-PCA % 0.3 0.3 0.1 3.3 0.1 0.82 

Average 0.87 0.54 1.04 1.71 0.61 0.96 

Table 8. Performance of non-invasive test values 

Dataset Performance DT GBT LOG MPC NB RF 

Cleveland 

Acc (%) 86.6 87.7 88.0 86.8 76.1 86.2 

Precision (%) 88.9 85.0 90.6 92.7 68.0 87.8 

Recall (%) 82.1 85.0 82.9 80.9 85.0 81.8 

F1 (%) 85.3 85.0 86.6 86.4 75.6 84.7 

MCC (%) 73.8 78.5 79.0 73.4 52.0 79.9 

Kappa (%) 72.7 77.9 78.7 71.4 80.8 78.8 

Hungarian 

Acc (%) 82.9 82.3 81.9 81.5 78.7 81.3 

Precision (%) 81.5 75.0 75.0 68.0 68.8 80.0 

Recall (%) 71.0 72.3 67.7 73.9 71.0 68.6 

F1 (%) 75.9 73.8 71.2 70.8 69.8 73.8 

MCC (%) 63.1 60.5 58.2 57.3 55.3 59.9 

Kappa (%) 62.8 60.5 58.1 57.1 55.2 59.4 

CH 

Acc (%) 87.3 85.6 80.2 80.5 74.9 86.4 

Precision (%) 84.9 90.0 81.4 80.9 100.0 86.5 

Recall (%) 78.9 76.1 66.7 63.3 40.5 81.0 

F1 (%) 81.8 82.0 73.3 71.0 57.7 84.0 

MCC (%) 68.6 71.1 57.4 57.6 44.0 72.2 

Kappa (%) 68.6 70.4 56.8 56.7 32.5 72.1 



was completely superior using CHI. CHI-PCA outperformed most experiments, especially with LOG as seen in 1 
Section 3.1, Section 3.3, and Section 3.4. NB did not present a competitive performance for any of the tests given.  2 

The top 13 features selected by CHI had a great validation for the compilers. The datasets had five vessels. Of 3 
these, four of the vessels were part of the left main coronary artery (LAD), considered the most important because it 4 
supplies more than half of the blood to the heart. The vessels were the proximal left anterior descending artery 5 

(LADPROX), the distal left anterior descending artery (LADDIST), the first obtuse marginal branch (OM1), and the 6 
circumflex (CXMAIN). Remaining was the proximal right coronary artery (RCAPROX), which is part of the right 7 
coronary artery (RCA). For the non-invasive, the selector considered THAL and CA with a high ranking. Features 8 

related to risk factors were not highly ranked by the selector, except for cholesterol. Physicians obtained other 9 
features that are part of the exercise test and correlated with heart disease and ST segment values. Taken together, 10 
the information obtained by the different tests aided in the diagnosis of heart disease and must be considered for 11 

model prediction.  12 
The risk factors that performed best in this study and that are cited by the WHO and the American Heart 13 

Association were high blood cholesterol, chest discomfort, inadequate physical activity (seen in the exercise 14 

electrocardiogram features). Other features, such as history of hypertension, smoking and the fasting blood sugar, 15 
were not complete and were difficult to compare with WHO and American Heart Association standards. 16 

4.3 Discussion of the invasive and non-invasive test 17 

The vessels’ models were enough to achieve a great result. The invasive test’s limitation was its exclusive use in 18 
patients with a previous heart attack, severe chest pain, abnormal electrocardiogram or stress test. The non-invasive 19 
features performed poorly, so they must be completed with more information. In the literature, other studies worked 20 

with the non-invasive testing. This study [51] compared psychological and physiological factors to predict angina on 21 
an exercise treadmill test (ETT), concluding that these factors are important in the prediction of exercise angina. 22 
Another study [59] concluded that there are sex differences in the experience of chest pain (pain features) and the 23 

prediction of exercise-induced angina, while [60] included some painful and non-painful sensations in the 24 
relationship with exercise-induced ischemia in women but not in men. [61] concluded that patients are more prone 25 
to have long-term survival from preoperative thallium scanning and coronary revascularization before major 26 

vascular surgery. Further studies should be conducted with the non-invasive variables.  27 

4.4 Discussion of the results with the literature 28 

We compared our results with earlier studies in Table 10 using Cleveland dataset. Our approach achieved greater 29 
results with raw data and the use of CHI with PCA. The accuracy, precision, and recall are used for the comparison. 30 
Hung et al. [48] classified the data using linear support vector machine (SVM), Naïve Bayes, and logistic regression. 31 

The best result was SVM obtaining 89.98% accuracy for raw data. Compared to our results, the values are lower 32 
than our classifiers, except for NB and MPC. 33 

Table 10. Comparison with other studies using the Cleveland dataset 

Author Method Accuracy Precision Recall Features 

Our study ChiSqSelector+PCA 

and RF 

98.7% 100.0% 97.1% 13 

Shamosollahi, 

et al., 2019 

[47] 

C&RT 92.6% 92.6% 90.4% 20 

Shamosollahi, 

et al., 2019 

[47] 

ANN 90.4% 97.1% 80.8% 20 

Mounika 

Naiudu, et al., 

2012 [49] 

K-mean based 

MAFIA with ID3 

85.0% 80.0% 85.0% NA 

Miao, et al.,  

2016 [50] 

Adaptative  

Boosting 

80.14% 81.5% 71.0% 29 



Each of the classifiers that used CHI-PCA outperformed the literature. Using a dimensionality reduction 1 
technique, CHI with PCA and RF classifier computed the best result using 13 features. Shamosollahi, et al. [47] 2 

used clustering to determine the k number. After, they performed decision tree and artificial neural network (a 3 
hidden layer with 3 nodes). The best result was the C&RT decision tree with an accuracy of 92.6%, and neural 4 
networks computing 90.4% accuracy. Mounika Naidu et al. [49] proposed the use of K-mean based on Maximal 5 

Frequent Itemset Algorithm (MAFIA) with ID3. The data was clustered using K-means algorithm with k value as 2, 6 
then MAFIA used the relevant cluster of 13 features and the ID3. The result of the experimentation was 85.0% 7 
accuracy. Miai, et al. [50] used an adaptative Boosting algorithm with an accuracy of 80.14% on Cleveland dataset. 8 

In addition, the authors computed on the Hungarian dataset an accuracy of 89.12%, which is below our models, 9 
except NB. The results of Cleveland were superior in all the metrics in the literature.  10 

Table 11 shows the comparative performance of CH with the literature. Hung et al. [48] performed the feature 11 

selection techniques of Infinite Latent Feature Selection (ILFS), Sort features according to pairwise correlations 12 
(CFS), Feature Selection and Kernel Learning for Local Learning-Based Clustering (LLCFS), and PCA. ILFS 13 
performed the best computation with 90.65% accuracy and was the classifier that used the least number of features. 14 

CFS, LLCFS, and PCA computed 89.93% accuracy, but they need at least 55 features to achieve that result. They 15 
used the datasets of Cleveland, Hungarian, and Switzerland. Our method outperformed the literature with a smaller 16 
number of features, such as in the case of Cleveland and Hungarian datasets. 17 

Table 12. Best models accuracy with other studies using the Subset-A of Cleveland 

Author Method Accuracy Tool Features Dataset 

Khanna, et al., 2015 [54] 
Logistic 

Regression  
84.80% - 13 50% training, 50% testing 

Khan, et al., 2016 [55] 
Decision Tree 

C4.5 
89.10% WEKA 13 70% training, 30% testing 

Khan, et al., 2016 [55] Random Forest 89.25% WEKA 13 70% training, 30% testing 

Khanna, et al., 2015 [54] SVM (linear) 87.60% - 13 50% training, 50% testing 

Kodati, et al., 2018 [56] Naive Bayes 83.70% WEKA 13 - 

Uyar, et. al., 2017 [57] 
GA based on 

RFNN 
96.63% - 13 85% training, 15% testing 

Santhanam, et al., 2013 

[58] 
PCA1 +FFNN 95.20% - 8 ±1 - 

Alotaibi, 2019 [62] SVM 92.30% - 13 10-fold cross-validation 

Latha & Jeeva, 2019  

 [63] 

Majority vote 

with NB, BN, RF 

and MP 

85.48% - 9 - 

Gupta et al., 2019 [64] 

MIFH (Factor 

analysis of mixed 

data + RF) 

93.44% - 28 - 

Table 11. Comparison with other studies using CH dataset 

Author Method Accuracy Precision Recall Features 

Our study Gradient-boosted Tree (GBT) 99.4% 100.0% 98.7% Raw data 

Our study ChiSqSelector+PCA and Logistic Regression 99.4% 97.6% 100.0% 13 

Hung, et al., 

2018 [48] 

Linear SVM 89.9% NA 87.0% Raw data 

Hung, et al., 

2018 [48] 

Infinite Latent 

Feature Selection (ILFS) 

90.7% NA 91.0% 39 



Table 12 contains the best models from the literature considering different methods using the features of Subset-1 
A. Some studies had high accuracy [57, 58, 62, 64], but we must consider that most of them only used accuracy, and 2 

important metrics such as precision, recall, and F1 score were not considered for evaluation. Furthermore, the 3 
dataset division was not mentioned in the articles [56, 58, 63, 64], or the testing dataset was small, as in [57], with 4 
only 45 test instances, which can lead to an error in the results. The non-hybrid models computed promising results 5 

for the trees [55], but SVM [62] was the only one with more than 90% accuracy. There is a gap in the SVM results 6 
between [54] and [62] of 4.7% with the only difference in the dataset, this must be address and verify in the future. 7 
According to the hybrid models comparison, when the dimensionality reduction was used, a better prediction of 8 

heart disease was obtained. Similar to our model, some of the hybrid models in the literature outperformed the 9 
others with the use of RF. Our CHI-PCA logistic regression model had the second greatest improvement when 10 
compared with raw data, this can be observed in [54] where the performance was the worst among the non-hybrid 11 

models.  12 
Based on these results, our model outperformed those in the literature. It is important when practitioners can only 13 

work with three or four times less than the given number of features and achieve competitive results compared to 14 

full features. Our method helps to reduce unnecessary patients’ attributes and reduce the amount of data. 15 

5 Conclusion 16 

In this paper, we proposed the use of a chi-square (CHI) with PCA to improve the prediction of machine learning 17 
models. The goal for the classifier was to predict whether a patient has heart disease. Use of complete features is not 18 

feasible when the system resources need to be considered. In this study, we successfully applied dimensionality 19 
reduction techniques to improve the raw data results. For the 74 features given, we selected three groups of features 20 
and achieved the best performance. It was found that among the classifiers, CHI-PCA with RF had the maximum 21 

performance, with 98.7% accuracy for Cleveland, 99.0% accuracy for Hungarian, and 99.4% accuracy for CH. Our 22 
aim is to find the best dimensionality reduction method for the prediction of heart disease in terms of performance, 23 
for this reason, CHI-PCA was the most consistent and preferable method.  24 

From the analysis, chi-square derived features of anatomical and physiological relevance, such as cholesterol, 25 
maximum heart rate, chest pain, features related to ST depression, and heart vessels. Our method can be employed 26 
in many real-life applications or in other medical diagnoses to analyze great amounts of data and identify the risk 27 

factors involved in different diseases. Our main limitation is the difficulty to extend these findings on heart disease 28 
due to the small sample size. For future developments, we plan to apply our method to a larger dataset and perform 29 
the analysis of some other disease with different feature selection techniques. 30 
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