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Abstract

The discrete network design problem (DNDP) is a well-studied bilevel optimization problem in transportation. The goal of the
DNDP is to identify the optimal set of candidate links (or projects) to be added to the network while accounting for users’ reaction
as governed by a traffic equilibrium. Several approaches have been proposed to solve the DNDP exactly using single-level, mixed-
integer programming reformulations, linear approximations of link travel time functions, relaxations and decompositions. To date,
the largest DNDP instances solved to optimality remain of small scale and existing algorithms are no match to solve realistic
problem instances involving large numbers of candidate projects. In this work, we examine the literature on exact methodologies
for the DNDP and attempt to categorize the main approaches employed. We introduce a new set of benchmarking instances for
the DNDP and implement three solution methods to compare computational performance and outline potential directions for
improvement. For reproducibility purposes and to promote further research on this challenging bilevel optimization problem, all
implementation codes and instance data are provided in a publicly available repository.
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1. Introduction

We consider the discrete network design problem (DNDP) which is a challenging problem in transportation, intro-
duced by Leblanc (1975). The DNDP can be formulated as a bilevel optimization problem where the leader problem
aims to identify the optimal network design to minimize network travel time and the follower problem represents net-
work users’ reaction, typically as a static traffic assignment problem (TAP) under user equilibrium (Wardrop, 1952).

The DNDP can be defined on a network with nodes N and directed links A as a multi-commodity network flow
problem with nonlinear link travel time functions. Let D be the set of destination nodes and dis be the demand from
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node i ∈ N to destination node s ∈ D ⊆ N . If the pair (i, s) is not an Origin-Destination (OD) pair in the network
then dis = 0 and to ensure flow conservation we set dss = −

∑
i∈N dis. We denote xij,s the flow of on link (i, j) ∈ A

travelling to destination s ∈ D, and xij the total flow on link (i, j) ∈ A. Let tij represent the travel time on link
(i, j) ∈ A, typically modelled as a strictly convex function of the total link flow xij to ensure the uniqueness of the
equilibrium link flows. Let A1 be the set of existing links and A2 be the set of candidate links to improve the network,
A = A1 ∪ A2. For each link (i, j) ∈ A2, let gij be the cost of adding this link to the network and let yij ∈ {0, 1}
be the variable representing this choice. Let B be the available budget for optimization. In the resulting formulation
DNDP, L is the leader problem and F is the follower problem.

The leader problemL aims to minimize the total network travel time defined as the sum of xijtij(xij) over all links,
subject to a budget constraint capturing the cost of link addition decisions y—hereby referred to as the leader variable.
The link flow pattern variable x = [xij ](i,j)∈A is optimized in the follower problem F , which is the traditional link-
based TAP formulation under UE (Beckmann et al., 1956; Leblanc, 1975; Magnanti and Wong, 1984). The impact of
the leader variable y in the follower is achieved through the constraint xij ≤ yijM wherein M is an upper-bound on
the total link flow xij .

(L) min
y

∑
(i,j)∈A

xijtij(xij)

s.t.
∑

(i,j)∈A2

yijgij ≤ B

yij ∈ {0, 1} ∀(i, j) ∈ A2

(F) x ∈ arg min
x

∑
(i,j)∈A

∫ xij

0

tij(v)dv

s.t.
∑

j∈N :(i,j)∈A

xij,s −
∑

j∈N :(j,i)∈A

xji,s = dis ∀i ∈ N, ∀s ∈ D

∑
s∈D

xij,s = xij ∀(i, j) ∈ A

xij ≤ yijM ∀(i, j) ∈ A2

xij,s ≥ 0 ∀(i, j) ∈ A,∀s ∈ D

(DNDP)

The goal of this paper is threefold. The first objective is to present a summary of the state-of-the-art of exact method-
ologies for the DNDP (Section 2). The second objective is to discuss existing methodologies, including mathematical
formulations and solution algorithms, and propose a new taxonomy of exact methods for the DNDP (Section 3). The
third objective is to conduct a computational benchmark of selected methodologies to highlight existing computational
bottlenecks and outline future research directions. To promote knowledge exchange and ensure results reproducibility,
all codes of implemented methodologies, as well as new benchmark instances for the DNDP, are provided in a public
repository available at https://github.com/davidrey123/DNDP. In achieving these objectives, this paper
aims to provide a new foundations to engage the scientific community and to foster research in developing novel exact
and scalable methodologies for the DNDP.

2. State-of-the-art

Several efforts have been proposed to solve the DNDP to global optimality. The seminal work of Leblanc (1975)
introduced a Branch-and-Bound (B&B) algorithm for the DNDP which used the system-optimum (SO) relaxation of
the TAP to find lower bounds. This relaxation requires fixing all unfixed y variables to 1 to avoid Braess’ paradox
effects (Braess, 1968), and may thus lead to poor lower bounds. Gao et al. (2005) introduced a mixed-integer nonlinear
programming (MINLP) approach based on generalized Benders’ decomposition. The authors proposed a benchmark
network with a single origin-destination (OD) pair, 12 nodes, 17 existing links and 6 candidate links, commonly
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referred to as Gao’s instance. They also provided results for an instance based on the Sioux Falls network which
contains 24 zones and nodes, 76 existing links and 5 candidate projects (which may involve one or more links) but
computation time is not reported. It was noted by Farvaresh and Sepehri (2013) that despite claims of global optimality,
the proposed approach of Gao et al. (2005) may converge to local optimums.

Bilevel optimization problems with a convex follower problem can be reformulated into single-level formulations
by representing the follower problem using its Karush-Kuhn-Tucker (KKT) conditions and introducing binary vari-
ables to model complementarity slackness conditions (Bard, 2013). This applies to the DNDP since the follower
problem is a TAP which can be represented as a convex nonlinear program (NLP) (Beckmann et al., 1956). Farvaresh
and Sepehri (2011) proposed a mixed-integer linear programming (MILP), single-level reformulation of the DNDP
obtained using piecewise linear approximations of link travel time functions. Numerical results are only reported for
Gao’s instance and an extended network based on Gao’s instance which contains 16 nodes, 17 existing links and 25
candidate links, and 2 OD pairs. Farvaresh and Sepehri (2013) proposed a more scalable approach which extends the
seminal B&B of Leblanc (1975) by solving the SO relaxation of the DNDP—instead of the TAP—as a mixed-integer
nonlinear program (MINLP) to provide tighter lower bounds. This extended B&B algorithm was shown capable to
solve instances with up to 100 nodes, 387 links and 15 candidate projects.

Luathep et al. (2011) proposed an SO-relaxation based approach wherein variational inequalities (VIs) are itera-
tively added to ensure UE conditions. Numerical results are reported for Gao’s instance, as well as for an instance on
Sioux Falls network with 5 candidate projects, and a variation with 10 candidate projects for a mixed (discrete and con-
tinuous) case. Fontaine and Minner (2014) proposed a Benders’ decomposition of a single-level MILP reformulation
of a linearized DNDP with piecewise linear approximations of link travel time functions. Using this decomposition,
the authors are able to solve this linearized DNDP on a network of Berlin’s centre containing 36 zones, 398 nodes,
871 links and 10 candidate projects.

Wang et al. (2013) studied an extended DNDP where the capacity of candidate links must also be decided. They
present two global optimization algorithms which are based on the SO-relaxation of the DNDP, as well as a dynamic
outer approximation of link travel time functions to derive lower bounds. Numerical results for a Sioux Falls network
instance with up to 10 candidates links and 3 levels of capacity are reported. Wang et al. (2015) extended the DNDP
to a variant involving both discrete and continuous decisions variables for adding links and determining their capacity,
respectively. The authors used the VI formulation of Luathep et al. (2011) but combine it with an outer approximation
of link travel time functions. Numerical results are only reported for Gao’s instance. Bagloee et al. (2017) proposed a
B&B algorithm which uses a generalized Benders’ decomposition approach to solve the SO-relaxation of the DNDP
at each node of the tree. Results on Sioux Falls and Winninpeg’s network are reported with up to 20 candidate projects.

Although several efforts have been proposed to solve the DNDP or a linear approximation of this problem, the
literature on exact or near-exact approaches remains scarce. Further, there is no reference datasets for benchmarking
solution methods which undermines the research on this challenging bilevel optimization problem.

3. Exact methodologies for the DNDP

In this section, we discuss formulations and algorithms to the solve the DNDP to optimality. We start by discussing
the role of link travel time functions and attempt to categorize existing solution methodologies for the DNDP.

3.1. Link travel time functions approximations

A major computational challenge inherent to the DNDP is the nonlinearity of the link travel time functions tij(xij),
typically Bureau of Public Roads (BPR) functions. The consensus on link travel time functions is to use strictly convex
functions of the form tij(xij) = Tij + cijx

eij
ij where Tij represents link free-flow travel time, cij is a coefficient

which captures link capacity and eij ≥ 1 is an exponent; to ensure uniqueness of the link flow solution. The vast
majority of existing data for link travel time functions of this form assumes eij = 4 for all (i, j) ∈ A. Link travel
time functions are present in the objective function of both leader and follower problems in the form xijtij(xij)

which involves the nonlinear term x
eij+1
ij . This term, and sometimes term x

eij
ij , have been either approximated using

piecewise linear functions (Farvaresh and Sepehri, 2011; Luathep et al., 2011; Fontaine and Minner, 2014) or using
linear outer approximation schemes (Wang et al., 2013, 2015).
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Piecewise linear approximations require discretizing the domain of link flow variable x intom disjunctive segments
and requires O(m) auxiliary variables to adjust the approximated nonlinear term according to the segment activated.
The domain of link flows is typically defined as xij ∈ [0, x̄ij ] where x̄ij is the maximum flow that can travel on link
(i, j). Determining tight values for the upper bound x̄ij is not trivial and using a conservative value such as the total
demand of the network may lead to poor approximation schemes. However, since the nonlinear terms xeijij and xeij+1

ij

are convex on [0, x̄ij ], piecewise linear approximations of these terms do not require any integer variables, as noted
by Farvaresh and Sepehri (2011) and in Fontaine and Minner (2014). Hence, while piecewise linear approximation
may require a significant amount of additional variables and linear constraints to achieve high-quality solutions, their
impact on computational performance can be moderate.

Outer approximations of link travel time functions attempt to derive compact convex envelopes of nonlinear terms
x
eij
ij and x

eij+1
ij using integer-linear constraints. These schemes are notoriously computationally challenging but

guarantee that the original (non-linearized) DNDP is solved to optimality. Only in rare cases have link travel time func-
tions been incorporated without any direct approximation scheme (Farvaresh and Sepehri, 2013; Bagloee et al., 2017).

We next discuss exact methodologies for the DNDP which have adopted one of the above approaches to handle
link travel time functions. Since piecewise linear approximations of link travel time functions cannot be guaranteed to
converge to optimal solutions unless m→∞, such methodologies are referred to as linearized DNDP approaches.

3.2. SO-relaxation based approaches

Despite its potential weak initial lower bound, the SO-relaxation of the DNDP has emerged as a powerful mechanism
to conceive iterative solution methods for the DNDP. The SO-relaxation of the DNDP is a single-level optimization
problem which ignores the follower objective function as summarized in SO-DNDP.

min
x,y

∑
(i,j)∈A

xijtij(xij)

s.t.
∑

(i,j)∈A2

yijgij ≤ B

∑
j∈N :(i,j)∈A

xij,s −
∑

j∈N :(j,i)∈A

xji,s = dis ∀i ∈ N, ∀s ∈ D

∑
s∈D

xij,s = xij ∀(i, j) ∈ A

xij ≤ yijM ∀(i, j) ∈ A2

yij ∈ {0, 1} ∀(i, j) ∈ A2

xij,s ≥ 0 ∀(i, j) ∈ A,∀s ∈ D

(SO-DNDP)

3.2.1. Branch and bound

Solving SO-DNDP yields a lower bound on the optimum of DNDP which can serve as starting point of iterative
schemes. Leblanc (1975) was the first to propose a customized B&B algorithm which branches on unfixed y variables
to yield subproblems that refine the initial lower bound. At each node of the B&B tree, Leblanc (1975) approach
further relaxed SO-DNDP by temporarily fixing all unfixed y variables and solving the resulting SO-TAP using a
convex programming algorithm, e.g. Frank-Wolfe. This B&B scheme was refined and extended by Farvaresh and
Sepehri (2013) which proposed to solve SO-DNDP at each node of the tree using a global MINLP algorithm. Upper
bounds are obtained by solving the TAP under UE conditions after obtaining y from SO-DNDP.

Bagloee et al. (2017) proposes a B&B algorithm which uses generalized Benders’ decomposition approach to
solve the SO-relaxation of the DNDP at each node of the tree. The proposed algorithm is parameterized using a value
(denoted α) which influences the solution of the TAP solved therein. The algorithm is not guaranteed to find global
optimal solutions if α 6= 1.
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3.2.2. Variational inequalities

Luathep et al. (2011) proposed a cutting-plane algorithm to complement formulation SO-DNDP with VIs that char-
acterizes UE conditions (Dafermos, 1980). Let ΩF be the polyhedron of the feasible region of the follower problem
F and let x? be the UE link flow pattern, the following VI holds.

∑
(i,j)∈A

tij(x
?
ij)(xij − x?ij) ≥ 0 ∀x ∈ ΩF (1)

The approach of Luathep et al. (2011) is based on the observation that VIs corresponding to the set of extreme
points of the TAP polyhedron is sufficient and necessary to characterize UE conditions. At each iteration, SO-DNDP
is solved with a restricted set of VIs and shortest path problems are solved for each OD pair to identify violated VIs
of the form (1), which are then added as cuts to SO-DNDP until none can be found.

3.2.3. Interdiction cuts

Wang et al. (2013) observed that it was sufficient to iteratively forbid the last y solution found to construct a UE
solution from the SO-relaxation of the DNDP. At each iteration, the proposed algorithm first solves SO-DNDP before
calculating the UE cost of the corresponding y solution using any TAP algorithm to obtain an upper bound. The
process is then repeated by adding an interdiction constraint to identify the next-best SO network design. Let yk be
the optimal solution of SO-DNDP at iteration k. At iteration k+1, SO-DNDP is solved with the interdiction constraint

∑
(i,j)∈A2

(
yij(1− ynij) + (1− yij)ynij

)
≥ 2 ∀n ∈ {1, . . . , k} (2)

The iterative process is repeated until the resulting objective value is greater than or equal to the upper bound.

3.3. KKT conditions based approaches

Since the TAP can be formulated as a convex optimization problem, an intuitive approach to solve the DNDP is to
replace the follower problem F by its KKT conditions. Farvaresh and Sepehri (2011) proposed such a direct approach
wherein the KKT conditions of the TAP are represented with auxiliary variables. Let πis ≥ 0 be the travel time or
path travel time from node i ∈ N to destination s ∈ D. The UE conditions of the TAP require:

tij(xij)− πis + πjs ≥ 0 ∀(i, j) ∈ A,∀s ∈ D (3a)
xij(tij(xij)− πis + πjs) = 0 ∀(i, j) ∈ A,∀s ∈ D (3b)

The complementarity slackness conditions (3b) is nonlinear and typical mathematical programming approaches
require additional binary variables to obtain an integer-linear form suitable for MILP. Farvaresh and Sepehri (2011)
observe that this surplus of binary variables yields considerable computational challenge. Fontaine and Minner
(2014) proposed an alternative approach to incorporate the KKT conditions of the TAP which consists of replacing
the objective of the follower problem F with a primal-dual constraint which requires a null duality gap. This method
is applied to a linearized DNDP, which results in a single-level MILP composed of leader, primal follower and dual
follower constraints and variables, with the addition of the primal-dual constraint. This MILP does not require any
additional binary variable and the authors propose a Benders’ decomposition approach.

A summary of the solution methods discussed is provided in Table 1. Most of these methodologies can be adapted
to work with piecewise linear approximations or outer-approximations of link travel time functions. While the former
only solves the so-called linearized DNDP, piecewise linear approximations are often capable of identifying global
optimal solutions of the original problem and are, at the same time, substantially easier to implement. In the remaining
of this paper, we focus on the linearized DNDP and present some computational results on new instances of the DNDP.
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Link travel time function Type(s) of optimization
Paper Method approximation problem solved

Leblanc (1975) SO-relaxation and B&B N/A Convex NLP
Gao et al. (2005) Generalized Benders’ N/A MINLP and Convex NLP

decomposition
Farvaresh and Sepehri (2011) KKT conditions Piecewise linear MILP
Luathep et al. (2011) SO-relaxation and VIs Piecewise linear MILP and LP
Farvaresh and Sepehri (2013) SO-relaxation and B&B N/A MINLP and Convex NLP
Wang et al. (2013) SO-relaxation and Outer linear MILP and Convex NLP

interdiction cuts
Fontaine and Minner (2014) KKT conditions and Piecewise linear MILP and LP

Benders’ decomposition
Wang et al. (2015) SO-relaxation and VIs Outer linear MILP and LP
Bagloee et al. (2017) B&B and Generalized N/A MINLP and Convex NLP

Benders’ decomposition

Table 1. Summary of exact methodologies for the DNDP.

4. Computational benchmarking of the linearized DNDP

4.1. Algorithms implementation

We implement three solution methods for the linearized DNDP: i) the B&B algorithm of Farvaresh and Sepehri (2013)
which is an extension of Leblanc (1975)—SOBB; ii) the SO-relaxation based algorithm of Wang et al. (2013) with
interdiction cuts—SOIC, and iii) the primal-dual formulation of Fontaine and Minner (2014) as a single-level MILP
(without Benders’ decomposition)—MKKT. All three solution methods, SOBB, SOIC and MKKT, are implemented
using the piecewise linear approximation of link travel time functions proposed by Farvaresh and Sepehri (2011).
Hence, in all cases, the optimization problems solved are MILPs and LPs (TAPs within SOBB and SOIC are solved
in their linearized form). This differs from the original implementation of Farvaresh and Sepehri (2013) and Wang
et al. (2013), wherein outer approximation schemes are used. In addition, the method MKKT is implemented as direct
MILP approach unlike the Benders’ decomposition scheme proposed in Fontaine and Minner (2014). To measure the
quality of the approximated solutions, the flow pattern corresponding to the best (lowest leader objective value) y
solution among all three methods is calculated by solving the TAP as a convex problem.

All methods are implemented in Python. All MILPs and LPs are solved using CPLEX 12.8. Convex TAPs are
solved using the Pyomo module and IPOPT. All solution methods were tested and implemented on the same Windows
7 machine with 16Gb of RAM and a CPU of 2.7Ghz, in a single-thread mode with a time limit of 10 minutes. The up-
per bound on link flows x̄ij was set to 1e5 and this value is also used forM . The number of segments used in the piece-
wise linear approximations of link travel time functions ism = 100. A scaling factor of 1e−3 is used to scale travel de-
mand and link capacities as it was found to improve computational performance. For reproducibility purposes, all im-
plemented optimization formulations and codes are provided at https://github.com/davidrey123/DNDP.

4.2. Benchmark instances

New instances for the DNDP based on Sioux Falls network1 have been designed to test the implemented solution
methods. For these new instances, a total of 15 pairs of new links (total of 30 links) have been created, along with
their performance characteristics and addition costs. Among these new links, 5 of the 15 pairs are identical to the ones
used by Luathep et al. (2011). A total of 20 DNDP instances have been created, 10 of these contain 10 new links (5
pairs) and are named SF DNDP 10, and the remaining contain 20 new links (10 pairs) and are named SF DNDP 20.
In all our numerical experiments, link addition variables are not paired, i.e. the size of A2 is equal to the total number
of new links which may or may not be added in pairs; hence instances SF DNDP 10 require 10 binary variables and

1 These instances are based on Sioux Falls network as available at https://github.com/bstabler/TransportationNetworks
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SF DNDP 10 SF DNDP 20

B% = 25% B% = 50% B% = 75% B% = 25% B% = 50% B% = 75%

Method AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO

SOBB 56.8 0.0 0.0 333.8 0.39 20.0 484.9 1.75 60.0 600.0 2.48 100.0 600.0 4.76 100.0 600.0 6.07 100.0
SOIC 33.8 0.0 0.0 283.4 0.31 20.0 357.5 0.69 40.0 600.0 3.76 100.0 600.0 4.44 100.0 600.0 5.26 100.0
MKKT 57.2 0.0 0.0 170.6 0.0 0.0 155.8 0.0 0.0 600.0 5.68 100.0 600.0 6.46 100.0 600.0 6.21 100.0

Table 2. Budget sensitivity experiment. Methods SOBB, SOIC and MKKT are implemented for instances SF DNDP 10 and SF DNDP 20 for a
budget B equal to B% = 25%, 50% and 75% of the total cost

∑
(i,j)∈A2

gij . The time limit is 10 minutes. AT is the average runtime in seconds,
AG is the average relative optimality gap upon termination in % and TO is the proportion of time-outs in %.

SF DNDP 10 SF DNDP 20

D% = 50% D% = 100% D% = 150% D% = 50% D% = 100% D% = 150%

Method AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO

SOBB 537.7 0.54 80.0 336.6 0.40 20.0 79.2 0.0 0.0 600.0 2.38 100.0 600.0 4.75 100.0 432.2 0.24 40.0
SOIC 513.8 0.56 80.0 284.6 0.34 20.0 14.6 0.0 0.0 600.0 2.14 100.0 600.0 4.44 100.0 254.9 0.12 30.0
MKKT 87.9 0.0 0.0 172.1 0.0 0.0 65.9 0.0 0.0 600.0 2.58 100.0 600.0 6.46 100.0 519.8 1.43 50.0

Table 3. Demand sensitivity experiment. Methods SOBB, SOIC and MKKT are implemented for instances SF DNDP 10 and SF DNDP 20 for a
budget B equal to 50% of the total cost

∑
(i,j)∈A2

gij and a demand of D% = 50%, 100% and 150% of the base demand. The time limit is
10 minutes. AT is the average runtime in seconds, AG is the average relative optimality gap upon termination in % and TO is the proportion of
time-outs in %.

instances SF DNDP 20 require 20 binary variables. All instance data is provided in the public repository available
at https://github.com/davidrey123/DNDP in the TNTP format. An extra column has been appended to
provide link cost data (gij) and a value of 0 indicates that the link is part of the original network (before optimization).

4.3. Numerical results

Two numerical experiments are conducted on instances SF DNDP 10 and SF DNDP 20: a budget sensitivity analysis
wherein the available budgetB is equal to 25%, 50% and 75% of the total cost

∑
(i,j)∈A2

gij , and a demand sensitivity
analysis wherein the budget is fixed to 50% of the total cost and travel demand is set to 50%, 100% and 150% of the
base demand. The average performance of all three methods implemented, i.e. SOBB, SOIC and MKKT, is reported
in Tables 2 and 3 for budget and demand sensitivity analysis, respectively.

We find that 10-project instances SF DNDP 10 can present considerable computational challenges, especially for
SO-relaxation based methods when the budget available is relatively high (B% = 75%). Increasing the number of
candidate links to 20 results in substantial difficulties in most cases, regardless of the method used, since most of the
time the methods implemented were not able to converge within the 10-minute time limit. The results of the budget
sensitivity analysis on SF DNDP 10 instances show that MKKT is often faster than other methods at medium and
high budgets (B% = 50%, 75%). In turn, SOIC and SOBB tend to time-out more frequently at these budgets, which is
likely due to the more substantial gap between UE and SO flow patterns when a high budget is available. At low budget
(B% = 25%), SOIC outperforms other methods. Instances SF DNDP 20 result systematically in time-outs and the
average optimality gap upon termination tends to increase with the budget. The performance of all three methods is of
the same order of magnitude, with optimality gaps in the range of 3%-6%. The demand sensitivity analysis highlights
the good performance of MKKT at low demand (D% = 50%) compared to other methods on SF DNDP 10 instances.
Increasing the demand to 150% of the base demand yields substantially easier problems, notably for SF DNDP 20
instances, and SOIC is found to outperfom other methods in terms of number of time-outs.

To assess the quality of the linear approximation of link travel time functions, we compare the network travel
time obtained by solving the TAP in its convex NLP form for the best y solution found among all three methods. The
deviation observed is on average of 0.28% with a standard deviation of 0.25%. Detailed numerical results are provided
in the supplementary material available at https://github.com/davidrey123/DNDP.
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5. Discussion and research directions

The DNDP is a challenging bilevel optimization problem with critical implications for network design in urban trans-
port systems. Over the past decade, exact methods have become more capable to solve non-trivial decisions problems.
We synthesized the literature on exact methodologies and discussed the main approaches developed to solve the
DNDP to optimality. In total, nine papers have been examined. Although some of these papers have not addressed
the DNDP in its present form, they have presented a methodology for a related problem which can be reduced to
the DNDP. The characteristics of the solution methods examined have been categorized in two types of approaches:
SO-relaxation based and KKT conditions based methods. A computational benchmarking of the DNDP was con-
ducted by adapting three solution methods and comparing their performance using the same piecewise linear link
travel time function approximation. For this benchmark, a total of 20 new instances for the DNDP have been cre-
ated. For reproducibility purposes, all implementation formulations, codes and benchmarking instances are available
at https://github.com/davidrey123/DNDP.

Overall, this study shows that even medium-size instances for the linearized DNDP can present considerable com-
putational challenges. The numerical experiments revealed that some 10-project instances and most 20-project in-
stances could not be solved within the imposed time limit (10 minutes). Although this time limit is relatively small,
all methods were implemented using a piecewise linear approximation of link travel time functions which is expected
to outperform outer approximations approaches.

Further research is critically needed to develop scalable exact methodologies for the DNDP and its variants. There is
ample empirical evidence suggesting that for large enough values ofm, the y-variable solution of the linearized DNDP
is identical to that of the original DNDP (Luathep et al., 2011; Farvaresh and Sepehri, 2011; Fontaine and Minner,
2014); although linearized link travel time functions cannot guarantee unique link flow solutions. Hence, identifying
balanced configurations (upper bounds, discretisation scheme) between solution quality and performance a priori to
refine the approximation scheme is not trivial and merits further efforts. In addition, while efficient algorithms for the
TAP have been proposed, the potential of such algorithms has typically not been integrated in solution methods for
the DNDP. Recent work by Rey et al. (2019) has outlined promising avenues to achieve this integration but additional
efforts are needed to provide global optimality guarantees on high-dimensional problems.
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