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In many textiles and fiber structures, the behavior of the material is determined by the structural arrangements of the fibers, their thickness and cross-section as well as the properties of the fibers themselves. However, this is only valid for materials, where the tension, bending and torsion deformation of yarns can be decomposed. In fibrous materials, this is the case when either bending or tension of the fibers is negligible. In textiles, it is the case when the friction between yarns is small. This theory is based on the mathematical modeling and homogenization approach and is illustrated by examples on woven structures and a spacer fabric. This paper summarizes rigorous results of asymptotic analysis and provides (1) an algorithm for computation of the shear, tension, torsion and bending properties of the textile as an orthotropic plate based on the elastic properties of yarns and the textile structure; (2) critical for its buckling force or pre-stress (thermal, swelling, etc.) computed by a simple formula from the effective textile elastic bending and tension properties; and (3) critical shear angles for the textile given in form of a simple formula in terms of the distance between yarns and their cross-section. All the theoretical results are given in terms of simple formulas and are validated in the paper by mechanical experiments.

Introduction

The structures of textiles and fabrics are periodic and consist of thin yarns. It is obvious that the structure of textiles plays an important role for their deformation. Therefore, it is important for the derivation of macroscopic properties for fabrics and textiles to estimate their effective properties based on the microscopic properties of fibers and yarns. The need to improve the understanding of the mechanical behavior of textile composites, has led to recent developments of phenomenological, analytical and computational methods.

The modeling of textiles depends on the grade of model simplification. Micro-or meso-scale modeling comprises separate yarns or rovings and textile deals with orthotropic shells on the macro-scale [START_REF] Girdauskaite | Modellierung und Simulation[END_REF]. According to the current state of the art, textile draping uses kinematic models [START_REF] Ween | Algotithms for draping fabrics on doubly-curved surfaces[END_REF] or finite element method at the macro or meso-scale [START_REF] Pickett | Textiles Process simulation and coupled mesoscopic composites analyses[END_REF].

Mack and Taylor were first to use the model [START_REF] Mack | The fitting of woven cloth to surfaces[END_REF], where they applied geometrical approach for non-stretchable rovings with crossing points in the joints. The model did not take into account mechanical material properties of the textiles (e.g. rigidity, frictional forces) and process parameters. The results allowed rough statements regarding the textile behavior.

FEM based macro-scale textiles treat macroscopic continuum where material properties and process parameters are taken into account. A homogenized anisotropic material law is used to map bending, elongation and shear behavior in the plane. The challenge with these models [START_REF] Pickett | An explicit Finite Element solution for forming prediction of fibre reinforced thermoplastic sheets[END_REF][START_REF] O'braidaigh | Sheet forming of composite materials[END_REF] is to set up the appropriate material parameters. The mechanical material parameters are usually determined in experiments. Current and fast calculation algorithms for membrane and shell elements with large deformations are described in [START_REF] Delingette | Triangular springs for modeling nonlinear membranes[END_REF][START_REF] Gilles | Frame-based intercactive simulation of complex deformable objects, Deformation Models[END_REF].

FEM based meso-scale textiles often use models of unit cells with mapped individual rovings. Because of the large number of contacts, the calculation at the meso-level requires significantly higher computing power [START_REF] Boisse | Finite element simulations of textile composite forming including the biaxial fabric behavior[END_REF].

For linear problems, multi-scale modeling approach saves computing time by separating the scales and keeping a high level of specification of textile structure. This means that one calculates the effective membrane properties in the meso-level simulation for a small selected area with a known stress-state and transfers them to a macro-level simulation or vice versa [START_REF] Fillep | Homogenization in periodically heterogeneous elastic bodies with multiple micro contact[END_REF]. In [START_REF] Vassiliadis | Numerical Modelling of the Compressional Behaviour of Warp-knitted Spacer Fabrics[END_REF], the authors use multi-scale modeling to calculate the effective properties of textiles. The mechanical material parameters are determined numerically.

The contribution presents qualitative results of some recent analysis on textiles design. We discuss the following topics: 1) effective prediction of mechanical properties; 2) buckling caused by in-plane compressible forces; and 3) folding initiated by critical shear deformations. Our methods are based on homogenization approach. We propose design of woven structures and spacer fabrics satisfying required stability properties. We provide simple formulas to compute critical for the folding deformations in terms of geometrical characteristics and stiffness of textiles. 

Nomenclature

Effective properties of periodic plates

We assume that textiles are thin periodical structures composed of elastic yarns. We modelled yarns as isotropic elastic beams of constant cross-section. The general strategy in this section is to obtain a homogenized model of the textile that is based on von-Karman plate model (fibers are glued).

The homogenization (for details see [START_REF] Griso | Asymptotic behavior for textiles, accepted for publication[END_REF]) of the textile begins with general results for one periodically oscillating single beam of the textile. We analyzed the beam with the help of the decomposition of displacements. Especially for the oscillating behavior in the textile, we introduce new displacements to simplify estimates and asymptotic behavior. Then we transfer results to the textile structure and introduce a splitting to global and local displacements. The global fields are defined by the displacements on the contact areas and extended to the plate domain. The method to investigate the limit 0 → ε is the unfolding operator. The original problem of the textile is three dimensional elasticity problem on the given space. Thus for a complete description a material law is needed. Hereafter, we consider the usual Hooks law satisfying.

Although beams are isotropic, the resulting homogenized textile is orthotropic [START_REF] Griso | Asymptotic behavior for textiles in von-Karman regime[END_REF]. The homogenized energy is:
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Here αβ χ represent solutions of singles experiment problems (indices m and b correspond to membrane and bending components respectively);
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; * Y -periodicity cell; y e -symmetric strain tensor with respect to y ; M -the unit perturbations with periodic boundary conditions: (see [START_REF] Griso | Asymptotic behavior for textiles in von-Karman regime[END_REF]) for the rigorous proof). Furthermore, the coefficients are constant for small deformations and can be found in [START_REF] Hauck | Design optimization in periodic structural plates under the constraint of anisotropy[END_REF]. In the case of nonlinear elasticity, their magnitudes depend on strain level.
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We calculated the homogenized coefficients (2) numerically with own beam based finite element code FiberFEM, extended to contact conditions. The software is based on asymptotic methods developed for textiles over several years at ITWM. The resulting algorithms are documented in several publications; see in particular [START_REF] Griso | Asymptotic behavior for textiles, accepted for publication[END_REF][START_REF] Griso | Asymptotic behavior for textiles in von-Karman regime[END_REF][START_REF] Hauck | Design optimization in periodic structural plates under the constraint of anisotropy[END_REF][START_REF] Wackerle | Optimization of Buckling for Textiles[END_REF]. Although, the computational tools can work with general nonlinear force-strain curves of yarns (see [START_REF] Shiryaev | A one-dimensional computational model for hyperelastic string structures with Coulomb friction[END_REF][START_REF] Shiryaev | Extension of One-Dimensional Models for Hyperelastic String Structures under Coulomb Friction with Adhesion[END_REF]), in the examples below, the linear elastic yarns with contact interactions are handled. As input data, we processed material curves for the yarns, the Roving cross sections and the type of bonding (see Fig. 3). 

Buckling of textiles

The buckling phenomenon is in the mathematical context a bifurcation problem and characterizes a loss of stability of the structure. This means that the solution suddenly changes its state and usually can attain multiple states with equal probability. The buckling of plates can be modelled in various ways. One of the simpler models used for buckling problems of plates is the von-Karman plate. The nonlinearity of the von-Karman model allows to transfer in-plane forces to bending displacements, which is not possible for linear models. However, for linear models, as the Kirchoff-Love plate, it is still possible to compute the eigenmodes of the problem which gives also a kind of buckling analysis. In [START_REF] Lecumberry | Stability of slender bodies under compression and validity of the von Karman theory[END_REF] the authors show that linear and nonlinear stability are close to each other in the sense that the critical loads are equal for isotropic materials. In the following, we chose the von-Karman plate to model buckling behavior.

For clarification of the buckling of a von-Karman-plate, we revisit an example made in [START_REF] Berdichevsky | Variational Principles of Continuum Mechanics: I. Fundamentals[END_REF] with some small changes. We consider a plate that is infinitely long in one direction and is subjected to a force F in the lateral direction, see Fig. 
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for isotropic case [START_REF] Panasenko | Multiscale structures and composites[END_REF]; h -thickness; E -Young's modulus; ν -Poisson's ratio. Since only the bending displacement 3 U is of interest, the energy is first minimized with respect to Z , that allow to get a constraint, providing dependence of the inplane displacements on the bending one: This allows to express the energy in terms just bending, i.e.,
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This energy only depends on [START_REF] Pickett | Textiles Process simulation and coupled mesoscopic composites analyses[END_REF] U and allows to distinguish between two cases: 1) tension -for 0 > F ; 2) compressionfor 0 < F . For the tensional case the energy is always a convex functional and admits a unique solution, namely 0 3 = U . In the case of compression it depends heavily on the magnitude of F . While for small force F the bending dominates the energy, a growing F yields that the bending is outgrown. The functional becomes non-convex since the second part of the energy is no more bounded from below. In fact, this is a violation of the coercivety of the problem and the solutions are no more unique. For the further investigation, assume henceforth 0 < F . The mathematical explanation uses the Poincare-Wirtinger inequality:
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dx U L F c h U J L L hom hom 2 3 11 2 2 1111 3 3 ) ( ] [ 2 1 ) ( ∂ - ≥ ∫ - π . ( 7 
)
Note that the coefficient in front of 

= - = , ( 8 
)
the energy is still convex and coercive and the only solution is as in the tension case 0 3 = U . Now assume the force cr F F = for which the functional is obviously still bounded from below, but the solution is no more unique and the minimum of the energy is attained on a family of functions. These functions are characterized by the Poincare-Wirtinger inequality (4) which has to be fulfilled with equality leading
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, for an arbitrary constant R C ∈ . The fact that the sign of C is not defined directly corresponds to the bifurcation in the problem where it is not determined in which direction the displacement is oriented.

In [START_REF] Griso | Asymptotic behavior for textiles in von-Karman regime[END_REF] we homogenized the von-Karman orthotropic plate with a rotational symmetry as in woven textiles for isotropic and homogeneous yarns under compression (the multidimensional case of the plate [START_REF] Berdichevsky | Variational Principles of Continuum Mechanics: I. Fundamentals[END_REF]). And we again obtained the critical for the folding loading from the condition that the energy is coercive: 

Note that for isotropic case corresponding to the critical force (8), we have: 

In fact, the boundary conditions heavily affect the critical strain. Indeed, following the results in [START_REF] Griso | Asymptotic behavior for textiles, accepted for publication[END_REF], choosing for instance the homogeneous tension displacement is exceeded. Note that the buckling is not in tension direction but in the lateral direction where the compression is induced.
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This critical strain reduces for isotropic plate to (
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which coincides with the critical strain derived in [START_REF] Puntel | Wrinkling of a stretched thin sheet[END_REF].

Computation of critical pre-stress in orthotropic plates is a new result. Additionally, we give a short algorithm, how to compute the macroscopic pre-strain in the textile from a given pre-stress in yarns. We consider the local pre-stress in yarns from their pre-strain in the form:
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Then the effective pre-strain is:

[ ] Further, we give an illustration to the first buckling model with a compression of an infinite in x1 direction plate. We optimize here the longitudinal yarns by putting of longitudinal strips with different stiffness, to reach a target given shape of the fold under the buckling.
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On Fig. 3, we start with a wished shape g u of the folding and a constant stiffness init c of a plate (belt or thin sheet) and then allow for longitudinal strips in the belt, woven of different yarns and possessing different stiffness. The optimization is performed under the constrain that the averaged longitudinal stiffness of the belt remains constant. Further examples can be found in [START_REF] Wackerle | Optimization of Buckling for Textiles[END_REF]. The parameters used in the simulations below use following numbers: the length L = 1 the thickness h = 1mm, the Poisson's ratio ν = 0.3, Young's modulus E = 2.5GPa and
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Folding of textiles

In the previous section, we investigated the buckling of the thin sheet under the compression. In this section, we consider another type of the folding. We analyze the influence of the boundary fixation on the textile folding. Later we discuss the forecast of the critical force the start of folding shear angles.

On the figure below, we make a sketch of different zones in a woven textile up to the boundary fixation of the yarns in each direction. The analysis performed in [START_REF] Griso | Asymptotic behavior for textiles, accepted for publication[END_REF] provides the following results for zones that are classified pure geometrically (Fig. 4a). In the green parts (the corners) of the domain the displacements are small, i.e., of the order of the textile or yarns thickness; in the red zone (the middle) all yarns do not touch the fixed boundary. This part is dominated by rotations or high gradients as in [START_REF] Ferretti | Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory[END_REF]; in the yellow parts (the rest part of a plate) just vertical or horizontal yarns are fixed. There we have small (of the order of the thickness) displacements for the fixed yarns, but large displacements (or rotations) for the yarns in the non-fixed direction.

We can conclude, that these zones can be found pure geometrically and do not depend on the weave-pattern or mechanical properties, just on the change of boundary conditions for yarns in each direction.

Calculation of shear angles of textiles due to geometric textile data

This section is the explanation of the contact analysis results recently obtained in [START_REF] Griso | Asymptotic behavior for textiles, accepted for publication[END_REF].

Under shear loading, textiles can lead to imperfections such as folding, which not only affect the appearance, but also the stability of the component. These errors in production should be avoided. The beginning of folding is characterized by the shear angles, which can be computed by a formula depending only on geometrical parameters of the textile. The computations have an accuracy as physical measurements. In order to take advantage of the fiber-reinforced materials and to integrate the components accurately into the production process, the right combination of yarns and weaving kind must take into account a whole range of parameters.

We have developed a new method of analysis, how to predict the shear angle (Fig. 5) purely geometrically based solely on the information about the distance between the fibres, the fibre cross sections and the binding cartridge. The formula was obtained in [START_REF] Griso | Asymptotic behavior for textiles, accepted for publication[END_REF] for macroscopic coordinates:
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where x′ is the in-plane coordinate, , where q is a fractional part of the free space between yarns, which is uncertain in the model and is a property of the material or friction. Same formula holds for x -direction. If assume only the rotation (no sliding) at the cross-points, the critical shear angle z R can be computed along from the topological (geometric) characteristics of the woven, i.e., 

The table below shows the experimental validation of the theoretical prediction. It came out that 0135 . 0 = q and is independent of the material (it is approximately the same number for glass and carbon and for different radii of the fibres and distance between them). The computational errors for this number from the experimental validation are 1-2% that corresponds to angle of 3°. We need to note here that this formula can only be used for very flat fibers, almost pleats with very smooth surface and very low friction.

This analysis result was validated in the AIF-project OPTI-DRAPE by experiments performed with several preprags by RWTH Aachen Institute of Textile Technology. We studied the sensitivity of the shear angles to the textile design and made the results available in the form of the graphic designers shown below (see Fig. 7). These results and tools are the basis for the development of new smart textiles with predetermined folding angles. The developed textile software calculates the characterizing tensile and bending properties as well as the critical shear angles -within the same tolerance range as physical test procedures. Both come to a variance of around five percent -that means, even mathematically, the critical shear angle can be determined in advance to two to three degrees.

Influence of the variation design on the textile properties

The modelling and simulation technique allow to parameterize the textile structure and to systematically vary the parameters. For example, distances, cross-section of yarns or even yarns themselves can be changed (see subsection 6.1). In addition, the angle between the fibers can be varied (see subsection 6.2).

Variation of distance between yarns

For periodical cells (Fig. 8, 10), the basic dimensions of the cells have been varied: either x or y. The results on the variation of the distance between yarns are in Fig. 9, 11 and in the tables 2, 3. The results show that the effective textile properties depend continuously on the parameters. 

Variation of angle

In this subsection, we present results for the textiles with diagonal fibers (see Fig. 6a) where we change the angle β (see Fig. 1213).

In the calculations, we assume the following parameters of the fibers: E = 200kPa, and ν = 0.3. The fibers are rectangular.

There is a contact element between them. The cross-section of the lower fiber has the inertia moments y I = 0.002667, z I = 1.0667, and area A = 0.8. For the upper fiber, we chose the inertia moments y I = z I = 7.854e-5, and area A = 0.031416.

Note that values of geometrical characteristics are normalized and effective properties have the same units as the fibers. We consider 4 types of loading: 2 tensions (Fig. 12), shear and bending (Fig. 13). The results show that the effective textile properties depend continuously on the parameters as it was for the case of variation of distance between the fibers. This information is crucial for the optimization of textile design. 

Conclusion

The main results of our research consist in the following. We propose simple formulas to design of textiles with required properties.

Pre-strain in yarns determines the pre-stress/pre-strain in the elastic plate and reasons of its buckling or folding. Therefore, we can optimise the folding of the plate by changing the design of the textile or replacing yarns.

Critical for the wrinkling shear angles can be simply computed from pure geometry of the textile with an accuracy not worse than in the measurements.
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 1 Fig. 1. Computation of homogenized coefficients: (a) tension; (b) shear; (c) bending; (d) torsion.

  2. This allows to reduce the problem to the one-dimensional, the in-plane elongation or compression, and by 3 U the bending displacement. As boundary conditions assume 0 3 1 3

Fig. 2 .

 2 Fig.2. Plate under compression.

.

  Here w is a test function for deflection; p χ is a corrector for given strain problem; and β α ′ ′ M are 3x3 matrices with zero entries except of 1 on the place with index β α , and denote a simple tension-shear in-plane experiments on the textile periodicity cell.

Fig. 3 .

 3 Fig.3. The initial init u , goal g u and final opt u buckling modes of textile; and corresponding initial init c and final opt c stiffness.

Fig. 4 .

 4 Fig.4. Principal zones of yarns (a); and folding in 45°-tension test due to fixation on a part of the boundary: (b) experimental measurement of critical angles for a plane woven fabric, carried out at RWTH Aachen Institute of Textile Technology; (c) simulation of same test with our simulation tool.

  horizontal (vertical) yarn in y direction (see Fig.5b);x r z = κ, where x is the size of the periodicity cell (distance between axes of two neighbouring vertical yarns),z x rr , are the radii of the yarn cross-section in x and z directions respectively, z -axes, called also the shear angle, and y g is the maximal possible vertical sliding, relative to distance y between two horizontal yarns' axes (see Fig.5a, 7). By a trivial modelling, we can compute y

Fig. 5 .

 5 Fig.5. Sliding boxes (a) and shear angles (b) between yarns of simple weave.

Fig. 6 .

 6 Fig.6. Examples of textiles: (a) fabric 45°; (b) fabric 90°; (c) twill; (d) simple weave.

Fig. 7 .

 7 Fig.7. Influence of the textile design on its shear angle for fibers with 1 . 0 , 3 . 0 = = = z y x r r r

Fig. 8 .

 8 Fig.8. Periodic pattern for the simple weave shown in Fig.6d.

Fig. 9 .Fig. 10 .

 910 Fig.9. Effect of distance between the yarns on the properties of the textile for the simple weave shown in Fig.6d.

Fig. 11 .

 11 Fig.11. Effect of distance between the yarns on the properties of the textile for the twill shown in Fig.6c.

Fig. 12 .

 12 Fig.12. Effect of angle variation on tension properties of the textile for the twill shown in Fig.6a.

Fig. 13 .

 13 Fig.13. Effect of angle variation on shear and bending properties of the textile for the twill shown in Fig.6a.

Table 1 .

 1 Calculated critical shear angles and comparison to the measurement.

	Material Type	Weave	cr γ (°)	Error q
	Glass	Fabric	Twill	49	0.01351
	Glass	Fabric	Canvas	34	0.01348
	Carbon	Fabric	Cr. twill	47	0.01455
	Carbon	Fabric	Canvas	26	0.01452

Table 2 .

 2 Results of variation of distance between yarns for the simple weave shown in Fig.6d.

	Dimension	Variation	Tensile		Bending	
	of a cell	size	stiffness (GPa)	stiffness (Nm²)
	(basic)	x	Ex	Ey	Cx	Cy
	x=1,25	0.5	3.88	21.52	272	1104
	y=1,667	1	4.25	10.06	318	552
	(const)	1.25	4.57	7.61	325	441
		1.5	4.92	5.96	329	368
		2	5.53	3.98	333	276
		2.5	5.94	2.93	335	221
		3	6.18	2.32	336	184
		y	Ex	Ey	Cx	Cy
	x=1,25	0.5	20.94	5.28	1084	362
	(const)	1	9.24	6.22	542	424
	y=1,667	1.5	5.29	7.34	361	439
		1.667	4.57	7.61	325	441
		2	3.59	8.01	271	445
		2.5	2.71	8.36	217	447
		3	2.19	8.54	181	449

Table 3 .

 3 Results of variation of distance between yarns for the twill shown in Fig.6c.

	Dimension	Variation	Tensile		Bending	
	of a cell	size	stiffness (GPa)	stiffness (Nm²)
	(basic)	x	Ex	Ey	Cx	Cy
	x=2.5	1	6.91	39.54	261	45
	y=3.333	1.5	7.5	25.74	264	137
	(const)	2	8.13	18.6	257	195
		2.5	8.78	14.19	247	223
		3	9.37	11.21	237	232
		3.5	9.89	9.1	227	228
		4	10.32	7.57	218	219
		y	Ex	Ey	Cx	Cy
	x=2.5	1.5	24.67	10.9	183	294
	(const)	2	17.4	12.02	235	275
	y=3.333	2.5	13	13	254	254
		3	10.15	13.78	254	235
		3.3333	8.78	14.19	247	223
		3.5	8.21	14.36	243	218
		4	6.84	14.79	229	204
		4.5	5.84	15.1	213	191
		5	5.08	15.33	198	180
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