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Abstract  

Purpose: The purpose of this prospective study was to determine whether chemical shift 

gradient echo magnetic resonance imaging (MRI) sequence could predict glioma grade. 

Materials and methods: A total of 69 patients with 69 gliomas were prospectively included. 

There were 41 men and 28 women with a mean age of 50 ± (SD) years (range: 16-82 years). 

All patients had MRI of the brain including chemical shift gradient echo sequence, further 

referred to as in- and out-of phase sequence (IP/OP). Intravoxel fat content was estimated by 

signal loss ratio (SLR= [IP-OP]/2IP)), between in- and out-of-phase images, using a region of 

interest placed on the viable portion of the gliomas. Association between SLR and glioma 

grade was searched for using Wilcoxon and Mann-Whitney U tests and diagnostic capabilities 

using area under the receiver operating characteristics (AUROC) curves. 

Results: A significant association was found between SLR value and glioma grade (P < 

0.0001). SLR > 9 ‰ allowed complete discrimination between grade III and grade II glioma 

with 100% specificity (95% CI: 85-100%), 100% sensitivity (95% CI: 78-100%) and 100% 

accuracy (95% CI: 90-100%) (AUROC = 1). A SLR > 20 ‰ allowed discriminating between 

grade IV and grade III glioma with 75% specificity (95% CI: 57-89%), 73% sensitivity (95% 

CI: 45-92%) and 72% accuracy (95% CI: 57-84%) (AUC = 0.825, 95% CI 0.702-0.948). The 

AUROC for the diagnosis of high-grade glioma (grade III and IV vs. grade II) was 1.  

Conclusion: Chemical shift gradient echo MRI provides accurate grading of gliomas. This 

simple method should be used as a biomarker to predict glioma grade. 

Keywords: Glioma; Chemical shift imaging; Diagnosis; Prospective studies; Biomarkers 
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AUROC: area under the receiving operative curve  
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MRS: magnetic resonance spectroscopy 

MRI: Magnetic resonance imaging 
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ROI: region of interest 

SLR: signal loss ratio 

T1W: T1-weighted imaging 

T2W: T2-weighted imaging 

WHO: World Health Organization  

 

Introduction 

 Glioma refers to any tumors that develops from brain interstitial tissue [1]. The glioma 

grade is an important issue, as it modifies the management of a glioma and determines the 

prognosis of the patient. Brain biopsy remains the standard of reference for the grading of 

gliomas [1]. However, it is an invasive procedure associated with risks of infection and 

bleeding, in addition to the inherent possibility of sampling error [2]. Magnetic resonance 

imaging (MRI) is commonly used as the reference imaging method for the follow-up of low-

grade and presurgical staging of high-grade gliomas. Enhancement of glioma after 

intravenous administration of a gadolinium chelate indicates blood–barrier breakdown and/or 

neovascularity, which is a typical feature of high-grade glioma [3]. However, glioma grading 

using contrast enhancement is sometimes unreliable due to a high rate of false-positive 

findings [4]. Several studies have tested the capabilities of MRI for glioma grading [5-11] and 

others have validated the relationship between the metabolites detected by MR spectroscopy 

(MRS) and glioma grading [12-15]. However, MRS has several drawbacks. Multi-voxel MRS 

requires a long acquisition time and is sensitive to magnetic susceptibility artifacts due to 

adjacent bones, internal foci of hemorrhage, motion artifacts and/or poor shimming [16].  

 The chemical shift in- and opposed-phase (IP-OP) sequence is a gradient-echo (GE) 

MRI sequence, currently utilized to detect lipids in several organs [17-20] . A recent study has 

shown its usefulness in the detection of lipids, including in gliomas [21]. In high-grade 

gliomas, elevated lipid levels display a greater signal loss on opposed-phase images [21]. 

Ramli et al. demonstrated that lipids causing signal loss on IP-OP sequence were similar to 

visible lipids and that the degree of signal drop strongly correlated with glioma grade [17]. 

The results of this study that included only 22 patients with four of them with grade III 

gliomas were further confirmed later by the same group with a larger retrospective study 

including 40 patients [22]. To date, no prospective study has assessed the capabilities of IP-

OP MRI in predicting glioma grade in a large cohort of patients. 



 

 The purpose of this study was to prospectively determine whether chemical shift 

gradient echo MRI could predict glioma grade. 

Materials and methods 

Patients  

A prospective study was conducted in a single center from April 2016 and June 2017. 

Inclusion criteria included: (i), patient age > 18 years; (ii), preoperative MRI examination was 

needed; and (iii), surgery for glioma was performed less than one month after MRI 

examination. Exclusion criteria were: (i), poor quality MRI examination; (ii), MRI protocol 

deviation without chemical shift imaging; and (iii), previous treatment for glioma before MRI. 

Ethical approval was obtained from the local institutional review board committee (N°00317). 

All patients provided written informed consent.  

MRI protocols 

All patients underwent a standard brain MRI protocol with three different MRI equipments, 

including T1-weighted, T2-weighted, diffusion-weighted imaging (DWI) and T1-weighted 

images obtained after intravenous administration of a gadoterate meglumine (Dotarem, 

Guerbet) at the dose of 0.2 mL/Kg, at a flow rate of 2 mL/second. Additionally, in and out-of-

phase imaging was performed before intravenous administration of contrast material in the 

axial plane adapted according to the equipment used as follows:  

(i), Magnetom Aera 1.5 Tesla (Siemens Healthiners); 64 sections were obtained in 41 sec 

using the following parameters: 5-mm slice thickness, 10° flip angle, 280 mm field of view, a 

256 × 256 matrix size, TR=8.05 msec, TE out = 2.38 msec and TE in = 4.76 msec.  

(ii), Skyra 3 Tesla (Siemens Healthiners); 96 sections were obtained in 68 sec with the 

following parameters: 3-mm slice thickness, 9° flip angle; 285-mm field of view; 320 × 320 

matrix size, TR = 8 msec, TE in = 2.46 msec and TE out = 3.69 msec.  

(iii), Magnetom Verio 3 Tesla (Siemens Healthiners); 96 sections were obtained in 68 sec 

using the following parameters: 3-mm slice thickness, 9° flip angle, 285 × 285 field of view, 

320 × 320 matrix size, TR = 8 msec, TE in = 2.46 msec and TE out = 3.69 msec.  



 

Image analysis 

 A neuroradiologist with 10 years of experience (S.B.) and one resident with 2 years of 

experience in neuroradiology (M.P.) performed in consensus all measurements on a dedicated 

neuro-imaging station (OleaSphere® software, Version 2,2, 2016; Olea Medical). The portion 

of the glioma displaying isosignal on T1-weighted images and iso to hyperintense signal on 

T2W images was considered as a solid portion regardless of the presence or absence of 

glioma enhancement. The portion of the glioma exhibiting a hypointense signal on T1W 

images and hyperintense signal on T2W images was considered as the necrotic or cystic 

portion. Considering the internal heterogeneity of the glioma, five regions of interest (ROIs) 

were placed on the solid portion in the in-phase images. ROIs on the opposed-phase images 

were then automatically placed from the position of the ROI on the in-phase image (Figure 1). 

ROI areas were kept to around 5.0 mm3 in size.  

Signal loss ratio (SLR) was then computed according to the following equation: 

��� =
�� − ��

2 ×  IP 
  

 

where IP represents the mean ROI signal value obtained from IP sequence and OP represents 

the mean ROI signal value obtained from OP sequence. 

Standard of reference 

 Histopathological analyses were performed according to the World Health 

Organization (WHO) guidelines [1]. According to the WHO-2007 classification diffuse 

gliomas were graded as WHO grade II (low grade), WHO grade III (anaplastic) or WHO 

grade IV (glioblastoma). Nuclear atypia, mitotic activity, necrosis, and florid microvascular 

proliferation were used for the grading of diffuse gliomas,. Diffuse astrocytic neoplasm 

without marked mitotic activity, necrosis or florid microvascular proliferation (MVP) was 

diagnosed as low-grade diffuse astrocytoma, irrespective of the degree of nuclear atypia. 

Anaplastic astrocytoma corresponded to glioma with marked mitotic activity. The presence of 

necrosis and/or florid MVP leads to the diagnosis of glioblastoma. According to pathological 

diagnosis, three groups of patients were considered for the statistical analysis, grade II, III and 

IV. Low grade gliomas including Grade II whereas Grade III and Grade IV were considered 

as high grades.  



 

Statistical analysis 

Statistical analysis was performed on SAS software (version 9.4, SAS institute, Cary, NC, 

USA). Quantitative variables were expressed as means standard deviation [SD] and range, or 

medians and ranges, and qualitative variables as raw numbers, proportions and percentages. 

Wilcoxon and Mann-Whitney tests were used to search association between SLR and glioma 

grades. The capabilities of IP-OP MRI for the diagnosis of were evaluated in terms of 

sensitivity, specificity and accuracy with their corresponding 95% CIs. The discriminatory 

capability of SLR for glioma grade obtained with IP-OP MRI was evaluated using a receiving 

operative curve (ROC) analysis with a calculation of area under the curve (AUC). A subgroup 

analysis was performed to search for differences according to MRI equipment. To assess a 

potential machine effect in the relation between SLR and glioma grade, a two-factor analysis 

of variance (ANOVA) with interaction was performed. Statistical significance was set at P < 

0.05.  

Results 

 Seventy-nine patients were initially included. Ten patients were secondarily excluded, 

3 for poor quality MR images and 7 for protocol deviation. Figure 2 gives the flow chart of 

the study.  

 The final study population included 69 patients (28 women and 41 men) with a mean 

age of 50 ± 17 (SD) years (range: 16- 82-years). The median time between MRI examination 

and histopathological confirmation was 15 days (range: 1 – 115 days). Sixty-seven (67/69; 

97%) patients underwent surgical excision allowing complete histopathological analysis of 

gliomas. The remaining two patients underwent stereotaxic biopsies leading to a final 

diagnosis of Grade IV glioma for each. Histopathologically, 22/69 gliomas (32%) were Grade 

II, 15/69 (22%) Grade III and 32/69 (46%) Grade IV. No tumors were infra-tentorial in 

location.  

 Table 1 presents the characteristics of patients and the main results. A significant 

difference in SLR was observed between glioma grades (P < 0.0001) (Fig.3). A cut-off value 

of 20 ‰ for SLR yielded 75% sensitivity (24/32; 95% CI: 45-92%), 73% specificity (11/15; 

95% CI: 57-89%) and 72% accuracy (34/47; 95% CI: 57-84%) for the diagnosis of Grade III 

glioma vs. Grade IV glioma, with an AUROC of 0.825 (95% CI: 0.702 - 0.948) (Fig. 4). A 

cut-off value of 9‰ for SLR (or any value between 8.82 and 9.75 ‰) allowed differentiating 

Grade III glioma from Grade II glioma with 100% sensitivity(15/15; 95% CI: 78 - 100%), 



 

100% specificity of 100% (22/22; 95% CI 85 - 100%) an 100% accuracy(37/37; 95% CI: 90 - 

100%), with an AUROC of 1 corresponding to a perfect separation for the two grades (Figure 

5). The AUROC for the diagnosis of high-grade gliomas (grade III and IV vs. grade II) was 1.  

 Two-factor ANOVA confirmed a significant difference of mean SLR between grades 

(P < 0.0001) and revealed no interaction between machine and grade (P = 0.40) and no 

significant machine effect (P = 0.30). 

Discussion 

 Our results suggest that SLR values obtained from chemical shift MRI can help 

discriminate between glioma grades (II, III and IV). By comparison with MRS, IP-OP MRI 

can detect intratumoral fat content with a shorter acquisition time, a wide availability on all 

MRI devices, and no requirement for specific expertise.  

 In our study, we found a partial overlap in SLR between Grades III and IV gliomas. 

However, this result has not substantial inconvenience in clinical practice because gliomas 

with these two grades require the same therapeutic management. In addition, It should be 

noted that grade IV gliomas, unlike grade III ones, usually exhibit typical characteristics such 

as internal necrosis, heterogeneous contrast enhancement and rapid growth [23]. 

 Our results are in line with those of two previous studies [17, 21]. Lim et al. showed 

that lipid content was more frequently associated with malignant brain lesions than with 

benign ones in a group of patients with benign, malignant and infectious intra axial brain 

lesions [21]. However, in this study it is not clear if histopathological confirmation was 

obtained from all lesions. Ramli et al. specifically studied a group of patients with gliomas 

[17]. These authors suggested that SLR can serve as a parameter for discriminating between 

the different glioma grades. However, the limited number of patients, particularly those with 

Grade III gliomas (only 4 among 22 gliomas) and the pathological confirmation obtained 

from biopsies which could introduce sample bias, were limitations of this study. Indeed, the 

pathology analysis from tissue samples is an imperfect gold standard because of sampling 

error with regard to the possible heterogeneity of gliomas. 

 Seow et al. proposed glioma lipid quantification using lipid distribution mapping 

based on IP-OP images [22]. They showed that mean SLR of the solid region of the glioma is 

useful for discriminating between glioma grades but with an overlap for Grade II and Grade 

III gliomas. However, in this study, as in the previous ones, SLR was computed from the 

formulae IP-OP/IP [17, 21, 22]. In our study, we used a different formula (i.e., IP-OP/2IP) for 



 

fat quantification. This formula is in fact the correct one; SLR, or fat signal fraction is 

computed from the formula F/(W+F) where W and F are the signal contributions from water 

and fat. For IP-OP imaging, even though the water and fat signals are not separated, a fat 

signal fraction can be calculated from IP = W+F and OP = W-F. Consequently, SLR= 

F/(W+F) = [(W+F) - (W-F)] / 2 (W+F) = IP-OP/2IP. The discrepancies in terms of cut-off 

proposed by previous studies can therefore be explained by this difference.  

 Fat content from SLR could be based on three different MRI acquisition methods, 2, 3 

or 6 time points (respectively dual-echo, OP and IP, dual-dual-echo or six echos). Each 

method demonstrates some degrees of measurement error, but the six-echo method seems to 

have the highest degree of accuracy. Indeed, this model accounts for the signal loss due to 

magnetic field inhomogeneity (T2* decay), not corrected in case of dual echo, which can lead 

to an underestimation of fat content at a maximum of around 30% particularly for low-fat 

content [24]. Otherwise, a T1 effect can also introduce an overestimation in the range of 1.5-

3.5% [25]. Despite these potential biases and approximations, satisfactory accuracy was 

demonstrated by the use of dual echo in clinical practice [24]. In addition, this method is the 

widely used technique and the results obtained in our study demonstrate that this method can 

be clinically effective.  

 Both conventional and advanced MRI sequences, such as MRS, DWI, perfusion 

imaging, diffusion kurtosis imaging, and radiomics have been widely evaluated so as to 

develop a non-invasive method for the glioma grading. While all of them seem useful, they 

may remain complex to implement or not available everywhere. Further studies are 

nevertheless required to compare these methods. 

 Our study has several limitations. First, we did not evaluate MRS or MR fat saturation 

methods, or other methods of fat spectral modeling. However, accuracy of the fat content 

measurement obtained by the in-out-phase sequence was not part of the study design and was 

assessed in a previous study [17]. Second, reproducibility measure of SLR was not studied but 

a previous report on the liver demonstrated strong reproducibility with an intraclass 

correlation coefficient at 0.85 [24]. Third, glioma heterogeneity could introduce bias in SLR 

measurement. We choose to measure SLR of the solid glioma portion since it is the best area 

for glioma grading [17, 22]. In addition, considering the heterogeneity of the glioma, 5 

measurements were performed to obtain a mean SLR value to limit the impact of potential 

tumor heterogeneities. Nevertheless, further studies are required to evaluate reproducibility of 

SLR measurement in gliomas. Finally, the use of 3 different MRI devices with 2 different 

magnetic fields might have, in theory, introduced bias. However, it was shown that the impact 



 

of magnet field strength is negligible compared to the values of SLR [26]. The method might 

therefore be applicable at both 1.5- and 3-T.  

 In conclusion, chemical shift gradient echo MRI provides accurate grading of gliomas. 

A discriminating cut-off value of 9 ‰ for SLR, allows predicting high-grade gliomas with 

100% sensitivity and 100%specificity. This simple method should be used in routine as a 

biomarker to predict glioma grade. 
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Figure Captions 

 

Figure 1. 67 year-old man with grade IV glioma. A region of interest was placed on in-

phase gradient echo (A) and on out-of-phase image (B). A region of interest (arrows) was placed 

on the viable part of the glioma to calculate the mean signal on each image. Signal loss ratio was 

then calculated.  

Figure 2. Study flow chart. 

Figure 3. Graph shows box plots of signal loss ratio (SLR) according to glioma grade. Vertical 

lines through each box represent SLR ranges. Boxes stretch across interquartile range (i.e., from 

lower quartile to upper quartile). The horizontal lines inside the boxes represent the median 

values. 

Figure 4. Graph shows sensitivity as a function of 1 minus specificity for the diagnosis of Grade 

IV glioma against Grade III glioma using signal loss ratio (SLR). AUROC = area under the 

receiving operative curve. 

Figure 5. Graph shows sensitivity as a function of 1 minus specificity for the diagnosis of 

Grade III glioma against Grade II glioma using signal loss ratio (SLR).  

Table 1. Demographics data and signal loss ratio results according to glioma grade in 69 

patients. 

 













 

 

 
 Grade II 

(n = 22) 

Grade III 

(n = 15) 

Grade IV 

(n = 32) 

Male 

Female 

13 (13/22; 59%) 

9 (9/22; 41%) 

9 (9/15; 60%) 

6 (6/15; 40%) 

19 (19/32; 59%) 

13 (13/32; 41%) 

Age (years)  39 ± 14  

[17 - 66] 

48 ± 17 

[19 - 76] 

59 ± 16 

[6 - 82] 

Mutation Oligodendroglioma IDH 

mutation (n= 3) 

Astrocytoma IDH WT 

(n=19) 

 

Anaplasic oligodendroglioma, IDH mutation; 

1p19q co-deletion; R132H + (n =3) 

Anaplasic astrocytoma IDH WT (n = 6) 

Anaplasic astrocytoma IDH mutation (n = 6) 

IDH mutation (n = 5) 

IDH WT (n = 27) 

Mean 
SLR (°/°°) 

-0.06 ± 6.18  

[-13.94 - 8.82] 

17.92 ± 5.91 

[9.75 - 29.25] 

32.31 ± 18.06  

[29.25 - 100.71] 

Median SLR 

(Q1; Q3) 

(°/°°) 

-0.78 

(-2.91; 5.32) 

16.20  

(13.68; 22.43) 

27.53  

(19.82; 37.94) 

 

With; IDH= isocytrate dehydrogenase; WT= wild type; SLR= signal loss ratio, Q = quartile 

Quantitative variables are expressed as mean ± standard deviations; numbers in brackets are 

ranges. Qualitative variables are expressed as raw numbers; numbers in parentheses are 

proportions followed by percentages. 

 




