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Wearable inertial sensors provide reliable biomarkers of disease severity in multiple 

sclerosis: a systematic review and meta-analysis 

 

 

Abstract 

 

Background. Gait impairment is a hallmark of multiple sclerosis (MS). InertiaLocoGraphy, the 

quantification of gait with inertial measurement units (IMUs), has been found useful to detect 

early changes in gait in MS. Still, the potential use of IMUs as a reliable biomarker of disease 

severity in MS remains unknown. 

Objective. This systematic review and meta‐analysis of observational studies aimed to describe 

IMU protocols used to assess gait in MS patients and calculate the effect sizes of IMU features 

associated with disease severity scale measures. 

Methods. We searched MEDLINE, Cochrane Central, EMBASE and grey literature to identify 

articles published before May 2, 2018 that measured gait in MS patients by using IMUs and 

correlated IMU parameters with disease severity scale measures. We excluded from the meta-

analysis articles that did not provide enough data to evaluate the association between IMU 

parameters and disease severity scale measures. The study was registered with the International 

Prospective Register of Systematic Reviews on May 2, 2018 (Registration: CRD42018092651) 

and the protocol was published in Systematic Reviews on January 8, 2019. 

Results. We included 36 articles in the systematic review and pooled 12 for the meta-analysis. 

The risk of bias was moderate, with only 2 articles (none included in the meta-analysis) showing 

a bias score < 50%. Among protocols tested, 2 were predominant (the Timed Up and Go test and 

6-min walk test). Speed, step length and step time with IMUs were significantly correlated with 
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the Expanded Disability Status Scale (EDSS) score, and speed and step length were significantly 

correlated with the Multiple Sclerosis Walking Scale-12 score. 

Conclusion. IMU measurement has the potential to increase the sensitivity of clinical and 

performance tests to identify evolution in gait alteration in MS. Kinematic parameters easily 

accessible with IMUs, such as speed, step length and step duration, can help follow up disease 

severity in MS individuals with low to medium EDSS score (1.0–4.5). 

 

Keywords: multiple sclerosis, gait analysis, gait quantification, gait disorders, wearable inertial 

sensors, inertial measurement unit, accelerometer 

 

Introduction 

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with varying 

clinical presentation and progression. Gait impairment is a hallmark of MS, and lower-limb 

function is considered the most important body disability across the disease spectrum [1]. Thus, 

objective gait assessment both in routine clinic care and in clinical research trials is needed to 

improve follow-up of gait and balance in people with MS.  

Mobility in MS patients is one of the disabilities measured by the Expanded Disability 

Status Scale (EDSS), which has been criticized for its lack of sensitivity to change [2–4] and its 

high interrater variability [5]. The Multiple Sclerosis Severity Score (MSSS) is another scale 

whose score is obtained by normalizing the EDSS score for disease duration [6]. Both scales are 

practical and easy to use in routine clinical practice, but in some cases, more sensitive and 

analytical evaluations are needed [4,7,8]. Patient-reported outcomes, subjective by definition, are 

also useful to inform disease severity and the Multiple Sclerosis Walking Scale-12 (MSWS) is a 
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12-item measure of the impact of MS on walking [9], which was found to be less precise than a 

gait test and accelerometric data [10]. The Multiple Sclerosis Impact Scale (MSIS-29) is a 29-

item measure of the impact of MS on day-to-day life in the previous 2 weeks but does not 

primarily focus on gait [11]. Gait speed is measured by using stopwatch-timed tests such as the 

Timed 25-foot Walk Test (T25FW), which has been criticized for being highly variable [12,13]. 

Finally, the Multiple Sclerosis Functional Composite (MSFC), which is used frequently, involves 

3 tests, including the T25FW, expressed as a single score along a continuous scale [14]. 

However, the test is prone to practice effects [15] and day-to-day variability [12,13]. 

Inertial measurement units (IMUs) are small, light, integrated systems that measure linear 

and angular motion usually with a triad of accelerometers and a triad of gyroscopes, often 

associated with a magnetometer. Motion capture systems based on these wearable sensors have 

become widely used for the biomechanical analysis of human movement. InertiaLocoGraphy 

(ILG), the quantification of gait with IMUs, was first reported 70 years ago [16] and has now 

been implemented in a wide range of neurological and non-neurological diseases [17,18]. The 

tool can be used both at the hospital, mainly for short tests, and at home for more long-term 

physiological gait assessment [19]. Automatic detection of steps and U-turns are now available 

[20–24], which allows for online processing of signals and computation of a large amount of 

features describing gait speed and quality [19]. Hence, the clinician has a direct and reproducible 

access to a great number of objective gait indicators. These indicators have proved useful to 

analyze gait and extract biomarkers of functional impairment observed during chronic 

neurological disease progression [19] such as Parkinson disease [25–28], spinocerebellar ataxia 

[29,30], post-stroke hemiparesis [29,31] or idiopathic normal pressure hydrocephalus [32]. 
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However, the potential for using IMUs as biomarkers of disease severity in MS remains 

to be tested. Indeed, IMUs have been found useful to detect early changes in MS undetectable 

with previously mentioned assessments [33]. Still, whether IMU analysis helps in evaluating 

disease severity remains unknown because no review has comprehensively assessed whether 

features obtained from IMUs could be used as biomarkers of MS severity. The association 

between features from IMUs and MS progression would be worth exploring.  

Here we report the largest and most comprehensive systematic review and meta‐analysis 

of observational studies to describe IMU protocols used to assess gait in MS patients and 

calculate the effect sizes of IMU features associated with disease severity scale measures. 

 

Materials and Methods 

The literature search and analysis followed the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) [34] and Meta-analysis of Observational Studies in 

Epidemiology (MOOSE) [35] guidelines. 

Search strategy and selection criteria 

The search strategy is explained in our published protocol, available at the International 

Prospective Register of Systematic Reviews (Registration: CRD42018092651) and Systematic 

Reviews [36]. We searched MEDLINE via PubMed, Cochrane Central, and EMBASE electronic 

databases to identify articles published before May 2, 2018 that measured gait by using inertial 

sensors in people with MS. In addition, the grey literature was searched in Google Scholar, 

Opengrey.eu, Greylit.org, WorldCat, World Health Organization Clinical Trials Search Portal, 

ClinicalTrials.gov and the European Union Clinical Trials Register. All reference lists and 

bibliographies of included studies were also reviewed for relevant articles.  
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Inclusion and exclusion criteria are described in the protocol [36]. Randomized controlled 

trials, non-randomized controlled trials and observational studies were eligible for inclusion. 

Inclusion criteria were adults with a clinical diagnosis of MS and gait measured by using inertial 

sensors (accelerometer and/or gyroscope). We excluded articles of studies that did not include 

people with MS (POPULATION criterion), quantified other activities such as standing or 

running or assessed general physical activities using only step count or walking bout length 

(GAIT criterion), or used sensors other than IMUs (IMU criterion). We excluded from the meta-

analysis articles that did not provide sufficient data for pooling results even though authors were 

contacted for missing information (see 1.6.1). Data were considered sufficient with one of the 3 

following situations: correlation between gait parameters and EDSS or MSSS, MSWS, MSFC, 

MSIS-29 or T25FW scores reported or obtained from the main author; raw values of gait 

parameters and EDSS, MSSS, MSWS, MSFC, MSIS-29 or T25FW scores reported or obtained 

from the main author for every patient; raw values for gait parameters reported or obtained from 

the main author for groups of patients, with groups drawn from their EDSS, MSSS, MSWS, 

MSFC, MSIS-29 or T25FW values (REPORTING criterion). As we considered during the 

design of the study and detailed in the protocol, we added an AMBULATORY criterion to 

exclude articles that measured gait only at home, because the protocols were heterogeneous 

(hence exclusion from the systematic review) and we could not find more than 3 studies 

assessing ambulatory gait and for which a common effect size could be drawn (hence exclusion 

from the meta-analysis). 

Data analysis 

The primary outcome was the correlation of ILG parameters with EDSS score. Secondary 

outcomes were the correlation of ILG IMU parameters with scores for other severity scales or 
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tests (MSSS, MSWS, MSIS-29, stopwatch-timed T25FW, MSFC). Scales or tests for which data 

for at least one parameter could not be retrieved for at least 2 articles from different authors are 

only commented on. Assessment of fall risk was too rare and highly variable across studies to be 

added as an additional objective. 

Articles were reviewed independently by 2 review authors (AVJ and FQ). The data 

extraction method is described in the protocol [36]. The risk of bias assessment relied on a 20-

item quality checklist for longitudinal studies that we adapted from Hubble et al. [37] (the 

checklist can be found in the supplemental section of the protocol [36]). Risk of bias assessment 

was performed independently by 2 review authors (AVJ and FQ), each blinded to the score given 

by the other. These authors later discussed discrepancies (≈5% of scores) until they agreed on the 

final score. To visualize possible publication bias, we used funnel plots, which represent the 

estimated effect size (plotted on the horizontal axis) versus its standard error mean (plotted on 

the vertical axis). A symmetric inverted funnel shape favors no publication bias. 

 

Statistical analysis 

Extracted data were pooled to derive effect sizes of correlations of IMU features with 

severity scale scores. To summarize, when a given feature was reported in at least 3 studies from 

different authors, correlation coefficients (r) were transformed by using the Fisher z 

transformation [z = atanh(r)] and the analysis was performed using this index with 95% 

confidence interval excluding the null value considered significant. This process allowed for the 

use of tests for normal distribution. Then, the summary values were converted back to Pearson 

coefficient correlations for presentation [r = tanh(z)] [38]. Because only one interventional study 

was included, the GRADE criteria were not used [39]. A fixed-effects model was chosen when 
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heterogeneity, as measured by the I2, the percentage of total variation across studies that is due to 

heterogeneity rather than chance, was low to moderate (I2 < 50%) [40]; otherwise, a random-

effects model was used. 

For significant correlations found between a given kinematic parameter and a severity 

scale, we performed an individual participant analysis using full data included in articles as well 

as data provided by authors. 

Statistical analysis involved using R v3.5.1. Effect sizes were computed based on the 

recommendations from the Cochrane Collaboration handbook and Cochrane Review Manager 

v5.3). MATLAB® R2018 was used to create the forest plots for the meta-analysis. 

 

Results 

Study characteristics 

Our systematic search of the literature identified 103 records after duplicates were removed. No 

study was identified by exploration of grey literature. Eleven records were excluded on the basis 

of the abstract. Finally, articles for 36 studies (including 1480 patients), published between 2009 

and 2018, met our inclusion criteria (Fig. 1). Five studies (14%) were longitudinal studies, and 

the remainder were cross-sectional. Study characteristics and references for all 36 included trials 

are in Table 1. Study populations, protocols and outcomes are in Supplemental Tables 1 and 2. 

The meta-analysis included articles for 12 studies (44% of all articles included in the systematic 

review) including 524 patients (median of 44 patients per study [interquartile range (IQR) 24–

54]). The mean (SD) age of all participants was 47 (7) years for papers included in the systematic 

review, and 48 (6) years for those included in the meta-analysis. The mean (SD) proportion of 

female participants was 70% (15%) and 71% (11%) for all papers and those in the meta-analysis. 

At inclusion, the mean (SD) disease duration was 10.8 (4.3) and 12.3 (0.5) years for all 
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participants and those in the meta-analysis. In total, 87% had relapsing-remitting disease, both 

when considering all articles and articles included in the meta-analysis. The mean (SD) EDSS 

score was 3.2 (1.5) and 3.5 (1.7), respectively.  

Risk of bias assessment 

Detailed evaluation of risk of bias is in Supplemental Table 3 and mean scores are in Figure 2. 

Overall, the risk of bias was moderate, with a Gaussian-shape curve for mean scores (Shapiro-

Wilk normality test: p = 0.3) and a median score of 70% (IQR 60–74). Two articles (for which 

data could not be used in the meta-analysis) had a risk of bias score < 50%, and 18/36 articles 

(8/16 articles included in the meta-analysis) had a score > 70%. Funnel plots were drawn for all 

features that were included in the meta-analysis: speed (V, in m/s), step length (SteL, in m), step 

time (SteT, in s), swing time (swT, in % of step time), stance time (stT, in % of step time) and 

double stance time (dstT, in % of stride time) (Supplemental Table 4). Visual inspection of 

funnel plots (Fig. 3) revealed little evidence of publication bias for correlations of these 

kinematic parameters with the EDSS score but larger publication bias for their correlation with 

the MSWS score. 

Description of protocols 

Protocols used to assess gait were various (Fig. 4). Regarding floor type and sequence of steps, 2 

protocols were predominant: the Timed Up and Go (TUG) test is a 6-min walk test with a U-turn 

and sit-to-stand transition depending on the authors, and the 6-min walking test (6MWT) 

involves a 6-min walk, mostly on unlevelled floor in the articles included. Most of the time, 

speed was left to the convenience of the patient, but both protocols (TUG test, 6MWT) were also 

performed at the fastest speed in some studies (2/6 for the TUG test and 8/12 for the 6MWT). 

The most widely chosen IMU position was the lower back (68% of all 36 articles and 75% of the 
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12 meta-analysis articles) (Fig. 5A and Table 2). The lower back was the only position selected 

in 39% of all articles and 17% of meta-analysis articles. However, 39% and 42% of articles in 

the systematic review and meta-analysis, respectively, recorded from more than one IMU, with a 

maximum of 7 sensors. Other positions included the sternum (21% of all articles and 42% of 

meta-analysis articles), shanks (18% and 25%), wrists (18% and 25%), ankles (16% and 17%), 

hip (13% and 17%) and, more anecdotally, thighs, head and lower front (in 5%, 5% and 3% and 

0%, 0% and 17%, respectively).  

Many types of IMUs were tested, but 2 were predominant: XSens® MtW (22% of all 

articles and none in the meta-analysis) and Actigraph® (19% of all articles and 17% of meta-

analysis articles) (Fig. 5B). Nearly half of the articles did not specify the sampling frequency of 

sensors used (44% of all articles and 50% of meta-analysis articles). The IMUs mainly had a 50–

128 Hz sampling frequency.  

Pooled meta-analysis 

All scales and tests referred to in the secondary outcomes were reported at least once in one of 

the 36 included articles. However, only the EDSS and MSWS scores were reported in a 

sufficient number of articles to calculate a pooled correlation effect size. Risk of falls or previous 

falls was assessed in 4/36 articles, but methods were too heterogeneous to allow a comparison 

because they reported number of previous falls (1 study) or different risk assessment scores (3 

studies). Data for 6 kinematic parameters were sufficient to calculate a correlation effect size 

with the EDSS and MSWS. V, SteL, SteT, swT, stT and dstT were all analyzed in terms of the 

EDSS or MSWS score in at least 3 studies. For correlation with the EDSS score, a random-

effects model was used for all kinematic parameters except V, stT and swT, for which I2 was 

49%, 0% and 4%, respectively. Heterogeneity was high for dstT (I2 = 64%), moderate for V (I2 = 



 PAGE 10 

49%), and low for the other kinematic parameters (SteL: I2 = 8%; SteT: I2 = 0%; stT: I2 = 0%; 

swT: I2 = 4%). Only V, SteL and SteT showed significant correlation with the EDSS score 

(overall Pearson coefficient -0.60 [-0.67 ; -0.53], -0.46 [-0.61 ; -0.40] and 0.32 [0.14 ; 0.40], 

respectively; Fig. 6A). For correlation with the MSWS score, a random-effects model was used 

for V, SteL and SteT. Heterogeneity was high for V (I2 = 83%) and SteT (I2 = 64%), moderate 

for SteL (I2 = 38%), and low for the other kinematic parameters (stT: I2 = 0%; swT: I2 = 0%; 

dstT: I2 = 0%). Only V and SteL showed significant correlation with the MSWS score (overall 

Pearson coefficient -0.64 [-0.77 ; -0.54] and -0.37 [-0.65 ; -0.16]; Fig. 6B). For both V and SteT, 

all findings were consistent for the direction of the correlation (decreasing speed and increasing 

SteT with increasing disease severity) except for one study [41]. Removing this study highly 

decreased the heterogeneity for V (correlation with EDSS score: I2 = 0%; correlation with 

MSWS score: I2 = 0%) and SteT (correlation with EDSS score: I2 = 0%; correlation with MSWS 

score: I2 = 33%) but not dstT (correlation with EDSS score: I2 = 82%). After this removal, the 

overall correlation effect of V with EDSS and MSWS scores changed from -0.58 [-0.66 ; -0.51] 

to -0.64 [-0.69 ; -0.56] and -0.67 [-0.77 ; -0.54] to -0.77 [-0.85 ; -0.67]. The overall correlation 

effect of SteT with the EDSS score changed from 0.32 [0.14 ; 0.40] to 0.39 [0.18 ; 0.44]. 

Individual meta-analysis 

Individual participant correlation data with the EDSS score could be retrieved for 6 studies. 

Three datasets were sent by the authors [42–44], one dataset was directly accessible within the 

publication [45] and 2 other datasets were accessible only as group mean and standard deviations 

with the group of increasing EDSS score [46,47]. We reconstituted these 2 datasets by generating 

a normal distribution of mean and standard deviation within groups. We could not retrieve 

individual participant correlation data with the MSWS score. Individual participant data for 
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correlation of V, SteL and SteT with the EDSS score are in Figure 7. The inter-individual 

variability of measures for SteL and SteT greatly increased with high EDSS score (> 6) versus 

low EDSS score. A score test for non-constant error variance (NCV test), used to reveal some 

evidence for a non-constant variance of the residuals [48], showed that the data were indeed 

highly heteroskedastic for SteL and SteT (NCV test: SteL: p=0.010 and SteT: p<0.0001), with no 

heteroskedasticity found for the correlation of V with the EDSS score (NCV test: p = 0.087). 

 

Discussion 

Identifying changes in disease state throughout the course of MS is essential for optimal 

care [49]. Current clinical and performance tests (EDSS, MSSS, MSWS, MSIS-29, MSFC, 

T25FW) allow for identifying advanced alterations in gait in MS but lack sensitivity to detect 

subtle gait dysfunction or progression. Indeed, these scales associate different components, both 

clinical symptoms and functional capacities, which do not all concern gait. Therefore, they 

cannot be as sensitive to detect gait alteration as a specific index of gait. However, they provide a 

general view of the impact of the disease on the patient’s various functions, with the key 

advantage to adapt to the different clinical forms of associated deficiencies. IMUs are small 

wearable sensors  that can be easily used in clinical practice to quantify gait in MS patients. 

Nevertheless, whether these outcomes are clinically relevant is uncertain because no study has 

evaluated their correlation with disease severity across different settings.  

This systematic review and meta-analysis provides insight into the potential of using 

IMUs as a marker of disease evolution. We included 36 articles evaluating IMU parameters with 

different protocols and correlating parameters with performance outcomes in our systematic 

review and pooled 12 for the meta-analysis. The risk of bias was moderate, with only 2 articles 
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(none in the meta-analysis) showing a risk of bias score < 50%. Among protocols tested, 2 were 

predominant (TUG test and 6MWT). The position of the IMUs is crucial for sensitivity of human 

kinematic observation, especially for tests like the TUG. Most studies placed their sensor on the 

lower back of the participant (L3-L4 vertebrae), which was also the preferred position for other 

gait pathologies, as found in a previous review [19]. Besides, this position was found reliable for 

inter-session measurements in healthy participants [50,51]. Other sensors were frequently 

associated and placed on the shanks or ankles. Therefore, we propose that gait assessment using 

IMUs include a short test with a turn as well as a long test such as the 6MWT when possible, as 

previously recommended [52,53]. We also suggest attaching the IMU to the lower back (L3-L4 

vertebrae) and to add IMUs on the lower parts of both lower limbs when possible. 

Speed, step length and step time were significantly correlated with the EDSS score, and 

speed and step length were significantly correlated with the MSWS score. Video motion systems 

can be considered gold standards for gait analysis. By using this bench-marking technology, 

earlier studies found similar gait patterns (lower speed, shorter strides, higher step time) in MS 

patients with low EDSS score (0–2.0) [7,54]. What is more, several studies using this gold 

standard found similar correlations of velocity, step length and step time with the EDSS score 

[55,56]. However, intra-individual changes in these gait parameters measured by video motion 

was not associated with a change in EDSS score, as was found in a 12-month prospective study 

by Galea et al. [4] or a 6-month prospective study by Rodgers et al [56]. IMUs have been 

validated against such systems in patients with MS [57,58]. Therefore, quantitative gait analysis 

using IMUs has the potential to increase the sensitivity of clinical and performance tests to 

identify evolution in gait in MS.  
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Kinematic parameters easily accessible with IMUs, such as speed, step length and step 

duration, can help follow up disease severity for people with MS and low to medium EDSS score 

(1.0–4.5). Indeed, an EDSS score of 1.0 was found associated with altered gait, which argues for 

a systemic assessment of their gait even at these very low EDSS scores [42]. Very little data 

were available for patients with EDSS score 5.0 to 5.5 and analyzed parameters showed high 

variability for EDSS score ≥ 6.0 as shown by the test for heteroskedasticity and Figure 7. 

Besides, to the best of our knowledge, no automated step-detection method proved robust 

enough to be applied to patients with EDSS score ≥ 6.0 [44,59]. Therefore, complementary 

systems such as walkways or footswitches are added to assess such patients, or manual 

painstaking step detection is performed, which hinders the use of such analysis in routine clinical 

workup. However, the improvement of algorithms may soon overcome such limitations. 

 Patient characteristics were comparable in terms of age, sex ratio, disease type, disease 

duration and EDSS score in articles included in the systematic review and in both the systematic 

review and meta-analysis. Except for speed, step time and double stance time, heterogeneity for 

other parameters was low, which supports our conclusions. High heterogeneity found for speed 

and step time was regularly < 50% when removing the study by Craig et al. [41], which was 

opposite to the other studies. High heterogeneity for correlation of step time with EDSS score 

might be explained by the difficulty in computing this parameter, which requires a precise 

definition of toe-off and heel strike during a step. The remaining heterogeneity can also be due in 

part to the diversity of protocols and algorithms used to sequence steps from the signals of the 

IMUs. Elevated inter-individual variability of step time and step length for high EDSS score 

argues against their use as independent markers of severity in people with severe disease. 

However, low inter-individual variability of speed — even at high EDSS score — provides 
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arguments for using speed or a combination of step time and step length, which are related to 

speed. This combination is worth exploring to evaluate whether different phenotypes affect the 

pattern of evolution of step time and step length. 

We acknowledge several other limitations to this study. Although PRISMA guidelines 

were adhered to and the methodology was strictly followed, completely accounting for the 

limitations of included studies is impossible. Because MS patients present variable symptoms, 

populations vary across studies. Similar to a recent meta-analysis evaluating gait alteration in MS 

[60], we found that included studies involved mainly individuals with low mean (SD) EDSS 

score (3.2 [1.5]), which may limit the sensitivity as well as the external validity of the findings. 

Another limitation lies in the fact that we did not review correlations of gait features with disease 

severity for various evolution states in a given patient. Therefore, we cannot directly conclude 

that parameters that we found associated with the EDSS or MSWS score in this review can be 

used as a severity marker in a given patient. Such assumption would require postulating that 

individual-based correlations can be interpolated from population-based correlations, which must 

be verified. For this aim, longitudinal studies only should be included, which seems impossible 

at this time because of their small number in the literature. Furthermore, articles included in this 

study were too few to perform a sensitivity analysis on protocols (floor type [ground vs 

treadmill], sequence of steps [ambulatory vs clinical setting and U-turn vs no U-turn], speed 

instruction [convenient vs fastest]) on the computed gait features and their correlation with 

disease severity. The quantitative synthesis of the effect of sensitizing conditions (e.g., fatigue, 

dual-tasking, eyes-closed walk, narrow-step width, and obstacle negotiation) on the altered gait 

parameters identified by this review should also be investigated to enhance the assessment and 

follow up on the treatment of gait in individuals with MS. Eventually, the study focused on 
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general disease severity without evaluating how it would depend on the participant’s functional 

status regarding known impairments such as spasticity, cerebellar status, sensitivity deficit or 

motor deficiency. Such group analysis would have  required more papers and more information 

per paper. Similarly, we could not assess therapeutic efficiency. Indeed, too little data on 

treatment interventions are available for now. However; video motion analysis was used for that 

aim, and both velocity and stride length proved sensitive to change induced by muscular 

strengthening [61]. Because personalized gait profiles may inform patient-tailored exercise 

programs [62,63], the use of IMUs should be developed within the framework of precision 

medicine and evaluated in individual longitudinal follow-up. 

 

Conclusions 

IMUs are very simple wearable sensors that are quick and easy to use, which supports their 

routine use during the medical check-up in people with MS. Simple kinematic IMU parameters, 

such as speed, step length and step duration, can help in following up disease severity in people 

with MS and low to medium EDSS score (1.0–4.5) and hold great promise as biomarkers of gait 

severity in MS. With the development of more precise algorithms for gait event detection, more 

elaborate features exist, which should be tested in more studies to evaluate their potential as 

biomarkers for the evolution of disease severity in MS. Individual follow-up from long-term 

prospective studies is also needed to test how these parameters evolve for individuals. 
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FIGURE LEGENDS 

Figure 1. Flow of articles included in the systematic review and meta-analysis. 

Figure 2. Histogram of results for quality assessment (%).  

Figure 3. Funnel plots for correlation of inertial measurement unit (IMU) kinetic parameters 

with (A) Expanded Disability Status Scale (EDSS) score and (B) Multiple Sclerosis Walking 

Scale-12 (MSWS) score. Speed (V, in m/s), step length (SteL, in m), step time (SteT, in s), swing 

time (swT, in % of step time), stance time (stT, in % of step time) and double stance time (dstT, 

in % of stride time). 

Figure 4. Protocols used in (A) all 36 articles included in the systematic review and (B) the 12 

articles included in the meta-analysis. Striped green: treadmill walking; dark green: unlevelled 

surface without U-turn; emerald green: unlevelled surface with U-turn; light green: stand up 

from a chair and unlevelled surface with U-turn. 

Figure 5. Description of sensor placement and types: (A) Sensor position in all 36 articles in the 

systematic review (left panel) and the 12 articles in the meta-analysis (right panel). Size and 

numbers in the circles represent the number of studies using the sensors attached to the 

underlying body parts. Lines joining several circles represent associations of sensors used in 

studies. The thickness of the lines represents the number of studies using this association. When 

a sensor was attached to a foot, ankle or thigh unilaterally, we added one study point on the right 
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side and none on the left side. (B) Sensor brand as a function of frequency in all 36 articles (left 

panel) and the 12 articles in the meta-analysis (right panel). The size of the term represents the 

number of studies using this brand and frequency. 

Figure 6. Forest plots for correlation of IMU parameters with (A) EDSS score and (B) MSWS 

score. 

Figure 7. Participant meta-analysis for correlation of EDSS score with main kinematic 

parameters: (A) speed (V), (B) step length (SteL), and (C) step time (SteT). Red lines: linear 

regression lines. 
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Table 1. Summary of risk of bias scores for included studies. 

 REPORTING EXTERNAL VALIDITY INTERNAL VALIDITY POWER TOTAL SCORE INCLUSION IN 

META-ANALYSIS 

Braendvik, 2016 100% 25% 67% 40% 70% no 

Coulter, 2017 83% 25% 83% 80% 74% yes 

Craig, 2017 (a) 83% 0% 83% 80% 70% no 

Craig, 2017 (b) 92% 25% 83% 0% 63% yes 

Engelhard, 2016 83% 0% 50% 100% 67% no 

Fanchamps, 2012 83% 25% 50% 0% 52% no 

Fazio, 2013 67% 0% 75% 40% 54% no 

Gong, 2015 100% 25% 67% 60% 73% yes 

Gong, 2016 58% 50% 42% 60% 54% no 

Greene, 2014 82% 25% 80% 20% 60% no 

Greene, 2015 79% 25% 50% 80% 65% no 

Hale, 2007 83% 25% 33% 0% 48% no 

Hilfiker, 2013 82% 25% 80% 0% 56% no 



Huisinga, 2013 75% 25% 67% 0% 52% no 

Huisinga, 2014 83% 25% 83% 80% 74% no 

Lorefice, 2017 75% 25% 67% 100% 70% no 

McGinnis, 2017 82% 25% 50% 60% 62% yes 

Moon, 2015 92% 25% 83% 0% 63% no 

Moon, 2017 92% 25% 83% 100% 81% no 

Motl, 2009 100% 25% 83% 40% 74% no 

Motl, 2011 100% 25% 75% 40% 72% no 

Motl, 2012 (a) 100% 25% 92% 100% 87% yes 

Motl, 2012 (b) 83% 25% 83% 100% 78% no 

Motta, 2016 83% 25% 67% 100% 74% no 

Pau, 2016 79% 25% 75% 100% 74% yes 

Pau, 2018 83% 25% 50% 100% 70% yes 

Pau, 2017 (a) 92% 25% 67% 100% 78% yes 

Pau, 2017 (b) 75% 25% 83% 100% 74% no 

Psarakis, 2018 100% 25% 83% 0% 67% yes 



Qureshi, 2016 32% 25% 75% 60% 44% no 

Sandroff, 2014 (a) 83% 75% 100% 100% 89% no 

Sandroff, 2014 (b) 92% 75% 67% 100% 85% yes 

Spain, 2012 75% 25% 58% 60% 61% no 

Spain, 2014 100% 25% 83% 60% 78% no 

Storm, 2018 75% 25% 67% 0% 52% yes 

Vaney, 2012 64% 50% 80% 100% 72% yes 

“Reporting” assesses the clarity of the reporting (hypothesis, outcomes, protocol, gait analysis, patients’ characteristics, distributions of 

principal confounders, main findings, random variability in the data and probability values). “External validity” evaluates the 

generalizability regarding the population and the sensor used. “Internal validity” estimates the suitability of the analysis and outcomes 

(transparency on data dredging, appropriate statistical tests, accuracy of the outcomes) and the risk of selection bias (same population 

for all groups, same period for recruitment in all groups, adjustment for confounding). “Power” gauges the power to detect a clinically 

important effect on the primary outcome of this meta-analysis (power to find a significant correlation between inertial measurement 

units and Expanded Disability Status Scale score considering an overall effect of -0.58 as we found in the meta-analysis). For detailed 

scores item per item, see Supplemental table 1. For the exact description of the items, please refer to the supplemental data published 

with the protocol [36].



Table 2. Sensor positions used in articles in terms of percentage of total number of studies. 

 ALL 36 ARTICLES 12 ARTICLES INCLUDED IN THE META-ANALYSIS 

head 5% 0% 

sternum 21% 42% 

wrist 18% 25% 

lower front 3% 0% 

lower back 68% 75% 

hip 13% 17% 

thigh 5% 17% 

shank 18% 25% 

ankle 16% 17% 

 

 




