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La régression de Poisson est un outil puissant pour l'analyse des taux d'incidence dans les études de cohorte, et facilite les analyses de tendances temporelles qui peuvent être difficiles à évaluer avec d'autres méthodes. La méthode de Kaplan-Meier, le test du logrank et le modèle de Cox ont chacun leur parallèle respectif dans l'analyse de données groupées : risques instantanés, risques relatifs sur données groupées et régression de Poisson groupés par intervalles. Cette approche permet de présenter la vitesse instantanée d'occurrence d'événements, potentiellement plus significative pour les cliniciens, et de prendre en compte plus facilement certaines contraintes telles que les paramètres fonction du temps (variables dépendantes du temps, ou effet dépendant du temps, qui ne sont pas inclus dans le modèle de Cox conventionnel). En revanche, l'application de la régression de Poisson nécessite que les données relatives à des sujets individuels soient organisées dans des tableaux d'événements-temps structurés par le temps et d'autres facteurs d'intérêt. Cette approche nécessite donc l'utilisation d'une base de données à grande échelle lorsque de petits intervalles de temps ou un nombre important de variables d'ajustement sont nécessaires.

Introduction

La régression de Poisson est une vieille méthode peu à peu délaissée au profit de méthodes basées sur des données individuelles plutôt que groupées [START_REF] Frome | The analysis of rates using Poisson regression models[END_REF][START_REF] Preston | Poisson regression in epidemiology[END_REF]. Et pourtant, sa mise en oeuvre est assez simple et permet de résoudre nombre de difficultés méthodologiques comme la prise en compte de variables dépendantes du temps ou de risques concurrents. De plus, comme les modèles de survie et plus généralement le modèle de Cox, elle peut être appliquée elle aussi aux données individuelles. Plus qu'un modèle radicalement différent des modèles de régression, elle est une autre manière de conduire les analyses. Cet article a pour objectif de présenter le rationnel pour l'utilisation de régressions de Poisson, de réaliser une présentation simple de ce modèle et de ses résultats en illustrant son application dans le champ de la néphrologie, et d'en discuter les principales limites.

~ 2 ~

Intérêt de l'utilisation de modèle de Poisson La régression de Poisson est l'outil pertinent pour l'analyse de taux d'incidence dans les études de cohorte (nombre d'événements rapporté à un nombre de personnes-année d'exposition). Elle est également utile pour la comparaison de dénombrements d'événements (comme le nombre moyen d'événements pour un patient sur une période de suivi). Ce qui est moins connu, c'est que l'utilisation de la régression de Poisson facilite les analyses de tendances temporelles des risques de base, des sur-risques relatifs ou absolus, ainsi que d'autres aspects des fonctions de risque qui peuvent être difficiles à évaluer avec d'autres méthodes. La méthode de Kaplan-Meier, le test du logrank et le modèle de Cox ont chacun leur parallèle respectif dans l'analyse de données groupées : risques instantanés, risques relatifs sur données groupées et régression de Poisson groupés par intervalles. Cette approche permet de présenter la vitesse instantanée d'occurrence d'événements, potentiellement plus significative pour les cliniciens, et de prendre en compte plus facilement certaines contraintes. En effet, par exemple, cette approche facilite la prise en compte de variables dépendantes du temps, d'un effet dépendant du temps, d'un risque concurrent ou d'une exposition par intervalles ou dans le calcul d'excès de mortalité. Ce sont ces quelques applications moins connues que nous allons illustrées ci-dessous.

Exemple proposé

Prenons la cohorte des 116 265 patients avec une maladie rénale chronique ayant démarré un traitement de suppléance par dialyse entre 2005 et 2016. On s'intéresse à la mortalité de ces patients et le poids du cancer dans le risque de décès. Parmi les 12 362 patients avec un cancer au démarrage (âge médian 74,3 ans), 7996 (64 %) sont décédés et 530 (4 %) ont reçu un greffon rénal avant le 31 décembre 2017. Parmi les 100 086 patients sans cancer au démarrage (âge médian 70,5 ans), 45 565 (46 %) sont décédés et 21 027 (21 %) ont reçu un greffon rénal avant le 31 décembre 2017. Afin de mettre en oeuvre une régression de Poisson, nous avons construit une table dans laquelle la trajectoire des patients est découpés par mois (1 ligne par mois et par patient) depuis le démarrage de la dialyse et jusqu'au 31 décembre 2017, ou à la date de perdu de vue ou de décès. Pour chaque patient, on connaît son âge au démarrage de la dialyse et s'il était atteint d'un cancer. À chaque intervalle de temps par rapport au démarrage, on sait si le patient est vivant ou décédé (dernière ligne), et s'il est exposé à une variable d'intérêt qui peut varier au cours du temps : l'âge actuel ou le traitement par dialyse ou greffe. L'âge initial et l'âge actuel ont été regroupés en classes : 0-44 ans, 45-69 ans, 70-79 ans, 80 ans et plus. L'incidence du décès ou taux de mortalité moyen, sur l'ensemble du suivi, varie de 1,18 à 2,65 pour 100 personnes-mois à risque selon la présence ou non d'un cancer actif lors du démarrage de la dialyse (Tableau 1). Les personnes avec cancer ont un taux de mortalité 2,3 fois plus élevé que les personnes sans cancer (rapport d'incidence : 2,24 ; IC 95 % 2,17-2,31). Après ajustement sur l'âge au démarrage (variable fixe), le rapport d'incidence est plus faible mais toujours significatif car seulement une partie de la relation entre cancer et décès est expliquée par le fait que les patients avec cancer sont plus âgés que ceux sans cancer.

Variable dépendante du temps

Si l'on souhaite prendre en compte le fait que les patients vieillissent, il est possible d'ajuster notre modèle non pas avec l'âge initial mais l'âge actualisé à chaque pas de ~ 3 ~ temps (variable dépendante du temps). Puisque notre table de travail contient déjà cette information mois par mois, il est très simple de l'utiliser telle quelle. Le rapport d'incidence baisse de façon un peu moins marquée qu'avec l'âge initial, probablement du fait que les patients qui survivent ont un âge qui continue à s'incrémenter. On attribue ainsi un âge faussement plus bas plus longtemps chez les patients sans cancer qui ne meurent pas de suite (Tableau 1). De même, si l'on souhaite prendre en compte le fait que les patients avec un cancer ont un moindre accès à la greffe et que, par ailleurs, l'accès à la greffe est associé à une meilleure survie, il est nécessaire d'introduire cette information dans notre modèle. Celle-ci est introduite comme variable dépendante du temps. La prise en compte de cette information réduit légèrement l'écart entre les 2 incidences (Tableau 1). Il est également possible d'utiliser une régression de Poisson dans un modèle hiérarchique afin de prendre en compte par exemple « l'effet région de traitement » (Tableau 1).

Effet dépendant du temps

Si l'on souhaite savoir si l'effet du cancer est stable au cours du temps, c'est-à-dire si la surmortalité est identique au démarrage de la dialyse ou à distance, il faut introduire la notion de temps dans le modèle. Sur la figure 1 sont représentés les taux mensuels de mortalité ajustés sur l'âge initial tels que prédit par la régression de Poisson. On voit que les taux sont très élevés initialement, puis baisse de façon importante sur la première année avant de de se stabiliser. Les 2 courbes pourraient sembler, à première vue, relativement parallèles, mais la représentation de l'évolution des ratio d'incidence confirme un écart progressif des courbes avec le temps (figure 2).

Risques concurrents

Dans les résultats présentés ci-dessus, nous avons considéré la mortalité dans son ensemble, que le décès survienne en dialyse ou après une greffe rénale. Si l'on souhaite analyser uniquement la survie en dialyse, on restreint l'analyse aux mois passés en dialyse. Les patients porteurs d'un greffon rénal ne sont pas à risque de décéder en dialyse. On dit qu'il s'agit d'un risque concurrent car il empêche l'observation de l'événement d'intérêt. Dans notre cas, il suffit simplement d'exclure les lignes dans lesquelles les patients sont en état « greffés ». La nouvelle courbe montre que les taux mensuels de mortalité augmentent dans les deux groupes avec le temps, signe de la sélection des patients les plus valides vers la greffe rénale et, du coup, une mortalité plus importante en dialyse (figure 3). Les ratio d'incidence ont une petite tendance à la baisse, signifiant un très léger rapprochement des taux de mortalité entre patients avec ou sans cancer, tout en restant à un niveau élevé autour de 2 (figure 4). Très souvent, dans les études, la mortalité est représentée sous forme d'une courbe de survie, à partir de l'estimateur de Kaplan-Meier ou l'estimateur actuariel, prenant en compte le fait que les données sont censurées ou tronquées. Si aucune troncature ou censure n'intervient, la courbe de survie ainsi représentée est équivalente à la fonction de survie (probabilité de survivre au-delà de t). La fonction de survie, intégrant l'ensemble des observations, décrit mal la dynamique instantanée du processus de mortalité. La fonction de risque (probabilité de décéder entre t et t + dt, conditionnellement au fait d'être encore vivant en t) fournit une description plus concrète. La régression de Poisson va permettre ce genre de représentation. Si l'on compare la figure 5 (courbe de survie) à la figure 3, on voit qu'il est plus aisé de repérer une re-augmentation du risque au-delà de la 1 re année sur la figure 3 ; la cassure de pente, en particulier chez les patients sans cancer, étant difficilement visible sur une courbe cumulée.
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Exemples d'utilisation dans la littérature néphrologique

Taux ajustés

Les taux d'incidence ou de prévalence sont souvent ajustés sur la distribution d'âge et de sexe de la population « à risque » afin de pouvoir faire des comparaisons, soit spatiales (entre différents territoires), soit temporelles (entre différentes années). Cet ajustement peut se faire par la méthode de standardisation (directe ou indirecte), ou à l'aide d'un modèle de Poisson. Une régression de Poisson considère que le logarithme de la variable dépendante est linéaire dans les prédicteurs (modèle linéaire généralisé). Par conséquent, pour ajuster une régression de Poisson, la population « à risque » est introduite sous forme du logarithme du total des temps-personnes exposés (appelé offset). Cette méthode est largement utilisée pour le calcul des différents taux des rapports annuels de l'United States Renal Data System (USRDS) ou de l'European Renal Association -European Dialysis and Transplant Association (ERA-EDTA) [START_REF] Liu | State-level adjusted ESRD incident rates: use of observed vs model-predicted category-specific rates[END_REF][START_REF] Saran | US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States[END_REF][START_REF] Pippias | The changing trends and outcomes in renal replacement therapy: data from the ERA-EDTA Registry[END_REF]. Cette méthode a également été utilisée pour estimer l'écart entre les besoins et la prévalence actuelle des traitements de suppléance à l'échelon mondial [START_REF] Liyanage | Worldwide access to treatment for end-stage kidney disease: a systematic review[END_REF]. Dans ce cadre, la régression de Poisson peut également être utilisée dans les analyses de survie, l'incidence du décès étant l'événement d'intérêt. Cette méthode a, par exemple, été utilisée pour examiner la relation entre l'évolution de la fonction rénale et le décès dans deux essais cliniques [START_REF] Rebholz | Risk of ESRD and mortality associated with change in filtration markers[END_REF].

Variables dépendantes du temps ou mesures répétées

Dans de nombreuses études de cohorte, soit l'exposition, soit les facteurs de confusions peuvent être mesurés à plusieurs reprises au cours du suivi. Il existe différentes façons de les prendre en compte. Disposer d'une table découpée par intervalles de temps avec, pour chaque intervalle, le niveau d'exposition ou la valeur du facteur de confusion permet aisément d'introduire ces informations dans un modèle multivarié avec variables dépendantes du temps.

Événements récurrents

Lorsque les patients peuvent expérimenter plusieurs fois l'événement d'intérêt (par exemple une hospitalisation), le nombre d'événements par patient, rapporté à la durée d'exposition, peut être modélisé par une régression de Poisson. Ainsi, dans une étude américaine, le taux d'hospitalisation pour infection chez les patients dialysés a été de 40,2 pour 100 personnes-année, sachant que seuls 28 % des patients ont eu au moins une hospitalisation pour infection, 10 % ayant eu plus d'une hospitalisation [START_REF] Dalrymple | Risk factors for infection-related hospitalization in in-center hemodialysis[END_REF]. Les facteurs de risque liés aux patients et aux pratiques des centres ont pu être identifiés. Une étude australienne a montré des ratio de taux d'incidence d'hospitalisation plus élevés chez les personnes prenant des anti-inflammatoires non stéroïdiens (AINS), que ce soit chez des personnes âgées diabétiques, sous inhibiteurs du système rénine-angiotensine, ou dans une population contrôle de vétérans [START_REF] Pratt | Differential impact of NSAIDs on rate of adverse events that require hospitalization in high-risk and general veteran populations: a retrospective cohort study[END_REF].

Méta-analyses

La régression de Poisson est également utilisée dans le cadre de méta-analyses portant sur des taux d'incidence [START_REF] Acuna | Cancer recurrence after solid organ transplantation: A systematic review and meta-analysis[END_REF][START_REF] Trikalinos | Simulation-based comparison of methods for meta-analysis of proportions and rates[END_REF].

Comparaison de la régression de Poisson avec le modèle de Cox

Le tableau 2 résume les situations qui sont facilement prises en compte dans une régression de Poisson.
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Principales limites L'application de la régression de Poisson nécessite que les données relatives à des sujets individuels soient organisées dans des tableaux d'événements-temps structurés par le temps et d'autres facteurs d'intérêt.

L'une des caractéristiques de la distribution de Poisson est l'égalité de la moyenne et de la variance. Les données présentent parfois une sur-dispersion, i.e. une variance plus importante que la moyenne. Celle-ci n'intervient pas au niveau de l'estimation des β, mais a pour effet de surestimer l'intervalle de confiance, et donc de conclure à tort à la significativité. Afin de remédier à ce problème, il existe différentes solutions, dont la première est de s'assurer que le modèle a été bien spécifié et comporte bien les variables explicatives nécessaires. Le modèle peut aussi être adapté (voir Annexe). Il doit également être adapté lorsqu'un nombre important de patients ne vont pas expérimenter l'événement d'intérêt (par exemple une hospitalisation), i.e. dans beaucoup d'intervalles de temps, on n'observe pas l'événement d'intérêt. Dans une régression de Poisson, les événements doivent être indépendants, i.e. l'arrivée d'un événement ne rend pas plus ou moins plausible un autre événement. Cette hypothèse n'est pas forcément raisonnable, par exemple dans le cas des hospitalisations répétées pour un même patient. Cependant, cette limite est partagée par les modèles de survie, en particulier par le modèle de Cox.

Conclusion

Les modèles de Poisson présentent de très nombreuses applications en médecine. Ces modèles sont particulièrement utiles pour estimer des taux d'incidence. Ils permettent de prendre en compte des variables ou des effets dépendants du temps. On l'a vu, la capacité à représenter sous forme de figures et à comparer les taux de mortalité ainsi que les risques relatifs est un avantage important dans l'évaluation de l'ajustement d'un modèle multivarié en présence de diverses interactions. Aujourd'hui relativement peu utilisés en néphrologie, ces modèles pourraient permettre un éclairage nouveau sur des situations complexes. 

Tableau 1 Effet de la présence d'un cancer sur l'incidence du décès chez les patients en traitement de suppléance

Annexe Pour en savoir plus

Le modèle en bref La régression de Poisson rentre dans la famille des modèles linéaires généralisés [START_REF] Chau | Interpreting Poisson regression models in dental caries studies[END_REF]. Elle est employée lorsque la variable à analyser résulte d'un processus de comptage (comme un nombre de décès, un nombre d'événements indésirables, ou encore un nombre de nouveaux cas). Les modèles linéaires classiques ne sont pas adaptés dans ce cas car ils supposent que la variable à expliquer soit distribuée selon une loi normale, i.e. que la variance des résidus est constante. Or, dans les données de comptage, la variance des résidus est proportionnelle aux comptages moyens prédits par le modèle (loi de Poisson). Utiliser quand même un modèle linéaire classique peut entraîner une estimation biaisée des paramètres du modèle. Si l'on représente le nombre de décès en dialyse en fonction du temps depuis le démarrage, courbe des points rouges, ou le taux de décès (nombre de décès en dialyse rapporté au nombre de patients à risque), courbe des croix vertes, la figure S1 montre bien que l'on ne peut considérer ces variables comme suivant une loi normale. On ne peut donc modéliser ce nombre de décès par une régression linéaire classique. La régression de Poisson étudie la liaison entre une variable dépendante Y (composante aléatoire distribuée selon une loi de Poisson) et un ensemble de variables explicatives (composante déterministe, aussi appelée prédicteur linéaire). La fonction de lien (dite canonique) entre l'espérance mathématique de la composante aléatoire et le prédicteur linéaire spécifique de la loi de Poisson est le logarithme de l'espérance (modèle loglinéaire). Y étant une variable de comptage à expliquer, β0 l'intercept, β l'effet d'une covariable x, log[E(Y)] = β0 + βx --> E(Y) = exp(β0 + βx)

Figure 1 .

 1 Figure1. Évolution au cours du temps des taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure2. Évolution au cours du temps des ratios de taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure3. Évolution au cours du temps des taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure4. Évolution au cours du temps des ratios de taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure5. Courbe de survie selon la méthode de Kaplan-Meier.

Figure 2 .

 2 Figure1. Évolution au cours du temps des taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure2. Évolution au cours du temps des ratios de taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure3. Évolution au cours du temps des taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure4. Évolution au cours du temps des ratios de taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure5. Courbe de survie selon la méthode de Kaplan-Meier.

Figure 3 .

 3 Figure1. Évolution au cours du temps des taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure2. Évolution au cours du temps des ratios de taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure3. Évolution au cours du temps des taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure4. Évolution au cours du temps des ratios de taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure5. Courbe de survie selon la méthode de Kaplan-Meier.

Figure 4 .

 4 Figure1. Évolution au cours du temps des taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure2. Évolution au cours du temps des ratios de taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure3. Évolution au cours du temps des taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure4. Évolution au cours du temps des ratios de taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure5. Courbe de survie selon la méthode de Kaplan-Meier.

Figure 5 .

 5 Figure1. Évolution au cours du temps des taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure2. Évolution au cours du temps des ratios de taux de mortalité ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure3. Évolution au cours du temps des taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure4. Évolution au cours du temps des ratios de taux de mortalité en dialyse ajustés sur l'âge selon la présence ou non d'un cancer au démarrage de la dialyse. Figure5. Courbe de survie selon la méthode de Kaplan-Meier.

Nombr e de déc ès Nombre de 100 personn es-mois à risque Taux de mortalité pour 100 personn es-mois IC 95 % Rapport d'inciden ce = risque relatif IC 95 %

  

	Après ajustement sur l'âge actuel et l'accès à la greffe			
	Avec cancer vs sans	1,69				1,72	1,66
	Après								
	Sans Cancer	45 128 38 148,07	1,18	1,1 7	1,2 0		
	Avec Cancer	7 970	3 006,03		2,65	2,5 8	2,7 3	2,24	2,1 7	2,31
				Rapport d'incidence			IC 95 %
	Après ajustement sur l'âge au démarrage				
	Avec cancer vs sans	1,73				1,70	1,76
	Après ajustement sur l'âge actuel					
	Avec cancer vs sans	1,77				1,74	1,80
	Après ajustement sur l'accès à la greffe				
	Avec cancer vs sans	1,92				1,86	1,98
					~ 7 ~				

ajustement sur l'âge au démarrage et l'effet région de traitement

  

	Avec cancer vs sans Tableau 2 Comparaison des analyses sur données individuelles et sur données groupées 1,69 1,59 1,80 dans différentes situations Mortalité en excès Les patients en dialyse partage avec la population générale la même mortalité de base, que l'on souhaite retirer du calcul Création d'une table avec la mortalité de la population générale selon le sexe et l'âge, et création d'une nouvelle fonction de lien Création d'une table avec la mortalité de la population générale selon le sexe et l'âge, et création d'une nouvelle fonction de lien
	Possible	Exemple		Régression de Poisson
	extensions	d'application	Régression de Cox	sur données
	du modèle	clinique		par intervalles
	Variable dépendante du temps	États successifs dans les différentes modalités de dialyse	Le suivi de chaque patient est découpé en plusieurs lignes pour obtenir une valeur fixée de la variable par ligne	Étant donné que la table a déjà été divisée au préalable en intervalles de temps, il suffit d'ajouter la variable dans le modèle. L'intervalle de temps doit être choisi pour que la valeur de la variable soit fixée dans chaque intervalle
	Effet temps-dépendant	L'effet comorbidité au d'une démarrage peut avoir un impact moyen sur la survie qui peut diminuer ou augmenter au cours du temps	Même chose que ci-dessus pour la préparation de la table de travail + introduction d'une dans le modèle variable et le temps interaction entre la	Même chose que ci-dessus pour la préparation de la table de travail
	Retrait temporaire d'une période à risque	Périodes contre-indication de temporaire excluant la possibilité d'être greffé d'un rein		Lors de la préparation de la table, les segments correspondant au retrait sont exclus de la table finale
	Risques concurrents	En étudiant la possibilité d'être greffé, le décès est un risque concurrent	La méthode d'Aalen Johansen est utilisée en lieu et place de la méthode de Kaplan-Meier et le modèle de Fine et Gray au lieu du modèle de Cox	Création de 2 tables pour chaque événement. Dans chacune, l'occurrence du 2 e événement est considéré comme une censure
			~ 8 ~	
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~ 9 ~ exp(β) est la valeur par laquelle est multipliée l'espérance de la variable à expliquer lorsque x augmente d'une unité. La somme de variables aléatoires de loi de Poisson suit également une loi de Poisson. Ainsi, sous une hypothèse d'indépendance, il est équivalent d'analyser des données individuelles et des données groupées. La déviance permet de mesurer l'écart entre le modèle et l'observation, et d'exprimer l'écart entre la log-vraisemblance obtenue et un modèle parfait (dit saturé). Différents modèles emboités peuvent être comparés à l'aide des déviances.

Sur-dispersion

La distribution de Poisson est définie par un seul paramètre, en général appelé « lambda ».

P (Y = y) = e -λ λ y / y ! L'espérance (ou moyenne) et la variance d'une variable aléatoire distribuée selon une loi de Poisson sont égales à lambba : E(y) = Var(y) = λ Dans le cas d'une sur-dispersion (i.e. la variance est plus importante que la moyenne), la déviance normalisée ou le khi-deux de Person normalisés sont nettement supérieurs à 1. Si la variance est proportionnelle à la moyenne, on peut modifier la fonction de la loi en multipliant par le paramètre de sur-dispersion (approche par quasi-vraisemblance), estimée à partir de la statistique du khi-deux de Pearson. Si la dispersion est due à une hétérogénéité de la moyenne, par exemple entre régions ou entre unités de soins, il est possible d'utiliser un modèle de régression binomiale négative. Dans certains cas, la loi de Poisson n'est pas adaptée parce qu'il y a une surreprésentation de la valeur 0 (absence du phénomène ou apparition nulle sur la période). Cette situation peut se voir, par exemple, lorsque l'on s'intéresse aux nombres d'hospitalisations sur une période chez des patients [START_REF] Weaver | Analyzing hospitalization data: potential limitations of Poisson regression[END_REF]. Certains patients ne seront pas hospitalisés. Une solution consiste à combiner 2 lois de distribution : une loi binomiale pour la survenance ou non de Y = 0 et la loi de Poisson pour le comptage des événements (zero-inflated Poisson) [START_REF] Preisser | Review and recommendations for zero-inflated count regression modeling of dental caries indices in epidemiological studies[END_REF][START_REF] Spittal | Meta-analysis of incidence rate data in the presence of zero events[END_REF].

Mise en oeuvre

Dans SAS ® , la mise en forme de la table de travail peut être effectuée avec la macro %lexis et la régression de Poisson avec les procédures PROC GENMOD ou PROC GLIMIX (options : dist = poisson et link = log). Dans R ® , la mise en forme de la table de travail peut être effectuée avec la fonction Lexis puis la régression de Poisson avec la commande glm () et l'argument family = poisson (link = "log"). Dans STATA ® , la fonction stsplit et la commande Poisson peuvent être utilisées. À titre d'exemple, les données de 3 patients (données initiales, données splittées par mois et données agrégées) sont présentées dans les tableaux S1, S2 et S3. 

Tableau S1 Données brutes ID patient

Date