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This paper focuses on the radiation noise of a rod-airfoil configuration based on a high-order cell-centered finite difference method (CCFDM) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy. To reduce numerical dissipation and dispersion, a class of optimized compact schemes is firstly proposed and then validated with benchmark cases from computational aeroacoustic workshops. For turbulence, the delayed detached eddy simulation (DDES) with Spalart-Allmaras model is adopted and is validated through a canonical periodic hill problem. For the far-field radiated acoustics, the FW-H acoustic analogy is utilized with validation of laminar flow past NACA0012. Finally, a rod-airfoil configuration is investigated. The results show reasonable agreement with the experimental data in terms of both near-field aerodynamics and far-field acoustics. The interaction between the upstream turbulence wake from the rod and the downstream airfoil is evidenced to be the dominant contributor to the far-field noise.

Introduction

Computational aeroacoustics (CAA) is a topic of considerable interest to the computational fluid dynamics (CFD) community. The goals in CAA mainly involve three aspects: developing computational approaches [START_REF] Colonius | Computational aeroacoustics: progress on nonlinear problems of sound generation[END_REF] for noise propagation and radiation; investigating the noise generation mechanism of practical configurations in industry [START_REF] Filippone | Aircraft noise prediction[END_REF] and exploring noise-control concepts and strategies [START_REF] Wang | Computational prediction of flow-generated sound[END_REF]. Among all, the first goal lays the foundation and is the main focus in this paper.

One concern for CAA tools is the computational efficiency and this motivates us to focus on the finite difference method (FDM) on structured grid where the high-order accuracy can be realized dimensionally by dimensionally. This owns to the coordinate transformation between Cartesian and curvilinear coordinates. But, a constraint is invoked in this process, which is named geometric conservation law (GCL) [START_REF] Thomas | Geometric conservation law and its application to flow computations on moving grids[END_REF]. Particular attention should be paid to the satisfaction of GCL condition in order to achieve high-order accuracy. Otherwise, the grid induced error will contaminate the flow-field. It is reported [START_REF] Liao | Extending geometric conservation law to cell-centered finite difference methods on stationary grids[END_REF][6] that a cell-centered finite difference method (CCFDM) and its companion cell-centered symmetric conservative metrics method (CCSCMM) can retain high accuracy and non-violation of GCL. This method will be further developed for aeroacoustics.

The first consideration is to find appropriate spatial schemes for aeroacoustics. The acoustic fluctuations are usually small in the magnitude and can propagate for long distances with nearly no damping. Yet, in conventional CFD tools, the excessive truncation error resulting from the low-order numerical methods will overwhelm the acoustic signals. This motivates the development of low-dissipation and low-dispersion schemes, such as compact schemes [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF] and dispersion-relation-preservation scheme (DRP) [START_REF] Tam | Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics[END_REF]. In the spirit of DRP scheme, the compact schemes [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF] can be further optimized to achieve higher spectral properties [START_REF] Kim | Optimised boundary compact finite difference schemes for computational aeroacoustics[END_REF]. But, these schemes [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF][8] [START_REF] Kim | Optimised boundary compact finite difference schemes for computational aeroacoustics[END_REF] cannot be used directly because they are in the form of derivatives whereas interpolations are demanding in the framework of CCFDM [START_REF] Liao | Extending geometric conservation law to cell-centered finite difference methods on stationary grids[END_REF] [START_REF] Liao | Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids[END_REF]. A class of dissipative compact interpolations [START_REF] Deng | A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law[END_REF] is given where one free parameter provides controllable dissipation. In the present paper, new attempt is given on optimization of the compact interpolations so as to achieve more superior spectral properties.

The second consideration is associated with unsteady separated turbulence flows. The direct numerical simulation (DNS) capturing all the physically dynamic scales and large eddy simulation (LES) mainly capturing the energy-containing motions are accurate and reliable. But they are prohibitively expensive for high Reynolds wall-bounded flows due to the Reynolds number limitation [START_REF] Wang | Computational prediction of flow-generated sound[END_REF]. Contrarily, the Reynolds-averaged Navier-Stokes (RANS) equations are cheap in costs, yet it is less accurate due to lack of unsteady information.

An alternative to compromise the computational costs and the accuracy is detached eddy simulation (DES) [START_REF] Spalart | Detached-Eddy Simulation[END_REF] where the thin boundary layer is treated by RANS and the separated flow-field is treated by LES. In this paper, the delayed DES (DDES) [START_REF] Spalart | A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities[END_REF] adopting the vorticity-dependent length scale in Ref. [START_REF] Chauvet | Zonal Detached Eddy Simulation of a Controlled Propulsive Jet[END_REF] is utilized. A canonical periodic hill case [START_REF] Breuer | Flow over periodic hills-Numerical and experimental study in a wide range of Reynolds numbers[END_REF] is validated to demonstrate DDES's capability for separated flows.

The third consideration is to find appropriately efficient and accurate way for radiated acoustics. A wave extrapolation method [START_REF] Williams | Sound generation by turbulence and surfaces in arbitrary motion[END_REF] [START_REF] Prieur | Aeroacoustic integral methods, formulation and efficient numerical implementation[END_REF] is able to extrapolate the acoustics to far-field region efficiently without any dissipation and dispersion. Under such circumstances, the propagation process can be taken as a second calculation from the CFD results. FW-H equation [START_REF] Williams | Sound generation by turbulence and surfaces in arbitrary motion[END_REF] is a commonly used method and two classical strategies can be employed to obtain the numerical solutions for FW-H equations: the time domain formulation [START_REF] Brentner | Modeling aerodynamically generated sound of helicopter rotors[END_REF] [START_REF] Vouros | Integrated methodology for the prediction of helicopter rotor noise at mission level[END_REF] and the frequency domain formulation [START_REF] Lockard | An efficient, two-dimensional implementation of the Ffowcs Williams and Hawkings equation[END_REF] [START_REF] Gloerfelt | Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods[END_REF]. The time domain formulation is based on the 3D Green's function whilst the frequency domain formulation can be implemented with both 2D and 3D Green's function.

In this paper, a time domain formulation as well as considering the convection effect [START_REF] Ghorbaniasl | A moving medium formulation for prediction of propeller noise at incidence[END_REF] is adopted. The tonal noise radiation from a laminar flow past a NACA0012 airfoil [START_REF] Wolf | Acoustic Analogy Formulations Accelerated by Fast Multipole Method for Two-Dimensional Aeroacoustic Problems[END_REF] is used for validation.

Finally, the radiated noise of wake-airfoil interaction is studied by investigation on the rod-airfoil problem, which can be considered as the simplified model case of the blade-vortex interaction in turbofans [START_REF] Teruna | A rod-linear cascade model for emulating rotor-stator interaction noise in turbofans: A numerical study[END_REF]. This problem has been experimentally investigated by Jacob et al. [START_REF] Jacob | A rod-airfoil experiment as a benchmark for broadband noise modeling[END_REF] [START_REF] Jacob | Assessment of CFD Broadband Noise Predictions on a Rod-Airfoil Benchmark Computation[END_REF], and numerically studied with different approaches. The objective of this paper is, on one hand, assessing the capability of high-order CCFDM coupled with FW-H acoustic analogy for the far-field acoustics, on the other hand, providing further insight of the noise mechanism.

This paper is organized as follows. Governing equations are presented in section 2. Numerical methodologies are introduced in section 3 in detail. To validate the performance of numerical strategies, benchmark cases are provided in section 4. Finally, section 5 investigates the radiated noise of the rod-airfoil configuration. Conclusions are drawn in Section 6.

Governing Equations

Naiver-Stokes (N-S) equations

The non-dimensional Naiver-Stokes (N-S) equations in x, y, z Cartesian coordinates are
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where Q and U are primitive and conservative vector respectively. ρ is density. u, v, w are flow velocity components along Cartesian coordinates respectively. p is pressure with p T ρ γ = based on the equation of state for calorically perfect gas. T stands for the temperature. 
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where µ denotes laminar viscosity by Sutherland's formula and t µ denotes turbulent viscosity according to the Boussinesq hypothesis. The specific formulations for t µ will be discussed in section 2.2. The laminar and turbulent Prandtl number Pr and Prt for air is taken as 0.72 and 0.9 respectively.

All the aforementioned quantities are non-dimensionalized by
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where the superscript * denotes the reference variables. The non-dimensional freestream parameters are
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By introducing the following coordinate transformation on the stationary grid: ( , , ), ( , , ), . ( , , ).
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Eq. ( 1) can be recast in the equivalent form under ξ, η, ζ curvilinear coordinates, (
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where the subscript notations represent derivatives, for example, notation x ξ stands for x ξ ∂ ∂ . J is the Jacobian of coordinate transformation.

The equivalent transformation from Eq. (1) to Eq.( 7) requires the following condition to be satisfied:
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which indicates the geometric conservation law (GCL) on stationary grid, which will be discussed in section 3.2.

Delayed detached eddy simulation (DDES) based on Spalart-Allmaras model

In Eq. ( 3), t µ is obtained by
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where ν% is the kinetic viscosity and calculated by the Spalart-Allmaras model:

( ) ( ) ( ) 2 2 2 2 1 1 2 1 2 2 1 1 , b b b j b t w w t j j j j w c c c u c f S c f f t x x x x d ν ν ν ν ν ν ν ν ν ν σ σ κ         + ∂ ∂ ∂ ∂ ∂   + = + - + + - - -               ∂ ∂ ∂ ∂ ∂             % % % % % % % % % (11) 
where 

d d C ∆ = , ( 12 
)
where max max( , , ) 

,

w w t i j i j w DDES d DES d d d r d d v v r U U d f C f κ = - - - + ∆ ≡ = (13) 
where d f equals to 0 in RANS region while approaches 1 in LES region. Standard DDES [START_REF] Spalart | A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities[END_REF] tends to delay the development of physical shear layer Kelvin-Helmholtz instabilities. A vorticity-dependent length scale proposed by Chauvet et al. [START_REF] Chauvet | Zonal Detached Eddy Simulation of a Controlled Propulsive Jet[END_REF] is used to mitigate this problem:
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where , ,

x y z ω ω ω represents the unit vector of local vorticity.

Ffowcs Williams and Hawkings (FW-H) equation

The convective FW-H equation [START_REF] Ghorbaniasl | A moving medium formulation for prediction of propeller noise at incidence[END_REF] is solved for far-field radiated acoustics. A schematic diagram is shown in Figure 1.
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where a is the speed of sound. The convective effect is explicitly reflected by the Mach number ,i M ∞ . The solution for Eq.( 15) in time domain can be written as ( )
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where volume integration outside the porous surface is omitted. And Eq.( 17) is solved with the advanced time approach [START_REF] Vouros | Integrated methodology for the prediction of helicopter rotor noise at mission level[END_REF] [START_REF] Casalino | An advanced time approach for acoustic analogy predictions[END_REF]. y and x represents the source location and the observer location respectively. τ and t denote the source time and observer time. [ ] τ ⋅ means the integration is evaluated at the source time τ. 
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r x y i = -= Details can be found in Ref. [START_REF] Ghorbaniasl | A moving medium formulation for prediction of propeller noise at incidence[END_REF].

Numerical Methodology

On multi-block curvilinear structured grid, solution points are located on cell centers, denoted as ( )

, , i j k .
Flux points are located on face centers, denoted as ( )
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, , 1 2 i j k ± . Grid points are located on grid nodes, denoted as ( )

1 2, 1 2, 1 2 i j k ± ± ± .
Section 3.1 targets on the flow-dependent discretization with high-order cell-centered finite difference method (CCFDM). Section 3.2 targets on the geometry-dependent discretization with high-order cell-centered symmetric conservative metric method (CCSCMM).

Cell-centered finite difference method (CCFDM)

The spatial derivatives of fluxes in Eq. ( 7) are focused in this section. Without losing generality, the

discretization of Ê ξ ∂ ∂ is illustrated. ˆi E′ is used to denote numerical derivative of ˆ( ) E Q ξ ∂ ∂ along the
ξ -coordinate where the subscript i stand for the index of cell center. ˆi E′ is discretized by the face-to-cell compact difference schemes in this paper. The corresponding 4th-, 6th-and 8th-order are given by ( ) 
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The left-hand side derivatives ˆi E′ etc. can be acquired by tridiagonal inversion through the Thomas algorithm assuming the right-hand side terms are known.

The right-hand side fluxes in Eq.( 20) on face centers are evaluated by a Riemann flux solver, for instance
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where the coordinate transformation metrics will be discussed in the next section. 
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where the corresponding coefficients are given in Table 1. In each of the Opt4, Opt6 and Opt8 schemes, two degrees of freedom, denoted by ξ and η, are used for dissipation and dispersion optimization. Table 1. Coefficients of schemes in Eq. ( 22) related to ξ and η .
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The transfer function for Opt6 is 

( ) ( ) ( ) ( ) ( ) ( ) 6 1 5 
Opt k k k k i k k T k k i k η η ξ ξ η ξ ξ η η ξ       - + -+ - +         +           + + +             = + + (24) 
The transfer function for Opt8 is ( ) The optimized ξ and η can be found to eliminate the spectral error in wavenumber domain. Specifically, the following integrated dispersion and dissipation error function should reach its minimum value.
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where kc is the cut-off wavenumber below which the optimization procedure is valid. ε ℜ and ε ℑ are the constraint thresholds for dispersion and dissipation error respectively. The optimization parameters and the optimized ξ and η are given in Table 2 where are the imaginary parts of the transfer functions of 5th-order, 7th-order and 9th-order upwind tridiagonal compact schemes (denoted as UI5, UI7 and UI9 respectively), which can be obtained by setting (ξ, η) into (-2/5, 3/5), (-2/7, 5/7) and (-2/9, 7/9) in Eq.( 22) and Table 1, respectively. The spectral properties of Opt4, Opt6 and Opt8 are shown in Figure 3. And the comparisons are also made with a 5th-order upwind explicit scheme (UE5) and a 5th-order upwind compact scheme (UI5). It can be seen that Opt4, Opt6 and Opt8 improve the spectral properties dramatically. 22)) coupled with the corresponding same order difference schemes (Eq. ( 20)).
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Cell-centered symmetric conservative metric method (CCSCMM)

The coordinate transformation metrics in Eq.( 8) and Eq.( 21) are calculated by [START_REF] Thomas | Geometric conservation law and its application to flow computations on moving grids[END_REF][5]: 
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As illustration, term ( ) 
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Jacobian J is discretized by For clarity, the derivatives and interpolations in Eqs. [START_REF] Menter | A Scale-Adaptive Simulation Model for Turbulent Flow Predictions[END_REF][START_REF] Casalino | An advanced time approach for acoustic analogy predictions[END_REF]will be demonstrated with 2nd-order schemes:
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And, on the red surface in Figure 4 (a), ( )
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The similar relations also hold for ( )
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Combining Eq. ( 33) and ( 34) together, we have [START_REF] Liao | High-order adapter schemes for cell-centered finite difference method[END_REF] which means the 2nd-order metrics in CCFDM is equivalent to the surface vector of CCFVM in numeric.

( ) ( ) 1 1 , , , , 2 , 
A schematic diagram for the calculation of Jacobian is shown in Figure 4 (b). Using divergence theorem, Eq. ( 31) can be further rewritten as { }

1 1 4 4 2 2 5 5 3 3 6 6 } 1 [( , , ) ( , , ) ] [( , , ) ( , , , ) ] [( , , ) ( , , ) ] 3 1 1 1 3 3 3 ( , , ) ( , , ) V V V x y z x y z z x y z x x y z x y z d x y dV d y V x y z V y z x y z x z ∂   ∂ ∂ ∂ ∇ ⋅ = + +   ∂ ∂ ∂ = - + -  + - =  = = ∫∫ ∫∫∫ ∫∫∫ S S S S S S S 444 (36) 
which means the 2nd-order Jacobian in CCFDM is equivalent to the volume of the control volume in CCFVM.

By replacing the 2nd-order approximations (Eq.( 32)) in Eqs. [START_REF] Klopfer | A diagonalized diagonal dominant alternating direction implicit (D3ADI) scheme and subiteration correction[END_REF][START_REF] Sadri | On application of high-order compact finite-difference schemes to compressible vorticity confinement method[END_REF][START_REF] Liao | High-order adapter schemes for cell-centered finite difference method[END_REF][START_REF] Hardin | First ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, NASA Conf[END_REF] with their corresponding high-order counterparts, the high-order grid metrics and Jacobian are acquired. The accuracy consistency is guarantee by using 4th-, 6th-, and 8th-order derivatives, which are same with that in Eq. [START_REF] Gloerfelt | Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods[END_REF]. And the following 4th-, 6th-, and 8th-order interpolations, which are given by 
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i i i i + - + - + - +     (37) 
In combination of section 3.1 and section 3.2, the numerical discretization of flow-dependent variable and geometry-dependent variable are both calculated with high-order accuracy.

Time marching technique

For inviscid cases, the set of ODEs are advanced by explicit TVD Runge-Kutta scheme [START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes[END_REF]. The maximally allowable time step is specified according to the CFL number less than 1. With regard to wall-bounded viscous flows with high Reynolds number, implicit technique provides an appropriate alternative due to large allowable CFL number. The diagonalized diagonal dominant alternating direction implicit (D3ADI) scheme [START_REF] Klopfer | A diagonalized diagonal dominant alternating direction implicit (D3ADI) scheme and subiteration correction[END_REF] is adopted for the rod-airfoil configuration.

Validations

Isentropic vortex problem

This problem [START_REF] Sadri | On application of high-order compact finite-difference schemes to compressible vorticity confinement method[END_REF] is utilized to demonstrate the accuracy of Opt4, Opt6 and Opt8. An isentropic vortex initially locates at ( , ) (0,0)

c c
x y = with the following given conditions. Two kinds of grids are focused: uniform grid and wavy grid. The method for generating these grids can be found in Ref. [START_REF] Liao | High-order adapter schemes for cell-centered finite difference method[END_REF]. Figure 5 evidences that the vortex is well preserved on both uniform and wavy grids. Error( ) ( ) (0)

N N i j i j i j t N ρ ρ ρ = =   = -   ∑∑ .
Figure 6 indicates high-order accuracy can be preserved on both uniform and wavy grids. Additionally, the performance of various schemes in preserving a stronger moving vortex on two tiny grids after a longer time simulation is also compared in Figure 7. The optimized schemes behave less dissipatively. 

Pulse-entropy-vorticity propagation

The pulse-entropy-vorticity propagation problem [START_REF] Hardin | First ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, NASA Conf[END_REF] consists of an acoustic wave, a vorticity wave and an entropy wave propagating in a uniform flow with Ma=0.5. The initial perturbation variables are given by 

ε ρ ε ε ε ε  ′   = - +     ′     = - + + - - +       ′   = - - +     ′   = - - - - +    

Scattering of a sound wave from a solid wall

This case [START_REF] Hardin | First ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, NASA Conf[END_REF] is to show the capability of schemes in capturing a propagating wave with 

 ′   = - + -     ′   = - + -     ′ ′ = =  
where 0.001 ε =

. Figure 9 shows that the results produced by the compact schemes agree well with the analytical solutions. 

Scattering of sound wave from multiple circular cylinders

This case brought up in the fourth CAA workshop [START_REF] Kim | Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, Proc. Third CAA Work. Benchmark Probl[END_REF] is to test the capability of numerical schemes in the presence of complex geometries. Both two and three-cylinder cases are investigated. Since the configurations are symmetric about y=0 plane, only the upper half of the computational domain is considered. The grids for the two and three-cylinder cases are spaced with 

Turbulence flow of periodic hill

Flow over periodic hill is carried out to validate the simulation of turbulence with DDES in separated flows. This case is well-documented by experiment [START_REF] Breuer | Flow over periodic hills-Numerical and experimental study in a wide range of Reynolds numbers[END_REF] and numerical simulations [START_REF] Fröhlich | Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions[END_REF][39] [START_REF] Ziefle | Large-Eddy Simulation of Separated Flow in a Channel with Streamwise-Periodic Constrictions[END_REF]. Following the compressible settings by Ziefle et al. [START_REF] Ziefle | Large-Eddy Simulation of Separated Flow in a Channel with Streamwise-Periodic Constrictions[END_REF], the Reynolds number based on the hill height h and the bulk velocity --------: experimental data from Breuer et al. [START_REF] Breuer | Flow over periodic hills-Numerical and experimental study in a wide range of Reynolds numbers[END_REF]; --- ⋅ ⋅ ⋅ ⋅ : LES data from Fröhlich et al. [START_REF] Fröhlich | Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions[END_REF]; ---- ⋅ ⋅ ⋅ : LES data from Temmerman et al. [39]; --: the present DDES results.

Tonal noise radiated from the 2D NACA0012 airfoil

A laminar flow past a NACA0012 airfoil at 5° angle of attack [START_REF] Wolf | Acoustic Analogy Formulations Accelerated by Fast Multipole Method for Two-Dimensional Aeroacoustic Problems[END_REF] is investigated as the validation of our implementation of FW-H acoustic analogy formulation. The Reynolds number based on the airfoil chord c is 5000 and the Mach number is 0.3. The observer points are located on a circle at a distance with radius of 17c. 

Radiation Noise of Rod-Airfoil Configuration

The radiated noise by the wake-airfoil interaction is investigated through a rod-airfoil configuration [START_REF] Jacob | A rod-airfoil experiment as a benchmark for broadband noise modeling[END_REF].

The rod with diameter d=0.01m is placed upstream of the symmetric NACA 0012 airfoil with chord c=0.1m.

The distance between the rod and the airfoil is 1c. The incoming Mach number is given by 0.2 Ma =

. The Reynolds number based on the rod diameter and the airfoil chord are respectively. Some of the previous numerical studies are summarized in Table 3. 

Computational setup and cost

The computational domain extends from -8c to 16c in the streamwise direction and from -8c to 8c in the crosswise direction. A 2D mesh is initially generated on x-z planer and then extruded along the y-axis for 0.3c to yield the 3D grid. Details regarding the grid topology are shown in Figure 14. No-slip wall boundaries are applied on the solid surfaces and periodic condition is applied on the spanwise direction.

Three set of grids are carried out for mesh sensitivity study, namely Grid A, Grid B and Grid C, which consist of 3-million, 7-million and 15.8-million cells respectively, with 28 cells, 44 cells and 60 cells in spanwise direction respectively. On the circumferential direction of the rod surface, 176 cells, 200 cells and 216 cells are distributed corresponding to Grid A, Grid B and Grid C. On the airfoil surface, 344 cells, 400 cells and 488 cells are distributed respectively. The mean scaled z + ∆ of the first cell in the wall-normal direction is reported to be below 1 for all grids. The estimated spanwise y + ∆ is reported to be 264 for Grid A, 127 for Grid B and 93 for Grid C.

The implicit dual time-stepping method is adopted. The physical time interval is chosen as 0.02 and 20 pseudo steps are given per real time step. 16384 real time units in total (corresponding to physically 0.09s or 64 periods through the airfoil) are collected for flow statistical quantities. In order to obtain the power spectral density (PSD) estimations, these data are split into 7 segments with an overlapping of 50% to eliminate the variance. Case 3 was conducted using 80 cores for 18 days on a workstation with Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz. 

Near-field aerodynamic results

Figure 15 visualizes an overview of the instantaneous flow-field, where the flow separation takes place initially on the surface of rod and then subsequently transits in the shear layer before finally forming the unsteady three dimensional vortex shedding street. The turbulence structures further move downstream and then impact on the leading edge of the airfoil. The Karman vortex shedding wake behind the rod and the wake-airfoil interaction are two major components for the acoustics. Figure 16 show histories of lift and drag coefficients on the rod and airfoil surfaces and their PSD profiles.

Cl and Cd are given by ( )

2 2 A Lif Cl t U ρ ∞ ∞ = ⋅
and ( )

2 2 A dra Cd g U ρ ∞ ∞ = ⋅
where the reference area A for rod and airfoil are measured data for an isolated cylinder with closer Reynolds numbers by Apelt and West [START_REF] Apelt | The effects of wake splitter plates on bluff-body flow in the range 10 4 < Re < 5×10 4 . Part 2[END_REF] and Norberg [START_REF] Norberg | Pressure forces on a circular cylinder in cross flow[END_REF] are used for reference in Figure 17 (a). For the airfoil, the LES data by Giert et al. [START_REF] Giret | Noise Source Analysis of a Rod-Airfoil Configuration Using Unstructured Large-Eddy Simulation[END_REF] are taken for reference in for Grid C is still too large and may degrade the results' accuracy even with a wall-normal z + ∆ of 1. Similar comment is also presented by Giret et al. [START_REF] Giret | Noise Source Analysis of a Rod-Airfoil Configuration Using Unstructured Large-Eddy Simulation[END_REF]. Another concern for this is the experiments of Apelt and West [START_REF] Apelt | The effects of wake splitter plates on bluff-body flow in the range 10 4 < Re < 5×10 4 . Part 2[END_REF] and Norberg [START_REF] Norberg | Pressure forces on a circular cylinder in cross flow[END_REF] which are conducted for an isolated cylinder at other Reynolds numbers. In addition, as is pointed out by Jiang et al. [START_REF] Jiang | Numerical investigation on body-wake flow interaction over rod-airfoil configuration[END_REF], the airfoil behind the rod may cause pressure increase for Figure 18 shows the contour of mean streamwise velocity with six x-axis locations and seven probes for further analysis. Figure 19 is depicted to show the mean and r.m.s. velocity profiles on the wake centerline.

They are compared with the LES data from Giret et al. [START_REF] Giret | Noise Source Analysis of a Rod-Airfoil Configuration Using Unstructured Large-Eddy Simulation[END_REF]. In Figure 19 But, our results at 0.87 x c =agree well with that by Agrawal and Sharma [START_REF] Agrawal | Aerodynamic Noise Prediction for a Rod-Airfoil Configuration using Large Eddy Simulations[END_REF] [START_REF]Modeling fan broadband noise from jet engines and rod-airfoil benchmark case for broadband noise prediction[END_REF]. They describe concerns about the measured data due to it that the peak velocity deficit in the wake is expected to reduce with the distance away from the rod, which indicates the velocity deficit in Figure 20 (b) should be more than that in ). Overall, both the fundamental peak and broadband components satisfactorily agree with the measured data [START_REF] Jacob | Assessment of CFD Broadband Noise Predictions on a Rod-Airfoil Benchmark Computation[END_REF]. For probe A and C, a fundamental peak at f0=0.193 due to vortex shedding as well as its harmonic peaks at 2f0 and 3f0 is resolved. For probe B, only a minor peak at the first harmonic 2f0 is observed whereas the main shedding peak disappears. This is because probe B is influenced by the vortices shedding from the upside and downside of the rod equally. In terms of probes D, E and F, the visible peaks occurred at fundamental frequency indicate that the vortices shed from the rod still dominate the velocity field surrounding the airfoil. For the nearest point F, the calculated data agrees well with the experimental data. Yet, the prediction at point D is lower than the measured data. The reason may be due to the insufficient grid resolution.

A similar result is also obtained by Shell [START_REF] Schell | Validation of a Direct Noise Calculation and a Hybrid Computational Aeroacoustics Approach in the Acoustic Far Field of a Rod-Airfoil Configuration[END_REF]. Figure 23 shows the PSD of pressure fluctuations at location G on the airfoil surface. A relatively good agreement with the experiment by Jacob et al. [START_REF] Jacob | Assessment of CFD Broadband Noise Predictions on a Rod-Airfoil Benchmark Computation[END_REF] is observed. Yet, nearly 4dB is over-predicted for the broadband range. This discrepancy is also noticed by Giret et al. [START_REF] Giret | Noise Source Analysis of a Rod-Airfoil Configuration Using Unstructured Large-Eddy Simulation[END_REF]. Their data by LES technique on the finest mesh (containing 89.5 10 6 cells) is also included. They concerns the discrepancy may be related to an insufficient spanwise length or the curvature discontinuity at the airfoil leading edge. 

Far-field acoustic results

For low Mach number flows, the omission of quadrupole source has little influence on the noise radiation [START_REF] Brentner | Modeling aerodynamically generated sound of helicopter rotors[END_REF]. Besides, as mentioned in Table 3, the spanwise length in CFD (0.3c) is typically a small portion of that in experiment (3c). Hence, the input data for FW-H equation are replicated 10 times in the spanwise direction.

Figure 24 (a) shows that the observers are placed at a distance of 1.85m (corresponding to 18.5c) from the airfoil center. In Figure 24 (b-d), the PSD of pressure fluctuations at three far-field locations (θ=60°, 90°and 120°) is observed to agree with the experimental data well. Figure 24 (e) indicates the dominant frequency for the observer at 180° is twice of that for the observers at θ=60°, 90° and 120°. This is because along the horizontal direction, the lift dipole is absent and the drag dipole dominates. The broadband contents at 180° also exhibit lower intensities. Figure 24 (f) gives the far-field directivity plot which resembles a dipole in the normal direction and is also in good agreement with the experimental data. Experimental data comes from Jacob et al. [START_REF] Jacob | A rod-airfoil experiment as a benchmark for broadband noise modeling[END_REF].

Conclusions

This paper focuses on the radiation noise of a rod-airfoil configuration based on a high-order cell-centered finite difference method (CCFDM) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy.

First of all, to achieve low-dissipation and low-dispersion properties for aeroacoustics, three optimized compact schemes (Opt4, Opt6 and Opt8) for CCFDM are proposed. The expected accuracy (4th-, 6th-and 8th-order respectively) are validated by the isentropic vortex problem on both uniform and wavy grids. The superior spectral properties are also demonstrated by the benchmark cases from computational aeroacoustics workshops. Secondly, for massively separated turbulence flows, DDES is adopted and validated with a canonical periodic hill problem. For the far-field radiated acoustics, the FW-H acoustic analogy is used, which is validated by a laminar flow past a NACA0012 airfoil.

Finally, the radiated noise of the rod-airfoil configuration is investigated using the validated methodologies.

Quantitative comparisons are made with the experimental data and the results yield good agreement in terms of both near-field aerodynamics and far-field acoustic signals. The interaction between the airfoil and the vortex shedding wake is evidenced to be a major contributor to the acoustics. Further research with more detailed consideration on the turbulence modeling will be conducted in our future work. 

  e is the total energy per unit mass. The inviscid and viscous fluxes along the Cartesian coordinates are E, F, G and Ev, Fv, Gv respectively. Ma and Re are Mach number and Reynolds number. The stress tensor ij τ and heat flux related term i ϕ in viscous fluxes Ev, Fv and Gv are

  is the maximum local cell spacing and DES C =0.65. The modeled-stress depletion and its consequential grid-induced separation[START_REF] Spalart | A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities[END_REF][30] are unavoidable issues in original DES. This means early separation may occur in boundary layer due to it that the activated max DES C ∆ in Eq.(12) cannot offer enough eddy viscosity. Hence, delayed DES (DDES) technique[START_REF] Spalart | A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities[END_REF] is adopted to ensure the entirely attached RANS region via a new length scale
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 1 Figure 1. Schematic diagram of the method for far-field noise prediction.
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  + are the interpolated primitive variables to the left and right of the face center i+1/2, respectively. To improve the dispersion and dissipation properties of the whole method, three optimized tridiagonal compact interpolations (Opt4, Opt6 and Opt8) are proposed. Figure2shows the respective discretization stencils (A, B and C) for Opt4, Opt6 and Opt8. A general formulation for 1/2
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 2 Figure 2. Schematic diagram of the stencil for Opt4, Opt6 and Opt8.
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  η, the transfer function( , , ) 

Figure 3 .

 3 Figure 3. Spectral properties. (a): Interpolations (Eq. (22)); (b): Interpolations (Eq. (22)) coupled with the

  [START_REF] Menter | A Scale-Adaptive Simulation Model for Turbulent Flow Predictions[END_REF][START_REF] Casalino | An advanced time approach for acoustic analogy predictions[END_REF] involve three categories of difference operators, which are node-to-edge difference operator 3 δ ; edge-to-face difference operator 2 δ and face-to-cell difference operator 1 δ , and two kinds of interpolation operators, which are node-to-edge interpolation and edge-to-face interpolation.

Figure 4 .

 4 Figure 4. Calculation of geometry-dependent quantities: grid metrics and Jacobian. (a): grid metrics on the red surface where A, B, C, D denote grid nodes and E, F, H, G denote edge cells. (b): Jacobian for the control volume where S1, S2, S3, S4, S5, S6 are surface vectors surrounding the cell center.

Figure 5 .

 5 Figure 5. Density contours of stationary isentropic vortex on grid with 60 60 cells. (a): on the uniform grid; (b): on the wavy grid. The vortex strength β is 1 and the simulation ends at t=12.

Figure 6 .

 6 Figure 6. Order of accuracy for Opt4, Opt6 and Opt8 with stationary isentropic vortex. (a): on the uniform grid; (b): on the wavy grid. The vortex strength β is 1 and the simulation ends at t=12.

Figure 7 .

 7 Figure 7. The comparisons among schemes on additional grids. The convective isentropic vortex moves along x-axis with Ma=0.5. (a): grid with 30×30 cell centers; (b): grid with 40×40 cell centers. The vortex strength β is 5 and the simulation stops at t=100.

  linearize Euler equations. Similar post-processing is taken for case 4.3 and 4.4. The presented results are multiplied by 1 1000 ε = to compare with the analytical solution in Figure 8. The computational domain is [-100,100]×[-100,100] on a uniform grid with 2 x y ∆ = ∆ = . It is clear that UE5 produces noticeable dispersion and dissipation error. With UI5, the dissipation error is eliminated but the numerical dispersive error has still not been improved. Opt6 and Opt8 give solutions closest to the exact solutions.

Figure 8 .

 8 Figure 8. Pulse-entropy-vorticity propagation: (a, b, c): density fluctuation contours; (d, e, f): density fluctuation profiles along the x-axis central line. (a, d): t=30; (b,e): t=60; (c,f): t=100.

0. 5

 5 Ma = radiated by a solid wall. The computational domain is [-100,100]×[0,200] with the bottom boundary is treated as a solid wall. The grid is uniformly spaced with

Figure 9 .

 9 Figure 9. Sound radiation from the wall. (a, b, c): density fluctuation contours; (d, e, f): density fluctuation profiles along the dashed line in (a). (a, d): t=30; (b, e): t=60; (c, f): t=120.

  show both the instantaneous and root-mean-square (r.m.s.) of pressure fluctuation contours. The waves radiated from the cylinders are clearly captured. Figure11compares the r.m.s. pressure fluctuations on the cylinder surfaces with the analytical solutions. It is observed that UI5 shows a dramatic improvement over UE5 and the optimized schemes (Opt4, Opt6 and Opt8) give additional improvements over UI5.

Figure 10 .

 10 Figure 10. Acoustic field. (a, c): the snapshot of acoustic pressure field. (b, d): r.m.s. acoustic pressure field. (a, b): two circular cylinders; (c, d): three cylinders.

Figure 11 .

 11 Figure 11. R.m.s. pressure fluctuations on the surface of cylinders. (a): two cylinders; (b): triple cylinders. The legend for (b) is same with that in (a).

Ub is 10595 where

 10595 Ub is defined by the velocity above the hill crest. The Mach number is 0.27 based on the Ub and the sound speed at wall. The computational domain is [0,9h] [0,3.035h] [0,4.5h] consisting of 196 128 186 cells. Periodic boundary conditions are imposed in the streamwise and spanwsie directions.Isothermal non-slip wall condition is imposed on the top and bottom walls. Figure12depict the main features of the statistic quantities at five stations along x-axis direction, which are accumulated over 30 flow-through times after 30 flow-through times for flow developing. Good consistence with the reference data is observed.

Figure 12 .

 12 Figure 12. Validation of DDES with turbulent periodic hill flow. (a-e): The profiles of statistical quantities at five streamwise positions (x/h=0.5, 2, 4, 6, 8). (a) / b u U 〈 〉 ; (b) / b v U 〈 〉 ; (c)

Figure 13 (

 13 Figure 13 (a) shows an obviously periodic vortex shedding street from the trailing edge and (b) draws the

Figure 13 .

 13 Figure 13. Validation of FW-H acoustic analogy with flow past a NACA0012 at 5° angle of attack. (a): A snapshot of spanwise vorticity contour. (b): Directivity plot of pressure fluctuation p′ at 17c distance from NACA0012. p′ is non-dimensional by the freestream density and sound of speed.

Figure 14 .

 14 Figure 14. (a): Cross-section view of the computational domain; (b): Grid topology in the vicinity of geometry.

Figure 15 .

 15 Figure 15. A snapshot of the instantaneous flow-field where the isosurface of Q=2 is dyed by Mach number.

⋅

  respectively. Figure16 (b) shows that the vortex shedding frequency at f0=0.193, corresponding to the experimental f0=0.19 by Jacob et al.[START_REF] Jacob | Assessment of CFD Broadband Noise Predictions on a Rod-Airfoil Benchmark Computation[END_REF], and its second harmonic 3f0=0.58 are precisely predicted by the lift coefficients. And the airfoil oscillates at the exactly same frequency with the rod. The drag coefficients exhibit the first harmonic peak at 2f0=0.386.
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 164 Figure 16. Unsteady lift and drag coefficients on the surface of rod and airfoil. (a): Time history of Cl and Cd; (b): PSD of Cl and Cd.

Figure 17 (

 17 Figure 17 (b). The grid sensitivity test indicates that the result yielded on Grid C is more agreeable with the

  90 θ > o in Figure 17 (a).

Figure 17 .

 17 Figure 17. Mean surface pressure coefficient. (a) rod; (b) airfoil. The experimental data from Apelt et al. [58] corresponds to

Figure 18 .

 18 Figure 18. Mean streamwise velocity contour. The solid black lines sketch six locations where the averaged velocity profiles are depicted in Figure 20 and the r.m.s. velocity fluctuation profiles are depicted in Figure 21. Six probes, A, B, C, D, E and F, mark the positions where the power spectral density (PSD) of streamwise velocity fluctuations is investigated in Figure 22. Additional probe G denotes the place where PSD of pressure fluctuation is shown in Figure 23.

  (a), the location of minimum streamwise velocity approaches the LES result with grid refinement. And in Figure 19 (b), the location where u U u ∞ 〈 ′ ′〉 reach its maximum gets closer to the LES data as the grid resolution increase.

Figure 19 .

 19 Figure 19. Mean and r.m.s. streamwise velocities along the x-axis. (a): mean streamwise velocity; (b): r.m.s. streamwise velocity.

Figure 20 (

 20 Figure 20 (c). The measured data at 1.1 x c = behaves with a slight asymmetric pattern. And this asymmetry

Figure 20 .

 20 Figure 20. Mean streamwise velocity profiles at six x-axis positions. Experimental data by Jacob et al. [24] and Agrawal's LES data [60] are for comparison.

Figure 21 .

 21 Figure 21. R.m.s. streamwise velocity fluctuation profiles at six x-axis positions. Experimental data by Jacob et al. [24] and Agrawal's LES data [60] are for comparison.

Figure 22 .

 22 Figure 22. PSD of streamwise velocity fluctuations at six probes in the flow-field. (a-c) in the near wake of the rod; (d-f) in the upper side of the airfoil.

Figure 23 .

 23 Figure 23. PSD of pressure fluctuations at location G, where x/c=0.2, on the airfoil.

Figure 24 .

 24 Figure 24. Far-field acoustic results. (a): Observers are on the circle with radius R=18.5c; (b-e): PSD of pressure fluctuations at four different observer locations; (f): Directivity plot at fundamental frequency f0=0.193; the title for the radial axis is given by sound pressure level in dB (SPL(dB)), which is another notation for the y-axis title in (b-e).

Figure 25 =.

 25 Figure 25 is further drawn to analyze the relative contribution of rod and airfoil to the far-field acoustics. In

Figure 25 .

 25 Figure 25. Analysis of the relative contribution of rod and airfoil to the far-field acoustics. (a): PSD of acoustics at the observer with a distance 18.5c and angle of 90°. (b, c, d): Directivity plots of acoustics at fundamental shedding frequency f0, first harmonic frequency 2f0 and second harmonic frequency 3f0 respectively.

Table 2 .

 2 The optimization parameters for Opt4, Opt6 and Opt8 respectively.

Table 3 .

 3 Previous numerical work on Rod-airfoil configurations. △t denotes numerical time step, T denotes how long the aerodynamic flow-field are stored for the statistical quantities.

	Authors	Year	Mesh	Method	Cells( 10 6 )	Span length	Span cells	△t (s)	T (s)
	Casolino et al. [41] 2003	2D Structured	Compressible URANS	0.05464	-	1	6 10 -8	3.15 10 -2
	Boudet et al. [42]	2005	3D Structured	Compressible LES	2.4	0.3c	30	3 10 -8	-
	Peth et al. [43]	2006	3D Structured	Incompressible LES	3.14	0.3c	30	-	3.6 10 -2
	Berland et al. [44] 2010	3D Chimera	Compressible LES	20	0.3c	44	6.5 10 -8	6.5 10 -2
	Galdéano et al. [45]	2010	3D Unstructured	Compressible DES	3.5 15 10	0.3c 4.5c 3c	-	2 10 -5	1.2 10 -1
	Eltaweel et al. [46] 2011	3D Unstructured	Incompressible LES	22.3	0.314c	90	-	6.7 10 -2
	Giret et al. [47]	2012	3D Unstructured	Compressible LES	4.25 24.2	0.35c 0.7c	59	2.5 10 -7	1.5 10 -1
	Shell et al. [48]	2013	3D Patched	Compressible DES	95	1c 3c	-	1 10 -5	2 10 -1
				Compressible &					
	Agrawal et al. [49] 2014	3D Structured	Incompressible	19	1c	-	4 10 -5	1.7 10 -2
				LES					
	Giret et al. [50]	2015	3D Unstructured	Compressible LES	31.5 89.5 42.9	0.35c	-	1.5 10 -7 2 10 -8 5 10 -8	2 10 -2
	Jiang et al. [51]	2015	3D Structured	Compressible ILES	16	0.3c	44	1.389 10 -6 2.78 10 -2
	Agrawal et al. [52] 2016	3D Structured	Incompressible LES	10 64 19	0.3c	80	-	2.9 10 -2
	Zhou et al. [53]	2017	3D Unstructured	Compressible DDES	6	0.35c	64	1 10 -6	3.47 10 -2
	Tong et al. [54]	2017	3D Structured	Compressible LES	3.46 5.15	0.2c	32	1 10 -5 2 10 -6	2.2 10 -1
	Leveque et al. [55] 2017	3D Unstructured	Compressible WMLES	20	0.35c	-	1.68 10 -7 5.38 10 -6	2.5 10 -1
	Chen et al. [56]	2018	3D Structured	Incompressible LES	3.47	0.2c	32	2 10 -6	4 10 -2
	Sharma et al. [57] 2019	3D Unstructured	Compressible DES	4	0.4c	-	1 10 -5	1 10 -1
	Present Case1 Present Case2 Present Case3	-	3D Structured	Compressible DDES	3 (Grid A) 15.8 (Grid C) 7 (Grid B)	0.3c	28 60 44	5.5 10 -6	9 10 -2

Table 1 : Distribution of sexologists by sex and highest degree in Survey 1999 / 2009 / 2019 (% & N) 1999 2009 2019

 1 

		Men	Women Unknown Total	Men	Women Unknown Total	Men Women	Total
	Total	68.0	30.9	1.2	67.8	49.1	49.8	1.1	62.9	32.6	67.4	32.9
	Physicians	(229)	(104)	(4)	(337)	(140)	(142)	(3)	(285)	(15)	(31)	(46)
	GP's	66.7	32.2	1.1	51.6	50.7	48.0	1.4	51.9	33.3	66.7	45.7
	MD	(116)	(56)	(2)	(174)	(75)	(71)	(2)	(148)	(7)	(14)	(21)
	Psychiatrists	72.6	27.4		18.4	56.8	40.5	2.7	13.0	33.3	66.7	6.5
	MD + Specialization	(45)	(17)	(0)	(62)	(21)	(15)	(1)	(37)	(1)	(2)	(3)
	Medical	67.3	30.7	2.0	30.0	44.00	56.0		35.1	31.8	68.2	47.8
	Specialists MD +	(68)	(31)	(2)	(101)	(44)	(56)	(0)	(100)	(7)	(15)	(22)
	Specialization											
	Total non-physicians	44.4 (71)	52.5 (84)	3.1 (5)	32.2 (160)	16.1 (27)	82.1 (138)	1.8 (3)	37.1 (168)	8.5 (8)	91.5 (86)	67.1 (94)
	Psychologists	50.0	46.6	3.4	36.2	21.0	73.7	5.3	33.9	0.0	100.0	20.2
	Master Degree	(29)	(27)	(2)	(58)	(12)	(42)	(3)	(57)	(0)	(19)	(19)
	PhD											
	Nurses 25.0	75.0		5.0	4.2	95.8		14.3	4.8	95.2	22.3
		(2)	(6)	(0)	(8)	(1)	(23)	(0)	(24)	(1)	(20)	(21)
	Midwives		91.7	8.3	7.5		100.0		11.3	0.0	100	21.3
		(0)	(11)	(1)	(12)	(0)	(19)	(0)	(19)	(0)	(20)	(20)
	Other	53.6	46.4		43.1	18.4	81.6		22.6	20.6	79.4	36.2
	degrees	(37)	(32)	(0)	(69)	(7)	(31)	(0)	(38)	(7)	(27)	(34)
	Sexologists					30.0	70.0		6.0			
						(3)	(7)		(10)			
	Unknown	23.1	61.5	15.4	8.1	20.00	80.0		11.9			
	Profession	(3)	(8)	(2)	(13)	(4)	(16)		(20)			
	Total 60.4	37.8	37.8	100	36.9	61.8	1.3	100	16.4	83.6	100%
		(300)	(188)	(9)	(498)	(167)	(280)	(6)	(453)	(23)	(117)	(140)

Table 2 : Sex and Profession among participants to the Assises 2019 by sex (Registered individuals)

 2 

	Initial Profession		Sex		
		Man	Woman Total %	N
	Physician	45.5	54.6	31.9 220
	Psychologist	16.2	83.8	16.1 111
	Nurse	9.5	90.5	9.1	63
	Midwife	1.2	98.8	11.7	81
	Other Non-medical profession	27.3	72.7	12.8	88
	Sexologist	29.7	70.3	5.4	37
	Student	26.7	73.3	2.2	15
	Other / Unknown	25.0	75.0	0.6	4
	Missing	25.4	74.7	10.3	71
	Total	26.5	73.5		690

Table 3 : Self-declared Professional Identity by initial profession (%)

 3 

		Non-Physician	Physician	Total
	Sexologist	44.7	45.7	45.0
	Sex-therapist	20.2	0.0	13.6
	Counselor in sexual health	24.5	4.4	17.9
	Sexual medicine specialist	0.0	34.8	11.4
	Other	10.6	15.2	12.1
	Total	100	100	100

Table 4 : Degree in sexology, sexual health, sexual medicine by initial profession (%)

 4 

	Non-Physician	Physician	Total

Table 5 : Working in a private practice or in an institution (salaried) by initial profession (%)

 5 

		Non-Physicians	Physicians	Total
	Private practice only	41.5	34.8	39.3
	Salaried only	30.9	32.6	31.4
	Both private practice and			
	salaried	17.0	30.4	21.4
	Other	10.6	2.2	7.9
	Total	100	100	100
	N	94	46	140

Table 6 : Proportion of Professional Activity Devoted to Sexology: Evolution between 1999 & 2019

 6 

	% Professional activity

Table 7 : % of professional activity devoted to clinical practice, teaching, research and sexual education by initial profession

 7 

	Non-Physician	Physician

Table 8 : Clinical approaches used by sexologists by initial profession (%)

 8 

	Non-		
	Physician	Physician	P

Table 9 : How many times have you been a participant in the Assises by initial profession (%)

 9 

		Non-Physician	Physician	Total
	1 time	19.6	13.0	17.4
	2 times	17.4	19.6	18.1
	3 times	21.7	6.5	16.7
	4 times and more	41.3	60.9	47.8
	Total	100	100	100

Table 10 : Type of participation to the Assises 2019 by initial profession (%)

 10 

		Student	Speaker Participant	Total
	Physician	25.5	55.6	28.9	31.6
	Psychologist	14.9	13.9	16.3	15.9
	Nurse	8.5	8.3	9.6	9.4
	Midwife	0.0	5.6	13.4	11.6
	Other non med	8.5	12.5	13.4	13.0
	Sexologist	0.0	2.8	6.2	5.4
	Student	6.4	0.0	2.2	2.2
	Other / non response	36.2	1.4	10.1	11.0
	Total %	100	100	100	100
	N	47	72	553	672
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