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Abstract 18 

Determining the anatomical source of brain activity non-invasively measured from EEG or MEG sensors 19 

is challenging. In order to simplify the source localization problem, many techniques introduce the 20 

assumption that current sources lie on the cortical surface. Another common assumption is that this 21 

current flow is orthogonal to the cortical surface, thereby approximating the orientation of cortical 22 

columns. However, it is not clear which cortical surface to use to define the current source locations, 23 

and normal vectors computed from a single cortical surface may not be the best approximation to the 24 

orientation of cortical columns. We compared three different surface location priors and five different 25 

approaches for estimating dipole vector orientation, both in simulations and visual and motor evoked 26 

MEG responses. We show that models with source locations on the white matter surface and using 27 

methods based on establishing correspondences between white matter and pial cortical surfaces 28 

dramatically outperform models with source locations on the pial or combined pial/white surfaces and 29 

which use methods based on the geometry of a single cortical surface in fitting evoked visual and motor 30 

responses. These methods can be easily implemented and adopted in most M/EEG analysis pipelines, 31 

with the potential to significantly improve source localization of evoked responses. 32 

  33 
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Introduction 34 

Non-invasive measures of brain activity such as magnetoencephalography (MEG) and 35 

electroencephalography (EEG) are powerful tools for generating insights into human brain function with 36 

millisecond-scale temporal resolution. However, determining the current distribution that gives rise to 37 

the signals measured from EEG and MEG sensors is challenging (Baillet et al., 2001; Darvas et al., 2004; 38 

Fukushima et al., 2012; Haufe et al., 2011; Mattout et al., 2006). In order to simplify the source 39 

localization problem, many techniques introduce constraints to the dimensionality of source space. 40 

These constraints embody assumptions about how the brain generates the signals which we can 41 

measure from outside of the head.  42 

One of these assumptions is that signals measured by M/EEG sensors are predominantly generated by 43 

large pyramidal neurons in deep cortical layers, which are arranged in parallel columns so that their 44 

cumulative activity produces a measurable extracranial signal (Baillet, 2017; Buzsáki et al., 2012; 45 

Murakami and Okada, 2006; Okada et al., 1997). Two commonly used source localization constraints 46 

based on this assumption are that the locations of source dipoles are restricted to locations on a mesh 47 

of the white matter surface as is it is closest to the deep cortical layers (Dale and Sereno, 1993; Henson 48 

et al., 2009; Hillebrand and Barnes, 2003, 2002; Mattout et al., 2007), and that the orientation of dipoles 49 

is orthogonal to this surface (Hämäläinen and Ilmoniemi, 1984, 1994; Henson et al., 2009; Hillebrand 50 

and Barnes, 2003; Lin et al., 2006; Salmelin et al., 1995), thereby approximating the orientation of 51 

cortical columns (Nunez and Srinivasan, 2006; Okada et al., 1997).  52 

Using vectors orthogonal to the cortical surface may not be the best approximation to the orientation of 53 

cortical columns. Cortical folding patterns may result in curved cortical columns, and therefore their 54 

orientation with respect to the cortical surface could be different along the gray / white matter (white 55 

matter surface) and CSF / gray matter (pial surface) boundaries. Moreover, induced activity in low and 56 

high frequency bands can predominate in deep or superficial cortical layers (Bastos et al., 2015; 57 
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Bonaiuto et al., 2018a; Buffalo et al., 2011; Haegens et al., 2015; Maier et al., 2010; Spaak et al., 2012; 58 

van Kerkoerle et al., 2014), and therefore the white matter surface may not be the optimal source 59 

location model. In the past, however, the contribution of inaccuracies in dipole location and orientation 60 

constraints to source localization error has likely been insignificant in the face of within-session 61 

participant movement, co-registration error, and the relatively low resolution of cortical surface 62 

reconstructions. However, the recent development of techniques for high precision MEG (Bonaiuto et 63 

al., 2018b, 2018a; Meyer et al., 2017; Troebinger et al., 2014b, 2014a) allow us to compare competing 64 

current-flow orientation models in more detail. 65 

Here, we set out to determine a better way to estimate the location and orientation of source dipoles 66 

based on MRI-derived cortical surfaces. We tested three different cortical surfaces for determining 67 

dipole locations: 1) white matter, 2) pial, and 3) combined white matter/pial, and five different methods 68 

for computing dipole orientations: 1) downsampled surface normals, 2) cortical patch statistics, 3) 69 

original surface normals, 4) link vectors, and 5) variational vector fields. The most commonly used 70 

method, downsampled surface normals (Dale and Sereno, 1993; Fuchs et al., 1994; Hämäläinen and 71 

Hari, 2002; Hillebrand and Barnes, 2003; Lin et al., 2006), involves downsampling (decimating) the 72 

original cortical surface, and then computing the normal vector at each vertex as the mean of the 73 

normal vectors of each surface face it is connected to. While surface decimation increases the 74 

computational tractability of source inversion, it distorts the surface faces and therefore biases the 75 

surface normal vector estimates. The cortical patch statistics method was therefore designed to 76 

compute normal vectors by averaging the individual normal vectors from vertices adjacent to the 77 

nearest vertex in the original (down-sampled) mesh (Lin et al., 2006). The original surface normals 78 

method takes advantage of the fact that the surface decimation algorithm used here maintains a 79 

correspondence between the downsampled and original surface meshes, and uses the normal vectors of 80 

the corresponding vertices from the original cortical surface. These three methods involve computation 81 
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of dipole orientation based on the geometry of a single cortical mesh: the white matter or pial surface. 82 

In contrast, the link vectors (Dale et al., 1999) and variational vector field (Fischl and Sereno, 2018) 83 

approaches establish correspondences between the white matter and pial surface meshes. The link 84 

vectors approach simply uses the vectors connecting each vertex on the white matter surface with the 85 

corresponding vertex on the pial surface (Dale et al., 1999). The variational vector field method 86 

constructs a field of correspondence vectors between the original white matter and pial surfaces which 87 

are constrained to be approximately normal to each cortical surface and parallel to each other (Fischl 88 

and Sereno, 2018). 89 

We first compared the resulting orientation vectors from each method in terms of the angular 90 

difference at each surface vertex. We then ran simulations of single dipoles at a given orientation, and 91 

subsequently performed source reconstruction using various dipole orientations, noise levels, and co-92 

registration error magnitudes. Finally, we compared the methods using evoked visual and motor 93 

responses in MEG data from human participants. 94 

 95 

Methods 96 

Data from eight healthy, right-handed, volunteers with normal or corrected-to-normal vision and no 97 

history of neurological or psychiatric disorders was used for our analyses (six male, aged 28.5 ± 8.52 98 

years; Bonaiuto et al., 2018a; Little et al., 2018). The study protocol was in accordance with the 99 

Declaration of Helsinki, and all participants gave written informed consent which was approved by the 100 

UCL Research Ethics Committee (reference number 5833/001). All analysis code is available at 101 

https://github.com/jbonaiuto/dipole_orientation. 102 

 103 

MRI acquisition 104 
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Prior to MEG scanning, two MRI scans were acquired with a 3T whole body MR system (Magnetom TIM 105 

Trio, Siemens Healthcare, Erlangen, Germany) using the body coil for radio-frequency (RF) transmission 106 

and a standard 32-channel RF head coil for reception. The first was a standard T1 for individual head-107 

cast creation (Meyer et al., 2017), and the other was a high resolution, quantitative multiple parameter 108 

map (MPM; Weiskopf et al., 2013) for MEG source location.  109 

The first protocol used a T1-weighted 3D spoiled fast low angle shot (FLASH) sequence with 1 mm 110 

isotropic image resolution, field-of view set to 256, 256, and 192 mm along the phase (anterior-111 

posterior, A–P), read (head-foot, H–F), and partition (right-left, R–L) directions, respectively. The 112 

repetition time was 7.96 ms and the excitation flip angle was 12°. After each excitation, a single echo 113 

was acquired to yield a single anatomical image. A high readout bandwidth (425 Hz/pixel) was used to 114 

preserve brain morphology and no significant geometric distortions were observed in the images. 115 

Acquisition time was 3min 42s. A 12 channel head coil was used for signal reception without using either 116 

padding or headphones. 117 

The second, MPM,  protocol consisted of acquisition of three differentially-weighted, RF and gradient 118 

spoiled, multi-echo 3D fast low angle shot (FLASH) acquisitions and two additional calibration sequences 119 

to correct for inhomogeneities in the RF transmit field (Callaghan et al., 2015; Lutti et al., 2012, 2010), 120 

with whole-brain coverage at 800 μm isotropic resolution. 121 

The FLASH acquisitions had predominantly proton density (PD), T1 or magnetization transfer saturation 122 

(MT) weighting. The flip angle was 6° for the PD- and MT-weighted volumes and 21° for the T1 weighted 123 

acquisition. MT-weighting was achieved through the application of a Gaussian RF pulse 2 kHz off 124 

resonance with 4 ms duration and a nominal flip angle of 220° prior to each excitation. The field of view 125 

was 256 mm head-foot, 224 mm anterior-posterior (AP), and 179 mm right-left (RL). Gradient echoes 126 

were acquired with alternating readout gradient polarity at eight equidistant echo times ranging from 127 
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2.34 to 18.44 ms in steps of 2.30 ms using a readout bandwidth of 488 Hz/pixel. Only six echoes were 128 

acquired for the MT-weighted acquisition in order to maintain a repetition time (TR) of 25 ms for all 129 

FLASH volumes. To accelerate the data acquisition, partially parallel imaging using the GRAPPA 130 

algorithm was employed with a speed-up factor of 2 in each phase-encoded direction (AP and RL) with 131 

forty integrated reference lines. 132 

To maximize the accuracy of the measurements, inhomogeneity in the transmit field was mapped by 133 

acquiring spin echoes and stimulated echoes across a range of nominal flip angles following the 134 

approach described in Lutti et al. (2010), including correcting for geometric distortions of the EPI data 135 

due to B0 field inhomogeneity. Total acquisition time for all MRI scans was less than 30 min. 136 

Quantitative maps of proton density (PD), longitudinal relaxation rate (R1 = 1/T1), MT and effective 137 

transverse relaxation rate (R2* = 1/T2*) were subsequently calculated according to the procedure 138 

described in Weiskopf et al. (2013). 139 

 140 

FreeSurfer surface extraction 141 

FreeSurfer (v5.3.0; Fischl, 2012) was used to extract cortical surfaces from the MPMs for MEG source 142 

localization. We used a custom FreeSurfer surface reconstruction procedure to process MPM volumes, 143 

using the PD and T1 volumes as inputs (Carey et al., 2017), resulting in surface meshes representing the 144 

pial surface (adjacent to the cerebro-spinal fluid, CSF), and the white/grey matter boundary (Figure 1). 145 

FreeSurfer creates the pial surface by expanding the white matter surface outward to the cortex/CSF 146 

boundary. This is done by minimizing an energy functional which includes terms promoting surface 147 

smoothness and regularity as well as an intensity-based term designed to determine the cortex/CSF 148 

boundary based on local volume intensity contrast (Dale et al., 1999). Because this process involves 149 

moving the vertices of the white matter surface based on the gradient of the energy functional, the 150 
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result is a one-to-one correspondence between white matter and pial surface vertices. We used a 151 

custom routine to downsample each of these surfaces by a factor of 10 while maintaining this 152 

correspondence. This involved using MATLAB’s reducepatch function to remove vertices from, and re-153 

tesselate the pial surface, and then removing the same vertices from the white matter surface and 154 

copying the edge structure from the pial surface. This yielded two meshes of the same size (same 155 

number of vertices and edges), comprising about 30,000 vertices each (M = 30,094.75, SD = 2,665.45 156 

over participants). 157 

 158 

Dipole orientation computation methods 159 

The downsampled surface normal method computes, at each vertex of the decimated mesh, the 160 

average of the normal vectors of each adjacent face (Figure 1). This method was implemented using the 161 

spm_mesh_normals function in SPM12. The cortical patch statistics method computes, at each vertex of 162 

the decimated mesh, the average surface normal vector over all vertices in the original, non-decimated 163 

mesh which are adjacent to the corresponding original mesh vertex (Figure 1). The original surface 164 

normal method is implemented in the same way as the downsampled surface normals method, but is 165 

applied to the original, non-decimated mesh (Figure 1). Because our decimation procedure only 166 

removed vertices from the original surface, the resulting vectors can then be mapped onto the vertices 167 

of the decimated mesh used for source localization. The link vectors method takes advantage of the fact 168 

that our decimation routine maintains the correspondence between white matter and pial surface 169 

vertices, and for each vertex on the pial surface, uses the vector linking it to the corresponding vertex on 170 

the white matter surface (vi=wi - pi, for the ith white matter vertex, wi, and pial vertex pi; Figure 1). The 171 

variational vector field method constructs a vector field linking the white matter and pial surfaces, by 172 

using gradient descent to minimize an energy functional that encourages vectors to approximate surface 173 
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normals and to be parallel to each other (Fischl and Sereno, 2018) (Figure 1). The angular difference 174 

between any two vectors, v1 and v2, was computed using the formula: atan2(||v1 × v2||, v1 · v2).  175 

Vectors obtained from each method were used to construct the lead field matrix of the forward model 176 

used for source inversion of the simulated or experimental data. The models constructed using each 177 

method were compared to each other based on relative Bayesian model evidence, as approximated by 178 

differences in free energy: 179 

∆��,� = �� − �� 180 

where Fi and Fj are the free energy values of models i and j, respectively. Free energy is a parametric 181 

metric rewards fit accuracy and penalizes model complexity (Bonaiuto et al., 2018b; Friston et al., 2008, 182 

2007; Henson et al., 2009; López et al., 2014; Wipf and Nagarajan, 2009): 183 

�� = Accuracy��� − Complexity��� 184 

The first term is the log model evidence: the log of the probability of the data, given the model and 185 

parameters, and the second term is the Kullback-Liebler divergence between the true posterior density 186 

and an approximate posterior density. Because the second term is always positive, free energy provides 187 

a lower bound on the model evidence (Penny et al., 2010).  188 

The best overall dipole orientation method and source space surface model was determined using 189 

random effects family level Bayesian inference (Penny et al., 2010) as implemented by the 190 

spm_compare_families method in SPM12. This method groups models based on visual ERF 1 and 2 and 191 

the motor ERF in all participants into ‘families’, and then combines the evidence of models from the 192 

same family and computes the exceedance probability for each family. The exceedance probability 193 

corresponds to the belief that a particular model family is more likely than the other model families 194 

tested, given the data from all participants. We first grouped models into families based on dipole 195 

orientation method / source space surface model combinations (e.g. downsampled surface normals / 196 
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pial surface) to determine the best combination over all ERFs and participants. We then grouped models 197 

based on dipole orientation method, and finally based on source space surface model. 198 

 199 

 200 

Figure 1. Dipole orientation models.  201 
Pial and white matter surfaces are extracted from proton density and T1 weighted quantitative maps obtained from a multi-202 
parameter mapping MRI protocol. Dipole orientation vectors are computed from these surfaces using five different methods. 203 
The downsampled surface normal and original surface normal methods compute vectors at each vertex (dark red) as the mean 204 
of the normal vectors of the surface faces they are connected to (light red). The cortical patch statistics method computes the 205 
mean of the normal vertices adjacent to the corresponding vertices in the original mesh. The link vectors method computes 206 
vectors which link corresponding vertices on the white matter and pial surfaces. The variational vector field method constructs a 207 
field of vectors which are approximately parallel to each other and orthogonal to the pial surface (shown in light red for the 208 
original surfaces and dark red for the subset of vertices in the downsampled surfaces). 209 

 210 

Simulations 211 
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All simulations were based on a single dataset acquired from one human participant. This dataset was 212 

only used to determine the sensor layout, sampling rate (1200 Hz, downsampled to 250 Hz), number of 213 

trials (515), and number of samples (251) for the simulations. All simulations and analyses were 214 

implemented using the SPM12 software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 215 

In each simulation, we specified spatially distributed source activity centered at a single vertex on the 216 

pial surface. We simulated a Gaussian activity time course in this vertex, centered within the epoch, with 217 

a width of 25ms and a magnitude of 10nAm. We then spatially smoothed this simulated dipole time 218 

course with a Gaussian kernel (FWHM=5mm), to obtain a patch of spatially distributed activity. Within 219 

this patch, the orientation of each vertex differed, but was specified by the same rule using the link 220 

vectors method. We then used a single shell forward model (Nolte, 2003) to generate a synthetic 221 

dataset from the simulated source activity. We simulated sources at 100 random vertices on the pial 222 

surface, and ran two sets of simulations: one varying the level of noise in the simulated data and the 223 

other varying the magnitude of co-registration error. 224 

Typical per-trial SNR levels for MEG data range from −40 to −20 dB (Goldenholz et al., 2009), and 225 

therefore Gaussian white noise was added to the simulated data and scaled in order to yield per-trial 226 

amplitude SNR levels (averaged over all sensors) of −50, -40, -30, −20, -10, or 0 dB to generate synthetic 227 

datasets across a range of realistic SNRs. Source reconstruction was performed using 10 different 228 

models. The reference model used the original link vectors as dipole orientation priors, and the 229 

remaining 9 models used vectors with angular differences from the original link vectors ranging from 7 230 

to 63 degrees (in increments of 7 degrees). The orientation of the 9 additional vectors was determined 231 

by taking random points on the edge of a cone defined by the reference vector and the angular distance.  232 

In these simulations, the co-registration error was 0mm. Within each SNR level, the free energy metric 233 

was compared between each model and the reference model.  234 
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Within-session head movement and between-session co-registration error commonly combine to 235 

introduce a typical magnitude of ~5mm (or more) of uncertainty concerning the relative location of the 236 

brain and the MEG sensors in traditional MEG recordings (Adjamian et al., 2004; Gross et al., 2013; Ross 237 

et al., 2011; Singh et al., 1997; Stolk et al., 2013; Whalen et al., 2008). To simulate between-session co-238 

registration error, we therefore introduced a linear transformation of the fiducial coil locations in 239 

random directions (0mm translation - 0° rotation, 2mm - 2°, 4mm - 4°, 6mm - 6°, 8mm - 8°, or 10mm - 240 

10°) prior to source inversion. As in the SNR simulations, source reconstruction was performed using a 241 

reference model with the original link vectors as orientation priors, and 9 models using vectors rotated 242 

in random directions with angular differences from the original vectors from 7 to 63 degrees. In these 243 

simulations, the per-trial amplitude SNR was set to 0dB. Within each level of co-registration error, we 244 

compared the free energy between each model and the reference model. 245 

 246 

Head-cast construction 247 

From an MRI-extracted image of the scalp, a head-cast that fit between the participant’s scalp and the 248 

MEG dewar was constructed (Bonaiuto et al., 2018a; Meyer et al., 2017; Troebinger et al., 2014b). Scalp 249 

surfaces were first extracted from the T1-weighted MRI scans acquired in the first MRI protocol using 250 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). This tessellated surface, along with 3D models of fiducial 251 

coils placed on the nasion and the left and right pre-auricular points, was used to create a virtual 3D 252 

model, which was then placed inside a virtual version of the scanner dewar in order to minimize the 253 

distance to the sensors while ensuring that the participant’s vision was not obstructed. The model 254 

(including spacing elements and ficudial coil protrusions) was printed using a Zcorp 3D printer (Zprinter 255 

510). The 3D printed model was then placed inside a replica of the MEG dewar and polyurethane foam 256 

was poured in between the surfaces to create the participant-specific head-cast. The protrusions in the 257 

3D model for fiducial coils therefore become indentations in the foam head-cast, into which the fiducial 258 
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coils can be placed scanning. The locations of anatomical landmarks used for co-registration are thus 259 

unchanged over repeated scans, allowing combination of data from multiple sessions (Bonaiuto et al., 260 

2018a; Meyer et al., 2017). 261 

 262 

Behavioral task 263 

Participants completed a visually cued action decision making task in which they responded to visual 264 

instruction cue projected on a screen by pressing one of two buttons using the index and middle finger 265 

of their right hand (Bonaiuto et al., 2018a). After a baseline period of fixation, a random dot 266 

kinematogram (RDK) was displayed for 2s with coherent motion either to the left or to the right. 267 

Following a delay period, an instruction cue (an arrow pointing either to the left or the right), prompted 268 

participants to press either the left or right button. The level of motion coherence in the RDK and the 269 

congruence between the RDK motion direction and instruction cue varied from trial to trial, but for the 270 

purposes of the present study, we analyzed the main effect of visual stimulus onset and button press 271 

responses. For a full description of the paradigm and task structure, see Bonaiuto et al. (2018a). 272 

Each block contained 180 trials in total. Participants completed three blocks per session, and 1–5 273 

sessions on different days, resulting in 540–2700 trials per participant (M = 1822.5, SD = 813.21). The 274 

task was implemented in MATLAB (The MathWorks, Inc., Natick, MA) using the Cogent 2000 toolbox 275 

(http://www.vislab.ucl.ac.uk/cogent.php).  276 

 277 

MEG acquisition and preprocessing 278 

MEG data were acquired using a 275-channel Canadian Thin Films (CTF) MEG system with 279 

superconducting quantum interference device (SQUID)-based axial gradiometers (VSM MedTech, 280 

Vancouver, Canada) in a magnetically shielded room. A projector was used to display visual stimuli on a 281 
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screen (~50 cm from the participant), and a button box was used for participant responses. The data 282 

collected were digitized continuously at a sampling rate of 1200 Hz. MEG data preprocessing and 283 

analyses were performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) using MATLAB R2014a. The 284 

data were filtered (5th order Butterworth bandpass filter: 2–100 Hz, Notch filter: 50 Hz) and 285 

downsampled to 250Hz. Eye blink artifacts were removed using multiple source eye correction (Berg and 286 

Scherg, 1994). Trials were then epoched from 1s before RDK onset to 1.5s after instruction cue onset for 287 

analysis of visual responses, and from 2s before the participant’s response to 2s after for analysis of 288 

movement-evoked responses. Blocks within each session were merged, and trials whose variance 289 

exceeded 2.5 standard deviations from the mean were excluded from analysis. The epoched data were 290 

then averaged over trials using robust averaging, a form of general linear modeling (Wager et al., 2005) 291 

used to reduce the influence of outliers on the mean by iteratively computing a weighting factor for 292 

each sample according to how far it is from the mean. Preprocessing code is available at 293 

http://github.com/jbonaiuto/meg-laminar. 294 

 295 

Source reconstruction 296 

Source inversion was performed using the empirical Bayesian beamformer algorithm (EBB; Belardinelli 297 

et al., 2012; López et al., 2014) as implemented in SPM12. The source inversion was applied to a 100ms 298 

time window, centered on the event of interest (the peak of the simulated signal, 100ms following the 299 

onset of visual stimuli, or the button press response). These data were projected into 274 orthogonal 300 

spatial (lead field) modes and 4 temporal modes. Singular value decomposition (SVD) was used to 301 

reduce the sensor data to 274 orthogonal spatial (lead field) modes, each with 4 temporal modes 302 

(weighting the dominant modes of temporal variation across the window). For uninformative priors, the 303 

maximum-likelihood solution to the inverse problem is: 304 
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�� = ������ + �����!"# 305 

where �� is the estimated current density across the source space,  Y is the SVD-reduced measured data, L 306 

is the lead field matrix that can be computed from the sensor and volume conductor geometry. �� is the 307 

sensor covariance and Q is the prior estimate of source covariance. We assumed the sensor level 308 

covariance (��) to be an identity matrix (see discussion). Most inversion algorithms can be differentiated 309 

by the form of Q (Friston et al., 2008; López et al., 2014). EBB uses a beamformer prior to estimate the 310 

structure of Q (Belardinelli et al., 2012; López et al., 2014) based on the sensor-level data:  311 

        Q��� =
1

��
���

'��
��##��!"�� +  ()*

!"
         312 

where each element of the diagonal Q(i) corresponds to a source location i. The lead field of each source 313 

location is ��, 
T denotes the transpose operator, ) is an identity matrix, and ( is a regularization constant 314 

(set to 0). The prior estimates of  �� and � are then re-scaled or optimally mixed using an expectation 315 

maximization scheme (Friston et al., 2008) to give an estimate of J that maximizes model evidence. All 316 

inversions used a spatial coherence prior (Friston et al., 2008) with a FWHM of 5 mm.  We used the 317 

Nolte single shell head model (Nolte, 2003). 318 

For MEG source inversion, the accuracy term of the free energy equation is defined as  319 

Accuracy��� =
+,

2
trace'./.�

!"* −
+,

2
log|.�| −

+,+2

2
log �23� 320 

where Nc is the number of channels, Nt is the number of samples, ./ = "
45

##� is the data-based 321 

sampled covariance, .� = �� + �����
�+2 is the model-based sample covariance, and |∙| is the matrix 322 

determinant operator. 323 
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For the EBB algorithm, the complexity term of the free energy equation is dependent on 324 

hyperparameters, λ, that control the trade-off between sensor noise �� = (")45
, and the beamforming 325 

prior � = (78, where Γ is the beamforming prior: 326 

Complexity��� =
1
2

'(�� − 9*
�

:'(�� − 9* +
1
2

log;<=>
:; 327 

The prior and posterior distributions of λ, ?�(�� and @�(�� are assumed to be Gaussian: 328 

?�(�� = +�(; 9, :!"� 329 

@�(�� = +�(�� , <=>
� 330 

where (�� and <=>
 are the posterior mean and covariance of the hyperparameters for model i. We used 331 

non-informative mean and precision (υ and Π) implemented as identity matrices scaled close to zero 332 

mean and low precision, as implemented by default in SPM.  333 

 334 

Results 335 

Different methods for estimating vector orientation yield substantial variation in dipole orientation  336 

We first compared the dipole orientation vectors generated by each of our five methods in terms of the 337 

angular difference between vectors at the same vertex on the pial and white matter surfaces, 338 

respectively (Figure 2). The three methods that utilize only one surface, (downsampled surface normals, 339 

cortical patch statistics, original surface normals) generated vectors which were the most similar to each 340 

other on both the pial (downsampled surface normals – cortical patch statistics individual subject mean 341 

angular difference: 19.16-23.04°; over subjects: M=22.30°, SD=1.51°; downsampled surface normals – 342 

original surface normals: 16.00-17.95°; over subjects: M=16.94°, SD=0.67°; cortical patch statistics – 343 

original surface normals: 17.80-22.89°; over subjects: M=21.01°, SD=1.55°) and white matter surfaces 344 

(downsampled surface normals – cortical patch statistics individual subject mean angular difference: 345 
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10.65-11.35°; over subjects: M=10.99°, SD=0.27°; downsampled surface normals – original surface 346 

normals: 9.64-10.57°; over subjects: M=10.10°, SD=0.32°; cortical patch statistics – original surface 347 

normals: 8.93-9.76°; over subjects: M=9.34°, SD=0.31°). Each single- and multi-surface method 348 

generated vectors with mean angular differences from each other of at least 20°, for both the pial 349 

surface (downsampled surface normals – link vectors: 22.94-29.56°, M=24.51°, SD=2.15°; downsampled 350 

surface normals – variational vector field: 25.52-27.13°, M=26.05°, SD=0.55°; cortical patch statistics – 351 

link vectors: 25.26-32.76°, M=27.42°, SD=2.06°; cortical patch statistics – variational vector field: 28.80-352 

32.55°, M=30.91°, SD=1.11°; original surface normals – link vectors: 26.77-33.12°, M=28.44°, SD=2.06°; 353 

original surface normals – variational vector field: 26.18-28.43°, M=27.06°, SD=0.75°) and the white 354 

matter surface (downsampled surface normals – link vectors: 21.81-29.03°, M=23.46°, SD=2.33°; 355 

downsampled surface normals – variational vector field: 27.08-36.26°, M=28.78°, SD=3.06°; cortical 356 

patch statistics – link vectors: 22.64-24.82°, M=24.48°, SD=2.34°; cortical patch statistics – variational 357 

vector field: 27.31-36.34°, M=29.04°, SD=3.00°; original surface normals – link vectors: 23.38-30.09°, 358 

M=25.00°, SD=2.15°; original surface normals – variational vector field: 26.43-35.69°, M=28.31°, 359 

SD=3.08°). The two multi-surface methods, link vectors and variational vector field, generated vectors 360 

with some of the largest mean angular differences of all method pairs on each surface (pial surface: 361 

67.41-30.74°, M=27.71°, SD=1.40°; white matter surface: 31.33-40.74°, M=33.31°, SD=3.04°). These 362 

results were comparable when using surfaces derived from more commonly used 1mm3 T1 scans 363 

instead of 800µm3 MPMs (Figure S1). Therefore, rather than being close approximations to each other, 364 

each method generates substantially different dipole orientation vectors, even within the multi-surface 365 

class of methods. 366 
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 367 

Figure 2. Substantial discrepancy in dipole orientations across methods.  368 
Distribution of angular difference between dipole orientations on the pial surface (a) and white matter surface (b), generated 369 
using each method for each participant. Vertical dashed lines show the mean angular difference for each participant. 370 

 371 
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We next compared dipole orientation vectors generated by each method between the pial and white 372 

matter surfaces derived from the 800µm3 MPM volumes (Figure 3) and 1mm3 T1 volumes (Figure S2). 373 

Because the link vectors method generates vectors that connect corresponding vertices on the pial and 374 

white matter surfaces, the resulting dipole orientations on each surface are equivalent (i.e. the link 375 

vector from a particular vertex on the pial surface points in exactly the opposite direction as the link 376 

vector from the corresponding white matter surface vertex). All three single-surface methods generated 377 

vectors with the lowest average angular difference between pial and white matter surfaces created 378 

using either the 800μm3 MPM volumes (downsampled surface normals: individual subject mean angular 379 

difference=16.88-20.52°, over subjects M=18.23°, SD=1.13°; cortical patch statistics: 22.66-27.81°, 380 

M=25.70°, SD=1.67°; original surface normals: 22.90-26.81°, M=24.46°, SD=1.26°) or the 1mm3 T1 381 

volumes (downsampled surface normals: 17.89-19.49°, M=18.66°, SD=0.56°; cortical patch statistics: 382 

25.10-27.23°, M=26.23°, SD=0.70°; original surface normals: 24.10-28.80°, M=25.45°, SD=1.46°). The 383 

variational vector field method generated dipole orientation vectors that differed the most between the 384 

pial and white matter surface (MPM: 37.47-43.54°, M=38.80°, SD=1.99°; T1: 37.07-40.28°, M=39.10°, 385 

SD=1.00°). Aside from the link vectors method, there is therefore at least as much variation in dipole 386 

orientations between the pial and white matter surfaces within a method as there is between methods 387 

for one surface. 388 

 389 

Figure 3. Substantial discrepancy in dipole orientations between pial and white matter surfaces. Distribution of angular 390 
difference between dipole orientations at corresponding vertices on the pial and white matter surfaces, generated using the 800 391 
μm3 MPM volumes. The link vectors method is not shown because this method generates identical dipole orientations for the 392 
pial and white matter surfaces. Each solid line shows the distribution for a single participant. Vertical dashed lines show the 393 
mean angular difference for each participant. 394 

 395 
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With high precision MEG data, getting the orientation right matters 396 

Having established that each method yields substantially different orientation vectors, we next sought 397 

to determine the minimum angular difference between dipole orientations distinguishable by source 398 

inversion model comparison, and how this is affected by typical levels of SNR and co-registration error. 399 

We therefore simulated dipoles at 100 random source locations on the pial surface and created 400 

synthetic datasets with varying SNR and co-registration error levels. We then performed source 401 

inversion on the synthetic datasets, using a reference model in which the dipole orientations exactly 402 

match those of the simulated dipole, and 9 other models in which the dipole orientations were rotated 403 

with respect to simulated dipole orientation. We then compared each of these models to the reference 404 

model in terms of the relative free energy, using a significance threshold of ±3 for the free energy 405 

difference (indicating that one model is approximately twenty times more likely than the other). 406 

 407 

Figure 4. With high precision MEG data, model evidence decreases with dipole orientation error.  408 
a Each line shows the change in model evidence (ΔF) as the orientation of the dipole used for inversion is rotated away from the 409 
true orientation at different SNR levels (co-registration error=0mm). The shaded regions represent the standard error of ΔF over 410 
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all 100 simulations at each angular error value tested. The lower dotted line (at ΔF=-3) show the point at which the imperfect 411 
model is 20 times less likely than the true model. The differences between models become more apparent at higher SNR. 412 
b As in a, for different magnitudes of co-registration error (SNR=0dB). Co-registration error has a smaller impact than SNR on 413 
discriminating between models with different dipole orientations. 414 

 415 

At lower SNR levels (-50dB), each model was indistinguishable from the reference model (magnitude of 416 

relative free energy less than 3). However, as SNR increased, models with an angular error as low as 15 417 

degrees relative to the reference model started to become differentiable (i.e., a relative free energy 418 

difference of >3; Figure 4a). Relative model evidence was less dependent on co-registration error, and at 419 

all levels tested models with an angular error of at least 15 degrees could be differentiated from the 420 

reference model (Figure 4b). This angular error is well within the range of the angular differences 421 

between vectors generated by each of the methods considered here (Figure 2). In other words, given 422 

sufficient SNR and co-registration accuracy, one should be able to determine the best method to use 423 

with human data based on source inversion model comparison. 424 

 425 

Comparing surface models with empirical head-cast data 426 

We next compared orientation models based on three different evoked responses from human 427 

participants. We performed source inversion, and compared the resulting model fits in terms of relative 428 

free energy compared to that of the downsampled surface normal model (the current most commonly 429 

used method). This was repeated using source space models restricted to the pial surface, white matter 430 

surface, and combined pial – white matter surface (Bonaiuto et al., 2018a, 2018b). In this case the 431 

combined pial-white model had double the number of sources and these sources could be arranged 432 

with identical orientations on each surface (link vectors); or different orientations (cortical patch 433 

statistics, downsampled surface normals, original surface normals, and variational vector field). 434 
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The evoked response fields (ERFs) were the visually-evoked response to the RDK (visual ERF 1) and 435 

instruction cue (visual ERF 2), and the motor-evoked response during the button press (motor ERF). 436 

When running the source inversion over the full time course of each ERF, each orientation model 437 

yielded slightly different peak cortical locations (Figure 5a, b), with the original surface normals and 438 

variational vector field methods giving the closest peak coordinates (M=4.88mm, SD=2.93mm), and the 439 

cortical patch statistics and link vectors methods yielding coordinates furthest away from each other 440 

(M=13.96mm, SD=12.76mm). At each peak location identified by the downsampled surface normals 441 

method, the source space ERFs given by the downsampled surface normals, cortical patch statistics, and 442 

variational vector field methods, respectively, were most similar to each other, whilst the link vectors 443 

methods yielded an ERF with a larger amplitude, and the original surface normals method yielded an 444 

ERF with inverted polarity (RMSE<0.1; Figure 5c, d). However, at the peak coordinate identified by each 445 

method the ERFs were very similar (RMSE<0.05; Figure 5e, f). 446 
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 447 

Figure 5: Variation in source localization across methods. 448 
a Peak source locations on the pial surface for visual ERF1, for each dipole orientation method, in a single subject. 449 
b Mean (left) and standard deviation (right) of the Euclidean distance between peak source locations for each method, using the 450 
pial surface, over subjects and ERFs. 451 
c Time course of source activity for visual ERF1 for the different methods, at the peak pial source location identified using the 452 
downsampled surface normals method, for a single subject. 453 
d Mean (left) and standard deviation (right) of the RMSE between source activity time courses at the peak source location 454 
identified using the downsampled surface normals method, for each method, using the pial surface, over subjects and ERFs. 455 
e Time course of source activity for visual ERF1 at the peak pial source location identified from each method, for a single subject.  456 
f Mean (left) and standard deviation (right) of the RMSE between source activity time courses at the peak source location 457 
identified using each method with the pial surface, over subjects and ERFs. 458 

We then compared each method in terms of model fit. The link vectors method achieved a significantly 459 

better model fit than the downsampled surface normal method in 7/8 subjects for visual ERF 1 and 2 460 

and the motor ERF using the pial surface, 7/8 subjects for visual ERF 1 and the motor ERF and 8/8 461 

subjects for visual ERF 2 using the white matter surface, and 7/8 subjects for visual ERF 1 and 2 and the 462 

motor ERF using the two-layer surface (Figure 6b). The variational vector field method had significantly 463 

better model fit than the downsampled surface normal method in 6/8 subjects for visual ERF 1 and 4/8 464 
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subjects for visual ERF2, but only 2/8 subjects for the motor ERF using the pial surface, 1/8 subjects for 465 

visual ERF 1 and the motor ERF and 4/8 subjects for visual ERF 2 using the white matter surface, and 5/8 466 

subjects for visual ERF 1 and 2 and 1/8 subjects for the motor ERF using the two-layer surface. The 467 

original surface normal method was most similar to the downsampled surface normal method, only 468 

being significantly better in 4/8 subjects for visual ERF1, 5/8 subjects for visual ERF2, and 0/8 subjects 469 

for the motor ERF using the pial surface, 0/8 subjects for visual ERF 1 and 2 and the motor ERF using the 470 

white matter surface, and 1/8 subjects for visual ERF 1, 3/8 subjects for visual ERF2, and 0/8 subjects for 471 

the motor ERF using the two-layer surface. The cortical patch statistics method was significantly better 472 

than the downsampled surface normals method in 3/8 subjects for visual ERF 1, 6/8 subjects for visual 473 

ERF 2, and 2/8 subjects for the motor ERF using the pial surface, 0/8 subjects for visual ERF 1 and 2 and 474 

the motor ERF using the white matter surface, and 2/8 subjects for visual ERF 1, 4/8 subjects for visual 475 

ERF 2, and 0/8 subjects for the motor ERF. 476 

While the cortical patch statistics and original surface normal methods are an improvement on the 477 

widely used downsampled surface normal method, multi-surface methods such as link vectors and 478 

variational vector fields achieve better model fits overall, using either single- or two-layer cortical 479 

surface models (Figure 6b). These results were comparable when using surfaces derived from more 480 

commonly used 1mm3 T1 scans instead of 800µm3 MPMs, with the exception of the variational vector 481 

field method, which performed significantly worse than the downsampled surface normal method in 6/8 482 

subjects for the motor ERF using the pial surface (Figure S3). 483 
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 484 

Figure 6. Surface correspondence-based methods yield the best model fit.  485 
a Trial-averaged event-related fields (ERFs) aligned to the onset of visual stimulus 1 (the random dot kinematogram; top), visual 486 
stimulus 2 (the instruction cue; middle), and to the participant’s response (button press; bottom). Data shown are for a single 487 
representative participant. The inlays show the MEG sensor layout with filled circles denoting the sensor from which the ERFs 488 
are recorded. Each shaded region represents the time window over which source inversion was performed.  489 
b Change in free energy (relative to the downsampled surface normals model) for each method tested for each participant for 490 
visual ERF 1 (top), visual ERF 2 (middle), and the motor ERF (bottom) using vectors derived from 800µm3 MPM volumes and 491 
source space models based on the pial (left), white matter (center), and combined pial / white matter surfaces (right).  492 

 493 

Interaction between orientation and source space models 494 

We next sought to establish how the orientation models interacted with the different possible choices 495 

of source space, specifically the cortical surface used to define source locations and the surface used to 496 

compute dipole orientations. We fit the empirical evoked response data, using source space location 497 

models based on the white matter, pial, or combined white matter/pial surfaces, and for each 498 

orientation model using the white matter, pial, or combined white matter/pial surfaces (with the 499 

exception of the combined surface source space orientation model which can only be used with the 500 

combined surface source space location model).   501 

 502 
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 503 

Figure 7. Source inversion using the pial surface and surface correspondence-based methods yield the best model fit overall. 504 
a-e Exceedance probabilities for each combination of source space orientation (pial, white matter, and combined) and location 505 
(pial, white matter, and combined) models for each dipole orientation vector method tested (a downsampled surface normals, b 506 
cortical patch statistics, c original surface normals, d link vectors, e variational vector field) using surfaces derived from 800µm3 507 
MPM volumes. In each panel the top and right plots show exceedance probabilities for models grouped by source space location 508 
or orientation model alone.  509 
f As in a-e, for each source space orientation and location models over all dipole orientation vector methods. 510 
g Exceedance probabilities for each source space orientation model over all source space location models and dipole orientation 511 
vector methods (top), for each source space location model over all source space orientation models and dipole orientation 512 
vector methods (middle), and for each dipole orientation vector method over all source space orientation and location models 513 
(bottom). 514 

 515 

To compare source space surface location and orientation models, we used random effects family level 516 

Bayesian inference (Penny et al., 2010) over the results from visual ERF 1 and 2 and the motor ERF in all 517 

participants. This method groups models into ‘families’, and then combines the evidence of models from 518 

the same family to compute the exceedance probability (EP) for each model family. This corresponds to 519 

the belief that a particular model family is more likely than the other model families tested, given the 520 

data from all participants. We first compared combinations of source space location and orientation 521 

surface models within each method, and found that for most dipole orientation methods (downsampled 522 

surface normals, cortical patch statistics, original surface normals, and variational vector field), the best 523 

source orientation space model was the pial surface and the best source space location model was the 524 

white matter surface (downsampled surface normals EP = 0.708, cortical patch statistics EP = 0.968, 525 

original surface normals EP = 0.924, variational vector field EP = 0.975; Figure 7a-c,e). For the link 526 
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vectors method, the best source space location model was the white matter surface, and the pial and 527 

white matter source space orientation models were nearly indistinguishable (pial orientation model EP = 528 

0.458, white matter orientation model EP = 0.468; Figure 7d). This was not unexpected because the 529 

orientation vectors generated from these surfaces using the link vectors method are exactly 180° to 530 

each other. Over all dipole orientation methods, the best source space orientation surface was the pial 531 

surface and the best source space location model was the white matter surface (EP = 0.654; Figure 7f). 532 

We then grouped models into families based on the source space surface used for orientation and 533 

location. This confirmed that the models using the pial surface to compute dipole orientation provided 534 

the best model fit, with an EP of 0.608 (white matter surface EP = 0.379), and models using the white 535 

matter surface to define source space locations outperformed the others, with an EP of 0.985 (Figure 536 

7g). Finally, we grouped models based on the method used to compute dipole orientation vectors and 537 

confirmed that the link vectors and variational vector field methods were the best overall, with EPs of 538 

0.918 and 0.064, respectively (Figure 7g). Using surfaces obtained from 1mm3 T1 volumes yielded the 539 

same results (Figure S4). 540 

  541 
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 542 

Discussion 543 

In this paper we show that methods for computing dipole orientation which are based on establishing 544 

correspondences between white matter and pial cortical surfaces dramatically outperform methods 545 

based on the geometry of a single cortical surface in fitting evoked visual and motor responses. To this 546 

end, we compared five different approaches for estimating dipole vector orientation, both in 547 

simulations and visual and motor evoked MEG responses.  548 

Our results show substantial variation in dipole vector orientation across the different methods. This 549 

indicates that the choice of method is likely to significantly impact the quality of source estimation. At 550 

low SNR levels and with head movements commonly observed in conventional MEG recordings, this 551 

influence is small or non-detectable. However, with the increased SNR and reduced head movements 552 

afforded by high-precision MEG (Meyer et al., 2017; Troebinger et al., 2014b), these differences become 553 

distinguishable when average angular errors between methods vary by around 15 degrees.  These small 554 

orientation errors put a hard limit on any possible improvements in non-invasive estimates of cortical 555 

current flow. For example Hillebrand & Barnes (2003) showed that small orientation errors resulted in 556 

localization errors which increased monotonically with SNR. 557 

This means that with higher precision MEG recordings, accurate estimation of the dipole orientation 558 

becomes increasingly important. Consequently, conventional approaches which estimate vector 559 

orientation from a single (downsampled) surface, and based on lower resolution MRI volumes, are likely 560 

to offer limited accuracy in source estimation, at least for evoked fields, as analyzed here. By contrast, 561 

methods that utilize link vectors between pial and white matter surfaces constructed from higher 562 

resolution structural images perform significantly better in explaining observed evoked responses.  563 

The average angular differences between the five methods compared here were substantial, with 564 

means of 18-30 degrees, both in high-resolution MPMs and in commonly used T1-weighted structural 565 
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images with 1mm3 spatial resolution. We do not know the ground truth of current flow orientation in 566 

the brain, but we show here that the average angular difference between methods is within the range 567 

distinguishable in simulated data with SNR and co-registration error levels achievable with high 568 

precision MEG. We were therefore able to compare these methods in terms of how well they fit human 569 

MEG data, leveraging the free energy metric, in order to determine which method best estimates true 570 

dipole orientations.  571 

We were surprised by the large variation in orientation estimates from the same anatomy using 572 

different methods. The typical expected orientation differences between methods was ~20-30 degrees. 573 

This in turn led to differences in estimated source location of ~5-14mm.  In this study we sought to 574 

minimize head-movement and co-registration errors by using head-casts, but in typical MEG studies 575 

such additional errors will only add to this variation. Based on these estimates it would seem that if 576 

precise anatomical information (e.g. from high resolution MRI volumes) is not available then an 577 

approach using some form of loose orientation constraint is advisable (Lin et al., 2006).  However, one 578 

advantage of being able to exploit anatomical information is to use the sensitivity of MEG to cortical 579 

orientation to refine the source localization. 580 

While the family of source space location models based on the white matter surface yielded the highest 581 

exceedance probability, the results of the surface comparison varied by evoked response and dipole 582 

orientation computation method. Evoked responses can be broken down into temporally dynamic 583 

components and therefore may be the result of a complex temporal pattern of signals in both deep and 584 

superficial cortical layers. We here used the same 100ms time window for source inversion in all 585 

participants and therefore this analysis did not take into account between-participant differences in the 586 

timing of evoked responses and could not track the time course of laminar activity. The inherent 587 

differences between induced and evoked responses may therefore explain the more variable attribution 588 

of the evoked response to pial and white matters surfaces, compared to the bias of high- and low 589 
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frequency signals towards deep and superficial cortical laminae, respectively (Bonaiuto et al., 2018a). 590 

Future extensions of this work could utilize source inversion in successive time bins to address this 591 

limitation and generate temporally resolved estimates of laminar activity. 592 

We assumed the sensor level covariance matrix to be diagonal. However, an independent sensor 593 

dataset recorded during a similar time period in an empty room, showed off-diagonal structure (Figure 594 

S5). Importantly, the same pattern of model comparison results was obtained when using a sensor 595 

covariance matrix based on these noise measurements (Figure S6, S7).  596 

In this work, we used free energy as our metric of model fit but we would expect these findings to 597 

generalize across other metrics. For example, we have previously shown that for model comparison 598 

problems of the type utilized in this study, free energy is very highly correlated with nonparametric cross 599 

validation error measures of model fit (Bonaiuto et al., 2018b). 600 

The present findings do not just impact high SNR MEG recordings obtained with cryogenic sensors, but 601 

also for new generations of cryogen-free MEG sensors (optically-pumped magnetometers; OPMs). These 602 

sensors can be worn on the head and permit long-duration recordings without head-to-sensor 603 

movement, with accurate knowledge of each sensor’s position with respect to the brain (Boto et al., 604 

2018, 2017; Holmes et al., 2018; Iivanainen et al., 2019, 2017; Knappe et al., 2014). Our results show 605 

that source estimation for this type of recordings is likely to benefit from methods that estimate vector 606 

orientation based on white matter – pial surface vertex correspondences, as opposed to more 607 

commonly used techniques employing a single surface.    608 

We here assumed that straight vectors provide the best approximation of the orientation of cortical 609 

columns that generate MEG data. However, cortical columns are often curved (Bok, 1929). In future 610 

work, the curvature of cortical columns could be approximated using sequences of straight vectors 611 

computed from laminar equivolumetric surfaces (Waehnert et al., 2014; Wagstyl et al., 2018). If each 612 
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vector was tangential to the corresponding segment of the actual (curved) cortical column, this would 613 

result in a piecewise linear estimate of column shape, which may allow more precise source localization 614 

(Bonaiuto et al., 2018b, 2018a; Troebinger et al., 2014a). This development would benefit from higher 615 

resolution (e.g. 7 Tesla) MRI scans, as well as cytoarchitectonic data from histological sections (Amunts 616 

et al., 2013; Wagstyl et al., 2018). The current paper provides a novel framework and set of baselines for 617 

in vivo evaluation of the impact of future columnar models on source modeling. 618 

Our results are likely to impact other methods which require accurate estimation of cortical surfaces and 619 

the orientation of surface normal vectors. For example, current flow modelling techniques that estimate 620 

the distribution of current delivered with non-invasive brain stimulation approaches such as transcranial 621 

direct current stimulation (tDCS; Bestmann and Walsh, 2017; Bestmann and Ward, 2017) estimate the 622 

normal component of the electric field across the cortical surface, and relate this component to the 623 

observed physiological changes elicited by tDCS (e.g. Laakso et al., 2019; Seo and Jun, 2019). We expect 624 

that improved surface segmentation approaches and vector estimation, as introduced in our present 625 

study, will provide more accurate estimates of these normal components. This will be relevant for 626 

explaining how current delivery via tDCS impacts on physiological and behavioral responses, and 627 

whether the normal component of the electric field is indeed important to explain these effects. 628 

Conclusion 629 

Based on the results of our model comparisons, we have shown that, for evoked responses, source 630 

inversion using source locations on the white matter surface and dipole orientation priors computed 631 

using link vectors outperforms the other source location and orientation computation methods we 632 

tested. We therefore recommend that this approach be used as the default in source inversion. 633 
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