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Abstract

The pattern recognition and computer vision have experienced a prominent progress in feature extraction techniques, judged
by the extensive proposed methods in the literature. A big part of these works was devoted to enhance the texture classification
performance, regarding the important role of textural analysis in various real-world and challenging applications. Developing
discriminant feature extractors requires solid knowledge in machine learning and applied mathematics. However, Local Binary
Patterns (LBP) offered much more space to develop enhanced handcrafted descriptors thanks to its simplicity and flexibility. In
this paper we introduce a brand new LBP variant referred to as Multi Level Directional Cross Binary Patterns (MLD-CBP). The
proposed representation is training-free, low-dimensional, yet discriminative and robust handcrafted operator for texture descrip-
tion. The concept of the proposed MLD-CBP descriptor is based on encoding the most informative directions contained within
multi radiuses, which helps in detecting the gray level variations that may occure in different directions. Moreover, the proposed
MLD-CBP handcrafted is combined with an automated SVM classifier based on the RBF Kernel, where the γ parameter is cal-
culated automatically according to the training images. Conducted experiments on 15 well known and challenging databases of
the literature, demonstrate prominent performance and stability compared to the results achieved by 30 recent and most powerful
descriptors of the state-of-the-art. This paper provides also a comparative study on the effect of γ parameter to show the benefits of
automatically tuning this parameter value considering the nature of the database and its size.
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1. Introduction

Texture is widely present in our real world and plays a ma-
jor role in various critical applications. The visual apparent of
any object or pattern can be represented in a texture form at a
certain level by its size, shape, organization, and proportions
of its parts. Texture is detected on both artificial and natural
objects such as those on wood, plants, materials and skin. Tex-
ture analysis become a fundamental branch of image process-
ing and computer vision, by exploring the fact that any object
can be textured. Hence, many applications can be redefined
as texture classification tasks, that include, among others, face
recognition and content-based image retrieval [1]. Moreover,
texture classification has been adopted in medical image anal-
ysis and helps to achieve good results in congestive heart fail-
ure [2], human skin analysis [3], brain degenerative diseases
[4], etc. During past decades, texture classification gained too
much attention due to its difficulties in terms of variability and
inhomogeneity, such as scale changes, variable illumination,
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surface shape variability and imaging conditions. Many state-
of-the-art researches had proposed frameworks to analyze the
classification process using existing texture databases, which
cover all texture materials. As reported in [5], the entire pub-
lished works share a common structure which can be simplified
in a generic two steps architecture as illustrated in Figure 1.
The first step consists of representing the texture images to be
proceeded and extracting discriminant features, while the sec-
ond step relays on classifying the calculated features accord-
ing to the learning model using one of the state-of-the-art clas-
sifiers including multi-class Support Vector Machine (SVM)
and K-Nearest Neighbor (KNN). Describing the textural image
and extracting its invariant features phase remains the distin-
guishing element in the classification process based on signal-
processing methods and good features should be discriminative,
robust and easy to compute [6]. Notable methods include sta-
tistical and model-based ones such as co-occurrence matrices,
hidden Markov model, and filter-based methods. The represen-
tative filter-based methods include wavelet sub-bands [7], Ga-
bor filters [8]. Back to 2000, the computer vision world expe-
rienced the birth of a brand new description and feature extrac-
tion technique, introducing the concept of local patterns, which
was introduced by Ojala et al. [9] referenced as Local Binary
Patterns (LBP). The idea behind this concept is to encode the
texture image and transform it to a more representative space
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based on a specified kernel function, which integrates and con-
siders the neighbors of every pixel in calculating its transformed
value. Being simple and flexible in addition to its success real-
ized in many fields, LBP constructed the background to develop
other variants; many researchers become motivated to propose
their own local operators. Tan and Triggs proposed in [10] local
ternary patterns (LTP) for face recognition which is based on
encoding the difference between the center pixel and its neigh-
bor pixels by three values (1, 0 or -1) giving a user specified
threshold. Recently, based on the LTP variant, [11] proposed
adaptive local ternary patterns (ALTP) feature descriptor based
on an automatic strategy selecting the threshold for LTP cal-
culated using Weber’s Law. Inspired by LBP, Ahonen et al.
[12] introduced a combination of LBP concepts with Fourier
transform to design a new operator referenced as LPQ for Lo-
cal Phase Quantization, which is based on detecting the blur
invariance characteristic of the Fourier phase spectrum. LPQ
utilizes the 2-D short-term Fourier transform (STFT) to extract
the information about the local phase information. The authors
in [13] proposed local directional ternary pattern (LDTP) for
texture classification. The LDTP operator, basically, encodes
at the same time the information related to image contrast and
the directional pattern features based on local derivative vari-
ations. LDTP conveys valuable information about the nature
of textures by capturing local structures using both LTP’s [10]
and LDP’s [14] concepts simultaneously. Given that the ne-
cessity to design a new brand local texture operator with bet-
ter discriminative ability is no longer to be demonstrated, the
extensive research on application of local descriptors in pat-
tern recognition is still ongoing, which is proved by the re-
cent published works including quad binary pattern QBP [15],
local quadruple pattern (LQPAT), local neighborhood differ-
ence pattern (LNDP) [16], Principal Curvatures-LBP (PC-LBP)
[17], local concave-and-convex micro structure patterns (LC-
CMSP) [18], repulsive-and-attractive local binary gradient con-
tours (RALBGC) [19], directional coding (DC) method [20]
etc.

Even if the literature abounds with great number of tex-
ture descriptors, choosing an appropriate feature extraction op-
erator for a large number of challenging representative texture
databases presenting several properties remains a real challenge.
Furthermore, although significant progress has been made, most
LBP-like descriptors still have prominent limitations linked to
noise sensitivity and contrast information [21]. In section 5.2,
an important number of recent LBP variants that have been used
for the comparison purposes in this study are presented. In
order to avoid the limitations of these methods and keep the
simplicity and effectiveness of the basic LBP while achieving
high performance, we design a computationally and conceptu-
ally simple yet efficient texture operator referred to as Multi
Level Directional Cross Binary Patterns (MLD-CBP) for tex-
ture recognition. The essence of MLD-CBP descriptor is to
capture higher-order local information by encoding various dis-
tinctive spatial micro-structures within 5× 5 local regions. Dif-
fering from LBP that treats the values of differences between
the central pixel and each neighborhood pixel independently of
their other neighbors pixels, we adopted a sophisticated ker-
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Figure 1: Texture classification basic steps.

nel function where each pixel’s value of the adopted sampling
groups, is compared to the average gray level of its 3× 3 neigh-
bor pixels within its 5 × 5 neighborhood to make the threshold-
ing process more accurate. Therefore, when defined in a large
neighborhood considering two-level radius (i.e., R = 1 and R
= 2) and four direction angles (i.e., 0◦, 45◦, 90◦ and 135◦), the
designed descriptor can carry more local information than LBP
and many of its variants, and thus the capability of texture rep-
resentation can be strengthened. The four orientations, i.e.,0◦,
45◦, 90◦ and 135◦ are the most commonly employed ones in
the literature [22, 16, 23] to design LBP-like texture operators
able to extract prominent features. They are used successfully
to construct texture descriptors with high capability to elicit sta-
ble and discriminative feature representation while keeping low
computational complexity. Considering more directions could
lead to additional discriminating information but at the expense
of additional computation cost. However, in our approach, be-
sides the pixels belonging to the four directions and in the ob-
jective to consider additional discriminative information, the re-
maining pixels within the 5 × 5 neighborhood and belonging to
other directions are used to calculate some average gray levels,
which are involved in the modeling of the proposed descriptor.
Note that MLD-CBP operator labels each central pixel with a
ten bits code by manipulating only 16 pixels among the 25 ones
in the 5 × 5 neighborhood while the remaining ones are con-
sidered in the calculation of average gray levels of each 3 × 3
sub-block within the 5 × 5-grayscale image patch in question.
The main benefits of the proposed descriptor are: 1) implemen-
tation simplicity; 2) low computational complexity 3) free of
tuning parameter setup; 4) high ability to extract discriminative
and stable texture representation involving high performance
compared to old and recent state-of-the-art methods; 5) consid-
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erable enhancement of both the discriminative power of LBP
variants and their robustness to small variations. After extract-
ing the feature images, we compute their histogram representa-
tion which will be fed to an SVM based-classifier set up on the
Radial basis function kernel in which the γ parameter is con-
figured automatically according to the nature/particularities of
each evaluated descriptor and tested dataset. The process for
calculating the γ parameter, which is generally found experi-
mentally, is discussed laterally in this paper. The main contri-
butions introduced in this paper can be summarized and briefed
in the following points:

• We design, based on a novel sampling scheme which can
encapsulate both microstructure and macrostructure in-
formation, a new brand local image descriptor for tex-
ture classification, referred to as Multi Level Directional
Cross Binary Patterns descriptor (MLD-CBP).

• MLD-CBP operator integrates the available information
within a 5 × 5 grayscale image patch in a compact way
which provides an important gray-scale local micro-pattern
allowing thus to extract discriminating feature vector keep-
ing a low dimension than traditional LBP and a large
number of recent most promising LBP-like descriptors.

• This paper provides systematic, fair and comprehensive
comparison between the proposed MLD-CBP descriptor
and 30 recent most powerful state-of-the-art methods on
15 publicly available and widely used texture databases
representing different textures and class types.

• The proposed model, which is a non-parametric method,
performed well when compared with the evaluated state-
of-the-art methods.

• In order to make automatic the SVM based classification
process, a novel γ parameter calculation formula is pro-
posed. This new formula shows good performance sta-
bility over all the tested texture datasets.

The rest of this paper is organized as follows. Section 2
reviews briefly some existing texture descriptors. Section 3 de-
scribes the proposed Multi Level Directional Cross Binary Pat-
terns (MLD-CBP) descriptor. Section 4 explains the process of
calculating the γ parameter of the SVM classifier. Comprehen-
sive experimental results and discussions are given in Section 5.
Section 5.4 investigates the impact of the proposed γ parameter
calculation formula on the SVM classifier based classification
results leading to some conclusions and perspectives in Section
6.

2. Related Work

In this section, we briefly review the basic Local Binary Pat-
terns (LBP) operator and two of its variants: Directional Local
Binary Patterns (nLBPd) and Local Binary Patterns by Neigh-
borhoods (dLBPα) from which we are inspired to develop our
handcrafted descriptor. Moreover, nLBPd and dLBPα illustrate
the difference between defining pixel neighbors according to
distance and angles within a square sub-block.

2.1. The original Local Binary Patterns

In 2000, Ojala et al. [9] proposed the LBP operator which
is not only a descriptor but it goes beyond to a new concept
of extracting the feature image exploring the locality and pixel
position. It adopts a 3×3 neighborhood as illustrated in Figure 2
and encodes, based on the Heaviside thresholding function (Eq.
2), the relationship between the central pixel and its 8 neighbors
starting from the top-left pixel in the clockwise direction. The
LBP operator thresholds the value of the central pixel Ic from
each of its eight pixels and the resulting value is encoded by 0
if it’s strictly negative, or by 1 otherwise. The elementary LBP
code generated for each pixel of the original gray level image is
calculated as defined in Eq. 1:

LBP (Ic) =

P−1∑
p=0

∆(Ip, Ic) × 2p (1)

where P refers to the number of neighbors which is 8 adopting
a 3×3 block size while Ip refers to values of the neighbor pixels
with p = [0, 1, ....P − 1]. Thus, the basic LBP allows to reach
a discriminative power of 256 (28) possible different patterns.
∆(x, y) is Heaviside step function (cf Eq. 2).

∆(x, y) =

1 , x ≥ y
0 , x < y

(2)

3x3 sub-bloc

Figure 2: LBP code calculation example.

2.2. Directional local binary patterns and local binary patterns
by neighborhoods

The authors in [23] introduced two LBP-like handcrafted
descriptors for texture analysis, referred to as local binary pat-
terns by neighborhoods (nLBPd) and directional local binary
patterns (dLBPα). nLBPd, which uses the same bloc size adopted
by the basic LBP operator, consists also in encoding the rela-
tionship between the eight peripheral pixels {I0, I1, I2, ..., I7}

around the central pixel Ic. As defined in the kernel function
in Eq. 3, the thresholding process is done considering the pe-
ripheral pixels by comparing the gray level value of each pixel
with the one of the d next pixel, where d is a distance parameter.
An example of nLBPd calculation from a given sub-image with
d = 1 and d = 2 is given in Figure 3.
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nLBPd(Ic) =

P−1∑
p=0

∆(Ip, I(p+d) mod P) × 2p (3)

where ∆(x, y) is the same step function used in LBP operator
(cf. Eq. 2).
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Figure 3: Overview of relations between neighbors in the nLBPd.

In dLBPα, the neighborhood topology introduces another
concept based on orientation angles. The comparison is done
through the pixels belonging to the same straight line with ori-
entation angle α (α=0◦, 45◦, 90◦ or 135◦) in a counter clockwise
according to +x-axis as in Gray-Level Co-Occurrence Matrix
(GLCM) [24]. After fixing the angle, i.e., when the neighbors
are defined, the traditional LBP process is used to compute the
label of the central pixel using the thresholding function defined
in Eq. 2. The neighborhood vectors in the horizontal orientation
(α=0◦), vertical orientation (α=90◦), and two diagonal orienta-
tions (α=45◦ and α=135◦) are shown in Figure 4.
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Figure 4: Displacement vectors of dLBPα.

3. Multi Level Directional Cross Binary Patterns

Because of binary coding in the aforementioned texture op-
erators, a large amount of texture information of local spatial
patterns is lost. On the one side, due to the simplicity of the bit
string coding technique incorporated in the code construction of
the basic LBP and a large number of LBP-like methods, it ig-
nores most information of the neighborhood. In addition, when
these LBP variants encode micro-level information of edges,
spots and other local features in an image using intensity infor-
mation change around each pixel [13]. On the other side, in

the neighborhood topology of dLBPα operator, only the pix-
els belonging to the same straight line in an orientation angle α
are adopted in the code construction, thus, dLBPα misses some
directional informations which can be captured by the other ori-
entations. Besides, many LBP variants may suffer from serious
weaknesses of noise sensitivity for the local pixel-based texture
feature extraction, which means even the slightest fluctuation
above or below the gray value of the central pixel Ic or a neigh-
bor pixel Ip can change the whole LBP pattern significantly
[25]. In this paper, to overcome these disadvantages, we intro-
duce an advanced encoding way involving two different con-
cepts of neighborhood sampling by exploiting simultaneously
multi-radial and multi-orientation information. The designed
local texture modeling inherits pertinent properties from both
compact encoding of directional pattern features and encoding
of contrast information. The code construction of the proposed
descriptor, referred to as Multi Level Directional Cross Binary
Patterns (MLD-CBP), involves three main parts: local sampling
(i.e., neighborhood topology), patterns encoding (i.e., defining
neighbor pixels and encoding micro-patterns based on thresh-
olding kernel functions), and histogram computing (i.e., feature
vector), as illustrated in Figure 5.

Local
Sampling

Patterns Encoding Histogram 
Computing

Figure 5: MLD-CBP steps for feature vector extraction.

3.1. Local sampling
In computer vision applications, the choice of neighbor-

hood size is a key factor in the development phase of hand-
crafted descriptors. The concept is based on encoding the re-
lationship between pixels using the thresholding function. In
general, more the pixels used in the kernel function are rea-
sonably numerous (keeping local analysis) more the description
is accurate, which is required to improve classification perfor-
mance. However, adopting higher neighborhood sizes leads to
high processing time during the thresholding process and neces-
sitates to manipulating feature vector with high dimension. In
our work and in order to accommodate large intra-class varia-
tion and low inter-class distinction, we adopted 5 × 5 neighbor-
hood, which allows combining radii (2) and angles (4) in the
construction of the proposed descriptor. This 5 × 5 configura-
tion should provide more discriminant information, compared
to the 3 × 3 one, which is only supporting angle variation. In
addition to the central pixel Ic of each 5× 5 sub-region, we ma-
nipulate 16 pixels covering at the same time four orientations
(i.e., 0◦, 45◦, 90◦ and 135◦) and two radiuses (i.e., R=1 and
R=2). Hence, the proposed MLD-CBP can achieve continuous
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invariance at any rotation angle and capture micro- and macro-
structure texture information simultaneously than conventional
LBP-based schemes.

Based on the above statements, the local sampling of the
proposed MLD-CBP operator is performed as illustrated in Fig-
ure 6. For each central pixel Ic in the 5 × 5 sub-block, we sym-
metrically sample eight pixels in each of the two radiuses (i.e.,
R=1 and R=2). In order to easily manipulate these pixels in the
thresholding steps, we defined 3 groups of pixels based on their
distance to the central pixel and their angle as can be seen in
Figure 7. The first one, denoted by IA, contains the eight pixels
of the first neighborhood which cover the four orientations [0◦,
45◦, 90◦ and 135◦]. In the second neighborhood (R=2), there
are two kind of pixels, eight ones belonging to the four primary
orientations forming the IB group and the remaining eight pix-
els distributed on different angles construct the group IC . The
elements of each pixels group are numerated in clockwise order
so we exploit their parity in incoming equations and definitions.

Ic

𝛼 = 135°

𝛼 = 90°

𝛼 = 45°

𝛼 = 0°

Figure 6: MLD-CBP local sampling topology. Sixteen points are sampled
around the central pixel Ic.
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Figure 7: Pixels organization within the 5 × 5 sub-block.

The concept of the proposed descriptor is based on com-
bining the pixels of the group IA with horizontal and vertical
directions or diagonal directions along with the other directions
from IB as illustrated in Figure 6 where the combined pixels
have the same color (red/green). This arrangement can be ex-
plained based on the parity where we combine the elements of
IA with the ones of IB which have different parity. Therefore,
we define two sampling groups iS G1 and iS G2 . iS G1 contains

the even pixels of IA group located in the vertical and horizontal
directions {IA

0 ,IA
2 ,IA

4 ,IA
6 } and the odd ones of IB group located in

the two diagonal directions {IB
1 ,IB

3 ,IB
5 ,IB

7 }, while iS G2 contains
the pixels in green color, i.e., the odd pixels of IA group lo-
cated in the two diagonal directions {IA

1 ,IA
3 ,I5A ,IA

7 } and the even
ones of IB group located in the vertical and horizontal direc-
tions {IB

0 ,IB
2 ,IB

4 ,IB
6 }. For a more understandable representation

and for the sake of simplicity, the sampling groups iS G1 and
iS G2 , illustrated in Figure 8, can be expressed in the following
manageable and formal ways (cf. Eq. 4 and Eq. 5):

iS G1 = {IA
2i, I

B
2i+1}; i = 0, 1..., 3 (4)

iS G2 = {IA
2i+1, I

B
2i}; i = 0, 1..., 3 (5)
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Figure 8: Defining the sampling groups.

As it is confirmed by several researches in pattern recog-
nition based on local binary patterns, the average gray level is
a distinguishing statistical parameter for texture analysis, which
gives the opportunity of considering a global information within
the micro pattern. In view of this and aiming at finding a code
which is insensitive to noise and invariant to monotonic gray
scale transformation, we adopted, therefore, to integrate aver-
age gray level values in the kernel functions in order to enhance
the thresholding process. The remaining pixels within the 5×5
neighborhood, labeled as IC

i;i=0,..,7 in Figures 7 and 8, are in-
corporated, in turn, in the calculation of the average local gray
level of the whole 3×3 neighborhood around each pixel having
as label IA, which will be used in the pattern encoding phase.
Based on the above neighborhood topology, eight average local
gray levels labeled as {̂βA0,. . . . . . β̂A7 }, are computed as defined
in Eqs 6 and 7.

β̂A2i =
1

P + 1
(
∑
p∈ω2i

IA
p +

∑
q∈υ2i

IC
q + IB

2i + Ic) (6)

β̂A2i+1 =
1

P + 1
(

∑
p∈ω2i+1

IA
p +

∑
q∈υ2i+1

IC
q + IB

2i+1 + Ic) (7)
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where i ∈ [0-3], ωr is the quintuplet centered at element r and
υs is the doublet with starting element s, extracted from the
P-cycle GP={0,1,2,....,7} (circular permutation of order P), re-
spectively.

3.2. Patterns encoding

After defining the arrangement of the sampled pixels and
calculating the average gray level values, we proceed now to
pattern encoding scheme of the proposed MLD-CBP descriptor.
As presented earlier, we arranged the pixels into two sampling
groups based on their radius and angle. Therefore, for each
sampling group iS Gi , we define a cross encoder ΞEci , which
considers the central pixel Ic and the pixels of the sampling
groups adopting the basic thresholding function where each pixel
of the sampling groups, is compared to the average local gray
level of the 3×3 image patch to which the pixel belongs to. The
central pixel Ic is compared locally to the average local gray
level β̂Eci according to each cross encoder ΞEci,i=1,2 . β̂Ec1 (cf. Eq.
10) and β̂Ec2 (cf. Eq. 11) represent the average of the even pix-
els IA

2i;i∈[0−3] and the odd pixels IA
2i+1;i∈[0−3], respectively which

are incorporated in the modeling of the two encoders ΞEc1 and
ΞEc2 , respectively. The codes produced by the two encoders
ΞEc1 and ΞEc2 associated to the two sampling groups iS G1 and
iS G2 are computed as:

ΞEc1 (χ) =

3∑
i=0

∆(IB
2i+1 ,̂βA2i+1 ) × 2i +

P−1∑
i=4

∆(IA
2(i−4) ,̂βA2(i−4) ) × 2i

+ (Ic, β̂ΞEc1
) × 2P

(8)

ΞEc2 (χ) =

3∑
i=0

∆(IB
2i ,̂βA2i ) × 2i +

P−1∑
i=4

∆(IA
2(i−4)+1 ,̂βA2(i−4)+1 ) × 2i

+ ∆(Ic, β̂ΞEc2
) × 2P

(9)

where

β̂ΞEc1
=

∑3
i=0 IA

2i

P/2
(10)

β̂ΞEc2
=

∑3
i=0 IA

2i+1

P/2
(11)

In equations 8 and 9, χ is the set of gray-scale values of
a 5×5 square neighborhood. β̂ΞEc1

and β̂ΞEc1
are average local

gray levels of even and odd pixels belonging to the group IA,
respectively.

3.3. Histogram computing

Once the ΞEc1 and ΞEc2 labels are constructed for every
pixel of the image, the histograms describing the texture are
generated as follows (cf. Eq. 12 and 13):

hΞEc1
(k) =

∑
x
ϑ(ΞEc1 (x)),k) (12)

hΞEc2
(k) =

∑
x
ϑ(ΞEc2 (x)),k) (13)

where k ∈ [0, Nbins] is the number of ΞEc1 and ΞEc2 patterns,
Nbins=29 is the number of bins and the delta function ϑ(·) is
defined as below (cf. Eq. 14):

ϑ(a,b) =

{
1, if a = b;
0, otherwise (14)

To make the feature representation more effective and ro-
bust, the coarse and fine information can be captured by multi-
scale which can be made through a linear combination of dif-
ferent features obtained by several feature extraction operators.
In this work, the features captured by the two cross encoders
ΞEc1 and ΞEc2 are combined into hybrid distributions to form
the MLD-CBP model (cf. Eq. 15). This hybrid texture descrip-
tion model is powerful because it permits to reduce the noise
sensitiveness and increase the discriminative power of ΞEc1 and
ΞEc2 operators as will be shown in the experiment section. The
MLD-CBP descriptor is expected to show high capability of
encoding image configuration and pixel-wise relationships and
thus, high texture classification performance.

hMLD-CBP =
〈
hΞEc1

,hΞEc2

〉
(15)

MLD-CBP operator extracts 1024 (2×29) possible patterns
in a 5×5 neighborhood. The overall framework of the MLD-
CBP feature vector calculation is illustrated in Figure 9 and
summarized in Algorithm 1.

Algorithm 1: MLD-CBP based feature extraction
Input: Input Image Im
Result: Computed Histogram h = MLDCBP(Im)
Functions: index: get the line and column of array’s
element; zeros: initialize a matrix with 0; hist:
calculate the histogram

read the input image Im with m, n size ;
convert the image to grayscale ;
define the set of central pixels :
ΩIc = Im(i, j)/i ∈ [2,m − 2] and j ∈ [2, n − 2] ;

initialize two feature maps :
ΞEc1 = zeros(m − 2, n − 2) , ΞEc2 = zeros(m − 2, n − 2);
foreach Ic in ΩIc do

define the sampling groups iS G1 (Eq 4) and iS G2

(Eq 5) ;
calculate the average gray level values
β̂A0,. . . . . . β̂A7 corresponding to the neighbor
pixels using equations 6 and 7;

compute the two labels ΞEc1 (index(Ic)) and
ΞEc2 (index(Ic)) based on equations 8 and 9,
respectively;

compute the histogram transformation on the two cross
encoders h1 = hist(ΞEc1 ) and h2 = hist(ΞEc2 );

concatenate the two generated histograms h = [h1h2];
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Figure 9: MLD-CBP feature vector calculation.

4. Support Vector Machines (SVM) based texture classifi-
cation

The Support Vector Machine (SVM) is a discriminative clas-
sifier formally based on defining separating hyperplanes. In
other words, given labeled training data (supervised learning),
the algorithm outputs optimal hyperplanes dividing the two di-
mensional space generating an SVM model based in the repre-
sentation of the training data as points in space, mapped so that
the examples of the separate categories or classes are divided
by a dividing plane that maximizes the margin between differ-
ent classes which allows to classify the query points and predict
their classes.

Figure 10 illustrates the concept behind Support Vector Ma-
chines classification. In the left side, we have the input fea-
ture vectors calculated earlier using the handcrafted descriptors
which are mapped by complex curve. The classifier will rear-
range these input points in order to reach a linear separation
using a set of mathematical functions called kernels.

In this paper, we adopted lib-svm toolbox [26]1, which be-
came very popular toolbox for SVM classification regarding the
complexity of classification in terms of the number of classes.
This toolbox supports the four kernels of the binary SVM clas-
sifier which are linear, polynomial, radial basis function (RBF)
and sigmoid kernels as defined in Eq. 16.

Linear : u′v
Polynomial : (γu′v + C)d

RBF : e(−γ∗|u−v|2)

S igmoid : tanh (γu′v + C)

(16)

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/

Figure 10: Feature vectors representation both in the input feature spaces.

While training, the multi-class SVM requires two inputs:
the feature vectors array X computed by a given descriptor and
their corresponding labels vector Y (cd. Eqs. 17 and 18):

X =


x1,1 x1,2 · · · x1,l
x2,1 x2,2 · · · x2,l
...

...
. . .

...
xn,1 xn,2 · · · xn,l

 (17)

Y =
(
y1 y2 · · · yn

)
(18)
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Where l is the length of the computed feature vector and n
is the number of observations considered for training. xi, j is the
value of the jth bin of the ith train observation, which has the
label yi. This process is performed based on the “svmtrain”
function available in the LibSVM toolkit. The output of this
training stage is an array of parameters and values that will be
used in the prediction stage. The latter is performed using the
“svmpredict” function which takes as input a feature vector of
a test sample Xtest = [x′1, x

′
2, . . . , x

′
n] and outputs a label y ∈ Y .

In our classification framework, we implemented the lib-svm
toolbox in MATLAB environment, configured on RBF kernel.
The RBF is by far the most popular choice of kernel types used
in Support Vector Machines believing that it is suitable for very
high dimension feature sets. The RBF kernel highly depends
on γ parameter which is technically defined as the inverse of
the standard deviation of the RBF kernel (Gaussian function),
which is used as similarity measure between two points.

Since the setting of this parameter may have significant im-
pact on SVM performance, particular attention should be taken
in evaluating the SVM classifier. Generally, the researchers
are faced off to three options: 1) the use of the default value
γ = 1

Card(Dataset) determined considering only the size of the
dataset, 2) the identification of the optimal γ value for texture
classification as it is proposed in [27, 28] and 3) the recourse to
the test-error mechanism that consists in adjusting manually the
γ parameter until finding the optimal value. To the best of our
knowledge, no general criterion to estimate automatically the
optimal value for the γ parameter for each evaluated descriptor
and tested dataset has been proposed so far. In this paper, to
alleviate the problem of selecting the right γ parameter in the
SVM and after being inspired by the default γ value defined
by lib-svm toolbox, we proposed a new, yet simple γ parame-
ter calculation formula which considers the training set along
with the evaluated descriptor. Note that, the default γ value
considers only the size of the tested dataset while ignoring its
properties and particularities. However, if we consider two dif-
ferent databases with the same size, the SVM classifier will use
the same γ value to classify the probes of both databases which
makes the SVM kernel less discriminative. In contrary, the pro-
posed formula is based on exploring the representative infor-
mation contained in the feature vectors rather than considering
the number of images. The proposed formula is expressed as
follows (cf. Eq. 19):

γ =
1

2 ×
∑Card(Train)

i
∑l

j hi(x j)
(19)

where Card(Train) refers to the number of images of the train
set, l is the number of histogram bins of the histogram hi of
each feature image extracted using the evaluated descriptor and
x j represents the bins of each histogram. The benefit of this new
γ parameter determination the method will be demonstrated
through experimentation comparing the results obtained using
the proposed Multi Level Directional Cross Binary Patterns de-
scriptor with different γ values reported in earlier works along
with the default value and those recorded by the nearest neigh-
bor classifier tested with L1 distance. We highlight in Algo-

rithm 2 the procedure for training the SVM model and in Algo-
rithm 3 the procedure for evaluating its performance. .

Algorithm 2: SVM training
Input: Descriptor (MLDCBP for example), Image

database
Result: Trained SVM Model Msvm

Functions: index: get the line and column of array’s
element; zeros: initialize a matrix with 0; hist:
calculate the histogram; svmtrain: LibSVM toolbox
function to train SVM

get the train images: ΩTr;
define the feature array X and its corresponding labels
vector Y:

XTr = zeros(Card(ΩTr), n) , YTr

n is the number of generated patterns by the descriptor;
foreach Im in ΩTr do

compute the feature vector of the train image:
XTr(index(Im)) = Descriptor(Im);

calculate the γ parameter value using equation 19;
train the SVM model using ”svmtrain” function

Msvm =svmtrain(XTr,YTr, γ);

Algorithm 3: SVM evaluating
Input: Descriptor (MLDCBP for example), Image

database, Trained SVM Model Msvm

Result: Classification accuracy Acc
Functions: index: get the line and column of array’s

element; zeros: initiliaze a matrix with 0; hist:
calculate the histogram; svmpredict: LibSVM
toolbox function to predict the label of a test image

get the test images: ΩT s;
define the feature array X and the corresponding labels
vector Y:

XT s = zeros(Card(ΩT s), n) , YT s;
foreach Im in ΩT s do

compute the feature vector
XT s(index(Im)) = Descriptor(Im);

predict the label using ”svmtpredict” function :
YPred(index(Im)) =svmpredict(XT s,Msvm);

compare the predicted labels with the groundtruth ones
and calculate the accuracy:

Acc =
∑Card(ΩT s )

i=1 ϑ(YPred(i),YT s(i))
Card(ΩT s) ;

ϑ is defined in Eq. 14

5. Experimental analysis

In order to evaluate the performance of the proposed MLD-
CBP descriptor, we performed extensive texture classification
experiments on 15 well-established texture databases routinely
used by the texture classification research community. A com-
parison with a large number of recent state-of-the-art texture
descriptors (cf. section 5.2), is performed to show the improve-
ment that our operator provides. Experiments were conducted
under the standard half-half configuration based evaluation pro-
tocol and all results are reported over 100 random partitionings
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of training and testing sets. The following subsections describe:
1) the used texture databases and their properties; 2) the eval-
uated state-of-the-art LBP-like descriptors; 3) the obtained ex-
perimental results and 4) the impact of the γ calculation tech-
nique and 5) implementation and execution.

5.1. Texture databases
The discriminating power of the proposed MLD-CBP oper-

ator as well as those of 30 evaluated state-of-the-art descriptors
are compared on fifteen publicly available datasets gathered in
Table 1. The tested texture datasets were chosen to have dif-
ferent characteristics in terms of number of classes, number of
samples, noisy conditions, class homogeneity with regards to
scale, perspective, and illumination. In the following points,
we present the particularities of each database based on the de-
scriptions published in [29] and [30]:

• 2D Hela: The 2D Hela includes 10 classes of fluores-
cence microscopy, which are DNA (Nuclei), ER (Endo-
plasmic reticulum), Giantin, (cis/medial Golgi), GPP130
(cis Golgi), Lamp2 (Lysosomes), Mitochondria, Nucle-
olin (Nucleoli), Actin, TfR (Endosomes), Tubulin. Each
class contains 20 samples and the purpose behind this
dataset is to evaluate the performance achieved by the
MLD-CBP proposed descriptor in bioimage classifica-
tion task.

• BonnBTF: It contains 10 classes and 16 samples for each.
This database is obtained by merging two different ones
which are part of BTF database Bonn: ‘ATRIUM’ and
‘UBO2003’. The goal behind BonnBTF database is to
assess the efficiency and high-fidelity capture of materi-
als appearance.

• Brodatz: Despite it is quite old, Brodatz dataset is largely
used still today. It includes textures of 13 classes of natu-
ral scenes and materials (i.e., grass, bark, sand and straw)
as well as artificial manufactured ones (i.e., raffia, pigskin
and bricks). Each class is represented over 26 image sam-
ples. The particularity of this dataset remains on different
background intensities.

• CUReT 2: The Columbia-Utrecht Reflectance and Tex-
ture (CUReT) database represents an improvement over
the Brodatz collection and contains 61 real world tex-
tures (classes), with 205 images for each. In the subset,
we considered 92 samples for each class as adopted in
[19]. The images are taken at different illumination ori-
entations and view-points, which results a total of 6512
images and makes this database a challenging one.

• JerryWu: The database name refers to the researcher
Jerry Wu who built it. The database contains a total of
39 natural and artificial texture classes combining surface
rotation, illumination and imaging directions properties
to challenge the classification frameworks. We adopted
the same experimental setup presented in [29].

2http://www.cs.columbia.edu/CAVE/software/curet/html/about.php

• KTH-TIPS and KTH-TIPS2b: The KTH-TIPS and KTH-
TIPS2b databases provide the possibility of investigat-
ing the effect of real-world imaging conditions on mate-
rial classification. They are extended versions of CUReT
database. The KTH-TIPS database contains the ten classes
of CUReT database and adds new photographing samples
in terms of rotation angles and lighting directions, giv-
ing 81 samples for each texture class. The KTH-TIPS2b
database consists of 11 classes and 16 images for each.
The differences between the two databases are relative to
image scale and illumination.

• Kylberg3: The Kylberg database maintained at the Cen-
tre for Image Analysis of Swedish University of Agricul-
tural Sciences & Uppsala University, presents 28 textured
surfaces, with 160 samples for each class. Each texture
class was imaged under only one light setting from one
direction with the same distance. This database is avail-
able in two versions: without rotated texture patches and
with rotated texture patches. In our experiments, we used
the first one.

• MondialMarmi: The MondialMarmi database features
12 classes of granite tiles, representing each class over
64 samples. These samples have been acquired under
controlled illumination conditions.

• OuTeX TC 00000, 00001 and 00013 4: OuTex databases
stand for University of Oulu Texture database. They are
a well-known benchmarks for evaluating texture classi-
fication and segmentation algorithms. These databases
provide a wide variety of surface textures, which have
been acquired in multiple illumination directions (three
lighting sources), surface rotations, and spatial resolu-
tions. OuTeX TC 00000 and OuTeX TC
00001 have the same 24 texture classes except that the

first one presents each class over 20 samples only and 88
for the second database. The OuTeX TC 00013 test suite
is composed of 1360 samples representing 68 classes with
20 samples for each.

• UIUCTex: This database combines 25 natural and artifi-
cial texture classes, containing 40 samples for each class
covering variable and uncontrolled imaging conditions.
UIUCTex offers challenging conditions in terms of affine
transforms, viewpoint and illumination configurations.

• VisTex 5: The Vision Texture database is formed by the
Vision and Modeling group at the MIT Media Lab. It
contains 167 classes of natural texture and represents each
class over 16 samples. The goal behind developing Vis-
Tex database is to provide texture images that are simu-
lating real world conditions.

3http://www.cb.uu.se/ gustaf/texture/
4http://www.outex.oulu.fi/
5http://vismod.media.mit.edu/vismod/imagery/VisionTexture

/vistex.html
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Table 1: Description of the selected texture databases.

No. Name Classes Samples per class Total samples Sample resolution (pixels)

1 2D-HeLa 10 20 200 Variable
2 Bonn BTF 10 16 160 200 × 200 and 64 × 64
3 Brodatz 13 16 208 256 × 256
4 CUReT 61 92 5612 200 × 200
5 Jerry Wu 39 4 156 256 × 256
6 KTH-TIPS 10 4 40 100 × 100
7 KTH-TIPS2b 11 16 176 100 × 100
8 Kylberg 28 160 4480 576 × 576
9 MondialMarmi 12 64 768 136 × 136
10 OuTeX TC-00000 24 20 480 128 × 128
11 OuTeX TC-00001 24 88 2112 64 × 64
12 OuTeX TC-00013 68 20 1360 128 × 128
13 UIUCTex 25 40 100 640 × 480
14 Vistex 167 16 2672 128 × 128
15 XU HR 25 40 1000 1280 × 960

• XU HR 6: This database consists of 1000 different tex-
ture images : 40 samples for each of 25 classes. More-
over, it provides significant viewpoint changes and scale
differences.

5.2. Evaluated LBP-like handcrafted descriptors
In order to fairly judge the performance of the proposed

descriptor and to disclose meaningful reviews, we compared
its achieved accuracies to those recorded by 2 baselines (i.e.,
LBP and LTP) and 28 recent and well performing state-of-the-
art descriptors. The LBP based methods, used for extensive
evaluation and comparison with our method, are summarized
in chronological order in Table 2.

Among the 30 evaluated LBP-like descriptors summarized
in Table 2, some operators like AELTP, ALTP, CSALTP, DBC,
dLBPα, nLBPd, LECTP, LESTP, LTP and QBP are paramet-
ric methods which require user defined values to perform the
thresholding process. Since the setting of these user-specified
parameters may have significant impact on their performance,
particular attention should be taken in evaluating these para-
metric descriptors. Unlike the majority of the state-of-the-art
works which adopt one fixed value for each evaluated paramet-
ric method over many tested databases, we performed indepen-
dent classification experiments for each method to pick out its
best parameter value over each database. Table 3 reports the
obtained optimal values.

5.3. Experimental results
The comparative assessment is based on the data reported

in Tables 4 and 5. Table 4 summarizes the recorded average ac-
curacies (i.e., over 100 subdivisions) of each descriptor and for
each tested texture dataset, while Table 5 illustrates the rank-
ing for each dataset based on the average accuracy recorded by

6http://legacydirs.umiacs.umd.edu/fer/High-resolution-data-
base/hr database.htm

the evaluated methods. Note that the highest classification rates
reported in Table 4 are highlighted with a green background.
Moreover, Table 6 presents global ranking metrics allowing to
analyze more deeply the overall performance of the evaluated
handcrafted descriptors. We performed, as for several recent
works [18, 45, 13], the Wilcoxon Signed Rank method to com-
pare the performance of each descriptor with the rest on all the
adopted databases. Since we considered 31 descriptors (includ-
ing our proposed MLDCBP) and 15 datasets, each descriptor
will have 450 comparisons and the score is the ratio of the vic-
tories over the total comparisons. Also, we included the “Aver-
age rate” and the “Standard Deviation (std)” columns as com-
plementary criteria to rank the methods that reached the same
score. Based on the analysis of the obtained results, we can
readily make the following observations:

• It emerges from Table 4, that, except some descriptors
like XCS-LBP, LOOP, dLBPα and CSALTP which do
not produce good results, all the other evaluated descrip-
tors, including the proposed MLD-CBP operator get very
promising classification results on KTH-TIPS dataset (dataset
6 in Table 4) where their score is above 96%. Impres-
sively, some methods like LBP, LTP, LESTP, LECTP LDTP
and LCCMSP as well as the proposed descriptor manage
to differentiate all classes perfectly leaving then essen-
tially no room for improvement, i.e., the perfect recogni-
tion rate of 100% has been achieved on KTH-TIPS dataset.
This same remark can also be expressed for Bonn BTF
dataset (dataset 2 in Table 4) where some evaluated meth-
ods like LESTP, LECTP and WLD as well as the pro-
posed MLD-CBP descriptor manage to differentiate all
classes perfectly while the remaining tested methods per-
form worse.

• 2D Hela database which includes only ten classes, demon-
strated a real challenge to all evaluated methods as they
experienced performance drop compared to the other tested
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Table 2: Summary of texture descriptors tested and compared with the proposed descriptor.

N◦ Complete name Abbreviation Application Year Ref

1 Local Binary Pattern LBP Texture classification 2002 [9]
2 Local Ternary Pattern LTP Face recognition 2007 [10]
3 Local Phase Quantization LPQ Texture classification 2008 [12]
4 Weber Local Descriptor WLD Texture classification 2010 [31]
5 Directional Binary Code DBC Face recognition 2010 [32]
6 Local Directional Number Pattern LDN Face Expression Analysis 2013 [33]
7 Multi-scale Joing Encoding of Local Binary Pattern MSJLBP Texture classification 2013 [34]
8 Complete Robust Local Binary Pattern (S-MxC) CRLBP-S-MxC Texture classification 2013 [35]
9 Local Extreme Complete Trio Pattern LECTP Image retrieval 2014 [36]

10 Local Extreme Sign Trio Pattern LESTP Image retrieval 2014 [36]
11 Local Binary Patterns by neighborhoods nLBPd Texture classification 2015 [23]
12 Directional Local Binary Patterns dLBPα Texture classification 2015 [23]
13 Difference Symmetric Local Graph Structure DSLGS Finger vein recognition 2015 [37]
14 Magnitude Maximum Edge Position Octal Pattern MMEPOP Image retrieval 2015 [38]
15 Multi-Orientation Weighted Symmetric Local Graph Structure MOW-SLGS Finger vein recognition 2015 [39]
16 Sign Maximum Edge Position Octal Pattern SMEPOP Image retrieval 2015 [38]
17 eXtended Center-Symmetric Local Binary Pattern XCS-LBP Texture classification 2015 [40]
18 Adjacent Evaluation LTP AELTP Texture classification 2015 [41]
19 Center-Symmetric adaptive LTP CSALTP Face recognition 2016 [11]
20 Dominant Rotated Local Binary Patterns DRLBP Texture classification 2016 [42]
21 Extended Local Graph Structure ELGS Texture classification 2016 [43]
22 Adaptive Local Ternary Pattern ALTP Face recognition 2016 [11]
23 Quad Binary Pattern QBP Target tracking 2016 [15]
24 Rotation-invariant features based on directional coding DC Texture classification 2018 [22]
25 Local Optimal Oriented Pattern LOOP Spieces recognition 2018 [44]
26 Local Neighborhood Difference Pattern LNDP Face recognition 2018 [16]
27 Local Concave-and-Convex Micro-Structure Patterns LCCMSP Texture classification 2018 [18]
28 Local directional ternary pattern LDTP Texture classification 2018 [13]
29 Repulsive-and-attractive local binary gradient contours RALBGC Texture classification 2018 [19]
30 Attractive-and-Repulsive Center-Symmetric Local Binary Patterns ARCS-LBP Texture classification 2019 [45]

Table 3: Optimal values of the parameter of each parametric method found on each database.

Parametric Descriptor
Dataset N◦

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AELTP 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ALTP 0.003 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.009 0.009 0.009 0.006 0.006 0.006
CSALTP 0.012 0.012 0.009 0.006 0.009 0.012 0.009 0.009 0.012 0.009 0.009 0.006 0.003 0.003 0.009
DBC 90◦ 135◦ 90◦ 135◦ 90◦ 135◦ 135◦ 90◦ 90◦ 135◦ 135◦ 135◦ 90◦ 45◦ 135◦
dLBPα 45◦ 45◦ 90◦ 90◦ 135◦ 90◦ 45◦ 0◦ 90◦ 45◦ 90◦ 45◦ 45◦ 90◦ 135◦
nLBPd 2 2 1 1 1 1 2 1 3 1 1 1 1 1 1
LECTP 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LESTP 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LTP 3 3 2 3 3 2 2 3 2 3 3 3 4 1 3
QBP 2 1 1 1 2 1 3 2 2 1 1 2 3 2 2

databases. Indeed, it can be readily inferred from Table
4 that there is a significant performance drop for all the
tested operators on 2D Hela database (dataset 1 in Table
4) where their achieved recognition rate is below 75%
and this despite the use of the sophisticated SVM clas-
sifier. This same finding can also be drawn for KTH-
TIPS2b and Vistex datasets (datasets 7 and 14 in Table
4) where the classification rates obtained by the best per-
forming descriptors are below 94% (93.02% by LCCMSP
on KTH-TIPS2b and 91.08% by LECTP on Vistex).

• XCS-LBP, LOOP, LPQ, SMEPOP, QBP, LDN and many

other evaluated methods are often ranked among the low-
est performing descriptors on almost all the used texture
databases.

• The results emerged from Table 4 reveals clearly that
none of the evaluated state-of-the-art operators performs
well over all the used texture datasets. The majority of
them achieves good classification results on some datasets,
while on the remainders ones, they perform worse. Con-
sidering for example the DRLBP operator, it achieves
good performance on Bonn BTF, Brodatz and KTH-TIPS
datasets, but performs worse on the other used datasets.
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Table 4: Average accuracy (%) over 100 splits on all databases calculated as summarized in Algorithm 3.

Descriptor
Database number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ARCS-LBP 48.26 96.13 93.38 7.38 96.42 98.15 61.42 35.27 54.68 86.44 80.39 74.17 36.07 42.91 69.71

AELTP 59.01 99 99.73 95.15 97.18 97.7 88.2 99.87 89.34 99.38 99.17 86.94 69.69 77.32 91.88

ALTP 68.91 99.34 99.99 97.46 94.72 100 92.27 99.69 92.98 99.93 99.39 84.68 77.28 77.51 94.42

CRLBP-S-MxC 37.01 92.75 97.56 7.87 93.78 98.75 61.26 29.47 57.63 85.78 79.35 69.23 37.93 41.47 67.94

CSALTP 48.96 94.01 99.59 87.21 86.67 92.8 78.93 98.46 73.23 95.55 90.34 74.99 59.91 49.71 84.96

DBC 25.34 92.66 85.4 7.17 90 97.75 43.34 11.96 40.84 87.11 78.37 64.39 41.33 18.79 45.81

DC 67.42 97.39 99.81 96.9 97.21 99.75 86.98 99.61 93.28 99.3 99.26 83.45 72.76 72.26 91.94

dLBPα 31.65 87.81 93.15 2.5 81.91 90.5 50.43 18.48 45.02 87.89 74.51 61.76 35.26 22.61 43.33

DRLBP 33.06 95.24 97.01 3.38 90.37 98.85 51.85 11.46 47.47 88.27 82.94 70.61 43.54 38.61 60.01

DSLGS 18.42 98.86 96.74 3.24 94.59 96.85 48.7 7.77 48.42 94.76 92.07 75.95 51.34 26.76 58.94

ELGS 21.06 94.81 96.05 5.1 93.13 96.9 50.93 9.15 49.95 93.4 91.34 76.13 52.9 27.13 61.18

LBP 25.04 91.94 98.37 5.88 92.41 100 47.1 10.9 48.27 94 88.64 72.88 46.05 27.85 61.36

nLBPd 17.94 96.29 97.58 1.98 93.28 97.75 55.64 7.36 46.52 95.75 92.93 74.21 50.84 24.89 54.51

LCCMSP 67.97 99.65 99.96 97.72 97.31 100 93.02 99.93 94.17 99.82 99.72 87.8 78.93 84.58 95.82

LDN 13.22 90.84 86.98 5.11 80.71 93 44.5 7.89 43.11 80 72.06 62.79 38.47 20.5 52.27

LDTP 34.87 99.24 99.51 5.27 94.86 100 54.3 11.48 51.21 95.39 93.72 76.74 52.38 28.55 58.4

LECTP 69.31 100 99.98 92.52 97.15 100 84.47 99.85 84.29 97.99 96.51 83.53 74.08 91.08 95.99

LESTP 69.96 100 99.99 92.61 97.09 100 84.66 99.85 84.73 98.05 96.77 83.7 74.32 91.07 95.98

LNDP 27.46 96.13 97.12 3.72 90.24 96.65 56.09 13.66 45.47 90.42 86.42 67.98 47.85 25.75 51.16

LPQ 8.38 97.42 95.6 1.59 96.42 96.5 52.57 3.37 49.36 94.72 92.93 74.43 50.27 35.67 64.42

LOOP 6.81 72.66 67.52 2.3 78.5 88.8 48.75 7.72 35.53 62.91 52.59 35.58 21.44 31.52 52.55

LTP 68.21 99.49 99.99 97.41 95.01 100 92.2 99.88 91.88 99.86 99.48 85.52 75.53 79.54 93.73

MMEPOP 10.51 95.81 93 3.95 90.82 97 42.32 5.48 44.48 84.87 80.14 64.04 41.73 24.3 54.36

MOW-SLGS 17.67 98.01 97.52 2.96 94.6 99.4 52.03 5.94 50.14 95.97 93.48 75.98 51.19 28.6 62.77

MSJLBP 7.68 98.85 97.8 96.74 83.41 96.95 90.81 99.86 93.31 99.06 98.95 86.36 71.32 69.52 74.96

MLD-CBP 71.58 100 100 97.88 100 100 90.32 99.96 95.29 99.97 99.73 88.7 81.22 85.05 96.59

QBP 23.85 83.28 89.37 9.83 91.19 97 56.19 27.4 53.23 79.65 71.84 48.8 33.92 28.34 52.96

RALBGC 37.38 98.42 99.96 6.91 94.86 98.2 69.3 16.83 54.75 95.09 93.17 74.67 53.54 34.31 66.19

SMEPOP 15.54 89.71 97.07 4.08 91.42 97.85 43.41 8.46 45.68 89.53 86.2 72.27 43.82 22.34 57.65

WLD 57.63 100 99.25 90.78 94.68 98.4 86.07 99.6 92.58 98.38 98.32 88.18 74.68 82.72 94.17

XCS-LBP 26.56 77.84 85.13 11.01 68.33 86.3 52.1 39.22 41.11 75.21 72.72 29.19 35.99 34.13 37.81

We can express the same remark for many other methods
like ELGS, DSLGS, CSALTP, AELTP, etc.

• Regarding the proposed MLD-CBP operator, it is clearly
noticeable that it provides better classification performances
which are competitive or better than all the tested state-
of-the-art methods. Indeed, the MLD-CBP descriptor is
emerged to perform well on almost all the tested datasets
as it is often found among the best performing methods
regarding overall recognition rate, allowing to achieve
good classification results on almost all the tested texture
datasets. Note that, MLD-CBP operator manages to dif-
ferentiate all classes perfectly over 4 databases which are
BonnBTF, Brodatz, JerryWu and KTH-TIPS (datasets num-
ber: 2, 3, 5 and 6 in Table 4). Moreover, it keeps its
strengths realizing a score which is, on the one side, very
close to 100% on Kylberg, Outex TC 00000 and Ou-
tex TC 00001 datasets (99.96% on dataset 8, 99.97% on

dataset 10 and 99.73% on dataset 11 in Table 4) and on
the other side, higher than 95% on CureT, MondialMarmi
and XU HR datasets (97.88% on dataset 4, 95.29% on
dataset 9 and 96.59% on dataset 15, respectively). It
is worth mentioning that although the parametric meth-
ods, like AELTP, ALTP, CSALTP, DBC, dLBPα, nLBPd,
LECTP, LESTP, LTP and QBP, regarded as ”optimized”
(since their parameter values are tuned for each tested
dataset), are markedly less performing than the proposed
method.

• Considering the ranking between the evaluated descrip-
tors within each used texture dataset (cf. Table 5), the
best operator in terms of average accuracy is MLD-CBP
which performs significantly and consistently the best for
thirteen datasets: 2D-HeLa, Bonn BTF, Brodatz, CUReT,
Jerry Wu, KTH-TIPS, Kylberg, MondialMarmi, OuTeX
TC-00000, OuTeX TC-00001, OuTeX TC-00013, Vis-
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Table 5: Top Down ranking results of the evaluated methods on each database to highlight the top 5 and the worst performing descriptors

2D-HeLa BonnBTF Brodatz CUReT JerryWu KTH-TIPS KTH-TIPS2b Kylberg MondialMarmi Outex-TC-

00000

Outex-TC-

00001

Outex-TC-

00013

UIUCTex VisTex XU HR

MLD-CBP MLD-CBP MLD-CBP MLD-CBP MLD-CBP MLD-CBP LCCMSP MLD-CBP MLD-CBP MLD-CBP MLD-CBP MLD-CBP LECTP MLD-CBP MLD-CBP

LESTP LESTP ALTP LCCMSP LCCMSP ALTP ALTP LCCMSP LCCMSP ALTP LCCMSP WLD LESTP LCCMSP LECTP

LECTP LECTP LESTP ALTP DC LBP LTP LTP MSJLBP LTP LTP LCCMSP MLD-CBP ALTP LESTP

ALTP WLD LTP LTP AELTP LECTP MSJLBP AELTP DC LCCMSP ALTP AELTP LCCMSP LTP LCCMSP

LTP LCCMSP LECTP DC LECTP LESTP MLD-CBP MSJLBP ALTP AELTP DC MSJLBP WLD WLD ALTP

LCCMSP LTP LCCMSP MSJLBP LESTP LTP AELTP LECTP WLD DC AELTP LTP LTP LESTP WLD

DC ALTP RALBGC AELTP ARCS-LBP LCCMSP DC LESTP LTP MSJLBP MSJLBP ALTP ALTP LECTP LTP

AELTP LDTP DC LESTP LPQ LDTP WLD ALTP AELTP WLD WLD LESTP AELTP DC DC

WLD AELTP AELTP LECTP LTP DC LESTP DC LESTP LESTP LESTP LECTP DC MSJLBP AELTP

CSALTP DSLGS CSALTP WLD RALBGC MOWSLGS LECTP WLD LECTP LECTP LECTP DC MSJLBP AELTP CSALTP

ARCS-LBP MSJLBP LDTP CSALTP LDTP DRLBP CSALTP CSALTP CSALTP MOWSLGS LDTP LDTP CSALTP CSALTP MSJLBP

RALBGC RALBGC WLD XCS-LBP ALTP CRLBP RALBGC XCS-LBP CRLBP nLBPd MOWSLGS ELGS ARCS-LBP RALBGC ARCS-LBP

CRLBP MOWSLGS LBP QBP WLD WLD ARCS-LBP ARCS-LBP RALBGC CSALTP RALBGC MOWSLGS CRLBP ELGS CRLBP

LDTP LPQ MSJLBP CRLBP MOWSLGS RALBGC CRLBP CRLBP ARCS-LBP LDTP nLBPd DSLGS DRLBP LDTP RALBGC

DRLBP DC nLBPd ARCS-LBP DSLGS ARCS-LBP QBP QBP QBP RALBGC LPQ CSALTP LPQ DSLGS LPQ

dLBPα nLBPd CRLBP DBC CRLBP SMEPOP LNDP dLBPα LDTP DSLGS DSLGS RALBGC RALBGC MOWSLGS MOWSLGS

LNDP ARCS-LBP MOWSLGS RALBGC nLBPd DBC nLBPd RALBGC MOWSLGS LPQ ELGS LPQ XCS-LBP nLBPd LBP

XCS-LBP LNDP LNDP LBP ELGS nLBPd LDTP LNDP ELGS LBP CSALTP nLBPd LOOP LPQ ELGS

DBC MMEPOP SMEPOP LDTP LBP AELTP LPQ DBC LPQ ELGS LBP ARCS-LBP MOWSLGS LNDP DRLBP

LBP DRLBP DRLBP LDN SMEPOP MMEPOP XCS-LBP LDTP DSLGS LNDP LNDP LBP LDTP LBP DSLGS

QBP ELGS DSLGS ELGS QBP QBP MOWSLGS DRLBP LBP SMEPOP SMEPOP SMEPOP QBP SMEPOP LDTP

ELGS CSALTP ELGS SMEPOP MMEPOP MSJLBP DRLBP LBP DRLBP DRLBP DRLBP DRLBP LBP DRLBP SMEPOP

DSLGS CRLBP LPQ MMEPOP DRLBP ELGS ELGS ELGS nLBPd dLBPα ARCS-LBP CRLBP ELGS MMEPOP nLBPd

nLBPd DBC ARCS-LBP LNDP LNDP DSLGS dLBPα SMEPOP SMEPOP DBC MMEPOP LNDP DSLGS DBC MMEPOP

MOWSLGS LBP dLBPα DRLBP DBC LNDP LOOP LDN LNDP ARCS-LBP CRLBP DBC LNDP LDN QBP

SMEPOP LDN MMEPOP DSLGS CSALTP LPQ DSLGS DSLGS dLBPα CRLBP DBC MMEPOP nLBPd CRLBP LOOP

LDN SMEPOP QBP MOWSLGS MSJLBP LDN LBP LOOP MMEPOP MMEPOP dLBPα LDN MMEPOP ARCS-LBP LDN

MMEPOP dLBPα LDN dLBPα dLBPα CSALTP LDN nLBPd LDN LDN XCS-LBP dLBPα dLBPα XCS-LBP LNDP

LPQ QBP DBC LOOP LDN dLBPα SMEPOP MOWSLGS XCS-LBP QBP LDN QBP SMEPOP dLBPα DBC

MSJLBP XCS-LBP XCS-LBP nLBPd LOOP LOOP DBC MMEPOP DBC XCS-LBP QBP LOOP LDN QBP dLBPα

LOOP LOOP LOOP LPQ XCS-LBP XCS-LBP MMEPOP LPQ LOOP LOOP LOOP XCS-LBP DBC LOOP XCS-LBP

tex and XU HR (datasets 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 14, 15 in Table 4). Furthermore, it is in the top 5
and 3 descriptors on KTH-TIPS2b and UIUCTex datasets
(datasets 7 and 13 in Table 4), respectively. The second
best method is LCCMSP which is in the top 5 descrip-
tors on twelve datasets (also ranked top 2 descriptors on
six datasets) followed by LESTP which is in the top 5
descriptors on six datasets.

• From Table 6, it can be inferred that the MLD-CBP de-
scriptor outperformed 434 times (of 450 comparisons)
the evaluated handcrafted methods overall the 15 databases,
scoring a win ratio of 96.44% followed by LCCMSP with

91.33% (411 times). They were the only methods that ex-
ceeded 400 wins.

• All the top 6 ranked mathods have a standard deviation
less than 10% with an overall performance above 90%.
The MLD-CBP managed to ensure a good balance be-
tween the performance and stability regarding its corre-
sponding highest average accuracy of 93.75% and lowest
standard deviation of 8.39%. The most unstable method
is nLBPd with a standard deviation of 33.93%.

Moreover, we run an experiment that calculates the elapsed
time to extract the feature vector from a given input image that
has a resolution of 256 by 256 pixels. The obtained times are
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Table 6: Global metrics and execution time based comparison of the evaluated
descriptors to find the overall best performing and stable method.

Descriptor Rank Ratio Wins Avg Acc Std Exec Time (ms)

MLD-CBP 1 0.9644 434/450 93.7527 8.3993 12.8959
LCCMSP 2 0.9133 411/450 93.0933 9.1426 8.7802
LTP 3 0.8600 387/450 91.8487 9.7955 5.2599
ALTP 4 0.8533 384/450 91.9047 9.7149 4.5366
LESTP 5 0.8244 371/450 91.2520 9.3857 9.6884
LECTP 6 0.8111 365/450 91.1167 9.5402 12.282
DCLBP 7 0.7822 352/450 90.4880 10.9388 7.4104
AELTP 8 0.7756 349/450 89.9707 11.9241 10.2032
WLD 9 0.7689 346/450 90.3627 11.2148 26.7729
MSJLBP 10 0.6533 294/450 84.3720 22.8861 19.4633
RALBGC 11 0.5867 264/450 66.2387 30.2856 6.0754
LDTP 12 0.5533 249/450 63.7280 32.1640 10.9535
CSALTP 13 0.5489 247/450 81.0213 16.1151 5.4535
AECLBP-S-MxC 14 0.4800 216/450 65.3853 26.5702 8.1974
CRLBP-S-MxC 15 0.4556 205/450 63.8520 27.2109 6.8522
MOW-SLGS 16 0.4556 205/450 61.7507 34.0842 8.155
LBP 17 0.3911 176/450 60.7127 32.0140 4.2173
ELGS 18 0.3822 172/450 61.2773 32.3889 4.4186
DSLGS 19 0.3756 169/450 60.8940 33.6797 4.0554
LPQ 20 0.3733 168/450 60.9100 34.6120 6.3362
nLBPd 21 0.3689 166/450 60.4980 33.9375 5.5722
DRLBP 22 0.3667 165/450 60.8447 30.2326 8.2082
LNDP 23 0.3200 144/450 59.7413 31.2260 3.8362
QBP 24 0.2756 124/450 56.4567 26.9429 3.6058
SMEPOP 25 0.2733 123/450 57.6687 32.8940 7.0674
DBC 26 0.2133 96/450 55.3507 30.5476 5.2021
MMEPOP 27 0.1933 87/450 55.5207 32.8497 7.3087
XCS-LBP 28 0.1933 87/450 51.5100 23.2085 5.0564
dLBPα 29 0.1778 80/450 55.1207 28.6994 3.9467
LDN 30 0.1356 61/450 52.7633 29.9893 6.4615
LQCH 31 0.0733 33/450 44.3453 26.2586 7.6804

included in Table 6 and illustrated graphically in Figure 11 for
more readability. To ensure a fair and comprehensive analy-
sis between the evaluated descriptors, this figure plots also the
win ratio of each method, in order to perform a global eval-
uation based on these two criteria (computation time and win
ratio). We can see that our proposed MLDCBP descriptor takes
12ms to compute the feature vector which is very fast, regarding
the number of generated patterns (i.e., 1024), with high perfor-
mance, compared to the LBP descriptor (as reference) requiring
4ms to extract the feature vector of size 256 patterns. More-
over, one can see from Figure 11 that the proposed descriptor
presents the best tradeoff as it is the more stable one compared
to the other tested descriptors, while requiring acceptable com-
putation time. Indeed, if we consider for example the LCCMSP
and LTP methods, they reached the highest win ratios after the
MLDCBP method (91.33% and 86%, respectively) with an ex-
ecution time of 8.78 ms for LCCMSP and 5.26 ms for LTP.
Compared to the second ranked method (i.e., LCCMSP), the
proposed MLDCBP delivered 5% extra of win ratio (i.e., more
stability overall the databases) with only 25% more execution
time than LCCMSP. Thus, the MLDCBP ensures a good trade-
off between speed and performance.

All the discussed points lead to the same findings, which
prove that the proposed MLD-CBP method, which is free of
tuning parameter setup, shows steady classification performance.
It presents, in fact, a significant performance stability against
the tested state-of-the-art descriptors on all the used texture
datasets. These results and their analysis show that the pro-
posed method works very well on a wide selection of different
texture datasets which fed to the SVM classifier with relevant

and distinguishing features. This firmly demonstrates that the
proposed operator makes effective the use of micro-structures
and relationships between pixels within 5 × 5 window.

5.4. The impact of SVM γ value

In this subsection, the objective is to investigate the impact
of the proposed γ parameter calculation formula on the SVM
based classification results. In order to highlight the effective-
ness of the proposed formula, a performance evaluation of the
proposed descriptor using, on the one hand, the default γ value,
the values reported in [27] and [28] and, on the other hand, the
proposed user-specified γ parameter calculating formula (cf.
Eq. 19), is more than desirable. Table 7 and Figure 12 illus-
trate the obtained average accuracies over all the tested texture
datasets to show the performance stability and the improvement
that our formula provides.

As it’s clearly stated in Table 7 and seen in Figure 12, the
proposed γ calculation method shows good performance sta-
bility as it allows the proposed MLD-CBP operator to reach
higher scores than that achieved using the other γ calculation
techniques as well as the Nearest Neighbor classifier on almost
all the tested datasets (12/15 databases). Note that the γ value
reported in [27], unlike that proposed in [28], yields compet-
itive accuracy over only four datasets, and performs well on
six databases. However, it seems to be unsuitable for the other
nine tested databases. In addition, the default γ value provided
with the lib-svm Toolbox realizes promising classification ac-
curacies but it suffers performance drop in some databases. It is
worth mentioning that the Nearest Neighbor classifier emerged
to reach also good results, which points out that the proposed
MLD-CBP descriptor provides distinguishing feature vectors
and its performance is not attached to a given classifier.

5.5. Implementation and Execution

The texture classification experiments have been performed
on a HP ProDesk with Core i7 Processor 4.0 GHz with turbo
boost technology and 16GB of RAM, running with Ubuntu 16.04
LTS (Xenial Xerus) operating system. The descriptors and the
classification system have been implemented in MATLAB R©

R2016b environment. The experiments reported in this paper
have taken days of computer time that is due to the diversity of
the experiments on 15 databases and the large number of eval-
uated descriptors and adopting the SVM in the classification
phase. For reproducible research results, all data required to
replicate the experiments (i.e.: source codes, images and subdi-
visions into train and validation sets) are available upon request
to the corresponding author.

6. Conclusion

In this paper, we have designed a novel texture operator,
referred to as Multi Level Directional Cross Binary Patterns
(MLD-CBP), which proved to be a computationally and con-
ceptually simple yet efficient descriptor for image texture mod-
eling. MLD-CBP operator, which manipulates a 5×5 sub-block
size, is based on combining direction and radius concepts. It
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Execution Time vs Win ratio

Exec Time (ms) Wins ratio

Figure 11: The execution time taken by each evaluated method to extract the feature vector from a 256 × 256 image vs win ratio. This figure helps to find balance
between performance and resources consumption.

Table 7: Average accuracy (%) on each database according to different γ values and NN classifier.

Database N◦

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/(2 × 134.1) [27] 56.63 100 100 88.04 99.87 100 90.82 97.89 92.09 99.98 99.38 84.86 78.14 85.37 97.52

1/(2 × 52) [28] 56.51 97.15 80.57 1.5 2.69 97.75 89.94 4.23 92.32 99.78 99.38 84.78 0.34 10.56 12.22

Default value 56.55 100 99.95 86.51 91.58 100 90.82 97.66 92.55 99.98 99.38 84.86 0.36 83.47 90.99

NN City-Block 63.5 100 100 92.8 100 100 91.36 98.51 92.07 99.91 99.6 83.9 78.84 70.78 94.76

Proposed 71.58 100 100 97.88 100 100 90.32 99.96 95.29 99.98 99.73 88.7 81.22 85.05 96.59

is, in fact, built by considering two cross encoders exploiting
simultaneously multi-radial and multi-orientation information
and integrating local gray level averages in the thresholding
process. Thanks to this fact, the proposed MLD-CBP descriptor
has the ability to extract more relevant information and achieves
superior performance than the existing descriptors as it has been
proved through the comparative assessments. For classification
purpose, the test images are classified through a supervised im-
age classification task using the SVM classifier configured on
the RBF kernel, by adopting a new technique for calculating the
γ value automatically according the considered database and
the description method. A comprehensive evaluation of the pro-
posed MLD-CBP descriptor is performed on fifteen challenging
representative widely-used texture datasets, with comparison to
30 recent most promising state-of-the-art methods to disclose
meaningful statements. As expected, the MLD-CBP descriptor
coupled with the automated SVM classifier managed to outper-
form the 30 evaluated LBP variants showing good stability and
proving its high discriminative abilities in describing and then
correctly classifying texture images of 15 databases. Moreover,

the analysis of the experimental results also indicated that the
proposed MLD-CBP description method provided good classi-
fication results when coupled with the basic Nearest Neighbor
classifier, which proves that the achieved performance is not at-
tached to the nature of the used classifier.
As future work, we intend to enhance the performance of the
proposed classification framework by introducing dimensional-
ity reduction techniques such as Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) to get extra
class separation and variance in the feature, which may boost
the SVM classifier robustness. Moreover, we plan to develop
a deep feature version of the proposed MLD-CBP descriptor
based on Pixel Difference Vectors (PDVs), then investigate the
performance on other challenging applications such as writer
identification, emotional state classification, etc.
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