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Abstract 

Brain networks related to human learning can interact in cooperative but also competitive ways to 

optimize performance. The investigation of such interactive processes is rare in research on 

learning and memory. Previous studies have shown that manipulations reducing the engagement 

of prefrontal cortical areas could lead to improved statistical learning performance. However, no 

study has investigated how disruption of the dorsolateral prefrontal cortex (DLPFC) affects the 

acquisition and consolidation of non-adjacent second-order dependencies. The present study 

aimed to test the role of the DLPFC, more specifically, the Brodmann 9 area in implicit temporal 

statistical learning of non-adjacent dependencies. We applied 1 Hz inhibitory transcranial 

magnetic stimulation or sham stimulation over both the left and right DLPFC intermittently 

during the learning. The DLPFC-stimulated group showed better performance compared to the 

sham group after a 24-hour consolidation period. This finding suggests that the disruption of 

DLPFC during learning induces qualitative changes in the consolidation of non-adjacent 

statistical regularities. A possible mechanism behind this result is that the stimulation of the 

DLPFC promotes a shift to model-free learning by weakening the access to model-based 

processes. 

 

Keywords: non-adjacent dependency; statistical learning; probabilistic sequence learning; 

dorsolateral prefrontal cortex (DLPFC); memory consolidation; transcranial magnetic stimulation 

(TMS) 
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Introduction 

Accumulating evidence supports the existence of interactive learning/memory processes, which 

can be either cooperative or competitive. Such a competitive relationship is theorized to exist 

between the instructional/deliberate model-based and the incidental/reflexive model-free 

processes underlying learning (Daw, Niv, & Dayan, 2005). Model-based processes refer to the 

more controlled forms of learning that include the development of complex representations based 

on testing hypotheses about the environment (Beierholm, Anen, Quartz, & Bossaerts, 2011; Wan 

Lee, Shimojo, & O'Doherty, 2014). Consequently, internal models are formulated, which may be 

used both for the already learned and the newly encountered structures (Daw et al., 2005; Haith 

& Krakauer, 2013). These processes were associated with goal-directed control, processing 

speed, executive functions, and working memory (e.g., Kurth-Nelson, Bickel, & Redish, 2012; 

Otto, Raio, Chiang, Phelps, & Daw, 2013; Schad et al., 2014). Model-free processes refer to 

habit-like, associative forms of learning whereby one extracts predictable structural regularities 

from the environment without intention or conscious monitoring. Thus, this type of learning is 

stimulus-driven and typically occurs implicitly. This predictive processing and capacity to detect 

patterns are crucial for aspects of statistical learning,  which are involved in the acquisition of 

cognitive, social, and motor skills and habits (e.g., Kaufman et al., 2010; Lieberman, 2000; 

Nemeth & Janacsek, 2011). Disruptive stimulation of the dorsolateral prefrontal cortex (DLPFC) 

was shown to shift the balance of model-free and model-based processes to the benefit of  model-

free processes during reinforcement learning (Smittenaar, FitzGerald, Romei, Wright, & Dolan, 

2013). Congruently, better statistical learning was associated with weaker model-based processes 

(Janacsek, Fiser, & Nemeth, 2012; Nemeth, Janacsek, Polner, & Kovacs, 2013; Tóth et al., 2017; 

Virag et al., 2015), supporting the potential competition between the two types of learning 

processes. Can "less" involvement of the DLPFC be "more" beneficial for cognitive functions 

driven by model-free processes? Our study aimed to answer this question by directly 

manipulating the involvement of DLPFC in temporally distributed statistical learning using 

repetitive transcranial magnetic stimulation (rTMS). 

Previous research has proposed that the neural circuitry involving parts of the basal 

ganglia, notably the dorsolateral striatum, supports model-free learning processes. The circuitry 

involving medial temporal lobe structures, including the hippocampus, and the areas of the 

default network (Buckner & DiNicola, 2019; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; 
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Dayan & Berridge, 2014; Janacsek et al., 2012; Packard & Knowlton, 2002; Vikbladh et al., 

2019; Wunderlich, Smittenaar, & Dolan, 2012; Yin, Knowlton, & Balleine, 2004) promotes 

model-based processes. Studies suggest that both processes involve the lateral prefrontal cortical 

regions that subserve several cognitive functions, such as executive functions, working memory, 

memory encoding, and access to long-term memory (Baier et al., 2010; Blumenfeld & 

Ranganath, 2007; Culbreth, Westbrook, Daw, Botvinick, & Barch, 2016; Koechlin & 

Summerfield, 2007; Lara & Wallis, 2015; McNab & Klingberg, 2008; Otto et al., 2013; Otto, 

Skatova, Madlon-Kay, & Daw, 2014). The neural basis of picking up probabilistic statistical 

regularities has been investigated by multiple neuroimaging studies. For example, Simon, 

Vaidya, Howard, and Howard (2012) used event-related functional magnetic resonance imaging 

during a probabilistic sequence learning task. The study provided evidence for the role of the 

hippocampus in the early stage of learning and the caudate in later stages. Using diffusion tensor 

imaging, Bennett, Madden, Vaidya, Howard, and Howard (2011) found that the integrity of the 

neural tracts between the DLPFC and the hippocampus, and also between the DLPFC and the 

caudate nucleus are related to the degree of statistical learning. Stillman et al. (2013) found that a 

functional connectivity index between the caudate and medial temporal lobe showed a positive 

correlation with probabilistic statistical learning. Based on their findings, the authors also stressed 

the potential mediating role of the DLPFC between other, statistical learning-related areas such as 

the caudate and the medial temporal regions. Thus, we hypothesized that the DLPFC might 

modulate statistical learning abilities by being a part of the neural circuits, both supporting the 

model-based and model-free processes. 

Employing non-invasive brain stimulation methods, we can reveal relationships between 

learning and brain areas (and their related networks). To date, only a few studies have 

investigated the acquisition of temporally distributed deterministic or probabilistic regularities 

(often termed statistical learning as well) by stimulating the DLPFC. An early rTMS study by 

Pascual-Leone, Wassermann, Grafman, and Hallett (1996) showed that 5 Hz rTMS over the 

contralateral DLPFC during a deterministic serial reaction time task (SRTT) impairs online 

learning. Galea, Albert, Ditye, & Miall (2010) applied inhibitory continuous theta-burst 

stimulation (cTBS) over the DLPFC following practice on SRTT. After an 8-hour consolidation 

period, subjects were faster on sequence compared to random elements in the verum, but not in 

the sham group. Smalle, Panouilleres, Szmalec, and Möttönen (2017) found increased learning on 
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phonological sequences following cTBS over the left DLPFC. Contrary, Savic, Cazzoli, Müri, & 

Meier (2017) reported null effects of different brain stimulation methods over the DLPFC on a 

deterministic sequence learning task that requires the use of only one hand. This result suggests 

that, in some cases, a robust interhemispheric compensation might obscure the effects of the 

stimulation. More importantly, all the mentioned studies used deterministic sequences with 

adjacent regularities instead of probabilistic sequences with non-adjacent regularities (Remillard, 

2008). In non-adjacent statistical learning, the predictable information is hidden in noise within 

the stimulus stream. Therefore, the task mimics the acquisition of real-life skills (for example, 

language learning, Christiansen and Chater, 2015), which occurs under uncertainty, in a noisy 

environment, more closely (Fiser, Berkes, Orbán, & Lengyel, 2010). The role of the DLPFC in 

this complex, ecologically valid form of statistical learning remains unclear. 

In this study, we go beyond previous findings by disrupting the DLPFC during a non-

adjacent statistical learning task using bilateral stimulation. We aimed to reveal whether less 

involvement of the DLPFC could be more beneficial for the acquisition and consolidation of 

statistical learning skills. To assess statistical learning, we chose a widely used probabilistic 

sequence learning task, namely the Alternating Serial Reaction Time (ASRT) task (Figure 1A). 

This task has been used previously in experimental psychology (Howard & Howard, 1997; 

Howard et al., 2004; Kóbor, Janacsek, Takács, & Nemeth, 2017; Nemeth et al., 2010; Song, 

Howard, & Howard, 2007), developmental (Janacsek et al., 2012; Juhasz, Nemeth, & Janacsek, 

2019; Nemeth, Janacsek, & Fiser, 2013) as well as neuroimaging studies (Bennett et al., 2011; 

Stillman et al., 2013). The ASRT task is a four-choice reaction time task in which predetermined 

stimuli alternate with random elements, creating a probabilistic structure with more probable 

versus less probable stimulus triplets. Participants can pick up these non-adjacent statistical 

regularities: over time, performance differences emerge between high- and low-probability 

triplets without the participants becoming aware of the underlying structure (Howard & Howard 

1997; Howard et al. 2004). During the Training/rTMS session, we used 1 Hz repetitive TMS over 

the DLPFC, which was shown to decrease activity in the targeted brain area (Groiss, Ugawa, 

Paulus, & Huang, 2012) extending beyond the termination of the stimulation (Robertson, 

Théoret, & Pascual-Leone, 2003; Walsh & Cowey, 2000). As ASRT requires the use of both 

hands, bilateral stimulation might be an ideal choice to control for the possible premotor response 

bias (by bilateral stimulation, high- and low-probability triplets are affected to a similar extent). 
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Moreover, a sequential bilateral TMS protocol was chosen to suppress the compensation of the 

non-stimulated hemisphere. Retest sessions 10 minutes, 2 hours, and 24 hours after the 

termination of the training were implemented in the design. Our purpose was to study the effect 

of TMS on the whole learning process and to differentiate between the immediate and long-

lasting results of stimulation and its impact on the offline consolidation of acquired knowledge. 

We hypothesized that disrupting the DLPFC bilaterally would increase statistical learning 

performance in the ASRT task. 

Materials and methods 

Participants 

Thirty-two participants took part in the experiment. All of them were right-handed; their visual 

acuities were normal or corrected to normal. None of the participants reported a history of 

neurological or psychological disorders, drug or alcohol abuse, had metal implants, or were 

taking regular medication relevant to the study. Written informed consent was acquired from all 

participants. All participants tolerated the experimental procedures, and none withdrew because 

of discomfort with TMS. All participants were students of the University of Jena and participated 

in exchange for partial course credits or monetary compensation. One participant was excluded 

from the final sample because of poor performance on the Berg Card Sorting Test (% of 

preservative errors = 31.25%; % of correct responses: 51.56%; the scores were more than three 

standard deviations above the mean, see group averages in the Experimental Procedure section). 

Thus, the final sample contained data from 31 participants (16 in the DLPFC Group and 15 in the 

Sham Group, four males, Mage = 22.16 years, SDage: ± 3.01). The experiment was conducted in 

accordance with the guidelines of the Declaration of Helsinki and with the approval of the ethics 

committee of the University of Jena. 

Alternating Serial Reaction Time Task 

Statistical learning was measured using the Alternating Serial Reaction Time (ASRT) Task 

(Howard et al., 2004; Song et al., 2007). In this task, a stimulus (a dog's head) appeared in one of 

four horizontally arranged empty circles on the screen. Participants were instructed to press the 

corresponding key (Z, C, B, and M on a QWERTY keyboard), as quickly and as accurately as 

possible (Figure 1A). The buttons Z and C had to be pressed by the middle and index fingers of 
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the left hand. The B and M buttons had to be pressed by the index and middle fingers of the right 

hand, respectively. The target remained on the screen until the participant pressed the correct 

button. The response-to-stimulus interval was set to 120 ms. Stimuli were presented in blocks of 

85 trials. The first five trials of each block were random elements and for practice purposes only 

(not analyzed further). After these five practice trials, an eight-element alternating sequence was 

repeated ten times in a block (e.g., 2r4r3r1r, where 1–4 indicate the target locations from left to 

right, and r indicates a randomly selected position out of the four possible ones) (Figure 1A). The 

predetermined order of the pattern elements remained unknown to the participants. Due to the 

alternation of random and pattern elements, some runs of three consecutive items (henceforth 

referred to as triplets) occurred with higher probability than other ones. We refer to these types of 

stimuli as high-probability and low-probability triplets, respectively. For example, considering 

the above illustration, 2_4, 4_3, 3_1, and 1_2 (where "_" indicates the middle element of a 

triplet) occur with high-probability, because the third element (bold number) could be derived 

from a (predetermined) pattern, and in some cases, from random items. On the contrary, 1_3 and 

4_1 occur with less probability because in that case, the third element could only be random. 

Therefore, the third event of a high-probability triplet is more predictable from the first element 

than in the case of the low-probability triplets. Accordingly, each of the trials of the ASRT was 

categorized as either the third element of a high- or a low-probability triplet. Overall, 64 possible 

triplets can occur in the task, of which 16 are high-probability triplets, each of them occurring in 

approximately 4% of the trials (62.5% in total). Each of the remaining 48 triplets occurred in 

around 0.8% of the trials (37.5% in total). Thus, the high-probability triplets occur five times 

more often than the low-probability triplets. 
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Figure 1. Experimental procedures. (A) Stimuli of the Alternating Serial Reaction Time (ASRT) task. Repeating 

elements (P – pattern) alternate with random events (r – random). Due to this structure of the sequences, some 

triplets (i.e., three consecutive events) occur more frequently (high-probability triplets) than others (low-probability 

triplets). Implicit statistical learning is measured as the RT difference between these two triplet types. (B) Five 

minutes of 1 Hz rTMS of both DLPFCs was administered before each of the five learning blocks, with the order of 

the stimulated hemispheres counterbalanced inter-participants. The volunteers performed five ASRT blocks 10 

minutes, 2 hours, and 24 hours post-learning, as well. 

Structural MRI and Neuronavigated TMS 

Structural MRI scanning was performed using a Siemens Magnetom Trio 3T MRI scanner at the 

Institute for Diagnostic and Interventional Radiology, University of Jena. High-resolution sagittal 

T1-weighted images for the 3D head and brain meshes were acquired using a magnetization EPI 

sequence (MP-RAGE; TR = 2300 ms; TE = 3.03 ms; 1 mm isotropic voxel size). For 
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neuronavigated TMS, the 3D-head and brain models were created from the participants' 

individual MRI scans. Coordinates for the DLPFC were taken from a meta-analysis by Cieslik et 

al. (2013), which corresponds to the dorsal part of the DLPFC (MNI coordinates: x = 37, y = 33, 

Z = 32). This area was revealed to be involved in executive control and working memory 

processes. For sham TMS, the coil was oriented perpendicularly, facing away from the skull 

(Lisanby, Gutman, Luber, Schroeder, & Sackeim, 2001). 

TMS stimulation was delivered using a PowerMag 100 Research Stimulator (MES 

Forschungssysteme GmbH). Neuronavigation was carried out using a PowerMag View (MES 

Medizintechnik GmbH) Neuronavigation system. Magnetic pulses were delivered at 1 Hz, at 

55% maximum stimulator output. A single intensity was used based on previous studies (Figner 

et al., 2010; Silvanto, Cattaneo, Battelli, & Pascual-Leone, 2008). TMS was applied before each 

of the five learning blocks, that is, before the first block and in the inter-block intervals (300 

pulses, 5 minutes per hemisphere). The order in which the two hemispheres were stimulated was 

counterbalanced inter-participants. 

Experimental procedures 

Participants were seated in a dimly lit room; their heads were fixed using a chinrest, 60 cm 

viewing distance away from the stimulus presentation monitor. After giving informed consent, 

the volunteers performed an ASRT practice run to familiarize themselves with the task and the 

keyboard layout. In the Training/rTMS session, the participants received 1 Hz rTMS over both 

left and right hemispheres sequentially (5 minutes, 300 TMS pulses for each hemisphere; thus, 5 

minutes for the left and after that the right, in a counterbalanced order inter-participants), then 

performed five blocks of the ASRT task, lasting approximately 5 minutes. This procedure was 

repeated five times. Therefore, a total of 25 blocks of ASRT were completed, which provides 

enough trials for learning to manifest as shown by previous studies (Janacsek et al., 2012; 

Nemeth et al., 2010; Vékony et al., 2019). The order in which the two hemispheres were 

stimulated was assigned randomly, remained the same for each participant. To test the role of the 

DLPFC in statistical learning in both the acquisition and the consolidation, we tested ASRT 

performance multiple times after the stimulation as well. In the retest sessions, the participants 

performed five blocks of the ASRT task 10 minutes, 2 hours, and 24 hours after the completion 

of the Training/rTMS session (Figure 1B). The exact retest times followed previous literature 
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(Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015). The 10 minutes retest session aimed to test 

the immediate aftereffect of TMS without preceding stimulation. With the help of the 2 hours 

retest session, we could test the long-term effects of the stimulation. The performance after 24 

hours was thought to provide information about the impact of the stimulation on consolidation. 

To ensure that the two experimental groups did not differ in executive function 

performance, we administered the short-form of the Berg Card Sorting Test (Fox, Mueller, Gray, 

Raber, & Piper, 2013) and the Counting Span test (Case, Kurland, & Goldberg, 1982; Conway et 

al., 2005; Engle, Laughlin, Tuholski, & Conway, 1999) after the completion of the ASRT in the 

last session. We observed no significant differences in performance between the two 

experimental groups (Berg Card Sorting Test, percent correct responses: DLPFC: M = 81.06, 

SD = 5.90; Sham: M = 80.42, SD = 7.76, p = .80; percent perseverative errors: DLPFC: 

M = 10.16, SD = 4.56; Sham: M = 11.67, SD = 4.83, p = .38; percent non-perseverative errors: 

DLPFC: M = 8.79, SD = 5.59; Sham: M = 7.92, SD = 5.06, p = .65; Counting span, mean of 

three runs: DLPFC: M = 4.06, SD = 1.11, Sham: M = 3.62, SD = 0.85, p = .23). 

As a part of the post-experimental debriefing, the participants filled out a questionnaire 

assessing their levels of discomfort, tiredness, and perceived task difficulty, measured on a ten-

point scale. 

The Training/rTMS session (with informed consent) lasted approximately 2 hours, the 10 

minutes and 2 hours retest sessions lasted 5 minutes each, and the 24 hours retest session (with 

the control tasks) and debriefing lasted approximately 30 minutes. 

Statistical analysis 

Only correct responses were considered for the ASRT analysis, and stimulus repetitions (e.g., 

333, 444) and trills (e.g., 313, 121) were also excluded (Howard & Howard, 1997; Howard et al., 

2004). Trials with reaction times (RTs) more than 2.5 standard deviations above or below the 

mean of the given epoch were eliminated (separately for each participant). After that, we 

calculated the mean RTs for high- and low-probability triplets separately. Implicit statistical 

learning was assessed using a triplet-learning index, calculated by subtracting the RTs for low-

probability triplets from those for high-probability triplets. To control for the non-specific effects 

of time and the possible individual differences in RTs, we calculated a percentage learning index 
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as follows: [(RTs for low-probability triplets – RTs for high-probability triplets)/RTs for low-

probability triplets)]. A higher learning index thus means faster responses for high- than for low-

probability triplets, that is, better statistical learning performance. 

The learning index was calculated for each session of the experiment for each participant. 

We conducted a 2 (Group: DLPFC Stimulation vs. Sham Stimulation) × 4 (Session: 

Training/rTMS session vs.10 minutes retest session vs. 2 hours retest session vs. 24 hours retest 

session) mixed-design ANOVA to compare the statistical learning performance between the two 

stimulation groups throughout the experiment. Greenhouse-Geisser corrections were applied 

where necessary. Significant main effects and interactions were further analyzed using 

Bonferroni-corrected post-hoc comparisons. 

As we aimed to investigate the effects of rTMS on both hemispheres, we tested whether 

the observed effect was due to the stimulation of the hemisphere just before the particular ASRT 

block. Thus, we conducted a 2 (Order: Right Start vs. Left Start) × 4 (Session) ANOVA on the 

learning index to ascertain if our results were influenced by the stimulation order. 

We also performed an analysis of the ASRT performance across the four sessions with the 

raw RTs for high- and low-probability triplets as dependent variables. To see how the initial 

learning was affected by the stimulation, we ran an analysis of the learning indices of the five 

epochs of the Training/rTMS session. We also compared the learning indices of the three retest 

sessions to the last epoch of the Training/rTMS session (see details of these analyses and results 

in the Supplementary Materials). 

All analyses were two-tailed and were conducted with a significance level of p < .05. 

Results 

The ANOVA conducted on the learning indices across sessions revealed a significant main effect 

of the experimental Session, F3, 87 = 7.11, p < .001, ηp
2 = .20. The pairwise comparisons of this 

main effect indicate an overall increase in performance in all three retest sessions when compared 

to the Training/rTMS session (Training/rTMS session vs. 10 minutes retest session: p = .001, 2 

hours retest session: p = .001, 24 hours retest session: p = .004). There was no main effect of 

Group, F1, 29 = 0.61, p = .44, ηp
2 = .02, but the interaction between the experimental Session and 
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Group was shown to be significant, F3, 87 = 3.96, p = .01, ηp
2 = .12. In the Sham Group, pairwise 

comparisons revealed an increased performance at the 10 minutes retest session compared to the 

Training/rTMS session (p = .002). Performance in the DLPFC Group also increased with time 

compared to the Training/rTMS session (2 hours retest session: p = .01), and contrary to the 

Sham Group, the difference remained significant at the 24 hours retest session (p = .001) (Figure 

2A). The comparisons of the learning indices between the two groups revealed that the Sham and 

DLPFC Groups showed similar learning indices during the Training/rTMS, 10 minutes, and 2 

hours sessions (all p > .25). However, the DLPFC Group showed a significantly greater learning 

index than the Sham Group at the 24 hours retest session (p = .03) (Figure 2B). The stimulation 

seemed to affect the RTs for the low-probability triplets primarily; see details in the first section 

of the Supplementary Materials. 

 

Figure 2. (A) The learning index in the two experimental groups along the course of the experiment and (B) 

the comparison of the triplet learning indices between groups in the last session. Compared to the 

Training/rTMS session, we observed an increase in performance in the active DLPFC Group. However, the 

performance in the Sham Group was only significantly better in the 10 minutes retest session (A). After 24 hours, the 

performance of the active DLPFC Group was statistically better that of the Sham Group (B). The error bars denote 

the SEM. *: p < .05, **: p < .01, ***: p = .001. 

The observed group differences are unlikely to be due to a general effect of the 

stimulation on arousal level because the general reaction time (Session × Group interaction: 



  

 

12 
 

F3,87 = 0.39 p = .76, η2
p = .01) and response accuracy (Session × Group interaction: F3,87 = 0.38, 

p = .77, η2
p = .01) was not statistically different between the two groups. Furthermore, the level 

of discomfort (p = .57), tiredness (p = .83), perceived task difficulty (p = .24), assessed as a part 

of the post-experiment debriefing, was also not different between the DLPFC and the Sham 

Group (see Methods). 

Moreover, the order of the hemispheres stimulated, assessed by the two-way interaction 

of a 2 (Order: Right Start vs. Left Start) × 4 (Session) mixed-design ANOVA, did not affect 

statistical learning performance, F3,42 = 0.15, p = .93, η2
p = .01.  

Discussion 

To date, only a few studies have investigated the role of the DLPFC in statistical learning (Galea 

et al., 2010; Pascual-Leone et al., 1996; Savic et al., 2017; Smalle et al., 2017), while none of 

them tested its role in the acquisition and consolidation of non-adjacent dependencies. Here, we 

aimed to fill this gap by administering bilateral rTMS over the DLPFCs during temporal 

statistical learning of non-adjacent dependencies. We went beyond previous studies in three 

aspects. First, instead of deterministic sequences, we tested the effect of rTMS on the acquisition 

of non-adjacent probabilities. Second, we applied bilateral stimulation to control for a possible 

interhemispheric compensation of the non-stimulated hemisphere. Third, we tested the effect of 

the TMS protocol used throughout the training session as well as 10 minutes, 2 hours, and 24 

hours post-training. Our results show that the bilateral disruption of the DLPFCs during the 

training session has a beneficial effect on the statistical learning performance after 24 hours. 

Therefore, we suggest that DLPFCs play a role in non-linguistic statistical learning processes. As 

predicted, our findings are in line with the competition model that posits an antagonistic 

relationship between model-based and model-free learning processes (Daw et al., 2011; Janacsek 

et al., 2012; Nemeth et al., 2013; Smittenaar et al., 2013; Virag et al., 2015). 

In agreement with the computational framework of model-free and model-based 

processes, previous research further demonstrated that cognitive functions that are mainly 

determined by these two types of processes have an inverse relationship on the behavioral level. 

For instance, Virag et al. (2015) showed a negative correlation between working 

memory/executive functions and implicit statistical learning. Filoteo et al. (2010) found that 

implicit category learning improved with the addition of a secondary working memory task, that 
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is, with the reduction of the contribution of model-based learning processes (however, for a 

critical re-evaluation of this study see Newell, Moore, Wills, & Milton, 2013). Nemeth et al. 

(2013) found increased statistical learning performance in hypnosis compared to an alert, awake 

state, by possibly reducing long-range brain connectivity (Fingelkurts, Fingelkurts, Kallio, & 

Revonsuo, 2007; Oakley & Halligan, 2009). Additionally, several developmental studies found 

that children perform better than adults on non-adjacent statistical learning tasks (Janacsek et al., 

2012; Juhasz et al., 2019; Zwart, Vissers, Kessels, & Maes, 2019). Supporting the competition 

model, the degree of learning decreases with the onset of adolescence, coinciding with the 

maturation of the dorsolateral regions of the prefrontal cortex (Bunge & Zelazo, 2006; Gogtay et 

al., 2004; Kadosh, Heathcote, & Lau, 2014; Thompson et al., 2001). Besides the above-

mentioned behavioral studies, Tóth et al. (2017) found evidence for this inverse relationship at 

the level of neural oscillations. Namely, they detected increased statistical learning associated 

with weaker fronto-parietal connectivity in theta frequency, a band that plays a crucial role in 

memory access (Düzel, Penny, & Burgess, 2010) and also in sentence processing and working 

memory (Beese, Meyer, Vassileiou, & Friederici, 2017). These previous studies revealed only 

indirect, correlational relationships; however, our recent findings yield evidence for the role of 

the DLPFC in non-adjacent statistical learning. 

To date, only four studies have investigated the role of the DLPFC on temporally 

distributed deterministic or probabilistic regularities using TMS protocols. Intending to disrupt 

cortical processing by 5 Hz rTMS during deterministic SRTT, Pascual-Leone et al. (1996) found 

that stimulation over the contralateral DLPFC impaired online learning. It should be noted that 

since the publication of this study, 5 Hz rTMS has been found to induce excitatory effects on 

cortical excitability (Matsunaga et al., 2005; Peinemann et al., 2004); thus, the performance 

decrease in this study might be better explained by the facilitation of DLPFC functions, in line 

with the competition account. To test the role of the DLPFC in the consolidation of sequential 

knowledge, Galea et al. (2010) applied disruptive cTBS after the execution of deterministic 

SRTT. They found an offline improvement following the inhibition of the right but not the left 

DLPFC, which they explained by interference between declarative and procedural consolidation 

processes. However, based on the results of Galea et al., we cannot decide whether a disrupted 

DLPFC during learning can affect the initial learning. Smalle et al. (2017) went beyond Galea et 

al. (2010) by applying disruptive stimulation over the left DLPFC prior to learning; increased 
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learning on phonological sequences was found in the Hebb repetition paradigm. A follow-up 

analysis showed a negative correlation between learning performance and executive functions. 

To control for the possible compensation of the non-stimulated hemisphere, Savic et al. (2017) 

tested the effect of brain stimulation over the DLPFC on a deterministic sequence learning task, 

and no stimulation effect was found over either hemisphere. Taken together, most of the previous 

TMS studies (except Savic et al. 2017) point in the same direction: facilitating stimulation of the 

DLPFC hinders, while inhibitory stimulation improves the learning of new sequences, patterns, 

or statistical regularities. 

Our results open up a new theoretical perspective in interpreting the role of the DLPFC in 

statistical learning. The DLPFC might have a role in model-based processes, such as in accessing 

the existing models or long-term memory representations, which might be "harmful" when 

learning of new patterns is required. This idea is supported by results showing that stronger 

executive functions that substantially involve the activation of the DLPFC might be associated 

with weaker statistical learning (Janacsek et al., 2012; Smalle et al., 2017; Virag et al., 2015). 

Moreover, already built models of the statistical regularities seem to hinder the adaptation to 

changes in those statistical regularities (Kóbor, Horváth, Kardos, Nemeth, & Janacsek, 2019). If 

access to these model-based processes is limited, then the learning process has to shift towards a 

model-free approach, which could lead to enhanced learning of entirely new patterns. This 

framework explains not only the results of the previously mentioned TMS studies on statistical 

learning well, but also our findings on the consolidation. Namely, as we disrupted the DLPFC, 

we found better performance after the 24-hour consolidation period. When the DLPFC is fully 

functioning, the model-free processes extract the statistical information from the stimulus stream, 

and the DLPFC-mediated model-based processes contaminate these statistics with top-down 

information. In the offline period, this mixed information consolidates (Figure 3). However, the 

stimulation of the DLPFC possibly interrupts the top-down information flow and its mixture with 

the data-driven extraction of pure statistical information. This pure statistical information 

consolidates, which is optimal when the brain faces the challenge of learning entirely new 

regularities. At the level of implementation, we suggest that these mechanisms might be realized 

by modulating the activation in the prefrontal-hippocampal circuitry. It was shown that the neural 

tracts between the DLPFC and the hippocampus are related to the degree of statistical learning 

(Stillman et al., 2013). For example, Ross, Brown, and Stern (2009) also showed the role of the 
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hippocampus in the retrieval of learned sequences. A competitive relationship was also described 

between the hippocampus and striatum during sequence learning, whereby activity in the 

hippocampus decreases in parallel to an increase in the striatal area (Albouy et al., 2015, 2008). 

These competitive patterns were linked to performance gains after a consolidation period 

(Albouy, King, Maquet, & Doyon, 2013). We hypothesize that the DLPFC might play a 

switching role in similar scenarios (Smittenaar et al., 2013; Stillman et al., 2013). By its 

disruption, the advantage in the competition changes in favor of the striatal areas. Thus, it can 

lead to a better consolidation of the statistical regularities because they are more involved in 

model-free processes. 

 

Figure 3. Schematic illustration of the interpretation of our results. Internal models strongly modulate the 

interpretations of the observed statistics of the input. This helps in extracting complex relations but relatively impairs 

the detection and learning of raw probabilities. rTMS disrupts the involvement of these internal models, leading to a 

better consolidation of the newly detected non-adjacent dependencies. 

We found an effect of stimulation only after a 24-hour consolidation period. Therefore, a 

major difference between our results and previous TMS studies is that they found immediate 

effects of stimulation (Smalle et al. 2017; Pascual-Leone et al., 1996). This difference may be 

explained by the differences between deterministic and probabilistic statistical learning tasks. In 

the ASRT task, the relevant information is hidden in the noise; therefore, the model-building 

process might be slower, and model-free learning might dominate the course of learning through 

a more extended period. Thus, if stimulation takes place before or during learning, the 

advantageous effects of reduced model-based processes might appear only at a later time point 

compared to deterministic tasks. Nevertheless, across-study differences in the stimulation 

intensity, the number of pulses, or the timing of the stimulation relative to the training session 

could also contribute to the inconsistencies in the observed aftereffects (Klomjai, Katz, & 
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Lackmy-Vallée, 2015; Thut & Pascual-Leone, 2010). Systematic investigations of the role of the 

DLPFC in deterministic and probabilistic learning as well as the effects of different stimulation 

parameters on the learning process, will be required to clarify the inconsistencies in the outcome 

of stimulation. 

We believe that our findings provide a broader theoretical perspective to the process-level 

understanding of statistical learning. In this view, the fine regulation of shifting between model-

based and model-free processes during learning and consolidation determines the quality of the 

acquired statistical knowledge. This theoretical framework is supported by evidence using 

linguistic stimuli (Smalle et al. 2017) and, through the present study, by perceptual-motor stimuli. 

Based on these findings, we speculate that this phenomenon is generalizable and we hypothesize 

its existence in most statistical learning situations and tasks. Despite studies investigating the 

connection between general cognitive functions (such as working memory, attention, executive 

functions) and statistical learning (Conway, 2020; Frost, Armstrong, & Christiansen, 2019; 

Janacsek & Nemeth, 2013, 2014), an in-depth theory about their relationship is still missing. The 

competition framework can open up new research lines to discover the dynamic interactions 

between general cognitive functions and statistical learning. Future studies should test the 

competition framework in different statistical learning tasks as well by manipulating the DLPFC. 

Our perceptual-motor task with non-adjacent regularities may share similarities with 

language processes. For example, Nemeth et al. (2011) revealed a relationship between sentence 

processing and the perceptual-motor statistical learning task used in our study. Here, we found 

DLPFC-involvement with a non-linguistic perceptual-motor task, and the aftereffects of DLPFC 

stimulation pointed in the same direction as it was found for  a language-related sequence 

learning task (Smalle et al., 2017). If we broaden the view towards a developmental aspect, 

language learning and the acquisition of non-adjacent statistical learning appear to share their 

developmental characteristics: children seem to show better performance both in language 

learning (Goldowsky & Newport, 1993; Newport, 1990) and perceptual-motor non-adjacent 

statistical learning (Janacsek et al., 2012; Zwart et al., 2019). Based on the late maturation of the 

DLPFC (Bunge & Zelazo, 2006; Gogtay et al., 2004; Kadosh et al., 2014; Thompson et al., 

2001), we can speculate that the mechanism behind the children's superiority in these two skills 

may be related to the effect of TMS over the DLPFC: not having built rigid models about our 

environment may help liberate our model-free approaches to support the learning of new skills. 
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This notion is also in line with the finding that the model-based strategy is absent in childhood 

and gradually strengthens during adolescence up to adulthood (Decker, Otto, Daw, & Hartley, 

2016). Future studies directly examining the connection between model-free and model-based 

processes in language tasks, ideally from a developmental aspect, should be conducted. 

Several studies have used non-invasive brain stimulation over Broca's area to investigate 

adjacent and non-adjacent dependencies in artificial grammar learning tasks (De Vries et al., 

2010; Uddén et al., 2008; Uddén, Ingvar, Hagoort, & Petersson, 2017). Using the same 1 Hz 

TMS stimulation protocol, they found weaker non-adjacent but better adjacent learning. 

Therefore, we suggest that the ventral areas (e.g., Broca's area) might have a different role in the 

acquisition of non-adjacent dependencies than the dorsal part of the lateral frontal cortex (e.g., 

Brodmann 9 area, targeted in our study). Yet in natural language, multiple simultaneous non-

adjacent dependencies are present (De Vries, Christiansen, & Petersson, 2011), which makes the 

comparison between the effects on second-order dependencies used in the present study and 

language learning more complicated. Further research is warranted to reveal the different roles of 

the dorsal vs. ventral parts of the lateral frontal areas in linguistic learning processes and non-

linguistic statistical learning. 

Previous studies revealed a possible methodological issue: the interhemispheric 

compensation might obscure the effects following unilateral stimulation. This effect might have 

played a role in the negative results of Savic et al. (2017). Galea et al. (2010) found the left 

hemisphere advantage, but it does not indicate that the activation of the right hemisphere cannot 

interfere with the results. TMS studies proved that lateralization does not necessarily suggest that 

the function is eliminated from the other hemisphere, even in the case of language processing 

(e.g., Hartwigsen et al., 2010) or working memory (e.g., Mottaghy, Döring, Müller-Gärtner, 

Töpper, & Krause, 2002; Vékony et al., 2018). These results indicate that even if the dominating 

hemisphere is stimulated, the other can have confounding effects on the results. Thus, we 

eliminated this possible confounding factor using bilateral brain stimulation to disrupt the 

involvement of both DLPFCs during learning. Future studies could benefit from using both 

unilateral and bilateral stimulation in one experimental design to get a holistic picture of the role 

of the DLPFC in statistical learning. 
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Finally, there are some limitations to our study. First, we only assessed the level of TMS 

discomfort after the 24 hours retest session. Thus, the relatively long elapsed time between the 

stimulation and assessment could have influenced the precision of the subjects’ ratings. The 

reason for this was that we did not intend to draw the participants’ attention to the perceived (lack 

of) TMS discomfort. It would have created a belief in the participants about their allocation to the 

DLPFC or Sham Group, which could have biased our results unnecessarily. Another limitation of 

our study is that we chose sham stimulation as a control condition: participants were stimulated 

with a perpendicularly oriented TMS coil. Using such sham control conditions, one can test 

whether the stimulation of the target area modifies specific processes. However, the regional 

specificity (i.e., whether stimulation over other regions would not lead to similar changes in 

performance) can be claimed only with an active control condition (Duecker & Sack, 2015). In 

our study, the average RTs and accuracy were not altered by the stimulation, suggesting that our 

results are not due to the modulation of general arousal or attention (Kosinski, 2008), but instead 

due to the involvement of the targeted DLPFC area in statistical learning itself. Notably, active 

control stimulation instead of sham stimulation, as suggested above, may also not be optimal as it 

does not control for placebo effects (Duecker & Sack, 2015). Therefore, in future studies, it 

would be beneficial to utilize both types of controls within the same experimental design to 

reveal the regional specificity of the DLPFC for boosting statistical learning. 

To sum up, we observed that the bilateral disruption of the DLPFCs during the training 

session had a beneficial effect on non-adjacent statistical learning performance that was 

observable after a 24-hour offline period. Our findings are significant in three aspects. First, this 

finding provides mechanistic level evidence for the models positing an antagonistic relationship 

between the model-based and model-free processes. Second, from a methodological viewpoint, 

previous investigations using external non-invasive brain stimulation methods stimulated only 

one hemisphere at a time. Therefore, the taking-over of the lost function by the contralateral 

hemisphere cannot be ruled out in earlier studies (Janacsek et al., 2015; Savic et al., 2017). Here, 

we showed that the sequential application of 1 Hz rTMS before learning blocks over both 

hemispheres establishes and sustains the inhibitory effect. The finding that no effect of 

stimulation order was observed supports the viability and practicality of this approach. It may 

form the basis for future research requiring bi-hemispherical/multi-site intervention. Third, and 

most importantly, our results raise a new possible theoretical framework explaining the role of 
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the DLPFC in statistical learning and consolidation processes. Our findings shed light on the 

importance of exploring the possible interactive mechanisms underlying learning. This approach 

can help us more deeply understand the exact mechanism of skill acquisition and consolidation, 

and create a bridge between the research fields of general cognitive functions and statistical 

learning. 
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