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INTRODUCTION

Surface nuclear magnetic resonance (SNMR) is gaining momentum as a powerful geophysical tool to quantify and localize liquid water distribution in the top 100 m of the subsurface. Its main advantage compared with other techniques is that it provides information that is directly related to the subsurface water content, hence facilitating interpretation. In practice, large cable loops are displayed on the earth's surface and used for the emission and reception of electromagnetic fields that are tuned to the Larmor frequency of hydrogen atoms.

In its simplest form, the SNMR experiment provides data in the form of monotonically decreasing oscillating envelopes which are induced by the free induction decay (FID) of proton spins from water molecules returning to thermal equilibrium after the termination of brief electromagnetic excitation pulses [START_REF] Behroozmand | A review of the principles and applications of the NMR technique for near-surface characterization[END_REF]. The realization of several measurements using varying pulses amplitudes provides information from varying volumes of the subsurface. These data are then commonly inverted using the comprehensive (all-at-once) QT inversion scheme [START_REF] Müller-Petke | QT inversion-Comprehensive use of the complete surface NMR data set[END_REF], to infer a (often 1D) model of water content and relaxation time distribution within the subsurface.

As with most geophysical inverse problems, significant levels of uncertainty are often associated with these models [START_REF] Parsekian | Uncertainty estimates for surface nuclear magnetic resonance water content and relaxation time profiles from bootstrap statistics[END_REF]. This is due to data quality limitations related to the generally low signal-to-noise (S/N) ratio of the measurement as well as the intrinsic non-uniqueness of the inverse problem, which is a function of the sensitivity distribution associated with the acquisition parameters and configurations used during the survey. Therefore, a large part of the methodological developments relating to the 1D SNMR method aim either at improving the sensitivity and resolution of the acquisition sequence (e.g [START_REF] Dalgaard | Enhancing SNMR model resolution by selecting an optimum combination of pulse moments, stacking, and gating[END_REF][START_REF] Behroozmand | Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration[END_REF] or at increasing the S/N of the data set (e.g. [START_REF] Trushkin | The potential of a noise-reducing antenna for surface NMR groundwater surveys in the earth's magnetic field 1[END_REF][START_REF] Larsen | Noise cancelling of MRS signals combining modelbased removal of powerline harmonics and multichannel Wiener filtering[END_REF]. In this paper, a new data acquisition methodology is investigated that falls into the first category: improving the sensitivity and resolving power of 1D SNMR surveys with multi-channel data acquisition.

The objective is to understand whether inverting simultaneously several data sets characterized by different sensitivity distributions, acquired concurrently at the same location, will improve the quality and accuracy of the inverted SNMR model. More precisely, the case where the data sets are acquired simultaneously using a so-called multi-central-loop configuration is investigated, which is directly inspired from the central-loop configuration proposed by [START_REF] Behroozmand | Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration[END_REF]. The central-loop (CL) consists of using a receiver loop smaller than the transmitter loop, and placed in its center. [START_REF] Behroozmand | Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration[END_REF] demonstrated the superior behavior of such a configuration compared with the classical coincident loop (COIL) configuration. In particular, they showed that it provides new sensitivity patterns close to the surface, improved resolution with depth, reduced instrument dead-time, and also increases the S/N ratio.

In the present study, the possibility of simultaneously inverting the NMR signal recorded concurrently through multiple concentric central-loop receivers and through the coincident loop is being investigated. The main goal is to assess how the conjoint use of varying sensitivity distributions may or may not help improve the resolution and accuracy of the final SNMR model and how the uncertainties that characterize the estimated models will be affected. This is accomplished by using synthetic examples and field cases, and comparing the quality, plausibility and uncertainty of the inverted models obtained with a single coincident loop (COIL) acquisition sequence with those obtained with a central-loop (CL) and a multi-central-loop (MCL) dataset. Various inversion methods and uncertainty estimation strategies are used, as well as a new stochastic method developed to interpret 1D SNMR data, referred to as the Bayesian Evidential Learning 1D imaging (BEL1D), originally presented by [START_REF] Michel | Inversion and Prediction-Focused Approach (PFA) imaging of multiple loops Surface Nuclear Magnetic Resonance (SNMR) data[END_REF].

MATERIAL AND METHODS

Material

Data processing

Most of the forward modeling and inversion operations were performed with the software MRSMatlab [START_REF] Dalgaard | Enhancing SNMR model resolution by selecting an optimum combination of pulse moments, stacking, and gating[END_REF], an open-source GUI based on Matlab programming. MRSMatlab provides the possibility to perform forward modeling with different loop configurations (coincident loops, central-loop, figure-of-eight) while controlling the resistivity, water content and relaxation time for multi-layered models. The software also provides tools to import field data, process raw recordings, and extract the FID envelopes in order to subsequently invert it. All of the inversions strategies proposed are based on the QT inversion scheme [START_REF] Müller-Petke | QT inversion-Comprehensive use of the complete surface NMR data set[END_REF], with different ways of handling the data, using different model discretization approaches and solvers. For more details about the specific design and functioning of MRSMatlab, the reader is referred to [START_REF] Dalgaard | Enhancing SNMR model resolution by selecting an optimum combination of pulse moments, stacking, and gating[END_REF], Kremer et al. (2019b) and the references therein.

Field experiments

The field experiments presented in this paper were conducted at the Schillerslage test site, near to Hannover, Germany. It is a well-characterized hydro-geophysical test site, where several geophysical surveys have been conducted including SNMR surveys [START_REF] Dlugosch | Two-dimensional distribution of relaxation time and water content from surface nuclear magnetic resonance[END_REF][START_REF] Dlugosch | Aquifer characterisation using nuclear magnetic resonance[END_REF][START_REF] Attwa | Application of spectral induced polarization (SIP) imaging for characterizing the near-surface geology: an environmental case study at Schillerslage, Germany[END_REF]. The site has the remarkable feature of high near-surface groundwater content as well as typically very low electromagnetic noise level, which makes it particularly suitable for SNMR experiments. Fig. 1 details the lithologic description of the subsurface, as presented by [START_REF] Dlugosch | Aquifer characterisation using nuclear magnetic resonance[END_REF]. It is composed of a 2-3 m thick unsaturated surface layer, overlying a shallow sandy aquifer, where water content is expected to be over 30% according to NMR borehole measurements [START_REF] Dlugosch | Aquifer characterisation using nuclear magnetic resonance[END_REF]. All sensitivity kernels, which represent the sensitivity distribution associated with a series of pulse moments with respect to depth (see [START_REF] Behroozmand | A review of the principles and applications of the NMR technique for near-surface characterization[END_REF][START_REF] Hertrich | Imaging of groundwater with nuclear magnetic resonance[END_REF] for more details about the kernel function), were computed based on the resistivity distribution observed by [START_REF] Dlugosch | Aquifer characterisation using nuclear magnetic resonance[END_REF] at the location of the survey, taking the average values of the main layers. These resistivity surveys determined that there is limited lateral variability, and therefore the 1D assumption can be validated for the interpretation of SNMR data. The experiments were all performed using the GMR from Vista Clara (Walsh et al.

2008

), which supports acquisition of multi-channel data surveys and recording noise reference loops during the experiment. Due to the low level of noise expected, only one channel was used for the reference loop, which was circular shaped, 40 m diameter, and placed about 50 m from the closest emitting loop edge, ensuring that the reference loop should not be contaminated by the NMR signal measured in the acquisition loop (Walsh et al. 2008[START_REF] Dlugosch | Assessment of the potential of a new generation of surface nuclear magnetic resonance instruments[END_REF]. After a few measurements and a quick processing (quadrature detection associated with bandwidth filtering), the Larmor frequency value was estimated to be 2103.6 Hz. During the experiment, 44 stacks were acquired, and the pulse length was set to be 20 ms. All data were processed for harmonic noise and spikes, followed by stacking, and the extracted FID envelopes were then used for inversion.

Methods

Multi-central-loop (MCL) configuration

The MCL configuration consists of deploying two, three (or more) loops concentrically with different diameters. By transmitting the excitation magnetic field using the largest loop, one can simultaneously record three different data sets: the transmitter loop that can also act as a receiver (classical COIL measurements) and the two smaller loops (CL configurations). Each of these data sets is associated with a different sensitivity distribution, that all provide a different illumination of the subsurface. Modest diameter variations lead to significantly different sensitivity distributions. Figure 2b shows an example of the three sensitivity distributions associated with a MCL configuration where the transmitter/receiver (Tx/Rx) loop is 100 m in diameter (1 turn), and the two smaller receiver loops are respectively 50 m diameter (1 turn) and 20 m diameter (3 turns). The classical 1D kernel shape is observed for classical COIL configurations, whereas the two CL kernels show the quite specific characteristics, with high sensitivity values present close to the surface. Those differences between CL kernels and COIL kernels come from the fact that small receivers are highly sensitive to the multiple flips of the spin system occurring close to the surface. [START_REF] Behroozmand | Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration[END_REF] discuss in detail the specific features of the CL kernel, such as the absence of oscillatory behavior close to the surface, a complex valued kernel in electrically conductive conditions, and geometry-driven characteristics that help improve subsurface resolution. In the following the MCL configuration will be studied using those diameters. 

Data interpretation and uncertainty estimation

To perform this study, various methods are alternatively being used to interpret the data and estimate the uncertainties associated with the inverted subsurface models, so as to accumulate arguments for or against the use of the MCL configuration. The data set is handled under its complex form, which is the most complete representation of the signal since it takes in account the phase effect of the electrical conductive properties of the subsurface.

When successful, complex inversion results in reduced model ambiguity and improved depth resolution [START_REF] Braun | Study on complex inversion of magnetic resonance sounding signals[END_REF][START_REF] Irons | Pulse and Fourier transform surface nuclear magnetic resonance: comprehensive modelling and inversion incorporating complex data and static dephasing dynamics[END_REF]. Three different inversion methods are being used: the so-called mono-exponential and multi-exponential inversions [START_REF] Dalgaard | Enhancing SNMR model resolution by selecting an optimum combination of pulse moments, stacking, and gating[END_REF]. They both use a smooth discretization of the subsurface, but the first one only allows a mono-exponential relaxation time within each layer [START_REF] Dlugosch | Two-dimensional distribution of relaxation time and water content from surface nuclear magnetic resonance[END_REF], while the second one allows for multi-exponential decay times (Müeller-Petke et al., 2010). In order to compare the COIL configuration results with the results of MCL strategy, the shape of the resulting inverted models is compared to the expected results (synthetic model or lithologic log information) and the uncertainties associated with those models are estimated. In the case of the mono-exponential inversion, the uncertainty estimation feature of MRSMatlab is used, which is based on the bootstrapping strategy proposed by [START_REF] Parsekian | Uncertainty estimates for surface nuclear magnetic resonance water content and relaxation time profiles from bootstrap statistics[END_REF].

After the first inversion, a portion of the QT data set is randomly removed, and the inversion is performed again on the remaining reduced data set. [START_REF] Parsekian | Uncertainty estimates for surface nuclear magnetic resonance water content and relaxation time profiles from bootstrap statistics[END_REF] showed empirically that resampling the data set while keeping 90% of the time samples and 50% of the pulse moments provides the best balance between water content uncertainty and relaxation time uncertainty estimation. After the new inverted model is produced, the original data set can be resampled and inverted again, producing a series of inverted models obtained from a series of resampled data sets. The discrepancy between this series of models and the original inversion model is representative of the recovered model uncertainty.

Apart from these 2 known inversion methods, an innovative methodology for the interpretation of geophysical data was also applied, known as the Bayesian Evidential

Learning 1D imaging (BEL1D) method. This is a new stochastic method which does not require inversion of the data but rather relies on the constitution and analysis of direct statistical relationships between forecast variables (here the 1D subsurface model) and observed data (here the SNMR data). BEL was originally proposed in the context of hydrogeological flow-based modeling [START_REF] Scheidt | Prediction-focused subsurface modeling: investigating the need for accuracy in flow-based inverse modeling[END_REF], and was then adapted for the first time to the interpretation of geophysical data by [START_REF] Hermans | Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data[END_REF] in the context of timelapse electrical resistivity monitoring. Recently, [START_REF] Michel | Inversion and Prediction-Focused Approach (PFA) imaging of multiple loops Surface Nuclear Magnetic Resonance (SNMR) data[END_REF] adapted the method to the interpretation of 1D SNMR data, and provided a dedicated Matlab GUI that allows for the processing of SNMR [START_REF] Michel | 1D geological modeling of the subsurface from geophysical data with Bayesian Evidential Learning[END_REF]. The main interest of applying this innovative methodology to the present study comes from the fact that the output of the BEL1D process is a statistical distribution of models which all explain the data set, allowing for a direct quantitative comparison of the uncertainty associated with the COIL and the MCL data sets interpretation, under the form of probability density distributions. For more details about the method and the different steps of the process, the reader is referred to [START_REF] Michel | 1D geological modeling of the subsurface from geophysical data with Bayesian Evidential Learning[END_REF].

Resolution analysis

An analysis of the MCL features in terms of resolution and penetration depth was conducted using the method presented by [START_REF] Müller-Petke | Resolution studies for magnetic resonance sounding (MRS) using the singular value decomposition[END_REF]. This method is based on singular value decomposition (SVD) of the NMR forward operator in order to derive the model resolution matrix, taking noise conditions into account. For a detailed explanation about the resolution matrix derivation the reader is referred to [START_REF] Müller-Petke | Resolution studies for magnetic resonance sounding (MRS) using the singular value decomposition[END_REF]. As a brief summary, the resolution matrix is given by definition as:

= = (1) 
Where and are the estimated and true NMR models describing the subsurface water distribution, is an orthogonal matrix with unit vectors describing the data space that derives from the SVD of the NMR forward operator, and is a diagonal matrix that provides regularization and is also used as a filter matrix for truncation. Truncation of the model parameter space is performed to ensure smoothing of the solution, by discarding unit basis vectors from the model parameter space that show too high frequency variation (see Fig. 1 in [START_REF] Müller-Petke | Resolution studies for magnetic resonance sounding (MRS) using the singular value decomposition[END_REF]. The truncation level must be chosen carefully, in this case following the Picard conditions within the Picard plot [START_REF] Fedi | Analysis of depth resolution in potential-field inversion[END_REF]. This basically consists of examining the variation curve of the weighing coefficients , given by:

= (2)
Where is the SVD index, is the corresponding unit basis vector forming the data space, the corresponding singular value and the observed data vector. The Picard plot consists of displaying the weighing coefficient distribution against the SVD index, and the Picard condition typically states that the optimal truncation level should be chosen as the SVD index where the weighing coefficients start to increase consistently with increasing SVD index. After this threshold, noise is the primary influence. This process leads to the resolution matrix that describes how close the estimated model will be to the true model distribution, depending on depth. For a given depth, the resolution level is good if the matrix coefficients are high on the diagonal. The resolution decreases when the coefficient distribution broadens and the off-diagonal matrix values increase. In this case a thin layer in the estimated model at a given depth will be influenced by a thick layer of the true model, introducing uncertainty.

From the matrix resolution the vertical resolution curve can be derived, referred to as the resolution width in Müller-Petke et al. (2008). It is computed for each row of (for each depth), as the full width at the half maximum value. A distribution of values is obtained that can be interpreted as an error bar for a given depth, where low values hence correspond to better performance. From the resolution matrix the depth of investigation (DOI) can be computed, that is defined here as the depth at which the maximum of the resolution matrix row deviates of more than 10% from the diagonal [START_REF] Müller-Petke | Resolution studies for magnetic resonance sounding (MRS) using the singular value decomposition[END_REF]. Indeed, if the maximum of the resolution matrix is not located on the diagonal, it means that a given layer in the estimated model is most influenced by a layer in the true model that is not located at the same depth, which obviously leads to misinterpretation.

RESULTS

Resolution analysis

Figure 4 shows the resolution matrix computed for the three loop configurations: the classical COIL configuration, the CL, and the MCL that combine several concentric receivers.

Loops dimensions are the same as shown on Fig. 2. Two noise levels have been considered on the main transmitter/receiver loop (10 nV and 100 nV) and scaled according to the other receiver's area. Resolution matrices are typically computed on a homogeneous half-space [START_REF] Müller-Petke | Resolution studies for magnetic resonance sounding (MRS) using the singular value decomposition[END_REF], whose water content value is set to 30% in this case and whose resistivity is 100 Ω.m. The maximum value for each row is plotted as red line, indicating how far from the diagonal they are located, and the DOI is plotted as a dashed line (Fig. 4). Figure 5 shows the vertical resolution curves derived from the resolution matrices.

The results show that different behaviors can be observed depending on the noise level. For low noise levels (10 nV), it seems that most of the improvement brought by the MCL configuration concerns the shallow part of the model. Looking at the resolution matrices (Fig. 4a), we see that for both the CL and COIL configuration, the red curve representing maximum values is quite far from the diagonal in the shallowest layer (0-10 m depth), which

indicates strong uncertainty at these depths. This is not visible for the MCL configuration for which the maximum value curve is very well located on the diagonal. Figure 5a . Since the noise level is not always predictable, this yields an ambiguity as to which is the optimal choice. Therefore, as a general recommendation, we propose to use in the field a three loops MCL, with central receivers of 50 % and 20%-30% of the main diameter, and to either invert the whole data set, or select the data from one of the two central receivers once the noise level is known. Although Fig. 6 shows that the three loops MCL provides similar but not better resolution improvements than the two loops MCL, the slight effort of placing an extra loop will provide adaptability to the noise level, a more robust data set and a more complete global sensitivity distribution. slightly misplaces the aquifer boundaries. With the COIL, the aquifer boundaries are also misplaced, but the total water content is largely underestimated (maximum total value of 5%).

Synthetic study

Multi-exponential inversion

With the CL, the aquifer is not even visible. In fact, it seems that the CL configuration leads 

Mono-exponential inversion

In order to make a second comparison between the three loop configurations, the mono-exponential inversion scheme was applied to the three datasets. Fig. 8 displays for each loop configuration: the initial synthetic model, the main inverted model (complete data set) and all the secondary models resulting from the inversion of resampled data sets. The misfit between the final simulated data and observed data was computed as a χ² value and was about 1.5 in all cases, which is acceptable given the relatively low S/N ratio associated with the simulated data.

The mono-exponential scheme leads to similar conclusions as the multi-exponential inversions: the MCL model provides equivalent or better estimation of the different layers limits and water content values compared with the CL and COIL configurations. The additional parameter to be examined here is the uncertainty associated with those inverted models, which is represented by the distribution of resampled bootstrapped models. In the shallow part of the model [0 -20m], the uncertainties have a higher magnitude for the CL and the MCL data sets than for the COIL data set (the resampled models distribution is wider).

For the intermediate aquifer, the uncertainties have globally equivalent magnitude for the three configurations (the resampled models distribution have the same width), but the resampled distribution of the MCL is centered around the inverted model, hence confirming the presence of this intermediate aquifer. For the CL and COIL configurations most of the resampled models do not show the intermediate aquifer, which would cast significant doubt on its existence if one was interpreting a real field case. Finally, for the deepest layers, the uncertainties are clearly smaller (the resampled models distribution is thinner) with the MCL configuration than with the two other data sets. 

Uncertainty estimation with Bayesian framework

Finally, a novel method called Bayesian Evidential Learning 1D imaging (BEL1D, [START_REF] Michel | Inversion and Prediction-Focused Approach (PFA) imaging of multiple loops Surface Nuclear Magnetic Resonance (SNMR) data[END_REF], Michel et al. 2020) has been used to estimate the effect of using the MCL configuration upon the interpreted model uncertainties, using a stochastic process. This time, a 5 layers model has been used to respect some current limitations of the method. The previous synthetic 8 layers subsurface model was modified by merging layers three and four together, and layers five, six and seven together. The water contents and decay times for those merged layers are the average of the initial values, hence resulting in a less-complex, yet similar model (Table 1). BEL1D was then applied to the COIL and MCL dataset for comparison. The method is based on a blocky discretization of the subsurface. A prior space based on uniform distributions is defined beforehand (Table 1) to set limits for the parameters that define the 1D subsurface model (fixed number of layers and thickness, water content, and relaxation times values for each layer). Then the statistical relationships derived through the process provide as a result the probability density functions (PDF) associated with each parameter. Figure 9 provides the results obtained with the COIL and MCL configurations on the 5 layers model described on Table 1. Only water content and thickness parameters are represented. The dotted red line shows the benchmark value (true model), the orange and yellow curves represent the pdf obtained with the COIL and MCL configurations, respectively. Regarding the thickness parameter, for all layers the estimated probability distribution of the MCL PDF is better centered on the benchmark value than for the COIL, indicating a superior behavior of the first. Regarding water content, this superiority is less obvious. MCL provides a lesser estimation for layer 3 and 5 (the half-space), but gives an equivalent or better estimation of layer 1, 2 and 4. Nevertheless, the use of the MCL configuration globally results in a reduction of the uncertainties associated with the interpreted model parameters. 

Field experiment

This section presents the results of a field SNMR survey conducted at the Schillerslage test site. A MCL configuration was displayed at the surface, with a 50 m diameter circular loop used as transmitter/receiver and a concentric 30 m diameter circular loop as a separated receiver. Compared to the previous synthetic case, this is a 2 coils MCL configuration. Our goal in this section is to compare the inversion obtained with 3 different loop configurations:

the classical COIL configuration (Tx50m Rx50m), the CL configuration (Tx50m Rx30m) and the MCL configuration (Tx50m Rx50m & Rx 30m), which in this case consists of merging together the COIL and CL datasets.

Fig. 10 shows the results of inverting these three datasets using the mono-exponential scheme and applying 100 realizations of the bootstrap algorithm for uncertainty estimation.

We see that all three configurations lead to the detection of an aquifer with high water content (between 20% to 30%) located between the surface down to about 20m depth where the marl bedrock is reached, which is consistent with our lithologic knowledge of the site (Fig 11) For each data set, the bootstrap algorithm was applied 100 times.

Noise correlation and regularization

As for many inversion methods, the QT inversion scheme used to process the SNMR data requires a proper regularization between data and model parameters. To do so, it is necessary to estimate the uncertainty weighing on the observed data, also referred to as data errors (see [START_REF] Müller-Petke | Extended use of Magnetic Resonance Sounding (MRS) datasets-QT inversion and resolution studies[END_REF] for data error estimation in the context of SNMR QT inversions). In many contexts, the data errors are typically assumed to be normally distributed and spatially uncorrelated, in which case the data uncertainty covariance matrix can be assumed to be diagonal and used as such for regularization [START_REF] Dosso | Data error covariance in matched-field geoacoustic inversion[END_REF][START_REF] Huang | On the effect of error correlation on matchedfield geoacoustic inversion[END_REF]. However, if data error correlation exists, then it will affect the inversion process. This is a typical problem in many geophysical contexts, and several methods have been developed

to estimate this correlation and include it within the inversion process [START_REF] Cordua | Accounting for correlated data errors during inversion of cross-borehole ground penetrating radar data[END_REF][START_REF] Cordua | Quantifying the influence of static-like errors in least-squares-based inversion and sequential simulation of cross-borehole ground penetrating radar data[END_REF][START_REF] Dosso | Data error covariance in matched-field geoacoustic inversion[END_REF]). In the context of a MCL acquisition, correlation within the data error vector may originate from the fact that, for one pulse moment emission, several NMR signals are recorded simultaneously through the different receiver loops. This simultaneity implies that the electromagnetic (EM) noise spatial distribution affecting these NMR signals at the time of the recording is the same, and hence that some correlation may exist between the data error estimated values, since they directly depend on the noise magnitude and characteristics.

This issue was investigated by examining the results of two MCL experiments where noise-only signals were recorded. The first one was performed in low-noise conditions, at the Schillerslage test-site, using three circular loops with respective diameter of 50m, 30m and 10m (5 turns), and the second one was performed near the castle of Hodoumont, in Belgium, where the noise level is very important, using three circular loops with respective diameter 78m, 40m and 20m. For each experiment, the correlation between the noise signals recorded through the three concentric loops is examined. To do so the magnitude square coherence (MSC) function (Kuo & Morgan, 1996) is used, which allows to estimating the linear correlation between two time-series % and & as:

' () * = + () * + (( * + )) *
where + () * is the complex cross-power spectral density and + (( * and + )) * are the power spectral densities of the individual signals. This function returns a frequency distribution of values ranging between 0 and 1, where 0 indicates the total absence of linear correlation, and 1 a complete linear correlation between the two signals. [START_REF] Dalgaard | Adaptive noise cancelling of multichannel magnetic resonance sounding signals[END_REF] already made use of the MSC function in the SNMR context to study the correlation between measuring loops and noise reference loops. Fig. 11 shows, for the Schillerslage and the Hodoumont experiment, the MSC functions computed between the different loops composing the MCL configuration, before and after the application of classical noise processing techniques. For the Schillerslage case, the noise processing procedure consisted of despiking, model-based harmonic removal [START_REF] Larsen | Noise cancelling of MRS signals combining modelbased removal of powerline harmonics and multichannel Wiener filtering[END_REF], bandpass filtering and stacking of 40 records. For the Hodoumont experiment, the most efficient processing was obtained using despiking, global reference noise cancellation [START_REF] Dalgaard | Enhancing SNMR model resolution by selecting an optimum combination of pulse moments, stacking, and gating[END_REF], bandpass filtering and stacking of 16 records.

For raw signals in both experiments, only bandpass filtering and stacking were applied. These results suggest that most of the correlation existing between the MCL signals originate from the spike and the harmonic components of the noise, and that appropriately and efficiently removing them will eliminate the risk of correlation within the MCL data errors.

DISCUSSION

Benefits of the MCL configuration

The results from the synthetic and field experiments (section 3.2 and 3.3, respectively) are consistent with the results from the resolution analysis (section 3.1). The main benefits of using the MCL concern the shallow part of the inverted models. In the synthetic experiment this is reflected by a better characterization of the unsaturated first layer, and the ability to image the lower part of the first aquifer where the water content is not so appreciably high (5%). In the field experiment this is shown by a better delineation of the unsaturated first layer and of the underlying aquifer limits. Some improvements are also observed in the deeper part of the models, where the signal to noise ratio is low. In the synthetic experiment the PWC distribution obtained with multi-exponential inversion is closer to the synthetic model when using the MCL configuration, and the application of the mono-exponential inversion and BEL1D process shows that even though the models can be similar in the deep part, the associated uncertainties are reduced when using the MCL compared with the COIL and CL configuration. These results support the idea that the MCL configuration possesses some integrative and conservative properties with regard to the geophysical information.

Since it contains the data from two or more data sets with different sensitivity distributions, the probability of creating artifacts or eluding a real feature is diminished because a lack of information within a data set will be compensated by the data from the other data set(s).

Model plausibility

The main question when looking at a physical model of the subsurface which results from the interpretation of a geophysical data set concerns the model coherence and plausibility, that is, how close is it to reality? It is of course not possible to provide a definite answer to this question, because the inverted model is by nature uncertain and results from solving a problem characterized by the non-uniqueness of the solution. In this case different methods have been chosen to try to evaluate the benefit of using the so-called MCL configuration instead of a classical COIL data set, and improvements both in model accuracy and uncertainty reduction have been observed.

However, it should be understood that in some situations, the MCL may very well produce results much similar to those obtained with a COIL configuration, and not necessarily superior. Mostly because the additional benefits from the MCL come from 1) the sensitivity and resolution improvements brought by integrating the CL datasets within the inversion and 2) the "robustness" of the data set due to the merging of different sensitivity distributions. For the first point, the analysis of the resolution matrices in section 3 clearly show that the improvements provided by the MCL dataset may concern different part of the subsurface depending on the noise level. As a rough, first approximation, it seems that with low noise levels, most benefits will occur in the shallow part of the model, whereas for higher noise levels the benefits extend to deeper layers. Hence, depending on the noise level, it is possible that some aquifers be located in a part of the model where no improvement occurs, in which case all uncertainty assessments and synthetic modeling tests will provide similar results, whichever configuration is used. Nevertheless, note that the MCL configuration still provides the advantage of adaptability depending the objectives of the survey. For example, assuming a given number of pulse moments, one could decide to take advantage of the resolution benefits of the MCL close to the surface to reduce the number of low value pulse moments while conserving the same resolution as with the COIL configuration. Then, increasing the number of high value pulse moments would improve resolution at depth, while keeping the same acquisition time.

Second, the possibility of merging and inverting together data sets with different sensitivity distributions provides a more complete illumination of the subsurface, and hence a more robust data set in the sense that if a particular signal associated with one pulse moment value shows a very low S/N ratio compared with the others, it could be removed without a significant loss of sensitivity or, if conserved, its effect on the inversion results would be smoothed thanks to the presence of the other data sets. This robustness also implies that the MCL configuration probably exhibits some averaging/integrating properties, which result in a model that seems to incorporate different features that could be observed independently in the inverted models obtained by the single COIL or CL data sets (Fig. 10).

Finally, given the fact that applying a MCL acquisition strategy only requires the additional time corresponding to the layout of the centered loop, and no other additional measurements than a classical acquisition, it can be easily implemented, hence providing additional geophysical information for a minimum additional effort.

CONCLUSIONS

Inverting the MCL dataset leads to at least equivalent and generally more accurate models with regard to the real water spatial distribution than using the single COIL data set or the CL data set. For the synthetic cases studied here, the water content values are better determined and the aquifer boundaries are delineated more precisely. For field cases, the resulting model appears to better match our lithological knowledge of the area.

It was also shown that using the MCL data set reduces the uncertainties weighing on the inverted models. These improvements are achieved thanks to the conjoint use of data sets characterized by different sensitivity distributions. Maximum improvement is obtained when central receivers have a diameter equal or lower than the transmitting loop diameter, and using two central receivers instead of one ensures adaptability to various noise conditions, although great improvement can still be reached with only one central receiver. The MCL dataset is more robust because it contains several SNMR signals that bring complementary information about the same or different areas of the subsurface. Inverting this data set raises the issue of correlated data errors, but our investigations concluded that the signal processing techniques applied before the retrieval of the NMR decaying envelopes lead to a significant reduction or removal of these correlations, and hence that the inversion process should not be affected.
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 1 Figure 1 : Lithologic description of the subsurface at the experimental site of Schillerslage (modified from Dlugosch, (2014)).

Figure 1 :

 1 Figure 1: a) Sketch of the multi-central-loop layout. b) Sensitivity kernels values associated with the multi-central-loop configuration. Left: coincident loop, middle and right: central-loop configurations.For this figure, all kernels have been computed assuming a resistive earth, and kernel values are normalized to the receiving loop area.

Figure 3 :

 3 Figure 3: Distribution of synthetic model parameters with depth

  also shows clearly that in presence of 10 nV noise conditions, the resolution improvement provided by the MCL configuration mostly takes place in the shallow part of the model (0 -25 m depth), where the vertical resolution values are lower for the MCL than the COIL and CL. At a higher noise level (100 nV), this trend changes: most of the vertical resolution improvement takes place in the intermediate and deep part of the mode, as shown on Fig.5b. This aspect is also illustrated by the DOI increase of about 10% observed for the MCL (red dashed line on Fig.5b), whereas for low noise level, the DOI does not increase compared to the COIL configuration (Fig5a). Regarding the resolution matrices (Fig.4b), the maximum values are still closer to the diagonal with the MCL than with the CL and COIL, which indicates an improvement. Yet, here the MCL maximum curve also slightly deviates from the diagonal in the shallowest layer (~2 m depth), indicating that high noise conditions still lead to a degradation of the resolution in the very shallow layers.

Figure 2 :

 2 Figure 2: Resolution matrices computed for the three different loop configurations, for two different noise levels scaled to the receiver areas. The red lines indicate the maximum value for each row. The black dashed lines (FWHM) indicate the limits of the half maximum value domain from which the vertical resolution curve is derived, and the red dashed line indicates the DOI. For each resolution matrix, the Picard plot is shown and the corresponding truncation level indicated by the cutoff black dashed line.

Figure 3 :

 3 Figure 3: Vertical resolution curves derived from the resolution matrices, for the three loop configurations. a) noise level of 10 nV. b) noise level of 100 nV. The MCL configuration provides a more accurate resolution in both cases.

Figure 6 :

 6 Figure 6 : Resolution improvement percentage with depth provided by the MCL configuration compared with the COIL, for several loop diameters. a) Low noise level (10 nV) and b) High noise level (100 nV). The single column on the right of fig. a) and b) represent the results obtained with the 3 loops MCL (TxRx 100m -Rx 50m -Rx 20m(3turns)).

Fig. 7

 7 Fig.7shows the results of the multi-exponential inversion (smooth discretization with

Figure 7 :

 7 Figure 7: Multi-exponential inversion results. a) Classical coincident loop configuration, b) Central-loop configuration (Tx100m -Rx20m) and c) Multi-central-loop configuration. The left panel corresponds to the PWC distribution with depth and the right panel show the total water content (sum of the PWC for a given depth).

  to a single aquifer as the merging of the intermediate[30 m -35 m] and deep[45 m -60 m] aquifers. Overall, the CL configuration yields the worst results. Note that inversions were also carried out with the other CL data set (Tx100m -Rx50m), which showed the same behavior.The results obtained with the classical COIL configuration are closer to the true model, but many improvements are obtained when inverting all three data sets together, that is, using the MCL configuration: the unsaturated layers are well reproduced without overestimating the water content, the aquifers with intermediate water content are correctly detected and delineated, and the high water contents values are more precisely estimated. This is quite clear looking at the PWC distributions (left panels on Fig.7a,b and c), where compared with the other configurations the MCL yields several distinct areas that match very well the aquifers from the synthetic model.

Figure 8 :

 8 Figure 8: Water content models obtained with the mono-exponential inversion scheme. a) Coincident loop data set. a) Central-loop data set and c) Multi-central-loop data set. The blue line indicates the initial synthetic model, the black line the inversion result and the grey lines correspond to the bootstrap strategy results for uncertainty estimation.

Figure 9 :

 9 Figure 9: Independent probability density functions resulting from BEL1D. Each pdf is compared to the prior pdf and the true model benchmark value for the corresponding parameter.

  . The bootstrap algorithm results are globally equivalent for each case indicating an uncertainty on the water content estimation of about ± 4% in most part of the aquifer models. Yet differences exist between the three situations. First, in the very shallow part of the model the classical COIL configuration shows that the water content at depth " = 0 m is directly 15 %, and the presence of the 2 m thick unsaturated layer is not visible, as if the aquifer was reaching the surface. However, the CL results(Fig 10b) clearly show this known unsaturated layer, which is also retrieved using the MCL dataset (Fig10c). Then, regarding the aquifer itself, the COIL model shows that the water content oscillates between 0 m and 10 m depth and then progressively decreases between 10 m and 20 m depth. Although oscillations are not unrealistic due to the changing lithology, a progressive water content decrease is not really consistent with the sudden transition at 22 m depth between medium sand and the marl bedrock. The CL model shows a rapid water content increase around 20 m depth, which is more realistic, but less oscillations, and it is not really clear where the saturated zone really begins. The very interesting feature of the MCL model is that it seems to integrate the most realistic features of the two others given our lithologic knowledge of the site: the unsaturated layer is well delineated, the water content in the aquifer variates following the variations of the lithology, and a rapid decrease of the water content is observed when the transition with the marl bedrock occurs.

Figure 10 :

 10 Figure 10: Mono-exponetial inversion results of the Schillerslage multi-central-loop experiment. Graphics a) and b) represent the independent inversion of the coincident loop and central-loop data sets, respectively, while graphic c) shows the inversion results of the whole multi-central-loop data set.For each data set, the bootstrap algorithm was applied 100 times.

Figure 11

 11 Figure 11 clearly shows that processing the signals reduces the correlation that may

Figure 41 :

 41 Figure 41: MSC functions computed between noise-only signals recorded through loops of different diameters. A) Schillerslage experiment and b) Hodoumont experiment. Black lines correspond the MSC functions computed between raw noise signals (only bandpass filtering and stacking), and grey lines correspond to processed noise signals.

Table 1 :

 1 Description of the simplified 5 layers model and the associated prior model space.

	Layer #	Thickness	(m)		Water content	(%)	Relaxation time , * (ms)
		Min	True	Max	Min	True	Max	Min	True	Max
	1	1	5		10	0.5	1	5	5	30	100
	2	1	5		10	5	15	20	100	250	350
	3	15	20		30	0.5	3	5	5	90	100
	4	20	30		40	5	10	20	100	150	350
	Half-space /	/		/	2.5	5	10	50	100	200
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