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Introduction

Over the past decades, the aging population and the growing quality of life have been driving the demand for healthcare service to increase, requiring the hospital managers to improve the quality and efficiency of healthcare activities. In a hospital, the operating theatre (OT), consisting of operating rooms (ORs) and surgical intensive care units (SICUs), is generally considered as the major revenue center as well as the most expensive department that consumes the largest part of the hospital's budget [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Wang | Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources[END_REF][START_REF] Monteiro | Surgical scheduling with antagonistic human resource objectives[END_REF]. Therefore, the management of OT and the scheduling of surgeries have drawn much attention from researchers and practitioners.

The research on OT managing and surgery scheduling can be classified into three hierarchical decision levels: strategic level, tactical level, and operational level [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF]Zhu 1 et al., 2018). The operational level can further be divided into two stages: advance scheduling and allocation scheduling. The former addresses the assignments of patients to specific surgical blocks (a surgical block is a combination of an OR and a workday), while the latter determines the specific starting time of each surgery [START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. In this paper, we address an advance scheduling problem with consideration of downstream facilities and uncertainties, whereas the intraday sequencing of surgeries are not considered. We assume that the allocation of surgical resources among different specialties has already been determined at the strategic level, and that a master surgery schedule (MSS) specifying the pre-assignments of surgical blocks to specialties has been fixed under the block scheduling strategy [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF] at the tactical level. The outputs of the two decision levels serve as fixed parameters in the studied problem of this paper.

The complexity of advance scheduling results from various factors. First, each surgery is associated with an uncertain surgery duration and an uncertain length-of-stay (LOS) in the downstream facility. These uncertainties are difficult to predict and strongly affect the utilization and availability of surgical resources [START_REF] Batun | Operating room pooling and parallel surgery processing under uncertainty[END_REF][START_REF] Molina-Pariente | A stochastic approach for solving the operating room scheduling problem[END_REF]. Explicitly incorporating uncertainties into the mathematical modelling helps to improve the quality of the schedule, but significantly augments the computational complexity. Second, the interests of different stakeholders are usually contradictory. Specifically, the hospital administrators and the surgical staff want to achieve low costs and low overtime work, while the patients only desire short waiting times. A policy that schedules too many surgeries in a planning period leads to short waiting times and high satisfactions of patients, but may cause severe over-utilization of surgical resources and increase the hospital's expenses drastically; on the other hand, if too few surgeries are scheduled in the present planning period, the hospital's expenses and the surgical staff's workload are reduced, but the patients have to suffer from long waiting times. Hence, an optimal surgical schedule should well balance the interests of both the hospital and the patients. Third, the existing research has revealed that planning the capacity of ORs independently does not yield high-quality schedules, since the unavailability of downstream facilities, such as surgical intensive care units (SICU) and post-anaesthesia care units (PACU), may block the postoperative patients in ORs and deteriorate the surgery schedule [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF]. Therefore, the capacities of ORs and downstream facilities should be jointly planned, which brings downstream capacity constraints with complicated structures into the studied problem.

The aforementioned difficulties show the necessity of developing operations research methodologies to solve stochastic advance scheduling problems with downstream capacity constraints. Relevant research can be found in the literature (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Saadouli | A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF], 2017;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. In this paper, we consider the advance scheduling of elective surgeries in an OT with multiple ORs and multiple recovery beds in SICU. Emergency patients are not considered since they are assumed to be treated in dedicated facilities (refer to the dedicated policy described in [START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF]). Uncertainties in surgery durations and LOSs are taken into account. At the beginning of each week, we need to determine the surgical blocks to open, select the surgeries to be performed from a waiting list, and assign these selected surgeries to open surgical blocks. Our objective is to minimize the total cost incurred by performing and postponing surgeries as well as opening and overusing surgical blocks, meanwhile the downstream capacity constraints should be respected. The studied problem is formulated as a two-stage stochastic programming model with recourse, which is translated into a deterministic model through sample average approximation (SAA) and then solved by the column-generationbased heuristic (CGBH) approaches developed in this paper. Intensive numerical experiments with various problem sizes are carried out to evaluate the computational performance and the solution quality of the CGBH approaches.

The main contributions of this paper can be summarized as follows. First, for the advance scheduling of elective surgeries, we propose a comprehensive stochastic programming formulation which incorporates the capacity constraints of ORs and SICU, uncertain surgery durations and LOSs, opening decisions of surgical blocks, time-dependent surgery priorities, and multiple specialties with different surgery characteristics. To the best of our knowledge, this formulation is the first mathematical model that incorporates all these elements together. Second, we develop several CGBH approaches to solve the deterministic model which is translated from the stochastic programming model by SAA. In the literature, CGBH approaches are rarely adopted to solve stochastic programming models for surgery scheduling problems. This paper shows that the combination of CGBH and SAA can efficiently compute near-optimal solutions for large instances that cannot be tackled by conventional methodologies. Third, we perform numerical experiments with a number of instances to compare the computational performances of the CGBH approaches and a commercial optimization solver (GUROBI). The results validate that the CGBH approaches can solve realistically sized problems with reasonable computation time and provide high-quality near-optimal solutions. The remainder of this paper is organized as follows. Section 2 provides a brief review of the relevant literature. In Section 3, we describe the advance surgery scheduling problem studied in this paper and formulate the stochastic programming model, then employ the SAA algorithm to convert the stochastic programming model to a solvable deterministic one. In Section 4, we elaborate the proposed CGBH approaches with different column-generation strategies and heuristic rules. Then, the experimental results are presented in Section 5 to validate the performances of the CGBH approaches. Finally, Section 6 gives the conclusions and possible future extensions.

Literature review

Surgery scheduling and OT planning problems have been well addressed with a variety of operations research approaches in the literature. Several comprehensive reviews on this topic are provided by [START_REF] Cardoen | Operating room planning and scheduling: A literature review[END_REF], [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF]Guido (2011), Van Riet and[START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF], [START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF][START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. In this section, we briefly review the existing research on surgery scheduling and CGBH approaches.

Stochasticity is an intrinsic property of the surgery scheduling problems, since surgical activities are subject to multiple sources of uncertainties, such as durations and arrivals. Nonetheless, many researchers employ deterministic models to address the surgery scheduling problems (e.g., [START_REF] Meskens | Multi-objective operating room scheduling considering desiderata of the surgical team[END_REF][START_REF] Wang | Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources[END_REF][START_REF] Riise | Modelling and solving generalised operational surgery scheduling problems[END_REF][START_REF] Guido | A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem[END_REF][START_REF] Roshanaei | Propagating logic-based benders' decomposition approaches for distributed operating room scheduling[END_REF][START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF]. Ignoring the stochastic aspects simplifies the mathematical model and reduces the computational complexity; however, the optimal solutions of deterministic models are not guaranteed to fit most of the real scenarios, and stochastic models are more widely employed among the relevant works (e.g., [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF], 2017;[START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF][START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF][START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF][START_REF] Eun | Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches[END_REF][START_REF] Jung | Scheduling elective surgeries with emergency patients at shared operating rooms[END_REF][START_REF] Zhang | Mitigating overtime risk in tactical surgical scheduling[END_REF]. and its deterministic counterpart, and the results illustrate that the former achieves 17% of cost reduction. Similarly, the numerical experiments of [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF] show that taking duration uncertainties into consideration reduces the total cost by around 45%. Therefore, in order to improve the quality and robustness of the surgery schedules, the stochastic aspects in the surgical activities should be considered in the modelling and efficient solution techniques are needed to tackle the increased computational complexity.

Among the different patient classification systems employed in the literature, elective patients and non-elective ones are the most widely addressed patient types [START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF]. The surgeries of elective patients can be scheduled in advance, while non-elective patients are usually emergency cases that must be treated as soon as possible. Compared to elective patients, nonelective ones are more difficult to schedule because their arrivals are highly stochastic and may interrupt the ongoing surgery schedule. The existing works mainly employ two policies to address the scheduling of non-elective patients: dedicated policy (e.g., [START_REF] Meskens | Multi-objective operating room scheduling considering desiderata of the surgical team[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Guido | A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem[END_REF][START_REF] Roshanaei | Propagating logic-based benders' decomposition approaches for distributed operating room scheduling[END_REF][START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF][START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF][START_REF] Zhang | Mitigating overtime risk in tactical surgical scheduling[END_REF] and flexible policy (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF][START_REF] Molina-Pariente | A stochastic approach for solving the operating room scheduling problem[END_REF][START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF]. In the dedicated policy, a subset of ORs are dedicated to serving non-elective patients, while in the flexible policy, all the ORs are accessible for all types of patients. [START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF] review the related works and summarize that the flexible policy leads to shorter waiting times of non-elective patients and improved utilization rate of ORs, but increases the waiting times of elective patients and the number of cancellations. [START_REF] Duma | The management of non-elective patients: shared vs. dedicated policies[END_REF] point out that the performances of the two policies depend on the scenario and the operative conditions, and that any policy could lead to better results under a specific problem setting. By far, there is no consensus on which one of the two policies generally outperforms the other.

In the literature on tactical-level and operational-level surgery scheduling, two different strategies are commonly used: open scheduling (e.g., Fei, Chu, & Meskens, 2009;[START_REF] Fei | A planning and scheduling problem for an operating theatre using an open scheduling strategy[END_REF][START_REF] Molina-Pariente | Integrated operating room planning and scheduling problem with assistant surgeon dependent surgery durations[END_REF][START_REF] Saadouli | A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department[END_REF][START_REF] Hashemi Doulabi | A constraint-programming-based branch-and-price-and-cut approach for operating room planning and scheduling[END_REF][START_REF] Zhang | Mitigating overtime risk in tactical surgical scheduling[END_REF] and block scheduling (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Meskens | Multi-objective operating room scheduling considering desiderata of the surgical team[END_REF][START_REF] M'hallah | The planning and scheduling of operating rooms: A simulation approach[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Guido | A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem[END_REF][START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF][START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF][START_REF] Eun | Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches[END_REF][START_REF] Jung | Scheduling elective surgeries with emergency patients at shared operating rooms[END_REF]. In the open scheduling strategy, every surgery can be assigned to any available surgical block (i.e., the combination of an OR and a day), so that multiple surgeries from different specialties can be performed in the same surgical block. In the block scheduling strategy, the surgery schedule is restricted by an MSS specifying the assignment of surgical blocks to specialties. As a result, each surgery can only be assigned to the surgical blocks occupied by its corresponding specialty, and no block can be shared by multiple specialties. Comparing the two strategies, open scheduling is more flexible and may provide better surgical plans (Fei, Chu, & Meskens, 2009), but block scheduling is better accepted by the surgical staff and is much more adopted in practice [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF].

The implementation of a surgery schedule requires various types of surgical resources, among which the ORs are the most important since they are the specialized facilities where the surgeries are performed. Almost all the studies on surgery scheduling optimize the utilization of ORs. In order to balance the interests of the patients and the hospital under uncertain surgery durations, many researchers allow the ORs to be overused and incorporate the overtime costs into the objective functions to be minimized (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF], 2017;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF][START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF][START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF][START_REF] Eun | Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches[END_REF][START_REF] Jung | Scheduling elective surgeries with emergency patients at shared operating rooms[END_REF][START_REF] Zhang | Mitigating overtime risk in tactical surgical scheduling[END_REF]. Moreover, [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF] and [START_REF] Roshanaei | Propagating logic-based benders' decomposition approaches for distributed operating room scheduling[END_REF][START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF] assume that opening a surgical block incurs a fixed cost, so that some ORs can be closed when the surgical demand is low to eliminate unnecessary OR utilization.

Though ORs are the kernel of all the surgical resources, planning the OR capacity alone does not always yield good schedules, since the unavailability of downstream resources, such as the surgical intensive care units (SICU), may block the postoperative patients in ORs and interrupt the ongoing surgery schedule [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF]. To address this issue, many researchers optimize the utilizations of ORs and downstream resources jointly (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF], 2017;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF]. Specifically, [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF] employ hard constraints to restrict the utilization of SICU, while Jebali andDiabat (2015, 2017) and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] allow the regular SICU capacity to be exceeded and incorporate the penalties for exceeding the regular SICU capacity into the objective function.

The problem studied in this paper is the downstream-constrained advance scheduling of elective patients with uncertain surgery durations and LOSs. Next, we focus on the existing research dealing with similar advance scheduling problems. [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] consider an OT managing problem involving 10 ORs and a limited number of SICU recovery beds. The OT is shared by elective patients and emergency ones under a flexible policy, and the surgical blocks are pre-allocated among 9 specialties. They formulate this problem as a two-stage stochastic program with recourse, in which the uncertain surgery durations and LOSs are explicitly incorporated. A similar advance scheduling problem is studied by [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF], while the emergency surgeries are ignored since a dedicated policy is adopted. To address the uncertainties, the authors develop a robust optimization approach that does not require the probabilistic distributions of the stochastic parameters and allows the decision-maker to adjust the risk level. Moreover, [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF] deal with an advance surgery scheduling problem with consideration of two types of downstream facilities: intensive care units and wards. The authors do not distinguish the patients by specialties or surgical groups, hence their scheduling strategy can be regarded as open scheduling. Similar to [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF], the studied problem is formulated as a stochastic programming model which is solved by the SAA algorithm. Further, [START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF] propose a chance-constrained programming model in which the probability that the downstream capacity constraints are violated is limited below a user-defined risk level. The authors develop a featured SAA algorithm to solve the proposed model. Recently, there is a trend of combining advance scheduling with allocation scheduling, i.e., researchers tend to optimize both the patient-to-block assignments and the intra-block sequencing using a unified model [START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF][START_REF] Eun | Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches[END_REF] or a multi-phase model [START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF][START_REF] Jung | Scheduling elective surgeries with emergency patients at shared operating rooms[END_REF]. However, among these recent works, only [START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF] take downstream capacity constraints into account, whereas the others only optimize the utilization of ORs.

From the relevant works mentioned above, we notice that stochastic programming models are widely used to address advance surgery scheduling problems (e.g., [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF][START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF][START_REF] Eun | Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches[END_REF][START_REF] Zhang | Mitigating overtime risk in tactical surgical scheduling[END_REF]. These models cannot be directly solved due to the existence of stochastic parameters, hence the SAA algorithm is usually employed to replace the stochastic parameters with randomly sampled values and to translate the stochastic programming models into solvable deterministic models. The sample size of SAA should be large enough to guarantee the solution quality, which significantly increases the computational complexity. To tackle this issue, we develop several CGBH approaches that combine the column generation (CG) method with heuristic rules to solve the deterministic counterparts of the stochastic programming models and to accelerate the solution procedure of SAA. For the large-sized problems that the commercial optimization solvers cannot efficiently solve, the proposed CGBH approaches are able to provide high-quality near-optimal solutions with reasonable computation time. Although the applications of CGBH approaches in surgery scheduling have been studied by some existing works (e.g., [START_REF] Lamiri | Column generation approach to operating theater planning with elective and emergency patients[END_REF]Fei, Meskens, et al., 2009;Fei, Chu, & Meskens, 2009;[START_REF] Fei | A planning and scheduling problem for an operating theatre using an open scheduling strategy[END_REF][START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF], most of them assume deterministic surgery durations and none of them takes downstream facilities into consideration. Therefore, the proposed CGBH approaches in combination with the SAA algorithm can be a new efficient way to solve the downstream-constrained stochastic surgery scheduling problems.

To summarize, this paper addresses the downstream-constrained advance scheduling of elective surgeries using the dedicated policy and the block scheduling strategy. The prioritization system introduced by Neyshabouri and Berg ( 2017) is adopted in this paper to prioritize the surgeries according to their specialties, urgency levels, and waiting times. Based on the existing relevant research reviewed in this section, we believe that this is the first work that simultaneously considers the capacity constraints of ORs and SICU, stochastic surgery durations and LOSs, block-opening decisions, time-dependent surgery priorities, and multiple specialties with different surgery characteristics. Moreover, we develop several CGBH approaches to be combined with the SAA algorithm and employ the novel SAA-CGBH algorithm as the solution approach of stochastic programming.

To the best of our knowledge, no study has employed CGBH approaches to solve the stochastic programming models for surgery scheduling problems. Through intensive numerical experiments, the advantage of the CGBH approaches over the commercial optimization solvers is validated and the computational performance of the SAA-CGBH algorithm in solving large-sized surgery scheduling problems is evaluated.

Problem description and formulation

In this section, we first present the general descriptions for the advance surgery scheduling problem with uncertainties and downstream capacity constraints, then formulate the studied problem as a two-stage stochastic programming model with recourse, which is finally translated into a deterministic model by the SAA algorithm. The notations that we use to define the studied problem are summarized in Table 1.

Description of the studied problem

We consider the advance scheduling of elective surgeries over a finite planning horizon T containing multiple consecutive days indexed by t. An MSS has been determined by the tactical-level optimization, and B is the set of available surgical blocks in the MSS. Each block b ∈ B is settled on a specific day t b ∈ T and is dedicated to exactly one specialty. Define I as the set of elective surgeries on the W i and a priority p i = u i w i , where u i and w i are surgery i's urgency level and actual waiting time, respectively. Then, we use subset I ⊆ I to denote the set of mandatory surgeries with w i = W i . In each planning horizon, we should determine the surgeries to be performed, the blocks to open, and the surgery-to-block assignments. Therefore, the primary decision variables are defined as follows:

x ib = 1 if surgery i is assigned to block b, otherwise x ib = 0; y b = 1 if block b is open, otherwise y b = 0.
The studied problem is subject to two sources of uncertainties: the duration of each surgery is uncertain and each postoperative patient might be required to stay in SICU for an uncertain period of time. We use scenario ω to represent a possible realization of all the surgeries' durations and LOSs, and define Ω as the set of all the possible realizations. Then, surgery i's duration and LOS in scenario ω can be represented by d ω i and l ω i , respectively. In this paper, these stochastic parameters are assumed to follow truncated lognormal distributions with specialty-dependent parameters, because it has been revealed that surgery durations and LOSs highly depend on the surgery types and that lognormal distributions result in the best fit for real hospital data [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF][START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Strum | Estimating times of surgeries with two component procedures: Comparison of the lognormal and normal models[END_REF][START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF][START_REF] Xiao | Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china[END_REF]. In order to prevent the true optimal solution of stochastic programming from being over-conservative, the lognormal distributions employed in this paper are truncated on the right, so that the extremely long surgery durations and LOSs that are highly unlikely to happen in reality are excluded. Further, we define that the time lengths D of all the surgical blocks are identical for all b ∈ B. If the surgeries assigned to a surgical block are not completed within the regular time length, this block can be overused with an additional overtime cost incurred, whereas the downstream capacity poses a strict constraint to the surgery schedule, i.e., the constraint of SICU beds cannot be violated. Accordingly, the secondary decision variables are defined as follows: o ω b denotes the overtime of surgical block b in scenario ω; z ω it = 1 if the patient corresponding to surgery i needs a SICU bed on day t in scenario ω, otherwise z ω it = 0. The cost of the studied problem can be incurred by performing and postponing surgeries (patientrelated cost) as well as opening and overusing surgical blocks (hospital-related cost). Let c s and c w be the unit cost of performing and postponing a surgery, respectively. We then define c s < c w since performing a surgery should be preferable to postponing it. Further, the actual cost of performing surgery i is defined as p i c s , and that of postponing surgery i is p i c w . Thus, the priority p i is used as a multiplier of the patient-related cost, so that it is preferable to perform high-priority surgeries before low-priority ones. Regarding the hospital-related cost, we assume that opening any surgical block b ∈ B incurs an identical fixed cost c f , hence some blocks can be closed according to the actual demand to save the hospital's expense. In addition, over-utilization of a surgical block incurs a penalty of c o per time interval.

Stochastic programming formulation

The previously described surgery scheduling problem is formulated as the following two-stage stochastic program with recourse (TSSP-R):

(TSSP-R) min i∈I b∈B p i c s x ib + i∈I p i c w 1 - b∈B x ib + b∈B c f y b + E ω [Q(x x x, y y y, ω)] (1) s.t. b∈B x ib 1, ∀ i ∈ I \ I (2) b∈B x ib = 1, ∀ i ∈ I (3) 
x ib e ib y b ,

∀ i ∈ I, b ∈ B (4) x ib , y b ∈ {0, 1}, ∀ i ∈ I, b ∈ B (5)
where Q(x x x, y y y, ω) represents the following recourse problem:

min b∈B c o o ω b (6) s.t. o ω b i∈I d ω i x ib -D, ∀ b ∈ B (7) z ω it x ib , ∀ i ∈ I, b ∈ B, t = t b , t b + 1, ..., t b + l ω i -1 (8) i∈I z ω it R t , ∀ t ∈ T (9) z ω it ∈ {0, 1}, ∀ i ∈ I, t ∈ T (10) o ω b 0, ∀ b ∈ B (11) 
In the first stage, the objective function (1) seeks to minimize the sum of the patient-related cost and the hospital-related cost. Constraints (2) ensure that each optional surgery (w i < W i ) is assigned to at most one surgical block, while constraints (3) ensure that each mandatory surgery (w i = W i ) is scheduled in the present planning horizon and is assigned to exactly one surgical block.

Constraints (4) specify that each surgery should be performed in an open surgical block which is allocated to its corresponding specialty, and constraints (5) define x ib and y b as binary decision variables.

In the second stage, the objective function ( 6) minimizes the expected overtime cost of all the surgical blocks for a given first-stage solution. Constraints (7) calculate the overtime of each surgical block based on the surgery-to-block assignments and surgery durations. Constraints (8) specify that each surgery i requires a SICU bed from the surgery date t b for l ω i consecutive days. Constraints (9) are the downstream capacity constraints guaranteeing that the number of patients in SICU does not exceed the number of available recovery beds. Finally, constraints ( 10) and ( 11) define z ω it and o ω b as binary variables and non-negative real variables, respectively.

Sample average approximation (SAA)

The main difficulties in solving TSSP-R are to evaluate the expected value E ω [Q(x x x, y y y, ω)] of the second-stage recourse problem Q(x x x, y y y, ω) and to examine the feasibility of Q(x x x, y y y, ω) for all ω ∈ Ω and for any given first-stage solution. That is, the exact expectation of the total overtime cost and the feasibility of a first-stage solution cannot be easily computed and examined due to the complex problem structure and the enormous scenarios in Ω. An efficient method to address these difficulties is the SAA algorithm, which replaces the set Ω of all the possible scenarios with N scenarios randomly sampled by Monte-Carlo simulations. Each sampled scenario n = 1, 2, ..., N contains a sampled duration d n i and a sampled LOS l n i for each surgery i ∈ I. Accordingly, d ω i , l ω i , o ω b , and z ω it can be replaced by d n i , l n i , o n b , and z n it , respectively. E ω [Q(x x x, y y y, ω)] can thereby be approximated by the average overtime cost in all the N sampled scenarios, and a first-stage solution can be regarded as feasible if there is no violation of downstream capacity constraints in any of the N sampled scenarios. [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF] and [START_REF] Shapiro | On the rate of convergence of optimal solutions of monte carlo approximations of stochastic programs[END_REF] have proved that the optimal value and solution of the approximating problem converge to those of the true problem with exponential rates as N → +∞, under the condition that the total number of scenarios is finite.

Therefore, it is reasonable to discretize the surgery durations as integer time intervals. Thus, TSSP-R can be translated into the following deterministic integer linear programming (DILP) problem:

(DILP) min i∈I b∈B (c s -c w )p i x ib + b∈B c f y b + 1 N N n=1 b∈B c o o n b (12) s.t. b∈B x ib 1, ∀ i ∈ I \ I (13) b∈B x ib = 1, ∀ i ∈ I (14)
x ib e ib y b ,

∀ i ∈ I, b ∈ B (15) o n b i∈I d n i x ib -D, ∀ b ∈ B, n = 1, 2, ..., N (16) 
z n it x ib , ∀ i ∈ I, b ∈ B, t ∈ T n ib , n = 1, 2, ..., N (17) i∈I z n it R t , ∀ t ∈ T, n = 1, 2, ..., N (18) 
x ib , y b , z n it ∈ {0, 1}, ∀ i ∈ I, b ∈ B, t ∈ T, n = 1, 2, ..., N (19) 
o n b 0, o n b ∈ Z ∀ b ∈ B, n = 1, 2, ..., N (20) 
In constraints (17), T n ib = {t b , t b + 1, ..., t b + l n i -1}. Note that the constant term i∈I p i c w in the objective function is dropped, and variables o n b are redefined as non-negative integers because d n i , x ib and D are all integers. Our initial numerical experiments have shown that the integrality constraints for o n b reduce the computation time of solving DILP. From Theorem 1 and 2 of [START_REF] Mak | Monte carlo bounding techniques for determining solution quality in stochastic programs[END_REF], we know that the expected optimal value of DILP provides a lower bound, which monotonically improves as the sample size N increases, on the optimal value of TSSP-R. Moreover, the expected cost of DILP's optimal solution provides an upper bound on the optimal value of TSSP-R, and it can be estimated with zero bias by computing the objective function ( 12) with DILP's optimal solution and N sampled scenarios, where N N [START_REF] Mak | Monte carlo bounding techniques for determining solution quality in stochastic programs[END_REF]. Considering that DILP only requires the constraints to be satisfied in the N sampled scenarios, for some possible realizations of LOSs that are not included in the N scenarios, the optimal solution of DILP may not satisfy all the downstream capacity constraints (18). Hence, when computing upper bounds with the N sampled scenarios, it is necessary to count the number l of the scenarios in which constraints ( 18) are not all satisfied, while the other constraints do not need to be examined since they can never be violated by the optimal solution of DILP. Then, the violation risk of downstream capacity constraints can be estimated by l/N .

Determining the sample size N is a trade-off between the computational efficiency and the accuracy. A larger value of N leads to a more precise estimation of the true objective function, but requires more computation time. Typically, the computational complexity increases faster than linearly in N , hence it is more efficient to replicate the solution procedure of DILP with a smaller sample size N [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF]. Let M > 1 be the number of replications, then the complete procedure of the SAA algorithm for solving TSSP-R is presented as follows:

•

Step 1: Initialize the values of N , N and M .

•

Step 2: For m = 1, 2, ..., M , do steps 2.1 through 2.5.

-Step 2.1: Generate N independent scenarios by Monte-Carlo simulations.

-Step 2.2: Solve DILP, let vm N be the optimal value and {x x x m N , ŷ y y m N } be the optimal solution. -Step 2.3: Generate N independent scenarios by Monte-Carlo simulations.

-Step 2.4: Let b i be the surgical block to which surgery i is assigned by {x

x x m N , ŷ y y m N }. Then, ∀ i ∈ I, b ∈ B, t ∈ T , and n = 1, 2, ..., N , compute the values of o n
b and z n it by ( 21) and ( 22), respectively. 

o n b = max 0, i∈I d n i x ib -D (21) z n it = 1, if t bi t t bi + l n i -1 z n it = 0, otherwise (22) 
σ 2 ĝN (x x x m N ,ŷ y y m N ) = 1 N (N -1) N n=1 [ĝ n (x x x m N , ŷ y y m N ) -ĝN (x x x m N , ŷ y y m N )] 2 (23) 
•

Step 3: Let vM N denote the lower bound, then compute vM N and its variation by ( 24) and ( 25), respectively.

vM N = 1 M M m=1 vm N (24) σ 2 vM N = 1 M (M -1) M m=1 (v M N -vm N ) 2 (25) 
•

Step 4: Among the solutions with

L N (x x x m N , ŷ y y m N ) 1, select the final solution {x x x m * N , ŷ y y m * N } whose index m * is determined by m * = arg min m ĝN (x x x m N , ŷ y y m N ) -vM N + Φ -1 (1 -α) σ 2 ĝN (x x x m N ,ŷ y y m N ) + σ 2 vM N (26) 
where Φ -1 (x) is the inverse cumulative distribution function of the standard normal distribution and α ∈ (0, 1) is the tolerance probability; if ∀m = 1, 2, ..., M , L N (x x x m N , ŷ y y m N ) > 1, then select the solution with the lowest value of L N (x x x m N , ŷ y y m N ) as the final solution.

The solution procedure presented above is derived from the SAA algorithm proposed by [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF] with an additional mechanism for evaluating the violation risk of downstream capacity constraints.

Column-generation-based heuristic (CGBH) approaches

The DILP problem can be directly solved by commercial optimization solvers with branch-andbound or branch-and-cut algorithms. However, the computational efficiency of these algorithms degrades significantly as the problem scale or the sample size N increases. To overcome this difficulty, we present a column-oriented reformulation of DILP in this section. The linear relaxation of the reformulated problem can be efficiently solved by a CG procedure. Then, we combine different heuristic rules and CG strategies to develop several CGBH approaches, which can compute nearoptimal solutions for DILP with reasonable computation time and accelerate the SAA algorithm.

Column-oriented reformulation and CG procedure

We first reformulate DILP in a column-oriented way to take advantage of the high efficiency of CG procedure in solving linear programs with large number of variables. The reformulated problem consists of two parts: the master problem and the pricing problem. The former is a binary setpartitioning problem in which each column represents a feasible surgical plan ξ ≡ (I s , b) that assigns a subset of surgeries I s ⊆ I to a specific surgical block b ∈ B, while the latter is a pure integer program searching for the columns with negative reduced costs to improve the solution of the master problem. The additional notations used in the column-oriented model are summarized in Table 2. Then, the master problem (MP) of the column-oriented model is stated as follows:

(MP) min

ξ∈Ξ λ ξ C ξ (27) s.t. ξ∈Ξ α iξ λ ξ 1, ∀ i ∈ I \ I (28) ξ∈Ξ α iξ λ ξ = 1, ∀ i ∈ I (29) ξ∈Ξ β bξ λ ξ 1, ∀ b ∈ B ( 30 
) ξ∈Ξ γ n tξ λ ξ R t ,∀ t ∈ T, n = 1, 2, ..., N (31) 
λ ξ ∈ {0, 1}, ∀ ξ ∈ Ξ (32)
The objective function ( 27) minimizes the total cost of all the accepted plans, and the cost of plan ξ is calculated by the following formula:

C ξ = i∈I (c s -c w )p i α iξ + c f + 1 N N n=1 c o ω n ξ (33) 
Constraints ( 28) and ( 29) are equivalent to constraints ( 13) and ( 14) in DILP, indicating that each optional surgery is assigned to at most one accepted plan, while each mandatory surgery is assigned to exactly one such plan. Constraints (30) require each surgical block to be used by at most one accepted plan. Constraints (31) correspond to constraints (18), ensuring that the number of postoperative patients in SICU does not exceed the number of available recovery beds. The final constraints (32) define λ ξ as binary variables, thus MP is a pure 0-1 integer programming problem.

As the set Ξ of feasible surgical plans can be extremely large, MP contains a huge number of columns and cannot be solved explicitly. Nevertheless, if we relax the integrality constraints (32) with 0 λ ξ 1, the resulting linear master problem (LMP) can be easily solved by a CG procedure. The structure of LMP is similar to that of the configuration LP (C-LP) models formulated in [START_REF] Halldórsson | Min sum edge coloring in multigraphs via configuration lp[END_REF], [START_REF] Sviridenko | Approximating the configuration-lp for minimizing weighted sum of completion times on unrelated machines[END_REF], [START_REF] Kalaitzis | On the configuration lp for maximum budgeted allocation[END_REF], and [START_REF] Christensen | Approximation and online algorithms for multidimensional bin packing: A survey[END_REF] for machine scheduling and bin packing problems. A surgical plan in LMP is equivalent to a configuration that assigns a subset of jobs to a specific machine or packs a subset of items to a specific bin in these C-LP models. Both LMP and these C-LP models suffer from large number of variables (columns) due to the enormous quantity of feasible surgical plans or configurations, and the objective functions of LMP and these C-LP models are linear combinations of variables determining which surgical plans or configurations are accepted and ranging between 0 and 1. The C-LP models are proved to be stronger than the linear relaxations of conventional mathematical formulations [START_REF] Svensson | Santa claus schedules jobs on unrelated machines[END_REF] and can be used, e.g., to design approximation algorithms.

In this paper, we can solve LMP accurately and efficiently using a CG procedure, then feasible solutions of MP can be derived by heuristic rules. Specifically, we need to replace the set Ξ by its subset Ξ * , thus LMP is converted to restricted LMP (RLMP). Referring to the simplex theory for solving linear programs, to obtain the optimal solution for LMP, the elements of Ξ * should be generated by iteratively solving the pricing problem that seeks for the feasible plan with the minimum reduced cost σ ξ [START_REF] Desaulniers | Column generation[END_REF]. In our column-oriented model, the pricing problem (PP) is formulated as follows:

(PP) min

σ ξ = C ξ - i∈I π i α iξ - b∈B π b β bξ - N n=1 t∈T π n t γ n tξ (34) s.t. α iξ e ib β bξ , ∀ i ∈ I (35) b∈B β bξ = 1, (36) 
ω n ξ i∈I d n i α iξ -D, ∀ n = 1, 2, ..., N (37) 
z n it α iξ β bξ , ∀ i ∈ I, t ∈ T n ib , n = 1, 2, ..., N (38) 
γ n tξ = i∈I z n it R t , ∀ t ∈ T, n = 1, 2, ..., N (39) 
α iξ , β bξ , z n it ∈ {0, 1}, ∀ i ∈ I, b ∈ B, t ∈ T, n = 1, 2, ..., N (40) 
ω n ξ , γ n tξ 0, ω n ξ , γ n tξ ∈ Z, ∀ t ∈ T, n = 1, 2, ..., N (41) 
The objective function (34) minimizes the reduced cost of the surgical plan to be added into Ξ * , while π i , π b , and π n t are the optimal dual values of constraints ( 28)-( 29), (30), and (31), respectively. Constraints (35) correspond to constraints (15) in DILP, requiring that each surgery and the surgical block to which it is assigned should belong to the same specialty. Constraint (36) guarantees that each surgical plan is assigned exactly one block. Constraints ( 38) and ( 39) are equivalent to constraints ( 17) and ( 18), determining the occupation of SICU beds by the scheduled surgeries in plan ξ and preventing the demand for intensive care from exceeding the capacity of SICU. Though similar downstream capacity constraints (31) are included in the formulation of MP,constraints (39) in PP are not redundant, because they exclude the infeasible surgical plans violating the downstream capacity constraints from Ξ * and improve the efficiency of the CG procedure. The parameters of surgical plans in MP are defined as binary or integer decision variables in constraints ( 40) and (41).

The pricing problem (PP) is an integer quadratic programming problem and cannot be easily solved. Hence, we decompose PP into |B| subproblems, each of which corresponds to a surgical block.

The decomposed subproblems are much smaller and simpler than the original pricing problem (PP). Specifically, in the subproblem PP b for surgical block b ∈ B: we have β bξ = 1 and β b ξ = 0 for any b ∈ B \ {b}, thus the quadratic term α iξ β bξ in constraints ( 38) is converted to a linear term α iξ ; we only need to consider the surgery subset I b ⊆ I which exclusively contains the surgeries that can be assigned to block b (i.e., e ib = 1); the domain of t can be restricted to T b = {t|t t b , t ∈ T }; variables γ n tξ can be dropped since they are equivalent to i∈I z n it . The formulation of PP b is stated as follows:

(PP b ) min σ ξ = i∈I b [(c s -c w )p i -π i ]α iξ +(c f -π b ) - N n=1 i∈I b t∈T b π n t z n itξ + 1 N N n=1 c o ω n ξ (42) s.t. ω n ξ i∈I b d n i α iξ -D, ∀ n = 1, 2, ..., N (43) 
z n it α iξ , ∀ i ∈ I b , t ∈ T n ib , n = 1, 2, ..., N (44) 
i∈I b z n it R t , ∀ t ∈ T b , n = 1, 2, ..., N (45) 
α iξ , z n it ∈ {0, 1}, ∀ i ∈ I b , t ∈ T b , n = 1, 2, ..., N (46) 
ω n ξ ∈ Z, ω n ξ 0, ∀ n = 1, 2, ..., N (47) 
From the above formulation, we can observe that PP b is still significantly more complex than the pricing problems formulated in the relevant works, such as Lamiri et al. (2008), Fei, Chu, andMeskens (2009), and [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF]. In these works, the authors do not consider the downstream resources and use deterministic surgery durations in the column-oriented models. Thus, their pricing problems can be decomposed into classical 0-1 knapsack problems that are suitable to be solved by dynamic programming algorithms. In contrast, we take uncertain surgery durations and LOSs into consideration and use the SAA algorithm to translate the stochastic programming model into its deterministic counterpart with N randomly generated scenarios. As a result, PP b is very similar to an N -dimensional knapsack problem, given that each constraint in PP b is required to be satisfied under all the N scenarios. It is known that multidimensional knapsack problems are NP-hard and that solving them using the conventional dynamic programming algorithms is usually impractical (de Almeida [START_REF] De Almeida Dantas | An experimental evaluation of a parallel simulated annealing approach for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Abdel-Basset | A binary multi-verse optimizer for 0-1 multidimensional knapsack problems with application in interactive multimedia systems[END_REF][START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF]. Another difference between PP b and the pricing problems in the relevant works mentioned above is that PP b incorporates downstream capacity constraints ( 44) and ( 45). The classical knapsack problems do not include any constraint with the same structure of (44), and to the best of our knowledge, no existing research on the knapsack problems and their variants has incorporated constraints similar to (44). Therefore, the pricing problem PP b in this paper is not a classical knapsack problem that can be efficiently solved by dynamic programming algorithms. Our preliminary numerical experiments show that the commercial optimization solver GUROBI can solve the pricing problem PP b efficiently, hence, we employ GUROBI to solve PP b directly in this paper.

Furthermore, the following additional SICU capacity constraints can be added to PP b to tighten the formulation:

z n it 1 -α iξ , ∀ i ∈ I b , t ∈ T b \T n ib , n = 1, 2, ..., N (48) 
z n it α iξ , ∀ i ∈ I b , t ∈ T b , n = 1, 2, ..., N (49) 
Constraints (48) specify that surgery i does not stay in SICU before the surgery date t b or after the end of LOS t b + l n i -1, while constraints (49) imply that the untreated patients do not need SICU beds. These constraints are not incorporated into our original formulations TSSP-R and DILP, because they significantly increase the problem size and the computation time; whereas in the column-oriented formulation, constraints ( 48) and ( 49) help to accurately calculate the occupation of SICU beds for each column, so that the CG procedure can converge faster.

With the decomposed pricing problems PP b (∀ b ∈ B), different CG strategies can be employed to determine the column(s) to be added to Ξ * . All-negative strategy and best-negative strategy both solve PP b for all b ∈ B in each iteration, but the former adds all the columns with negative σ ξ to Ξ * , while the latter only selects the column with the minimum negative σ ξ . Besides, first-negative strategy adds the first encountered column with negative σ ξ to Ξ * and does not solve the rest of the pricing problems. Employing one of the three strategies, we can solve LMP through the following CG procedure: Since the CG procedure terminates when no more columns with negative reduced costs can be found, the resulting solution is optimal for both RLMP and LMP.

• Step 1: Initialize Ξ * = ∅ and π i , π b , π n t =

Heuristic rules and CGBH approaches

The optimal solutions for LMP provided by the CG procedure are not guaranteed to satisfy the integrality constraints, hence heuristic rules are needed to compute feasible integer solutions. In this paper, we develop multiple CGBH approaches using different heuristic rules.

Solving the restricted master problem (RMP)

The straightforward method to derive feasible integer solutions is to solve MP with the restricted column set Ξ * when the CG procedure terminates. The restricted MP (RMP) is an integer linear program which can be directly solved by commercial optimization solvers. The corresponding CGBH approach (CGBH-RMP) is presented as follows:

• Step 1: Solve LMP using the CG procedure presented in Section 4.1. If LMP is infeasible, then the CGBH approach terminates with no feasible solution; If the optimal solution of LMP does not violate any integrality constraint, then the CGBH approach terminates with the optimal solution for MP obtained; otherwise, go to Step 2.

• Step 2: Solve RMP with the current restricted column set Ξ * . If RMP is infeasible, then the CGBH approach terminates with no feasible solution; otherwise, the resulting solution is output as the final near-optimal solution for MP.

Progressive reassignment (PR)

Progressive reassignment (PR) is an alternative heuristic rule for deriving feasible solutions. It is proposed by [START_REF] Lamiri | Column generation approach to operating theater planning with elective and emergency patients[END_REF] to solve a surgery scheduling problem, in which the authors assume deterministic surgery durations and do not consider the opening decisions of surgical blocks or downstream resources. In this paper, we develop an adapted version of the PR heuristic to fit our problem. Combining the adapted PR heuristic with the CG procedure yields the following CGBH-PR approach:

• Step 1: The same as Step 1 of CGBH-RMP.

• Step 2: Let λ λ λ * = [λ * 1 , λ * 2 , ..., λ * Ξ * ]
T be the optimal solution of LMP, then compute matrix x x x * with elements x * ib and vector y y y * with elements y * b by the following formulas 50) and go to step 8; otherwise, the CGBH approach terminates with no feasible solution.

       x * ib = ξ∈Ξ * λ * ξ α iξ β bξ , ∀ i ∈ I, b ∈ B y * b = max i∈I {x * ib } ∀ b ∈ B ( 
• Step 8: Improve {x x x * , y y y * } by local optimization (LO) and pairwise exchange (PE) [START_REF] Lamiri | Column generation approach to operating theater planning with elective and emergency patients[END_REF], then the CGBH approach terminates with {x x x * , y y y * } output as the final nearoptimal solution for MP.

In Step 2, the adapted PR heuristic begins with the optimal solution {x x x * , y y y * } of LMP and selects the surgery i such that one of its assignment variables x * i b is the most fractional. We keep x * ib unchanged for all the other surgeries i = i , then find the surgical block b to which assigning surgery i yields a feasible solution (integrality constraints are not considered) and the lowest objective value.

Matrix x x x * is thereby updated by setting x * i b = 1 and x * i b = 0 for any b = b . If no feasible solution can be found, then surgery i is not performed in the currently considered planning horizon, i.e., ∀b ∈ B: x * i b = 0. Once the assignment of surgery i is determined, we go back to Step 2 to find other surgeries with fractional assignment variables and repeat the aforementioned process. The PR heuristic terminates when all the elements in x x x * are 0 or 1. In this case, all the elements of y y y * are also binary integers, thus {x x x * , y y y * } is the initial feasible solution for MP.

In the last step, we improve the initial solution {x x x * , y y y * } using local optimization (LO) and pairwise exchange (PE) methods. For our problem, the procedures of LO and PE are described as follows. For each surgery i ∈ I, LO tries every possible modification of its assignment while keeping the assignments of the other surgeries unchanged. If a new assignment does not violate any constraint and leads to a reduction in the objective value, x x x * is updated accordingly. Then, for each pair of surgeries i, i ∈ I, PE tries to exchange their assignments while the other elements in x x x * are not modified. An exchange is accepted if it does not cause any violation of constraint and reduces the objective value. Each time x x x * is modified, y y y * and the objective value are updated accordingly.

When LO and PE are finished, the current {x x x * , y y y * } is the final solution for MP.

Recursive assignment (RA)

The third heuristic rule that we employ in this paper, named recursive assignment (RA), is derived from the CGBH algorithm proposed by [START_REF] Fei | Solving surgical cases assignment problem by a branch-and-price approach[END_REF], in which a surgery scheduling problem is solved without consideration of uncertainty, downstream facility, or the opening decisions of surgical blocks. Our RA heuristic recursively calls the CG procedure presented in Section 4.1 to solve LMP.

At the end of each iteration, only the best surgical plan in Ξ * is accepted, and LMP is updated by removing the scheduled surgeries as well as the occupied surgical blocks and SICU beds. The heuristic terminates when no feasible plan can be generated, then all the accepted plans form the final solution for MP. The procedure of CGBH-RA is described as below:

• Step 1: The same as Step 1 of CGBH-RMP.

• Step 2: Among the columns with λ * ξ = 1 in Ξ * , the one with the minimum cost C ξ is selected and added to the accepted plan list, which is initialized as an empty set at the beginning of the CGBH approach. If λ * ξ = 1 for any ξ ∈ Ξ * , then the column with the largest value of λ * ξ is selected. For multiple columns with equal λ ξ and C ξ , priority is given to the one that requires the least SICU beds.

• Step 3: Update LMP by removing the surgeries, surgical blocks, and SICU beds that are scheduled or used by the last plan added to the accepted plan list, and reset Ξ * = ∅. Then, the new LMP is solved by the CG procedure presented in Section 4.1. If the CG procedure ends up with an empty column set Ξ * , go to Step 4; otherwise, return to Step 2.

• Step 4: Formulate a surgery schedule using all the surgical plans in the accepted plan list. If all the mandatory surgeries are scheduled, then this surgery schedule is output as the final near-optimal solution for MP; otherwise, the CGBH approach terminates with no feasible solution.

Experimental results

In this section, we conduct numerical experiments on different test problems to validate the performances of the proposed CGBH approaches. GUROBI 7.5.2 is employed as the optimization solver and all the programs are coded in C++. The experiments are carried out on a PC with an Intel(R) Core(TM) i7-3770 CPU @3.40 GHz and a RAM of 8 GB.

Test problems

The test problems to be solved in this section are based on the real cases studied by [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. In the considered OT, there are 10 ORs and R SICU beds shared by 9 specialties: ENT (ear, nose, and throat), OBGYN (obstetrics and gynecology), OR-THO (orthopedics), NEURO (neurosurgery), GEN (general surgeries), OPHTH (ophthalmology), VASCULAR, CARDIAC, and UROLOGY. The length of each planning horizon is one week, i.e., |T | = 7. There can be at most one surgical block per OR per day. Each surgical block is dedicated to exactly one specialty and can only be allocated to one workday (t = 1, 2, ..., 5). With 10 ORs and 5 workdays, there can be at most 50 surgical blocks during one week, but under the MSS adopted from [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and presented in Table 3, there are only 32 available surgical blocks per week and the other 18 blocks are empty. The ORs are not fully used throughout the 5 workdays due to the constraints of the other resources (e.g., human resources) [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF]. The regular time length of each surgical block is D = 8 hours. Regarding the downstream resources, it is assumed that each SICU bed is accessible to any patient throughout the week as long as it is not occupied.

The variation of R t does not change the problem structure and poses few impacts on the solution procedure, hence is not a major focus of our numerical experiments. Accordingly, we assume R t = R for all t ∈ T in all the test problems. Based on the statistics provided by [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF],

for each specialty, we can obtain its relative importance v, percentage of surgeries, mean surgery duration µ d , standard deviation of surgery duration σ d , mean LOS µ l , and standard deviation of LOS σ d . Further, we arbitrarily determine the urgency groups and maximum allowed waiting times W for every specialty, then the detailed problem settings are presented in Table 4.

The percentages of surgeries provided in Table 4 are used to generate experimental cases via Monte-Carlo simulations. When generating a case with |I| surgeries on the waiting list, the expected number of surgeries from a certain specialty is the product of |I| and the corresponding percentage.

In addition, we assume that the surgeries with waiting time t are expected to be two times more than those with waiting time t+1. When generating the duration or LOS for a surgery, a continuous value is first sampled using the statistical data in Table 4 as the parameters of the lognormal distribution, which is right-truncated at the point where the value of cumulative distribution function is equal to 0.99, then this value is rounded to an integer. Referring to [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] 

Comparison of different CG strategies and heuristic rules

To test the accuracy and efficiency of the proposed CGBH approaches, we perform numerical experiments on randomly generated cases with different numbers of surgeries and SICU beds. Each case is solved by different approaches with the same sampled scenarios. GUROBI optimizer is used to solve the DILP problem directly and serves as a benchmark of the CGBH approaches.

We first evaluate the performances of the three CG strategies presented in Section 4.1, while the RMP heuristic rule introduced in Section 4.2.1 is used to derive feasible solutions. The results are presented in Table 5. We notice that the computational complexity of DILP depends on the problem size, and the efficiency of GUROBI in solving DILP drastically decreases as the size of I and the value of N increase. For the large cases with |I| 50 and N 50, GUROBI cannot even provide the optimal solutions before reaching the maximum computation time (one hour). By contrast, the proposed CGBH approaches can efficiently solve all the cases and provide near-optimal solutions of high quality. In some large cases, e.g., 75-15-100 and 75-20-100, the solutions of CGBH approaches are even better than those of GUROBI-DILP.

Comparing the computational results of the three CG strategies in Table 5, it can be seen that the all-negative strategy outperforms the other two strategies in terms of robustness and efficiency. The gaps between the exact solutions of GUROBI-DILP and the near-optimal solutions of CGBH-RMP-All-Negative are within 1%. More importantly, the CGBH-RMP-All-Negative approach consumes less than one minute to compute a near-optimal solution, even for the large cases that cannot be solved to optimality by GUROBI. Table 5 also illustrates that the optimal value of the relaxed column-oriented model (LMP) is a much tighter lower bound compared to the optimal value of the linear relaxation of DILP.

In the next group of experiments, we employ the all-negative strategy to compare the performances of the three heuristic rules introduced in Section 4.2. Computational results are presented in Table 6. Similar to the results of Table 5, Table 6 also shows that the CGBH approaches are considerably more efficient in solving large-sized cases than GUROBI. Among the three heuristic rules, the RMP heuristic consumes the least CPU time and provides the best solutions. In comparison with the RMP heuristic, the PR heuristic leads to significantly larger errors in some cases, and the RA heuristic needs much more CPU time to finish the computation. Finally, based on the experimental results presented in Table 5 andTable 6, we can conclude that the combination of the all-negative CG strategy and the RMP heuristic rule results in the best computational performance.

Computational performance of the combination of CGBH and SAA

Based on the experimental results presented in Section 5.2, the all-negative strategy and the RMP heuristic are adopted in the rest of the numerical experiments (CGBH-RMP-All-Negative is hereinafter referred to as CGBH). Further, in order to compute high-quality solutions for the studied stochastic surgery scheduling problem (the TSSP-R formulation) efficiently, it is necessary to combine the CGBH approach with the SAA algorithm. Therefore, we modify the SAA algorithm presented in Section 3.3 by using the CGBH approach to solve the column-oriented reformulation of DILP in Step 2.2. The modified SAA algorithm is thereby referred to as SAA-CGBH.

First, we compare the computational performances of the SAA-CGBH algorithm and the original SAA algorithm using small-sized test problems. The number of replications is M = 10 and the number of sampled scenarios for evaluating upper bounds is N = 50000. The results are presented in Table 7. It can be seen that for both of the two algorithms, the optimality gap and the violation risk of downstream capacity constraints are decreasing in N , whereas the CPU time is increasing in N . The gaps between the UBs of the two algorithms are below 2% in all the cases, indicating that the accuracies of the two algorithms are at the same level. For the cases with N 50, the SAA-CGBH algorithm has a great advantage in terms of computational efficiency over the original SAA algorithm; especially when N 75, the CPU time of the former is 65.9-99.4% less than that of the latter.

Next, we employ the SAA-CGBH algorithm to solve realistically sized cases with no fewer than 100 surgeries on the waiting list and the sample size N 50. 

Conclusion

In this paper, we propose a stochastic programming model for the downstream-constrained advance scheduling of elective surgeries. In order to tackle the difficulties faced by hospitals in the real-life surgical activities, we take into account two main sources of uncertainties (surgery duration and LOS), two crucial surgical resources (ORs and SICU), time-dependent dynamic surgery priorities, OR opening decisions, and multiple specialties with different surgery characteristics. We believe that this is the first work on advance surgery scheduling that incorporates all these important factors simultaneously. The decisions in the studied problem are made on a weekly basis. Specifically, for each week, the surgery planner should determine the surgical blocks to open, select the surgeries to be performed from a waiting list, and assign the selected surgeries to available surgical blocks. The objective is to minimize the patients' waiting times and the OR utilization costs (incurred by opening and overusing surgical blocks), under the premise that the capacity constraints of downstream resources (SICU) are not violated. As the uncertainties and the downstream capacity constraints drastically increase the computational complexity, several efficient CGBH approaches are developed and combined with the SAA algorithm, then the SAA-CGBH algorithm is employed as the solution technique of the proposed stochastic programming model.

We conduct intensive numerical experiments to evaluate the performances of the proposed CGBH approaches. The experimental results indicate that the best performance of the CGBH approach is achieved by employing the all-negative strategy and the RMP heuristic rule. Specifically, the near-optimal solutions computed by the CGBH-RMP-All-Negative approach (hereinafter referred to as CGBH) are very close to the exact solutions given by GUROBI (errors < 1%), and the CGBH approach consumes considerably less CPU time than GUROBI does when solving the cases with large number of sampled scenarios. The experimental results also illustrate that the combination of SAA and CGBH, i.e., the SAA-CGBH algorithm, significantly outperforms the original SAA algorithm in terms of computational efficiency and does not lead to any deterioration of the solution quality. Furthermore, we perform numerical experiments on large-sized cases and the results validate the capability of the SAA-CGBH algorithm in solving realistically sized advance surgery scheduling problems.

Given that the stochastic programming model TSSP-R captures the major elements involved in surgical activities and that the SAA-CGBH algorithm is proved to be efficient in coping with realistically sized cases, they can be used by hospital managers to optimize the advance scheduling of elective surgeries in real life. Since the operational-level decisions are made after the optimizations of the higher levels are finished, the parameters of TSSP-R can be determined according to the resource allocation fixed by the strategic level and the MSS provided by the tactical level. Then, the SAA-CGBH algorithm can be employed to solve TSSP-R and to compute high-quality operational-level surgery schedules, as demonstrated in the numerical experiments.

The stochastic programming model TSSP-R formulated in this paper could be extended in two aspects for further research. First, it is difficult to ensure that the downstream capacity constraints (9) are satisfied in all the possible scenarios, because the extremely large full scenario set has to be replaced by a relatively small group of sampled scenarios in the SAA algorithm. To tackle this issue, the utilization of downstream resources could be restricted by chance constraints, which are allowed to be violated with a user-defined probability. Second, stochastic programming and chanceconstrained programming models rely on the probabilistic distributions of the stochastic parameters, while robust optimization provides an alternative formulation for the scheduling problems under uncertainties and does not need statistical information [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Shi | A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times[END_REF].

The problem studied in this paper could be formulated as a robust optimization model in the future.

Employing chance-constrained programming or robust optimization changes the problem structure substantially and increases computational complexity, hence it will be necessary to develop more efficient solution approaches for these models.

The solution approaches developed in this paper could be extended as well in the future. Specifically, we could develop an exact branch-and-price algorithm in which the upper bound is computed by the CGBH approach and the lower bound is obtained by solving the LMP model with the CG procedure. The LMP model presented in Section 4.1 is a stronger formulation than the linear relaxation of DILP (LDILP), since the latter relaxes all the integer variables to continuous ones while the former only relaxes the integerality constraints of λ ξ . Moreover, the CG procedure solves LMP to optimality without enumerating all the possible columns. Therefore, compared to solving LDILP with exact solution approaches, solving LMP with the CG procedure yields a tighter lower bound.

The experimental results in Section 5.2 also reveal that the integrality gaps of LMP are significantly smaller than those of LDILP. Considering that the CGBH approach has also been proved to be efficient and accurate in this paper, the exact branch-and-price algorithm might outperform the conventional branch-and-bound algorithm if an efficient branching strategy could be developed.

Table 1 :b

 1 Notations defining the stochastic surgery scheduling problem Notation Definition Sets I Set of surgeries on the waiting list with index i B Set of surgical blocks in the MSS with index b T Set of days within a planning horizon with index t I ⊆ I Set of mandatory surgeries with wi = Wi Ω Set of all the possible scenarios with index ω Fixed cost of opening a surgical block co Unit overtime cost of surgical blocks t b Day of surgical block b D Regular duration of each surgical block R Number of recovery beds in SICU Rt Number of available recovery beds in SICU on day t e ib 1, if surgery i can be assigned to block b; patient corresponding to surgery i in scenario ω Decision variables x ib 1, if surgery i is assigned to surgical block b; 0, otherwise y b 1, if surgical block b is open; 0, otherwise z ω it 1, if surgery i requires a SICU bed on day t in scenario ω; 0, otherwise o ω Overtime of surgical block b in scenario ω waiting list. Each surgery i ∈ I belongs to exactly one specialty. Parameter e ib indicates whether surgery i can be performed in block b. Each surgery i ∈ I has a maximum allowed waiting time

-

  Step 2.5: ∀ t ∈ T and n = 1, 2, ..., N , examine whether the inequalities specified by constraints (18) are violated with the values of z n it , and count the number l of the scenarios in which there exists at least one violated constraint, then compute the violation risk L N (x x x m N , ŷ y y m N ) = l/N . -Step 2.6: Let ĝN (x x x m N , ŷ y y m N ) denote the upper bound, then evaluate ĝN (x x x m N , ŷ y y m N ) by computing (12) with {x x x m N , ŷ y y m N }, the values of o n b , as well as the N sampled scenarios generated in Step 2.3 (instead of the N sampled scenarios generated in Step 2.1), and compute the variation of ĝN (x x x m N , ŷ y y m N ) by

  0 for all i ∈ I, b ∈ B, t ∈ T , and n = 1, 2, ..., N .• Step 2: Add initial columns to Ξ * by solving the decomposed pricing problems PP b and using one of the three CG strategies. In addition, if the best-negative or first-negative strategy is used, arbitrary columns should be added to Ξ * to ensure that each mandatory surgery is assigned to at least one column in Ξ * . Specifically, for each mandatory surgery i ∈ I , we randomly choose a surgical block b ∈ B s.t. e i b =1 and generate a new column ξ with α i ξ = β b ξ = 1 and α iξ = β bξ = 0 for any i = i or b = b . We then compute γ n tξ and ω n ξ accordingly and add ξ to Ξ * . • Step 3: Solve RLMP with the current Ξ * . If no feasible solution is obtained, LMP is infeasibleand the CG procedure terminates; otherwise, update the current optimal solution and obtain the optimal dual values π i , π b , and π n t . • Step 4: Add new columns to Ξ * by solving the decomposed pricing problems PP b and using one of the three CG strategies. If no column can be added, i.e., no surgical plan with negative reduced cost is found, then the CG procedure terminates with the optimal solution of LMP obtained; otherwise, go to Step 3.

50 )•

 50 Step 3: If all the elements of x x x * are integers, go to Step 7; otherwise, find the most fractional element x * i b whose value is the closest to 0.5 in x x x * and let x * i b = 0 for all b ∈ B, then set V * = +∞, b = 1, and x x x = x x x * (the elements of x x x are denoted by x ib ). • Step 4: Let x i b = 1 and x i b = 0 for b = b . Check if x x x complies with constraints (14), (15), and (18). If at least one of these constraints is violated, let x i b = 0 and go to Step 6. • Step 5: Compute y y y with elements y b = max i∈I {x ib } and let V be the objective value of {x x x , y y y }. If V < V * , then V * = V and x x x * = x x x , . • Step 6: If b < B, let b = b + 1 and return to Step 4; otherwise, return to Step 3. • Step 7: If all the mandatory surgeries are scheduled by x * , compute y * by (

  , the length of a time interval is determined as 30 minutes, and the overuse cost of a surgical block is c o = 780 per time interval. The other costs are estimated as follows: the fixed cost of an open surgical block is c f = 1560 and the unit cost of performing (postponing) a surgery is c s = 400 (c w = 600).

  p i cw of (1); std.UB: standard deviation of UB; Gap.SAA: SAA optimality gap (UB-LB)/|UB| (unit: %); Risk: average violation risk of downstream capacity constraints of the M solutions (unit: %); Gap.CG: average integrality gap (Val.-LMP)/|Val.| of the M solutions (unit: %); CPU: computation time (unit: s);

Table 2 :

 2 Notations defining the column-oriented model

		Notation Definition
	Sets	Ξ	Set of feasible plans with index ξ
		Ξ * ⊆ Ξ	Restricted set of feasible plans
	Parameters	α iξ	1, if surgery i is assigned to plan ξ; 0, otherwise
		β bξ	1, if surgical block b is assigned to plan ξ; 0, otherwise
		γ n tξ	Number of SICU beds required by plan ξ on day t in scenario n
		ω n ξ	Overtime of plan ξ in scenario n
		C ξ	Cost of plan ξ
	Decision variable λ ξ	1, if plan ξ is accepted; 0, otherwise

Table 3 :

 3 Master surgery schedule

	No. of OR	Monday	Tuesday Wednesday Thursday	Friday
	1	ENT	ENT	ENT	
	2			ENT	ENT	ENT
	3	OBGYN		OBGYN		OBGYN
	4	ORTHO	ORTHO		ORTHO	ORTHO
	5		ORTHO		NEURO
	6	GEN	GEN	GEN	GEN
	7		GEN	GEN	GEN	GEN
	8	OPHTH	OPHTH		OPHTH	OPHTH
	9	VASCULAR		CARDIAC		VASCULAR
	10	UROLOGY		ORTHO	

Table 4 :

 4 Detailed problem settingsUnit of µ d and σ d : hours; unit of µ l and σ l : days; pct.-percentage.

	Specialty	µ d	σ d	µ l	σ l	v	u	W	pct.(%)
	ENT	1.23	0.38	0.10	0.10	1	1	20	21.34
	OBGYN	1.43	0.44	2.00	2.00	2	1	15	6.17
							3	6	3.09
	ORTHO	1.78	0.54	1.50	1.50	2	1	15	15.51
							3	6	7.75
	NEURO	2.67	1.65	2.00	2.00	5	1	8	5.04
	GEN	1.55	0.67	0.05	0.05	1	1	20	14.75
							2	15	7.37
	OPHTH	0.63	0.10	0.05	0.05	2	1	15	2.98
	VASCULAR	2.00	1.03	3.50	3.50	4	1	10	2.73
							2	5	4.10
							4	2	1.37
	CARDIAC	4.00	2.95	2.00	2.00	5	1	8	0.81
							2	3	1.22
							6	1	0.41
	UROLOGY	1.07	0.75	0.80	0.80	3	1	12	3.57
							2	6	1.79

  Table8provides the computational results. Similar to the previous results, Table8reveals that larger sample size N leads to better solution quality and longer CPU time. It can also be observed that the violation risk of downstream capacity constraints is lower when there are more recovery beds in SICU. More importantly, the results presented in Table8validate that the SAA-CGBH algorithm is able to solve realistically sized surgery scheduling problems with acceptable computation time. For the largest cases with |I| = N = 150, the solution procedure of SAA-CGBH can be finished within 8 hours, which is even faster than solving much smaller cases with |I| = 45 and N = 150 using the original SAA algorithm (refer to Table7).

Table 5 :

 5 Comparison of the three CG strategies

			CPU	614	1,057	3,547	3,600	681	751	2,310	
		First-Negative	LMP Gap Col.	23 61,912 0.00	32 62,123 0.62	33 62,939 0.46	20 62,734 0.76	35 61,384 0.00	21 61,638 0.00	21 62,105 0.05	62,626 0.00
			Err.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Val.	61,912	62,512	63,227	63,217	61,384	61,638	62,134	62,626
			CPU	801	1,624	6,435	8,470	1,340	1,070	4,026	7,030
	CGBH-RMP	Best-Negative	LMP Gap Col.	61,912 0.71 20	62,123 0.62 27	62,939 0.46 30	62,734 0.76 22	61,384 0.00 25	61,638 0.00 19	62,105 0.05 20	62,626 0.00 19
			Val. Err.	62,352 0.71	62,512 0.00	63,227 0.00	63,217 0.00	61,384 0.00	61,638 0.00	62,134 0.00	62,626 0.00
			CPU	161	450	2,137	1,873	506	624	1,130	2,322
		All-Negative	LMP Gap Col.	61,912 0.00 77	62,123 0.62 68	62,939 0.46 90	62,734 0.76 70	61,384 0.00 108	61,638 0.00 86	62,105 0.05 75	62,626 0.00 60
			Err.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Val.	61,912	62,512	63,227	63,217	61,384	61,638	62,134	62,626
			CPU	97	142	1,298	1,795	97	129	460	1,102
	GUROBI-DILP	Rlx. Gap	60,576 2.16	60,844 2.67	60,287 4.65	61,147 3.27	59,824 2.54	60,360 2.07	60,638 2.41	61,036 2.54
			Opt.	61,912	62,512	63,227	63,217	61,384	61,638	62,134	62,626
		|I|-R-N		25-5-5	25-5-10	25-5-50	25-5-100	25-10-5	25-10-10	25-10-50	25-10-100

Table 6 :

 6 Comparison of the three heuristic rules

			CPU
		RA	Err. Gap Col.
			Val.
			CPU
	CGBH-All-Negative	PR	Val. Err. Gap Col.
			CPU
		RMP	Err. Gap Col.	0.86 1.19 115
			Val.	83,072
		LMP	82,080
			CPU	162
	GUROBI-DILP	Rlx. Gap	80,372 2.41
			Opt.	82,360
		|I|-R-N		30-5-5

Table 7 :

 7 Comparison of the original SAA algorithm and SAA-CGBH (M = 10, N = 50000)

	Original SAA
	|I|-R-N

N + constant term i∈I p i cw of (1); std.LB: standard deviation of LB; UB: SAA upper bound ĝN (x x i∈I p i cw of (1); std.UB: standard deviation of UB; Gap.SAA: SAA optimality gap (UB-LB)/|UB| (unit: %); Risk: average violation risk of downstream capacity constraints of the M solutions (unit: %); No.Opt: number of optimal solutions obtained (solutions are not guaranteed to be optimal in the cases where the maximum computation time, one hour, is reached); Gap.CG: average integrality gap (Val.-LMP)/|Val.| of the M CGBH solutions (unit: %); CPU: computation time (unit: s);

Table 8 :

 8 Computational results of SAA-CGBH for realistically sized problems (M = 10, N = 50000) : SAA lower bound vM N + constant term i∈I p i cw of (1); std.LB: standard deviation of LB; UB: SAA upper bound ĝN (x x x m * N , ŷ y y m * N ) + constant term i∈I

	|I|-R-N	LB	std.LB	UB	std.UB Gap.SAA	Risk	Gap.CG	CPU
	100-15-50	274,093	148.40 275,996	25.32	0.69	2.23	0.54	831
	100-15-100 274,835	94.30 275,872	28.88	0.38	1.14	0.58	1,901
	100-15-150 274,637	84.55 275,609	28.77	0.35	0.78	0.57	2,406
	100-20-50	273,436	297.43 275,249	24.68	0.66	1.08	0.47	711
	100-20-100 274,249	193.06 275,650	25.61	0.51	0.14	0.59	1806
	100-20-150 275,037	195.63 275,230	23.99	0.07	0.01	0.58	2,408
	100-25-50	274,006	285.64 275,284	25.54	0.46	0.00	0.48	738
	100-25-100 274,744	156.84 275,602	25.81	0.31	0.00	0.56	2,007
	100-25-150 274,797	125.52 275,637	28.85	0.30	0.00	0.59	2,324
	125-20-50	341,513	364.09 344,728	28.52	0.93	4.34	0.22	2,101
	125-20-100 342,797	183.20 345,596	26.13	0.81	2.43	0.32	6,964
	125-20-150 343,424	189.01 344,799	25.54	0.40	1.25	0.34	12,955
	125-25-50	341,778	290.77 344,784	25.63	0.87	0.05	0.32	1,981
	125-25-100 342,640	202.75 344,662	26.81	0.59	0.04	0.33	5,565
	125-25-150 343,567	186.18 344,690	26.51	0.33	0.01	0.37	11,147
	125-30-50	342,068	278.83 344,305	27.42	0.65	0.00	0.35	1,999
	125-30-100 342,688	270.69 344,351	26.48	0.48	0.00	0.27	5,794
	125-30-150 343,373	153.70 344,736	27.22	0.40	0.00	0.40	10,923
	150-20-50	484,265	336.25 487,563	29.86	0.68	11.24	0.26	3,477
	150-20-100 485,270	211.43 487,004	29.53	0.36	5.72	0.29	8,739
	150-20-150 485,948	262.91 487,629	27.72	0.34	5.02	0.32	21,072
	150-25-50	484,139	240.00 488,246	30.14	0.84	0.27	0.25	3,531
	150-25-100 485,023	238.71 487,185	28.36	0.44	0.27	0.15	16,479
	150-25-150 485,099	269.69 486,382	28.45	0.26	0.30	0.21	28,280
	150-30-50	483,864	339.45 486,609	28.93	0.56	0.00	0.18	3,497
	150-30-100 484,832	226.42 486,461	28.64	0.33	0.00	0.14	15,927
	150-30-150 484,944	198.42 486,435	31.58	0.31	0.00	0.19	28,124

LB
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