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Introduction

Exponential smoothing is among the most widespread class of methods for time-series forecasting used in business and industry [START_REF] Hyndman | Forecasting with Exponential Smoothing: The State Space Approach[END_REF][START_REF] Kourentzes | Forecasting with multiple temporal aggregation: The case of promotional modelling[END_REF][START_REF] Chiang | An empirically-simulated investigation of the impact of demand forecasting on the bullwhip effect: Evidence from u.s. auto industry[END_REF][START_REF] Keith Ord | Principles of Business Forecasting[END_REF][START_REF] Spiliotis | Forecasting with a hybrid method utilizing data smoothing, a variation of the theta method and shrinkage of seasonal factors[END_REF]Kourentzes et al., 1 2019). When dealing with trending-type data, a popular forecasting method is the one pioneered by [START_REF] Charles | Forecasting seasonals and trends by exponentially weighted moving averages[END_REF], which extends simple exponential smoothing to account for the presence of a trend. However, abundant empirical evidence highlights that projecting a constant term into the future often overshoots the data, especially for long forecast horizons [START_REF] Jr | Conservative forecasting with the damped trend[END_REF], possibly leading to over-forecasting and large prediction errors. With this in mind, [START_REF] Gardner | Forecasting trends in time series[END_REF] propose a modification of Holt's linear method to dampen the trend as the length of the forecast horizon increases. The resulting method, termed "damped trend exponential smoothing", is deemed to be appropriate when the time series has a trend but one believes that its growth rate is unlikely to continue at a constant pace during the whole forecast horizon. Since the pioneering work of [START_REF] Gardner | Forecasting trends in time series[END_REF], the damped trend model has gained importance in empirical applications owing to its remarkable forecasting performance [START_REF] Gardner | Model identification in exponential smoothing[END_REF][START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF], 2011;[START_REF] Mckenzie | Damped trend exponential smoothing: a modelling viewpoint[END_REF]. Notably, in a survey of the most popular forecasting methods in operational research over the past 25 years, [START_REF] Fildes | Syntetos. Forecasting and operational research: A review[END_REF] claim that the damped trend provides a "benchmark forecasting method for all others to beat" (p. 1154). Nowadays, the damped trend appears to be well established as an accurate forecasting method [START_REF] Mckenzie | Damped trend exponential smoothing: a modelling viewpoint[END_REF].

Traditionally, the parameters of the damped trend model are estimated by means of grid search procedures [START_REF] Makridakis | The m3-competition: results, conclusions and implications[END_REF]. The choice of the model-fitting criterion not only has a theoretical interest, but also entails very practical consequences in terms of forecast accuracy. Indeed, [START_REF] Gardner | Fitting the damped trend method of exponential smoothing[END_REF] provide evidence that the out-of-sample performance of the damped trend model can be improved by selecting those parameter values which minimize either the mean absolute error or the mean squared error, rather than implementing grid search procedures. [START_REF] Hyndman | Forecasting with Exponential Smoothing: The State Space Approach[END_REF] show that the damped trend's parameters can be easily esti-mated by maximum likelihood. This actually holds true for the whole class of exponential smoothing models in the "single source of error" (SSOE) form, in which a single source of disturbances drives the whole system (for a general exposition we refer to [START_REF] Keith Ord | Estimation and prediction for a class of dynamic nonlinear statistical models[END_REF]. On the other hand, the "multiple sources of error" (MSOE) formulation (or "structural approach") is less popular among the forecasters' community, probably owing to the more complex likelihood estimation, which requires the use of the Kalman filter [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF][START_REF] West | Bayesian Forecasting and Dynamic Models[END_REF][START_REF] Durbin | Time Series Analysis by State Space Methods[END_REF].

In this work, we focus on the estimation and out-of-sample forecasting properties of the damped trend model in the MSOE framework. Firstly, we propose a simple estimation procedure based on the analytical solution to the Riccati equation for the steadystate covariance matrix of the state vector's estimation error. This solution enables us to replace the Kalman gain and the covariance matrix of the state vector's estimation error with their steady-state counterparts. By reducing the number of Kalman filter recursions to be executed, this new method simplifies the likelihood evaluation, thus reducing the computational burden.

The SSOE approach advocated by [START_REF] Hyndman | Forecasting with Exponential Smoothing: The State Space Approach[END_REF] provides a straightforward way to estimate the parameters of a large class of exponential smoothing models.

We show that, with this new method, the estimation of the damped trend model in MSOE form is as simple as its SSOE counterpart. Interestingly, this approach might be extended to other state-space models in MSOE form, therefore reducing the distance between SSOE and MSOE.

Secondly, in a Monte Carlo experiment, we compare the out-of-sample forecasting performance of the damped trend model in MSOE form, estimated using our new method, with that of the damped trend model in the SSOE framework, estimated using the standard innovations approach. Simulation results show that the forecasting perfor-mances of the two models are rather similar, even though some forecasting gains from the MSOE over the SSOE are possible when time series are short. Furthermore, in two empirical applications using annual data from the M3-competition dataset [START_REF] Makridakis | The m3-competition: results, conclusions and implications[END_REF] and quarterly credit-to-GDP data published by the Bank for International Settlements (BIS), we provide further evidence that the damped trend model in the MSOE form competes well with its SSOE counterpart, confirming the Monte Carlo results.

These findings are remarkable since it has been shown that the MSOE approach is more restrictive than the SSOE approach (see Chapter 13 in [START_REF] Hyndman | Forecasting with Exponential Smoothing: The State Space Approach[END_REF]. This conceivably could have a negative impact on the MSOE's predictive performance. However, our empirical results provide evidence that both MSOE and SSOE approaches have a comparable forecasting performance. Therefore, our findings might have far-reaching implications given that the damped trend model in SSOE form is considered a benchmark model difficult to beat in terms of predictive accuracy [START_REF] Gardner | Why the damped trend works[END_REF].

Whether the MSOE formulation should be preferred to the SSOE one, or vice versa, remains an open empirical question. In this work, we show that the two approaches are very similar, not only in terms of likelihood estimation but also in terms of out-ofsample forecasting properties. However, the main advantage of using the MSOE over the SSOE formulation is highlighted by [START_REF] Harvey | Signal extraction and the formulation of unobserved components models[END_REF]. Indeed, these authors show that, besides the forecasting (or filtering) properties, the MSOE framework is best suited to be employed for smoothing the unobserved components. In this respect, a by-product of our method is that it also allows us to fully simplify the estimation of the smoothed state vector, which is instrumental for signal extraction. The latter is relevant for interpreting the underlying dynamics of the state (see discussion in Harvey, 1989, pp. 227-230).

The rest of this work is organized as follows. Section 2 introduces the damped trend model in MSOE form and presents the new estimation method. Section 3 explains how these new results can also be used in order to simplify the estimation of the smoothed state vector, conditional on the information available in the whole sample. Section 4 discusses the results of a Monte Carlo experiment comparing the forecasting performance of the damped trend model estimated, respectively, within the MSOE and SSOE frameworks. Section 5 presents two empirical applications using real data aimed at testing the forecasting ability of the damped trend model in MSOE form in comparison with the damped trend model in SSOE form: the first application deals with the annual time series from the M3-competition [START_REF] Makridakis | The m3-competition: results, conclusions and implications[END_REF], while the second one focuses on quarterly credit-to-GDP series as published in the BIS database of total credit to the non-financial sector. Section 6 concludes. The Appendix contains the proofs of the propositions.

The damped trend exponential smoothing model in MSOE form: estimation

Consider the damped trend model in MSOE form:

y t = l t-1 + φb t-1 + t t ∼ N ID(0, σ 2 ) t = 1, . . . , N l t = l t-1 + φb t-1 + η t η t ∼ N ID(0, σ 2 η ) b t = φb t-1 + ξ t ξ t ∼ N ID(0, σ 2 ξ ) (1) 
where N ID denotes normally and independently distributed innovations and t = 1, . . . , N is the number of observations. It is also assumed that E( [START_REF] Mckenzie | Damped trend exponential smoothing: a modelling viewpoint[END_REF].

t η t ) = 0, E(η t ξ t ) = 0, E( t ξ t ) = 0, 0 < φ < 1, σ 2 > 0, σ 2 η ≥ 0 and σ 2 ξ ≥ 0.
Following [START_REF] Hyndman | Forecasting with Exponential Smoothing: The State Space Approach[END_REF], the state-space representation of model ( 1) is:1 

y t = zα α α t-1 + t α α α t = Tα α α t-1 + Ru t (2) 
where

z = 1 φ , T = 1 φ 0 φ , α α α t = l t b t , R = σ η 0 0 σ ξ , and 
u t = u 1t u 2t ∼ N ID(0, I 2 ).
The Kalman filter recursions for model (2) can be represented as follows:

v t = y t -za t-1 , f t = zP t-1 z + σ 2 , k t = TP t-1 z f -1 t , a t = Ta t-1 + k t v t , P t = TP t-1 T -TP t-1 z f -1 t zP t-1 T + RR , t = 1, . . . , N (3) 
In (3), v t are the innovations, or prediction errors, and f t is their associated variance.

Moreover, k t is the Kalman gain vector, a t = E(α α α t |Y t ) denotes the one-step ahead predictor of α α α t , i.e., the expected value of α α α t conditional on the information set Y t = {y 1 , ..., y t }, while P t is its associated error covariance matrix. The recursions in (3) are standard (we refer, for instance, to Hyndman et al., 2008, pp. 198-199, andto Hamilton, 1994, Chapter XIII, p. 380, equation [13.2.22]).

Given the model's parameters and the information set, the observations and the state vector are normally distributed. Therefore, the log-likelihood function for model (1) can be expressed with the prediction error decomposition (Harvey, 1989, p. 126):

log L = - N 2 log(2π) - 1 2 N t=1 log(f t ) - 1 2 N t=1 v 2 t f t (4)
The Gaussian log-likelihood function in (4) can be evaluated using the Kalman filter in (3).

As noted by [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF], a univariate model can be reparameterized by concentrating out σ2 . This reduces the number of parameters to be estimated and therefore simplifies the maximization of the log-likelihood function. Following this route, consider the so-called concentrated representation of model (1):

y t = l t-1 + φb t-1 + t t ∼ N ID(0, σ 2 ) t = 1, . . . , N l t = l t-1 + φb t-1 + η t η t ∼ N ID(0, q η σ 2 ) b t = φb t-1 + ξ t ξ t ∼ N ID(0, q ξ σ 2 ) (5)
with the signal-to-noise ratios defined as q η = σ 2 η σ 2 and q ξ = σ 2 ξ σ 2 . The log-likelihood function of the concentrated model in ( 5) is derived in the Appendix B (see equations (B.3) and (B.4)). 2 The Kalman filter recursions for model (5) can be written as before, with some minor changes. Specifically, letting f c t = ft σ 2 and P c t = Pt σ 2 , the innovation variance reduces to f c t = zP c t-1 z + 1. Moreover, the last equation (involving the state prediction error's covariance matrix) becomes:

P c t = TP c t-1 T -TP c t-1 z (f c t ) -1 zP c t-1 T + q η 0 0 q ξ
Note that the parameters of models ( 1) and ( 5) do not change over time. Given this, the Kalman filter recursions converge to their steady-state values. We refer to [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF], Section 3.3, for further details.

Denote the steady-state prediction error covariance matrix as P c t = P c t-1 = P c = p 11 p 12 p 12 p 22 ∀t. Then, for model ( 5), the matrix P c converges to the solution to the following (discrete time) algebraic Riccati equation:

p 11 + 1 p 22 φ 2 +2p 12 φ+p 11 +1 -1 p 12 + p 11 +φp 12 +1 p 22 φ 2 +2p 12 φ+p 11 +1 -1 p 12 + p 11 +φp 12 +1 p 22 φ 2 +2p 12 φ+p 11 +1 -1 -p 22 φ 2 + (p 12 +φp 22 ) 2 φ 2 p 22 φ 2 +2p 12 φ+p 11 +1 + p 22 = q η 0 0 q ξ (6)
When the damping parameter φ = 1, equation ( 6) corresponds to the algebraic Riccati equation for the local linear trend model. Based on ( 6), the analytical relationships between the elements of P c and φ, q η , q ξ are hereby shown.

Proposition 1. Given 0 < φ < 1, σ 2 > 0, σ 2 η ≥ 0 and σ 2 ξ ≥ 0, there exists a unique positive definite solution for the steady-state covariance matrix of the state vector's prediction error, P c . The solution is:

p 11 = - a - √ 2φ 2 b φ 4 + (1 -3φ 2 ) q η + φ 2 (q ξ -2) + 2 4φ 2 (7) p 12 = p 2 11 -(p 11 +1)qη -p 11 φ+φqη+φ+1 (8) p 22 = - 2(p 11 +φ+1) -p 11 φ+φqη +φ+1 + 1 -p 11 +qη +1 +p 11 +1 φ 2 (9) with a = 2φ 2 q ξ ((φ 2 + 1) q η + 2(φ + 1) 2 ) + (φ 2 -1) 2 q η (q η + 4) + φ 4 q 2 ξ b = q η (φ 2 (a + 2 (φ 2 + 1) q ξ ) + a + 4φ 4 + 4) + φ 2 (q ξ (a + φ 2 (q ξ + 4) + 4φ + 4) + 2a) + +2 a + (φ 2 -1) 2 + (φ 4 + 1) q 2 η Proof. See the Appendix A. 3
The results contained in the previous proposition pave the way for the development of the newly proposed estimator. Indeed, based on these results, the following proposition provides an estimator that truly simplifies the maximization of the log-likelihood function of the concentrated model in (5).

Proposition 2. Consider model (1) with

0 < φ < 1, σ 2 > 0, σ 2 η ≥ 0 and σ 2 ξ ≥ 0. Moreover, let q η = σ 2 η σ 2 and q ξ = σ 2 ξ
σ 2 denote the signal-to-noise ratios. It turns out that the Kalman filter in (3) reduces to the following two recursions:

l t b t = 1 φ 0 φ l t-1 b t-1 + k 1 k 2 v t (10) 
and

v t = y t -l t-1 -φb t-1 (11) with k = k 1 k 2 =            - a+φ 2 - √ 2 b φ 4 +2 +(φ 2 +1)qη+φ 2 q ξ +2 4φ 2 a- √ 2φ 2 b φ 4 + ( 1-3φ 2 ) qη +φ 2 ( q ξ -2 ) +2 2 16φ 4 -qη   1- a- √ 2φ 2 b φ 4 + ( 1-3φ 2 ) qη +φ 2 ( q ξ -2 ) +2 4φ 2   a- √ 2φ 2 b φ 4 +(1-3φ 2 )qη+φ 2 ( q ξ -2 ) +2 4φ +φqη+φ+1            (12)
where a and b are defined as in Proposition 1.

Then, it can be shown that the log-likelihood function of the concentrated model in ( 5) can be maximized by selecting the unknown parameters that minimize the sum of squared prediction errors:

( φ, qη , qξ ) = argmin (φ , qη , q ξ ) N t=2 v t 2 Proof. See the Appendix B.
The claim in Proposition 2 means that the steady-state Kalman filter can be executed by relying on the analytical solution to the algebraic Riccati equation. This determines the steady-state value for the Kalman gain vector. The transient to the steady state is then eliminated and maximization of the log-likelihood function reduces to minimization of the sum of squared prediction errors.

It is crucial to remark that the estimation method as in Proposition 2 is very similar to the innovations approach (Hyndman et al., 2008, chapter 5.1). Interestingly, Proposition 2 can also be used for the estimation of other state-space models in the MSOE framework, such as the local linear trend (by imposing φ = 1), the smooth trend (by imposing q η = 0), the local level model (by imposing q ξ = 0 and b t = 0) or the Theta Method (by imposing q ξ = 0 and b t = constant), being a local level model with drift (see discussion in [START_REF] Rob | Unmasking the theta method[END_REF].

Once the set of parameters ( φ, qη , qξ ) is chosen to minimize the sum of squared prediction errors, the unknown parameters of model (1) can be found as follows:

σ2 = N t=2 v 2 t (N -1) f c = N t=2 v 2 t (N -1)   4 â+qη +2 φ2 - √ 2 b φ4 +qη+q ξ +2   σ2 η = qη × σ2 σ2 ξ = qξ × σ2
It is worth pointing out that the state vector in (10) has to be initialized before running the estimation procedure. To this aim, the procedure as described in [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF] and in Durbin and Koopman ( 2012) is followed. Specifically, the state vector is initial-

ized with l 1 b 1 = y 1 0 .
After the state vector has been initialized, for t = 2, . . . , N , one needs to run only ( 10) and ( 11) using the steady-state Kalman gain in ( 12), and then selecting the set of values ( φ, qη , qξ ) that maximize the log-likelihood function of the concentrated model in (5) (see Appendix B).4 More specifically, starting at time t = 2, . . . , N , one does not need to run the five Kalman filter recursions as described below equation ( 2). Indeed, one can only run equations ( 10) and ( 11), which provide the prediction errors that are needed to maximize the log-likelihood function.5 

Smoothing algorithm for signal extraction

The smoothing process represents a relevant step for interpreting the underlying dynamics of a time series. In addition, the smoothing process has been recently considered as a starting point for forecasting time series [START_REF] Spiliotis | Forecasting with a hybrid method utilizing data smoothing, a variation of the theta method and shrinkage of seasonal factors[END_REF].

As shown by [START_REF] Harvey | Signal extraction and the formulation of unobserved components models[END_REF], the MSOE framework allows to estimate the smoothed state vector, being different from the filtered one in (10). Conversely, these authors show that in the SSOE framework the smoothed and filtered vectors correspond.

It is noteworthy that the results presented in Section 2 also facilitate the implementation of the smoothing algorithm. Indeed, it can be seen that the smoothing recursions provided by De Jong (1989) can be written for t = N, . . . , 1 as follows (see also [START_REF] Ansley | Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions[END_REF]:

r t-1 = z f -1 + L r t = 1 φ f -1 v t + L r t N t-1 = z zf -1 = 1 φ φ φ 2 f -1 + L N t L (13) 
where

L = T -kz =    -p 11 + q η + 1 φ (-p 11 + q η + 1) - p 2 11 -(p 11 +1)qη -p 11 φ+qηφ+φ+1 φ + p 11 - φ+p 11 +1 -p 11 φ+qηφ+φ+1 + 1    and p 11
is as in (7).

The backward recursions in (13) are initialized with r N = 0 and N N = 0 (see Durbin and Koopman, 2012, Chapter 4). Finally, the smoothing state vector can be estimated as:

E(α α α t |y N ) = a t|N = a t + Pr t-1 , t = N, . . . , 1 (14) 
We remark that the last expression, together with the one for r t-1 , both differ from those provided for example in [START_REF] Durbin | Time Series Analysis by State Space Methods[END_REF], eq. 2.37, since we use the steady-state matrix P = P c × σ 2 . This facilitates and accelerates the computation of the smoothing vector. Therefore, this represents another useful consequence of Proposition 1 and thus another contribution of this paper.

We conclude this section by noting that the smoothing process can also be considered for implementing the forecasting approach as proposed by [START_REF] Spiliotis | Forecasting with a hybrid method utilizing data smoothing, a variation of the theta method and shrinkage of seasonal factors[END_REF].

4 Comparing forecasting accuracy: A Monte Carlo simulation

Most of the forecasting literature has been focusing on comparing the performance of different exponential smoothing models estimated using the innovations approach (i.e., the SSOE formulation). From a modelling point of view, it has been shown that the MSOE approach is more restrictive than the SSOE one (see Chapter 13 in [START_REF] Hyndman | Forecasting with Exponential Smoothing: The State Space Approach[END_REF]. Accordingly, one expects the MSOE approach to perform worse than its SSOE counterpart. However, to our knowledge, little is known concerning the empirical out-of-sample forecasting accuracy of the MSOE compared to the SSOE formulation.

In this section, we present a simulation exercise that compares the forecasting performance of the damped trend model in the MSOE framework, estimated using the newly proposed estimation method, with that of the damped trend model estimated using the standard innovations approach (see Hyndman et al. 2008, chapter 5.1). The simulation is implemented using the software R.6 

Data are generated using the damped trend model as in (1), with the following addi-tional assumptions:

E( 2 t ) = σ 2 , E(η 2 t ) = α 2 σ 2 , E(ξ 2 t ) = β 2 σ 2 , E( t η t ) = ρ η ασ 2 , E( t ξ t ) = ρ ξ βσ 2 , E(η t ξ t ) = ρ ηξ αβσ 2 , with 0 ≤ ρ η ≤ 1 0 ≤ ρ ξ ≤ 1 0 ≤ ρ ηξ ≤ 1. (15) 
This data generating process encompasses both the MSOE and SSOE formulations.

Indeed, when ρ η = ρ ξ = ρ ηξ = 1, the model features a single source of error (see [START_REF] Keith Ord | Estimation and prediction for a class of dynamic nonlinear statistical models[END_REF]. On the other hand, when ρ η = ρ ξ = ρ ηξ = 0, multiple sources of error are driving the whole system [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF]. Therefore, model (1) with noises as in (15) represents the most flexible representation of the damped trend model. Note that when data are generated using model ( 1) with noises as in ( 15), both MSOE and SSOE approaches are not correctly specified. Indeed, the aim of the Monte Carlo simulation is to evaluate the forecasting performances of the two approaches considering their specific misspecification.

Model (1) with noises as in ( 15) is generated 5,000 times. All noises follow the Gaussian distribution. The number of observations is N = 50, 100, 200. Data are simulated assuming random parameters. That is, for each replication, the parameter φ is drawn from a U nif orm(0.01, 0.99), where U nif orm(a, b) stands for a Uniform distribution included between a and b. In addition, the innovation variance σ 2 as well as α and β are independently drawn from a U nif orm(0.01, 1). Lastly, ρ η , ρ ξ and ρ ηξ are drawn from a U nif orm(-1, 1). The use of random -rather than nonrandom, fixed -parameters allows the simulation experiment to be general rather than case-specific.

For each simulated series, six out-of-sample values are used as hold-out period to evaluate the forecast performance of each model (h = 1, 2, 3, 4, 5, 6-steps ahead are thus considered). Results are compared using the Mean Absolute Scaled Error (MASE) as proposed by [START_REF] Rob | Another look at measures of forecast accuracy[END_REF].

The forecasts of the damped trend using the SSOE approach are computed using the R package forecast. The forecasts of the damped trend based on results in Proposition 2 are computed using our own R code which minimizes the sum of squared prediction errors with the optim function.

Results for this experiment are presented in Table 1 (N = 50), Table 2 (N = 100) and Table 3 (N = 200) showing, for each competing damped trend model (MSOE and SSOE) and for each forecast horizon, the mean, the median and the ranking of MASE, as described by [START_REF] Hyndman | Forecasting with Exponential Smoothing: The State Space Approach[END_REF], p. 109. The ranking is defined as the percentage of series for which the MSOE damped trend outperforms the SSOE counterpart in terms of MASE.

Overall, it appears that the two approaches deliver quite similar results for N = 200. However, when the sample size gets smaller, the MSOE damped trend seems to slightly outperform the SSOE formulation in terms of forecast accuracy. This is especially true when N = 50, as can be seen by inspecting the 'Mean ratio', 'Median ratio' and 'Ranking' statistics in Table 1. Overall, these results are encouraging for the MSOE approach. Their robustness will be further assessed in the following two empirical applications, based on real data.

Empirical applications

Annual M3-competition data

In this section, we present the results of an empirical application undertaken on the 645 yearly time series from the M3-competition [START_REF] Makridakis | The m3-competition: results, conclusions and implications[END_REF]. The aim of this exercise is to compare, working with a real dataset, the out-of-sample forecasting performance of the damped trend model in MSOE form with that of the damped trend model in SSOE form. The focus is on yearly data given that both damped trend models, either in MSOE or in SSOE form, are not meant to capture any seasonality in the data. 7The yearly dataset includes several types of time series data (micro, industry, macro, finance, demographic, other). The series have different length. We refer to [START_REF] Makridakis | The m3-competition: results, conclusions and implications[END_REF] for further details and explanation on the M3-Competition database.

Each time series is divided in a training sample and in a test sample. This latter always corresponds to the last six observations. As in the Monte Carlo experiment, the prediction performances of the two models are evaluated based on 1,2,3,4,5,6-step ahead forecasts, using the MASE statistic as in [START_REF] Rob | Another look at measures of forecast accuracy[END_REF]. The forecasts of the SSOE and MSOE approaches are computed as described in the Monte Carlo section.

The results of this forecasting competition are presented in Table 4. Each row corresponds to a different forecast horizon. The table shows that the two approaches deliver quite similar results. This is true not only for the mean but also for the median of the MASE. Yet, except when h = 6, the 'Ranking' statistics seems favouring the MSOE.

Overall, we can claim that the MSOE approach, implemented using our new estimator, provides out-of-sample predictions that are rather close to those of its SSOE counterpart. This notwithstanding, the 'Ranking' statistics seems to favour the MSOE approach at forecast horizons 2,3,4,5. We believe that these novel findings confirm the usefulness of the damped trend in MSOE form, which should be considered as a competitive model in forecasting applications.

Quarterly BIS credit data

In this section, we focus on a different dataset of quarterly data, which includes time series on total credit (i.e., loans and debt securities) to the non-financial sector relative to GDP (credit-to-GDP ratio). 8 On the lending side, total credit comprises financing from all sources, including banks and other financial corporations. On the borrowing side, total credit to the non-financial sector is broken down into credit to the government sector and to the private non-financial sector (i.e., non-financial corporations and households). 9 The database is published by the Bank for International Settlements. It covers almost 50 economies with, on average, more than 45 years of data, reaching back to the 1940s and the 1950s in some cases. 10 Figure 1 shows private credit-to-GDP ratios for the United States, the United Kingdom, Japan and the Euro area. As can be evidenced in the graph, in the 1990s credit booms emerged in the United States, the Euro area and the United Kingdom, which came to a halt with the global financial crisis, whereas Japan was characterized by a significant credit deceleration. Figure 2 displays credit-to-GDP developments for the main emerging market economies (Brazil, China, India and Russia). As in advanced economies, also emerging economies recorded rapid expansion in credit, as exemplified by China, where credit rose from 100.5% of GDP in 1996:Q1 to 259.4% at the end of the sample.

The credit-to-GDP ratio plays an important role in financial stability analysis, in that it measures the build-up of excessive credit extended to the economy. The deviation of 8 Four-quarter moving sum of nominal GDP is used, implying there is little or no residual seasonality. This is an important aspect given that the damped trend is not suitable to model seasonal time series. 9 Further details are available at the webpage https://www.bis.org/statistics/about_ credit_stats.htm 10 "Long series on credit to the non-financial sector" database, accessed on October 31, 2019. The series considered refer to the credit to non-financial sector (adjusted for breaks), from all sectors, at market value, expressed as a percentage of GDP. The following economies/countries are included: All reporting countries (aggregate), emerging markets (aggregate), advanced economies (aggregate), Argentina, Austria, Australia, Belgium, Brazil, Canada, Switzerland, Chile, China, Colombia, Czech Republic, Germany, Denmark, Spain, Finland, France, G20 (aggregate), United Kingdom, Greece, Hong Kong SAR, Hungary, Indonesia, Ireland, Israel, India, Italy, Japan, Korea, Luxembourg, Mexico, Malaysia, Netherlands, Norway, New Zealand, Poland, Portugal, Russia, Saudi Arabia, Sweden, Singapore, Thailand, Turkey, United States, Euro area, South Africa.

the credit-to-GDP ratio from its long-term trend -the credit-to-GDP gap -is also used to set the Basel III countercyclical capital buffer rate, which aims to ensure that banking sector capital requirements take account of the macro-financial environment in which banks operate. Furthermore, it has been argued in the literature that excessive credit growth constitutes the best predictive indicator of financial instability, and therefore should be carefully monitored [START_REF] Jordà | Financial Crises, Credit Booms, and External Imbalances: 140 Years of Lessons[END_REF]. More specifically, several studies of past financial crises found that the credit-to-GDP ratio is a very useful early warning indicator for systemic banking crises (see, for instance, [START_REF] De | The italian financial cycle: 1861-2011[END_REF]. This motivates our interest in forecasting this variable.

The forecast evaluation exercise is designed as in the previous empirical application: each time series (271 in all) is divided in a training sample and in a test sample, which corresponds to the last six observations. The prediction performances of the two models are evaluated based on 1,2,3,4,5,6-step ahead forecasts, using the MASE. 11 Table 5 shows the out-of-sample forecast results. For each forecast horizon, 'Mean ratio' and 'Median ratio' indicate a small superiority of MSOE over SSOE. This result is confirmed by the the 'Ranking' statistics, at least at forecast horizons 1,2,3,4 (results are mixed at forecast horizons 5,6). To sum up, even if MSOE seems to slightly outperform SSOE in this application, no strong evidence emerges to indicate that MSOE delivers more accurate forecasts than SSOE.

Since simulations presented in Section 4 point out that some forecasting gains of MSOE over SSOE are possible when N = 50, we consider the same series observed on a shorter sample, starting in 2008:Q1. In such a way, all time series have 45 observations. This allows us to better appreciate the influence of the sample size on the forecasting performance of each of the two estimation methods. Results are presented in Table 6. Here, a clearer pattern can be inspected as to which model is best. MSOE definitively outperforms SSOE in terms of forecasting accuracy. This is consistently true no matter which measure ('Mean ratio', 'Median ratio', 'Ranking') is considered. In addition, as the forecasting horizon increases, the 'Ranking' highlights that the forecasting performance of MSOE tends to improve, which suggests that this forecasting method is not only useful in the short-term but also for mediumterm horizons. 

Conclusions

We have presented a simple approach for estimating the damped trend model in the MSOE framework. This newly developed estimation method hinges upon the analytical solution to the algebraic Riccati equation for the covariance matrix of the state vector's prediction error. This solution also determines the steady-state Kalman gain and the innovation variance. As a result, some of the Kalman filter recursions become redundant and this reduces the computational burden. The transient to the steady state is eliminated and therefore maximization of the log-likelihood function reduces to minimization of the sum of squared prediction errors. These results are not only useful for the evaluation of the likelihood function but can also be applied to facilitate the smoothing of the state vector, conditional on the information available in the whole sample.

In a Monte Carlo experiment, we have compared the forecasting performance of the damped trend model in MSOE form, estimated using our new method, to that of the SSOE damped trend model. Simulation results show that the out-of-sample forecasting performance of the damped trend model estimated in this fashion is at least comparable to that of its SSOE counterpart. We have further illustrated the usefulness of our estimation method in two empirical applications dealing with the annual time series from the M3-competition database [START_REF] Makridakis | The m3-competition: results, conclusions and implications[END_REF] and with quarterly time series on total credit-to-GDP data published by the Bank for International Settlements. This exercise has highlighted that the damped trend model in MSOE form competes very well with the damped trend model in SSOE form, which is considered a benchmark model difficult to beat in empirical studies of forecast accuracy [START_REF] Gardner | Why the damped trend works[END_REF]. We believe that these results might have far-reaching implications for the forecasting community.

The damped trend specification examined in this work cannot be applied to model seasonal data. This is a limitation, given that many time series exhibit seasonal patterns.

There have been several attempts in the literature to generalize the damped trend to account for seasonality. On the one hand, the damped trend model in MSOE form has been extended to include a seasonal component [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF]. On the other hand, [START_REF] Gardner | Seasonal exponential smoothing with damped trends[END_REF] modified the standard SSOE damped trend exponential smoothing to capture both multiplicative and additive seasonal patterns. In principle, it would be possible to generalize the approach suggested in this paper to more complex models featuring seasonality or other recurring systematic effects. In such a way, the damped trend model could be employed in a larger number of forecast applications, not only to predict annual time series or seasonally adjusted data. Such an extension would undoubtedly constitute a very promising research programme.

Additional research might also focus on implementing the smoothing process in conjunction with the forecasting approach as proposed by [START_REF] Spiliotis | Forecasting with a hybrid method utilizing data smoothing, a variation of the theta method and shrinkage of seasonal factors[END_REF]. Fi-of P c is strictly positive. This, together with the positivity of p 11 , satisfies the Sylvester criterion and therefore confirms that the solution is legitimate. Finally, one can also show that the remaining three solutions do not satisfy the conditions of the Sylvester criterion. This rules out the choice of these alternative solutions. Therefore, it can be concluded that the one in ( 7), ( 8) and ( 9) is the only solution for the matrix equation ( 6) allowing P c to be positive definite. This concludes the proof of Proposition 1.12 APPENDIX B: Proof of Proposition 2 Proof. As noted by [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF] and [START_REF] Durbin | Time Series Analysis by State Space Methods[END_REF], the knowledge of the steady-state solution as in Proposition 1 leads to some computational savings since some of the Kalman filter recursions become redundant. If the covariance matrix of the state vector's estimation error has a steady-state solution, then also f t and k t converge to their steady-state values, see [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF], p. 120. The analytical expressions in ( 7), ( 8) and (9) provide the algebraic solutions for the (concentrated) steady-state innovation variance (f c ) and the steady-state Kalman gain (k). Indeed, using the exact solution to the Riccati equation, it follows immediately that f c is: As a consequence, the only Kalman recursions that need to be run, once the system is in steady state, are the updating equation for the state vector and the innovations equation. That is, equations ( 10) and ( 11). Thus, at each step in time, one does not need to store the values of P c t , f c t and k t .

f c =
It remains to be proven that the minimization of the sum of squared prediction errors maximizes the log-likelihood function of the concentrated model in (5).

At the steady state, defining f = f c × σ 2 , we can derive the log-likelihood function of the concentrated model in (5) as follows: Given that f c is a constant, the concentrated log-likelihood can be maximized by

log L c = - N 2 log(2π) - 1 2 N t=1 log(f c × σ 2 ) - 1 2 N t=1 v 2 t f c × σ 2 = = - N 2 log(2π) - N 2 log(f c ) - N 2 log(σ 2 ) - 1 2 N t=1 v 2 t f c × σ 2 (B.
minimizing σ2 = 1 N N t=1 v 2 t f c
, that is by minimizing the sum of squared prediction error v t . This was already shown for the simple exponential smoothing by [START_REF] Harvey | Analysis and generalisation of a multivariate exponential smoothing model[END_REF], who defines this estimation procedure as approximate maximum likelihood estimation (p. 440). Using similar arguments, we can show that this procedure also works for model (5), as long as a closed-from expression for the Riccati solution P c is available.

The approximate maximum likelihood estimation has been also employed [START_REF] Sbrana | Random switching exponential smoothing: A new estimation approach[END_REF] (see their Proposition 1) to which we refer for further details.
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 1 Figure 1: Credit to GDP ratios: US, UK, Japan and Euro Area
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 2 Figure 2: Credit to GDP ratios: Emerging market economies

  zP c z + 1 = p 22 φ 2 + 2p 12 φ + p 11 + 1 b are defined as in Proposition 1.13 Moreover, the steady-state Kalman gain k can be obtained as:k = TP c z (f c ) 2 +2p12 φ+p 11 +1 φ(p 12 +φp 22 ) p 22 φ 2 +2p 12 φ+p 11 +1 for p 11 as in (7) in equation (B.2) yields equation (12).

Table 1 :

 1 Out-of-sample forecast comparison of MSOE vs. SSOE (N = 50) Mean' and 'Median' reports, for each forecast horizon (no. steps ahead) and for each damped trend model (MSOE versus SSOE), the mean and the median of the corresponding MASEs. Columns 'Mean ratio' and 'Median ratio' report M ean M SOE M ean SSOE and M edian M SOE M edian SSOE , respectively. The column 'Ranking' reports the percentage of series for which the MSOE outperforms the SSOE in terms of MASE.

	no. steps Mean Mean Mean Median Median Median Ranking
	ahead	MSOE SSOE Ratio MSOE SSOE	Ratio	
	h = 1	0.829 0.844 0.982 0.693	0.702	0.987	0.521
	h = 2	0.860 0.873 0.985 0.771	0.775	0.994	0.519
	h = 3	0.887 0.903 0.983 0.803	0.818	0.981	0.529
	h = 4	0.918 0.937 0.980 0.824	0.836	0.986	0.533
	h = 5	0.947 0.968 0.979 0.843	0.855	0.986	0.535
	h = 6	0.975 0.998 0.977 0.856	0.871	0.983	0.539
	mean	0.903 0.920 0.981 0.798	0.810	0.986	0.529
	Notes. Columns '				

Table 2 :

 2 Out-of-sample forecast comparison of MSOE vs. SSOE (N = 100) Mean' and 'Median' reports, for each forecast horizon (no. steps ahead) and for each damped trend model (MSOE versus SSOE), the mean and the median of the corresponding MASEs. Columns 'Mean ratio' and 'Median ratio' report M ean M SOE M ean SSOE and M edian M SOE M edian SSOE , respectively. The column 'Ranking' reports the percentage of series for which the MSOE outperforms the SSOE in terms of MASE.

	no. steps Mean Mean Mean Median Median Median Ranking
	ahead	MSOE SSOE Ratio MSOE SSOE	Ratio	
	h = 1	0.837 0.839 0.998 0.699	0.703	0.993	0.502
	h = 2	0.862 0.867 0.994 0.773	0.783	0.987	0.513
	h = 3	0.888 0.893 0.994 0.808	0.813	0.993	0.518
	h = 4	0.912 0.917 0.994 0.821	0.828	0.992	0.520
	h = 5	0.936 0.942 0.994 0.840	0.840	1.000	0.519
	h = 6	0.964 0.971 0.993 0.855	0.861	0.992	0.528
	mean	0.900 0.905 0.995 0.799	0.805	0.993	0.517
	Notes. Columns '				

Table 3 :

 3  

	no. steps Mean Mean Mean Median Median Median Ranking
	ahead	MSOE SSOE Ratio MSOE SSOE	Ratio	
	h = 1	0.826 0.824 1.002 0.696	0.702	0.992	0.491
	h = 2	0.852 0.852 1.000 0.767	0.765	1.002	0.502
	h = 3	0.881 0.881 1.000 0.801	0.805	0.995	0.499
	h = 4	0.905 0.905 1.000 0.827	0.827	1.000	0.504
	h = 5	0.930 0.930 1.000 0.839	0.840	0.998	0.502
	h = 6	0.953 0.953 1.000 0.845	0.846	0.999	0.503
	mean	0.891 0.891 1.000 0.796	0.797	0.998	0.500
	Notes. Columns 'Mean' and 'Median' reports, for each forecast horizon (no. steps ahead) and for each
	damped trend model (MSOE versus SSOE), the mean and the median of the corresponding MASEs.
	Columns 'Mean ratio' and 'Median ratio' report M ean M SOE M ean SSOE and M edian M SOE M edian SSOE , respectively. The
	column 'Ranking' reports the percentage of series for which the MSOE outperforms the SSOE in terms
	of MASE.				

Table 4 :

 4 Out-of-sample forecast comparison of MSOE vs. SSOE based on annual M3 data Mean' and 'Median' reports, for each forecast horizon (no. steps ahead) and for each damped trend model (MSOE versus SSOE), the mean and the median of the corresponding MASEs. Columns 'Mean ratio' and 'Median ratio' report M ean M SOE M ean SSOE and M edian M SOE M edian SSOE , respectively. The column 'Ranking' reports the percentage of series for which the MSOE outperforms the SSOE in terms of MASE.

	no. steps Mean Mean Mean Median Median Median Ranking
	ahead	MSOE SSOE Ratio MSOE SSOE	Ratio	
	h = 1	1.162 1.117 1.040 0.746	0.745	1.000	0.504
	h = 2	1.497 1.468 1.019 0.947	0.991	0.955	0.526
	h = 3	1.875 1.884 0.995 1.179	1.214	0.971	0.521
	h = 4	2.230 2.250 0.991 1.420	1.405	1.010	0.535
	h = 5	2.571 2.581 0.996 1.659	1.646	1.008	0.515
	h = 6	2.899 2.873 1.009 1.907	1.878	1.015	0.493
	mean	2.039 2.029 1.008 1.309	1.313	0.993	0.516
	Notes. Columns '				

Table 5 :

 5 Out-of-sample forecast comparison of MSOE vs. SSOE based on quarterly Mean' and 'Median' reports, for each forecast horizon (no. steps ahead) and for each damped trend model (MSOE versus SSOE), the mean and the median of the corresponding MASEs. Columns 'Mean ratio' and 'Median ratio' report M ean M SOE M ean SSOE and M edian M SOE M edian SSOE , respectively. The column 'Ranking' reports the percentage of series for which the MSOE outperforms the SSOE in terms of MASE.

	BIS credit data				
	no. steps Mean Mean Mean Median Median Median Ranking
	ahead	MSOE SSOE Ratio MSOE SSOE	Ratio	
	h = 1	0.634 0.636 0.997 0.506	0.499	1.013	0.528
	h = 2	0.777 0.781 0.995 0.653	0.653	1.001	0.528
	h = 3	0.978 0.988 0.990 0.795	0.799	0.994	0.531
	h = 4	1.181 1.197 0.986 0.961	0.981	0.980	0.524
	h = 5	1.353 1.373 0.986 1.101	1.137	0.968	0.491
	h = 6	1.508 1.528 0.987 1.241	1.294	0.959	0.469
	mean	1.072 1.084 0.990 0.876	0.894	0.986	0.512
	Notes. Columns '				

Table 6 :

 6 Out-of-sample forecast comparison of MSOE vs. SSOE based on quarterly BIS credit data, shorter sample (2008:Q1-2019:Q1) Mean' and 'Median' reports, for each forecast horizon (no. steps ahead) and for each damped trend model (MSOE versus SSOE), the mean and the median of the corresponding MASEs. Columns 'Mean ratio' and 'Median ratio' report M ean M SOE M ean SSOE and M edian M SOE M edian SSOE , respectively. The column 'Ranking' reports the percentage of series for which the MSOE outperforms the SSOE in terms of MASE.

	no. steps Mean Mean Mean Median Median Median Ranking
	ahead	MSOE SSOE Ratio MSOE SSOE	Ratio	
	h = 1	0.626 0.667 0.939 0.520	0.536	0.970	0.572
	h = 2	0.748 0.814 0.919 0.651	0.688	0.946	0.583
	h = 3	0.960 1.040 0.923 0.761	0.872	0.873	0.598
	h = 4	1.185 1.278 0.927 0.959	1.115	0.860	0.613
	h = 5	1.356 1.460 0.929 1.160	1.308	0.886	0.616
	h = 6	1.513 1.612 0.939 1.330	1.421	0.935	0.616
	mean	1.065 1.145 0.929 0.897	0.990	0.912	0.600
	Notes. Columns '				

Throughout this paper we use this convention: M is a matrix and M is its transpose, v is a column vector such that v is a row vector. A lower-case letter, such as x, represents a scalar.

The interested reader is also referred toHarvey (1989), p. 126. 

Analytical solutions to the Riccati equation (i.e., the covariance matrix of the state estimation error in steady state) are in general not available. A notable exception is the exponentially weighted moving average (EWMA), whose algebraic Riccati solution is provided by[START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF] (see equation (4.1.22) on page 175).

Where the notation ( φ, qη , qξ ) denotes estimated values in an empirical context.

Note that our estimation procedure provides very similar results compared to maximum likelihood estimation based on the standard Kalman filter. Indeed, since the rate of convergence of the matrix P t to its steady-state is exponentially fast, requiring just few observations, the impact on the likelihood evaluation is negligible.

The code for this simulation (including the implementation of Proposition 2) is available from the authors upon request.

The R code developed for this empirical application is available from the authors upon request.

The R code developed for this empirical application is available from the authors upon request.

All the results as well as the numerical proofs have been derived using M athematica 9 by Wolfram Mathematica (2013). Due to space limitations the solutions that do not satisfy the Sylvester criterion are not shown. If needed, these are available from the authors upon request.

The innovation variance for the ARIMA(1,1,2) representation of the damped trend model was previously derived by[START_REF] Sbrana | Damped trend exponential smoothing: prediction and control[END_REF].

nally, it would be interesting to compare the forecasting performances of the MSOE and SSOE formulations of other state-space models. All these issues are left for future investigations.

APPENDIX APPENDIX A: Proof of Proposition 1

Proof. We proceed by first showing the existence of four analytical solutions for the matrix equation ( 6). Secondly, we show that only the solution as in the Proposition 1 allows P c to be positive definite, therefore it is the unique legitimate solution.

Recalling the Sylvester criterion (theorem 7.2.5 in [START_REF] Horn | Matrix Analysis[END_REF], there are two necessary and sufficient conditions in order to guarantee that P c is positive definite. The first condition is that p 11 must be strictly positive. The other condition is that the determinant of P c must be positive.

Solving the upper-left equation of the Riccati matrix equation with respect to p 12 yields (8). Substituting this solution into the extra-diagonal equation of ( 6), and solving with respect to p 22 , we obtain (9).

Finally, substituting the solutions for p 22 and p 12 in the bottom-right equation gives:

This equation has four different solutions for p 11 . However, it can be numerically shown that the only strictly positive solution is (7).

In addition, substituting (7) into the expressions for p 12 and p 22 yields (8) and ( 9).

It can be shown numerically that (7), ( 8) and ( 9) jointly guarantee that the determinant