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Collusion or Not: The Optimal Choice of Competing Retailers in a  

Closed-Loop Supply Chain   

 

Abstract: While previous studies overlook the collusive behavior of retailers under bidirectional 

competition, we study a closed-loop supply chain (CLSC) consisting of one manufacturer and two 

competing retailers whose competition exists in the forward and reverse channels. Considering the 

retailers’ potential collusive behavior and the upstream manufacturer’s interactive decisions, we build 

three two-tier game models: Stackelberg-collusion model, Stackelberg-Nash model, and 

Stackelberg-Stackelberg model. We first obtain the equilibrium decisions of the manufacturer and the 

retailers in the three models. Furthermore, we investigate whether collusion is beneficial to the two 

retailers. We find that the retailers’ collusion always brings remarkable profit improvement to them as 

a whole, while the smaller retailers may suffer severe profit loss. A profit-sharing contract is, therefore, 

designed to guarantee that each retailer can gain more profit by collusion. We also compare the 

environmental benefit and social welfare among the three models and find that collusion may do harm 

to the environment or social welfare compared with other models.  

Keywords: supply chain management; recycling competition; demand competition; collusion; 

closed-loop supply chain 

 

1. Introduction 

Remanufacturing is now attracting increasing attention because of the related regulations and 

legislations, the well-accepted sustainable development concept, as well as its economic benefit. In a 

wide range of industrial sectors, such as automobiles and consumer electronics, companies have been 

making efforts to collect used products, which are also referred to as cores (Ferguson and Toktay, 2006; 

Ferrer and Swaminathan, 2006; Östlin et al., 2008; Bulmus et al., 2014).  

This research is partially motivated by the observation of competing firms’ cooperation/collusion 

in the recycling business. For example, in Sweden, Netherlands, Belgium, and Norway, some 

competing firms build alliances to collect electrical and electronics waste (Atasu and Subramanian, 

2012). Panasonic has created recycling systems to handle returned products that are from their 

competitors in Japan (Modak et al., 2016). In such cases, competing stakeholders may act 

cooperatively to make corresponding decisions to make themselves better off. This collusive behavior 

has attracted increasing attention of scholars, including Clark and Houde (2013), Hu et al. (2014), 

Hosseini-Motlagh et al. (2018), and Zheng et al. (2018).  

However, relevant research on retailers’ collusive behavior with bidirectional (forward and reverse) 

competitions in a closed-loop supply chain is rather limited. Most existing literature pay attention to 
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the competition in one direction and usually ignore retailers’ collusion. Therefore, it remains unclear 

how such combinational competitive conditions influence the equilibrium decisions of supply chain 

members. Further, it is also debatable whether retailers should adopt collusion considering the 

upstream manufacturer’s pricing strategy. In this research, we seek to answer the following question: 

Should two competing retailers adopt collusion when they face forward and reverse competitions in a 

closed-loop supply chain? Specifically, we solve three research problems. First, what are the 

equilibrium decisions of two retailers and the manufacturer when retailers make collusion and do not? 

How do equilibrium decision variables differ among different models? Second, does collusion always 

bring more profit to retailers compared with the case of no collusion? Third, from the perspectives of 

environment impact or social welfare, is collusion still the optimal choice for retailers?  

To answer these research questions, we consider two cases with and without collusion. In the 

former case, the retailers make decisions jointly on ordering quantities and reverse investment to 

maximize their total profits. In the latter case, the two retailers make decisions, and the objective is to 

maximize individual profit. Based on the game theory, the decision-making process in the latter case 

may be simultaneous or sequential. For simultaneous game, the two retailers make decisions at the 

same time by anticipating the other’s strategy. In equilibrium, no one can gain more profit by changing 

his strategy unilaterally. For sequential game, one retailer (the leader) moves first, and the other retailer 

(the follower) moves later after observing the leader’s decisions. In the three models, the manufacturer 

moves before the retailers, that is, the manufacturer first determines the wholesale and transfer prices, 

and then the two retailers make decisions. To summarize, based on the behavior of the manufacturer 

and two retailers, we study three two-tier models, namely, Stackelberg-collusion model, 

Stackelberg-Cournot model, and Stackelberg-Stackelberg model.  

This study provides several contributions in the closed-loop supply chain. First, different from 

previous research that usually ignores retailers’ collusive behavior in a closed-loop supply chain and 

only considers one directional competition, we study retailers’ competition in two directions (i.e., 

forward and reverse channels) with three types of behavior modes (i.e., collusion, Nash game, and 

Stackelberg game). By deriving the equilibrium decisions, we find that the manufacturer’s pricing 

decisions are different from those in the case with only forward competition, as is studied in most 

literature. Second, by comparing the profits among the three models, we find that collusion always 

brings two competing retailers noticeable profit improvement, even though the manufacturer may 

change his pricing decisions when collusion takes place. Numerical experiments reveal the conditions 

under which the profit improvement is the most remarkable. However, the smaller retailer may suffer 

severe profit loss because of collusion. Third, we design a Nash arbitration scheme to guarantee a 

win-win situation. We also compare the environmental benefit and social welfare among three models 

and find that collusion may not be the optimal choice.  
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This paper proceeds as follows: In Section 2, we make a relevant literature review and state our 

contribution. In Section 3, we present three model settings and basic assumptions. In Section 4, we 

derive the equilibrium decisions and profits in the three models. Section 5 presents a comparative 

analysis among different models. The concluding remarks are in Section 6. The proof is in the 

Appendix.  

 

2. Literature Review  

Our research is closely related to three streams: (1) competition/cooperation in closed-loop supply 

chains; (2) interactive behaviors of closed-loop supply chain members; (3) sustainable supply chain 

management. They are presented in following Sections 2.1-2.3 and the research gap and our 

contributions is presented in Section 2.4.  

2.1 Competition/cooperation in a closed-loop supply chain  

This research is related to the stream on competition/cooperation in a closed-loop supply chain. Some 

research focuses on forward channel competition. The forward channel demand competition between 

an original equipment manufacturer (OEM) and an independent remanufacturer (IR) has been 

investigated, taking into account the product quality, social welfare (Mitra and Webster, 2008), or 

government subsidies (Oersdemir et al., 2014). Fuzzy theory, which can handle the uncertainties in the 

supply chain, has been combined with the game theory to study the pricing decisions with retail 

competition (Wei and Zhao, 2011). The demand competition between two supply chains is also 

investigated, and the equilibrium strategies are obtained (Wu and Zhou, 2017). Other research focuses 

on reverse channel competition. The competition between two independent stakeholders on collecting 

cores in the reverse channel has been widely investigated, including the competition between a retailer 

and a third party (Huang et al., 2013; Yi et al., 2016), a manufacturer and a retailer (He et al., 2019), 

and a manufacturer and a third party (Liu et al, 2017). In addition, the competition between two 

recycling alliance is also attracting increasing attention (Ma et al., 2018). To summarize, most of the 

studies the competition in a closed-loop supply chain in single dimension except very limited studying 

bidirectional competition including the following. Bulmus et al. (2014) consider the competitions 

between an original equipment manufacturer and an independently operating remanufacturer. Johari 

and Hosseini-Motlagh (2019) consider the competitions between two retailers in the forward channel 

and the reverse competition between two third-party collectors. 

Faced with competition, supply chain members have the incentive to cooperate for the sake of 

higher profits. Clark and Houde (2013) study the case that gasoline retailers make collusion by fixing 

prices. Zheng et al. (2018) examine the interaction between the manufacturer's channel strategy and the 

downstream retailers' collusive behavior. They find that retailers’ collusion can be deterred by 

changing the manufacturer’s channel strategy. Hosseini-Motlagh et al. (2018) study retailers’ collusion 

behavior through determining credits. Seyedhosseini et al. (2019) study retailers’ collusive decisions 
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on prices in the presence of manufacturer’s investment in corporate social responsibility effort. In 

summary, the existing literature assume supply chain members make collusive decision in single 

dimension, such as the price or credit, while the research on collusion in multiple dimensions are rather 

limited. Recently, Johari and Hosseini-Motlagh (2019) study the case that two retailers make collusion 

on prices and two third-party collectors make collusion on recycling rates. Differently, we study the 

case that two retailers make collusion on both quantities and recycling rates.    

2.2 Interactive behaviors of closed-loop supply chain members  

The performances of the closed-loop supply chain under various channel structures are examined, 

including retailer-led, manufacturer-led, and collector-led models. In these models, the 

decision-making process of different stakeholders follows Stackelberg game. It is found that the 

retailer-led model is the most effective (Choi et al., 2013), and each member has the incentive to act as 

the leader (Zheng et al., 2017). The Nash model, where several stakeholders move simultaneously, is 

also studied (Gao et al., 2016; Maiti and Giri, 2015). Some specialized environments are considered, 

including the government reward-penalty mechanism (Wang et al., 2015) and the fuzzy recycling cost 

(Ke et al., 2018). Johari and Hosseini-Motlagh (2019) consider different game behaviors in the forward 

and reverse links under decentralized, centralized, and coordinated decision-making structures. 

Reviewing the above literature, we find more attention is paid to one-tier game between supply chain 

members while less attention is paid to two-tier game. Recently, Hosseini-Motlagh et al. (2019) study a 

two-tier Stackelberg game between a remanufacturer and two collectors. The remanufacturer acts as 

the first-tier Stackelberg game leader. Two collectors play the second-tier Stackelberg game where 

they move sequentially to determine acquisition prices in the reverse channel. We also study a two-tier 

Stackelberg game and our work differs in that our decisions variables in the second-tier game includes 

return rates in the reverse channel and selling prices in the forward channel. In addition, they assume 

the remanufacturer builds a direct channel to sell remanufactured products while we assume retailers 

act as the intermediary to distribute new and remanufactured products. The profit allocation and 

coordination mechanism is also different between two papers. Specifically, they propose a two-way 

two-part tariff contract and we allocate the profit surplus based on Nash arbitration scheme.  

2.3 Sustainable supply chain management 

The research about sustainable supply chain management is now attracting increasing attention. As an 

important aspect of sustainability, carbon emission has been taken into account by relevant research 

(Hugo and Pistikopoulos, 2005; Diabat and Alsalem, 2015). Das and Posinasetti (2015) integrate 

environmental concerns in a closed-loop supply chain model to improve overall SC performance. Gao 

et al. (2016) examine the influence of different channel power structures on the optimal decisions and 

performance of a closed-loop supply chain (CLSC) from the perspective of profit and environment. 

Modak et al. (2016) propose a two-stage competitive CLSC and coordination model to improve 

environmental and economic aspects of sustainability. Zhu and Sarkis (2007) find that environmentally 
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friendly practices have a positive effect on economic and environmental performance based on an 

empirical study in China. Panigrahi and Bahinipati (2019) summarize that the research in sustainable 

supply chain management primarily considers the environmental issues whereas the social aspect is 

ignored. Wang et al. (2017) investigate the relationship between profitability and environmental goals 

in a reverse supply chain. The main finding is that while they often conflict, they may align under 

certain conditions. We can conclude that very few literature considers all perspectives of sustainability 

(profit, environment and society) simultaneously. In addition, collusion behavior is often ignored. 

Mostly related to our research, Johari and Hosseini-Motlagh (2019) propose an analytical coordination 

model to cover all three dimensions of sustainability. They measure the social welfare by the sum of 

firms’ profits and consumer surplus. Different from that, we also incorporate the environment benefit 

when calculating the social welfare. In addition, we find the conditions under which confliction exists 

between profitability and environment benefit/social welfare.  

2.4 Research gaps and our contributions 

To better position our study, we compare this research with some closely related ones in Table 1. 

According to the above subsections and Table 1, the research gap and our contributions are identified 

as follows.  

First, unlike the research of competition/cooperation in a closed-loop supply chain that considers 

the competition in single dimension, we study the case that retailers play dual roles in the two channels 

of a closed-loop supply chain. In this context, we investigates their demand competition in the forward 

channel and reverse competition in the reverse channel. In addition, their collusion decisions in two 

channels are also investigated.  

Second, unlike the research of interactive behaviors of closed-loop supply chain members that 

usually studies one-tier Stackelberg game between different supply chain members, we also study a 

more complicated two-tier Stackelberg game between the manufacturer and two competing retailers.  

Third, unlike the research of sustainable supply chain management that usually considers 

sustainability from the environment, we make a comprehensive analysis of retailers’ collusion behavior 

from three perspectives including firms’ profits, environmental benefit and social welfare. More 

important, we investigates the potential confliction between different perspectives. This work helps 

make a better understanding of the effect of retailers’ collusion behavior on sustainability in the context 

of closed-loop supply chain. 

Table 1. Comparison of our work with related literature 

Research Paper 

Forward 

channel 

competition  

Reverse 

channel 

competition 

Collusion   
Two-tier Stackelberg 

game 

Savaskan and Van Wassenhove (2006) √ × × × 

Mitra and Webster (2008) √ × × × 
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Oersdemir et al. (2014) √ × × × 

Wu and Zhou (2017) √ × × × 

Yang and Zhou (2006) √ × √ √ 

Clark and Houde (2013) √ × √ × 

Zheng et al. (2018) √ × √ × 

Huang et al. (2013) ; Hong et al. 

(2013); Liu et al. (2017) 
× √ × × 

Hosseini-Motlagh et al. (2019) × × × √ 

Johari and Hosseini-Motlagh (2019) √ √ √ × 

Hosseini-Motlagh et al. (2018)  √ × √ √ 

Seyedhosseini et al. (2019) √ × √ × 

Our work √ √ √ √ 

 

3. Model  

We consider a closed-loop supply chain consisting of a manufacturer and two retailers. In the forward 

channel, the manufacturer distributes one kind of product via two retailers to consumers. In the reverse 

channel, two retailers collect used products (cores) and then return them to the manufacturer. These 

cores are then utilized for remanufacturing products.  

We assume no difference exists between remanufactured and new products. This assumption is 

widely used in relevant literature on CLSC, including Savaskan et al. (2004), Savaskan and Van 

Wassenhove (2006), Akcali and Cetinkaya (2011), Atamer et al. (2013), Bulmus et al. (2014), Hong et 

al. (2015), Wang et al. (2016), and Liu et al. (2017). It means that remanufactured products, with the 

same quality and warranty, are perfect substitutes to new ones so that consumers cannot distinguish 

them. We can find supporting examples such as single-use cameras (Akcali and Cetinkaya, 2011) and 

reusable containers for beverage and food manufacturing, packaging, and transportation (Atamer et al., 

2013).  

In the research, we consider that the market price is a linear function of product quantities, that is, 

( , {1,2}, )i i i jp q dq i j i jα= − − ∈ ≠ . This linear inverse demand function is widely used in the 

fields of economics, marketing, operation management, and supply chain management to model 

demand competition. We refer to Arya et al. (2008), Farahat and Perakis (2011), Wang et al. (2013), 

Bagchi and Mukherjee (2014), and Wu and Zhou (2017) for details. In this research, we consider that 

the competition intensity or the substitution degree is identical, that is, i jd d d= = , and this 

assumption can be easily extended to the case where i jd d≠ .  

The return rate depends on retailers’ effective investment. In the real world, firms often make 

investment in promotional/advertising activities to encourage consumers to return used products 
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(Savaskan et al., 2004; Savaskan and Van Wassenhove, 2006). We use a strictly convex increasing 

function to model the investment cost of cores collection. First of all, one retailer’s return rate 

concavely increases with his investment, which has been adopted by Savaskan et al. (2004), Savaskan 

and Van Wassenhove (2006), Hong et al. (2015), and Hong et al. (2017). In addition, when 

competition for limited cores in the reverse channel is taken into account, it is obvious that one 

retailer’s return rate increases with her own investment while decreases with the competitor’s 

investment. Specifically, we use 1 1 2( ) /I kI Cτ = −  and 2 2 1( ) /I kI Cτ = − to model their return 

rates respectively, where k  denotes reverse competition intensity. This function has been used in 

Huang et al. (2013) and Liu et al. (2017). In fact, one can regard ( , {1,2}, )i jI kI i j i j− ∈ ≠  as an 

effective investment of Retailer i , and this function indicates that the return rate depends on effective 

investment. In addition, we assume sufficiently large C  to guarantee 1 2 1τ τ+ < . Based on these 

two equations, we can equivalently obtain 
2 2 2

1 1 2( ) / (1 )I C kC kτ τ= + −  and 

2 2 2
2 2 1( ) / (1 )I C kC kτ τ= + − .  

To explore whether the collusive behavior always creates more profit to retailers in the presence of 

the strategic manufacturer, we examine three models consisting of one manufacturer and two retailers.  

The three specific models are as follows: (1) Stackelberg-Collusion game (Model SCL), wherein the 

manufacturer acts as the Stackelberg leader and determines the common wholesale price ( w ) and 

transfer price ( b ). Afterward, the two retailers cooperate with each other and jointly make decisions 

on quantities and return rates to maximize their total profit. In this model, two retailers cooperate and 

build an alliance. (2) In the Stackelberg-Cournot game (Model SCN), the manufacturer is still the 

leader. Afterward, each self-interested retailer makes her own quantity and return rate at the same time. 

(3) In the Stackelberg-Stackelberg game (Model SS), the manufacturer acts as the leader and makes 

pricing decisions again. Afterward, one retailer moves first, and the other retailer moves after 

observing the first mover’s action. Without loss of generality, we assume Retailer 2 is the first mover. 

The three models are illustrated in Figure 1.  
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Figure 1. Three models of CLSC with competing retailers  

For ease of explanation, we list all notations in the following Table 2.  

Table 2. Notations 
Decision variables 

w  Wholesale price 

i
q  Ordering quantity of retailer i , and {1,2}i ∈  

b Transfer price of unit used product from retailers to the manufacturer 

i
τ  Return rate of retailer i , and {1,2}i ∈  

Model parameters 

i
α

 
Retailer i ’s market scale, and {1, 2}i ∈  

i
p

 
Retailer i ’s retail price, and {1, 2}i ∈  

d  
Demand competition intensity between retailers, and (0,1)d ∈  

k 
Reverse competition intensity between retailers, and (0,1)k ∈  

n
c

 
Unit cost of new product 

r
c

 Unit cost of remanufactured product and r n
c c<

 

∆  
Cost saving due to remanufacturing, and 0

n r
c c∆= − >

 

i
I

 
Investment of retailer i , and {1,2}i ∈  

C  
Scaling parameter between collecting investment and return rate 

e  The environmental benefit for unit recycled product 
y

xπ
 The profit of firm x in Model y , where 1 2{ , , , }x m r r r∈  and {SCL, SCN,SS}y ∈  

( )* The notation of optimality/equilibrium 

 

4. Equilibrium Analysis  

�2 �2 �
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(c) Model SS 
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Reverse Flow 
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In this section, we sequentially analyze the equilibrium results in Model SCL, Model SCN, and Model 

SS. In addition, we compare the manufacturer’s and the retailers’ equilibrium decisions among models. 

We use superscripts SCL, SCN, SS to differentiate the models and their corresponding variables to 

avoid ambiguity.  

4.1 Stackelberg-Collusion Game (Model SCL) 

In the Stackelberg-Collusion game, which is abbreviated as Model SCL, the sequence of events is 

of two stages.  

(1) In anticipation of the retailers’ decisions, the manufacturer decides the wholesale price w  

and the unit tranfer price b  to maximize his profit function. Referring to Savaskan et al. 

(2004), we write the profit function as follows: 

               1 2 1 2( , ) [ ( )( )]( )
m n

w b w c b q qπ τ τ= − + ∆− + + ,                  (1) 

where 1 2( )w q q+  is the revenue of selling products to retailers , 1 2 1 2[ ( )]( )
n

c q qτ τ−∆ + +

is total production cost and 1 2 1 2( )( )b q qτ τ+ +  is the transfer payment to collectors.   

(2) Given that w  and b are determined by the manufacturer, Retailer 1 and Retailer 2 jointly 

make decisions on 1q , 2q , 1τ , 2τ  to maximize their total profit 1 2r r r
π π π= +  as 

follows:  

   1 2 1 2

1 1 2 1 2 2 1 2 1 2 1 2 1 2

( , , , | , )

( ) ( ) [ ( )]( ) ( )
r

q q w b

q dq w q q dq w q b q q I I

π τ τ
α α τ τ= − − − + − − − + + + − +

,   

(2)  

where the first term represents Retailer 1’s profit in the forward channel, the second term 

represents Retailer 2’s profit in the forward channel, the third term represents the payment of 

manufacturer for returned items and the last term represents the total investment costs. Note that 

without any designed profit allocation scheme, the profit of Retailer 1 is 

1 1 1 2 1 1 1 2 1( ) ( )
r

q dq w q b q q Iπ α τ= − − − + + −  and the profit of Retailer 2 is 

2 2 2 1 2 2 1 2 2( ) ( )
r

q dq w q b q q Iπ α τ= − − − + + − .  

There becomes a subgame perfect equilibrium, and we apply backward induction method to solve 

this problem. Specifically, we first solve retailers’ best-response functions of 1q , 2q , 1τ , 2τ , 

given w  and b . The results are shown in Lemma 1.  

Lemma 1. Under given w  and b , the retailers’ best-response functions are as follows:  

( )
SCL* 1 2 2 1
1 2

( 2 )

4(1 ) 4 (1 ) (1 )

w
q

C

d d b kC

α α α α− + −+
− + − −

= , ( )
SCL* 2 1
2

2 1
2

( 2 )

4(1 ) 4 (1 ) (1 )

w
q

C

d d b kC

α α α α− + −
+ −

= +
− −

, 
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( )
( )

1 2SCL* SCL*
1 2 2

(1 ) 2

4 (1 ) (1 )

b k w

d bC k

α α
τ τ

+
+ −

−−
−

= = . 

  By Lemma 1, we find that the return rates of Retailer 1 and Retailer 2 are equal. Moreover, the 

return rate decreases linearly in the wholesale price, which reflects the interaction between the forward 

and the reverse channels. As the wholesale price decreases, retailers order and sell more, and therefore, 

more proportionally used products are available for recycling, which motivates the retailers to invest 

more on recycling. Interestingly, the return rate is nonlinearly increasing in b . The reason is that in 

addition to motivating direct recycling, a larger transfer price b  can also enhance the return rate by 

stimulating more demand. With the dual effect of b , the return rate increases more drastically than 

b . Another observation is that the gap between the two retailers’ quantities only depends on the gap 

of their market scales and the forward competition intensity. The retailer who has a larger market scale 

orders more quantity, which is intuitive.  

By the results in Lemma 1 and the first-order conditions, we obtain the manufacturer’s 

equilibrium wholesale price and transfer price, which are shown in Theorem 1. 

Theorem 1. In Model SCL, the manufacturer’s equilibrium wholesale price and transfer price are 

as follows:  

*SCL 1 2

4

2
n

c
w

α α+ += , 
*S C L

b = ∆ . 

 The retailers’ equilibrium decisions are: ( )
*

1SCL 1 2 2
1 2

( )(

4(1 ) 8 (1 ) (1

2

)

) nC c
q

Cd d k

α αα α ++
− + − −

−−
∆

= ,

( )
*SCL 2 12 1

2 2

( )(

4(1 ) 8 (1 ) (1

2)

)
nq

C c

Cd d k

α αα α +
− + − −

+ −−
∆

= , and 
( )( )

* *
1SCL S 2

2 2

CL
1

(1 )( )

8 1 (1

2

)
nk c

d kC

α ατ τ ∆ − +
+ − −

−=
∆

= . 

Based on Theorem 1, the equilibrium profit of the manufacturer is

( )
( )

*

2

1 2SCL

2

2

16 (1 ) ( 1 )
n

m
d

C

C

c

k

α α
π

− + +
=

+ + − + ∆
. We now make a simple comparison with the case of no 

remanufacturing. According to Zhou and Yang (2006) that study duopolistic retailers’ collusion 

behavior without remanufacturing, we can obtain the profit of the manufacturer and the total demand 

is 
( )2

1 2 2

16(1 )
n

c

d

α α+ −
+

 and 
1 2 2

4(1 )
nc

d

α α+ −
+

, respectively. We find that both of them are smaller than 

that in the investigated case with remanufacturing. The comparison implies that although there is no 

direct economic benefit from recycling and remanufacturing in the reverse channel (b = ∆ ), the 

manufacturer mainly benefits from larger demands in the forward channel.    

For each retailer, the ordering quantity increases with her own market scale and decreases with 

the rival’s. However, the return rate increases with her own market scale or the rival’s. We also find 
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that the market scale has great impact on the profit distribution. When the retailers are symmetric 

( 1 2α α α= = ), 
2

SCL* SCL*
1 2 2

( )

16[ (1 ) ( 1 ) ]
n

r r

c

d

C

C k

απ π −= =
+ + − + ∆

, 
( )

( )
2

SCL*

24 (1 ) ( 1 )
n

m

C

C

c

d k

α
π

−
=

+ + − + ∆
, 

and 
SCL*

SCL* SCL*
1 2

2m

r r

π
π π

=
+

. That is, the manufacturer’s profit is the double of the two retailers’ total profit.  

4.2 Stackelberg-Cournot Game (Model SCN) 

In the Stackelberg-Cournot game, which is abbreviated as Model SCN, two retailers make 

decisions simultaneously after the manufacturer makes pricing decisions. At equilibrium, neither 

retailer can gain more profit if she unilaterally changes her own strategy.  

The sequence of events is of two stages: (1) The manufacturer decides the wholesale price w  

and transfer price b . (2) Retailer 1 makes decisions on 1q  and 1τ  to maximize 1rπ . At the same 

time, Retailer 2 makes decisions on 2q  and 2τ  to maximize 2r
π .  

 In this model, the manufacturer’s profit function is shown in Equation (1), and the retailers’ profit 

functions are as follows:  

            1 1 1 1 1 2 1 1 1 2 1( , | , ) ( ) ( )
r

q w b q dq w q b q q Iπ τ α τ= − − − + + − ,                 (3) 

            2 2 2 2 2 1 2 2 1 2 2( , | , ) ( ) ( )
r

q w b q dq w q b q q Iπ τ α τ= − − − + + − .               (4) 

The equilibrium is subgame perfect equilibrium, and backward induction method is used to solve 

this problem. Specifically, we first obtain retailer i ’s best-response functions of i
q , i

τ , given w  

and b . After that, we obtain the equilibrium w  and b .  

Lemma 2. Given w  and b , retailers’ best-response functions are as follows: 

( )
*

1 2 1 2
1 2 2

SCN ( 2 )

2(2 ) 2 (2 ) (1 )

C w
q

d d b kC

α α α α− +
+ −

−+
− −

= , ( )
*

1 2
2 2

SC

2

N 2 1 ( 2 )

2(2 ) 2 (2 ) (1 )

C w
q

d d b kC

α α α α− +
+ −

−+
− −

= ,  

( )
* *

2
1SCN SC

1 2
N 2

2 2

( )1

2 (2 ) (1 )

( 2 )

b

wk

kC

b

d

α ατ τ − + −=
+ − −

= . 

Substituting these best-response functions into the manufacturer’s profit in Equation (1) and by the 

first-order conditions, we can obtain w  and b  in equilibrium.  

Theorem 2. In Model SCN, the manufacturer’s equilibrium wholesale price and transfer price are 

as follows:  

*SCN 1 2

4

2
n

c
w

α α+ += , 
*SCN

b =∆.  
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The retailers’ equilibrium decisions are: ( )
1 21 2

1 2 2

SCN* ( )

2(2 ) 4 (2 ) (1

2

)
nc

q
d

C

d kC

α αα α ++
+ ∆

−
− − −

−= ,

( )
SCN* 2 1 1 2
2 2 2

( )

2(2 ) 4 (2 ) (1

2

)
nc

q
d

C

d kC

α αα α ++
+ ∆

−
− − −
−= , and 

( )
( )

* *
2

1 2
1 2 2 2

SCN SCN (1 ) 2

(2 ) 14 ( )
n

k c

d kC

α α
τ τ

+∆ −
+

−
−∆ −

= = . 

   From Theorem 2, the equilibrium return rates are the same for the two retailers. The gap between 

the two retailers’ quantities only depends on the gap of their market scales ( 2 1α α− ) and the forward 

competition intensity ( d ). By Theorem 2, we can also obtain the profit of the manufacturer and the 

total quantity is 
( )

( )
2

1 2SCN*

2 2

2

8 (2 ) 8 1
n

m

C c

C d k

α α
π

− + +
=

+ + − + ∆
 and ( )

( ) ( )
1 2SCN*

2 2

2

2 2 2 1
n

C c
q

C d k

α α− + +
=

+ + − + ∆
. 

Based on the method of Yang and Zhou (2006) that study duopolistic retailers’ Cournot competition 

without remanufacturing, we can also obtain the profit of manufacturer and total quantity is 

( )2

1 2 2

8(2 )
nc

d

α α+ −
+

   and  
( )

( )
1 2 2

2 2
nc

d

α α+ −
+

, respectively. The comparison implies that in Model SCN, 

as a result of increased total quantity ( S C N *
q ), the profit of manufacturer increases, compared with the 

case without remanufacturing, which is similar to the results in Theorem 1.  

4.3 Stackelberg-Stackelberg Game (Model SS) 

In the Stackelberg-Stackelberg game, which is abbreviated as Model SS, the sequence of events is 

of three stages. (1) The manufacturer decides the wholesale price w  and transfer price b ; (2) 

Retailer 2 makes decisions on 2q  and 2τ  to maximize 2rπ ; (3) and Retailer 1 makes decisions 

on 1q  and 1τ  to maximize 1rπ .  

In this model, the manufacturer’s profit is shown in Equation (1), and retailers’ profit functions are 

as follows: 

2 2 2 2 2 1 2 2 1 2 2( , | , ) ( ) ( )r q w b q dq w q b q q Iπ τ α τ= − − − + + − ,               (5) 

1 1 1 2 2 1 1 2 1 1 1 2 1( , | , , , ) ( ) ( )r q w b q q dq w q b q q Iπ τ τ α τ= − − − + + − .              (6) 

  This problem is harder to solve. We also use backward induction method to analyze the supply 

chain members’ equilibrium decisions. First, we obtain Retailer 1’s best-response function given 

Retailer 2’s and the manufacturer’s decisions, as shown in the following lemma: 

Lemma 3. For given w , b , 2q , 2τ , Retailer 1’s best-response functions are 

2 2
SS* 2 1
1 2 2

[ 2 ( 1 )] 2 (

)4 1(

)d b k q

kC

wC C
q

b

α− − − + + − +
− −

=  and 
2

SS* 2 1
1 2 2

( 1 )[ ( 2 ) ]

4 (1 )

b k w d q

C b k

ατ − + + − + −
− −

= . 
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Next, we obtain Retailer 2’s best-response functions given the manufacturer’s decisions, as 

shown in Lemma 4: 

Lemma 4. Given w  and b , Retailer 2’s best-response functions are as follows: 2 3SS*

1
2 2

Z w Z

Z
τ += ,

4 5SS*

1
2 2

Z w Z
q

Z

+= ,  

where 
2 2 2 2 2 2 4 2 2

1 8 ( 2) ( 12 8 (2 ) )( 1) ( 1)( 1)Z C d b C d d d k k b d k= − + − + + + − − + − − , 

}{2 2 2
2 (1 ) 2 [8 (4 )] (4 3 )(1 )Z b k C d d b d k= − − + − − − , 

2 2 2 2 2
3 1 2(1 ){2[ ( 4 (2 )) (1 )(1 )] (2 )[ (1 ) 4 ] }Z b k C d d b d k d b k Cα α= − − + + + − − + − − − , 

2 2 2 4 2 2
4 8 (2 ) 2 [2 (2 ) ](1 ) ( 1)Z C d b C d k k b k= − − + − − + − , and 

( )2 2 2 2 2
5 1 22 {4 [2 2 ]( 1)} [4 ( 1)]Z C Cd b d k k C b kα α= + + − − − + − .  

By Lemma 4, we can obtain 2 3SS*

1
1 2

Z w Z

Z
τ +=  and 4 5 6SS*

1 7 1
1

( )
( )

2

Z w Z Z
Z w

Z
q α+= + − , 

where
2 2

6 2 2

2 ( 1)

( )4 1

d b k
Z

C b k

C −−
+ −

−=  and 
7 2 2( 1

2

4 )
Z

b

C

kC + −
= .  

Finally, knowing the retailers’ best-response functions, we obtain the manufacturer’s equilibrium 

decisions. Because of the complexity of 1q , 2q , 1τ , and 2τ  in Lemmas 3 and 4, it is difficult to 

obtain the manufacturer’s equilibrium decisions in closed form. We present some properties regarding 

them in Theorem 3. 

Theorem 3. In Model SS, the manufacturer’s equilibrium wholesale and transfer prices have the 

following properties: 

SS*b <∆, 
( )( )

( )
1 1 1 1 1 2*

1

S 2

1

S 2
( )

2
nXZ c XT Z Y Y

w b
X XT Z

α α− + +
=

+
. 

In addition, when 0b=  or b=∆, 1SS* 2 2
( )

4
n

c
w b

α α+ +≥ .  

1Z  is defined in Lemma 4, and X , 1T , 1Y , and 2Y  are defined as follows:  

( )2 22 (8 (4 )) (4 3 ) 1 0X C d d b d k= − + − − − > , ( )2
1 1 ( ) 0T b k b= − ∆ − > , 

( )2 2
1 2 ( 4 (2 )) ( 1 )( 1 ) 0Y C d d b d k= − + + + − + − + < , ( )( )2 2

2 (2 ) 4 1 0Y d C b k= − − + − + < .  

Owing to the high complexity of the manufacturer’s profit function, the closed-form expression 

of the optimal transfer price 
SS*b  is not available, which, however, can be proven smaller than ∆ . 
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We will conduct numerical experiments to find the equilibrium decision 
SS*b within the range of 

(0, )∆  in Section 5. The most important finding is that in Model SS, the manufacturer sets a lower 

transfer price and gets direct profit from remanufacturing cores.  

The results in Theorem 3 are different from the existing literature. Yang and Zhou (2006) show 

that in a two-echelon supply chain without reverse channel or remanufacturing, under different 

retailers’ behavior modes (Cournot, Collusion, or Stackelberg), the manufacturer’s equilibrium 

wholesale price is the same when retailers have equal market scales ( 1 2α α= ). However, in this 

research, the wholesale price in Model SS differs from that in Model SCL or Model SCN even if 

1 2α α= . This finding shows that introducing remanufacturing activity into the supply chain and 

considering the reverse competition change the manufacturer’s pricing decisions.  

 

5. Comparative Analysis 

5.1 Analytic Comparison 

We first compare the manufacturer’s equilibrium decisions among the three models. The main results 

are presented in the following theorem:  

Theorem 4. We compare the equilibrium decisions of the manufacturer among the three models 

and find that:  

(1) SCL* SCN* SS*b b b= > ;  

(2) SCL* SCN*w w= . 

Theorem 4 reveals the difference of the manufacturer’s equilibrium decisions under different 

retailers’ behavior modes. It is interesting that the manufacturer sets the same wholesale prices in 

Models SCL and SCN. The manufacturer transfers all cost saving of remanufacturing to retailers 

( SCL* SCN*b b= = ∆ ). The manufacturer only benefits directly from the forward channel. The reverse 

channel plays a role in boosting the market demand. Model SS is different since the manufacturer also 

benefits directly from the reverse channel by setting a lower transfer price ( SS*b < ∆ ). Therefore, the 

more returns, the larger benefit he obtains by remanufacturing. We further compare the wholesale 

prices among the three models. SCL* SCN*w w= is straightforward by Theorems 1 and 2. With 

SCL* SCN*b b= , we conclude that the manufacturer adopts the same strategy when two retailers make 

collusion or Nash game. For Model SS, although Theorem 3 shows that the wholesale price at the 

thresholds of 0 and ∆  is higher than SCL*w  and SCN*w , we can numerically reveal that the 

equilibrium wholesale price in Model SS may be lower than SCL*w  and SCN*w . The details are shown 

in the following subsection.   
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We further compare the retailers’ total profit among different models. Let S C L*
rπ  and SCN *

rπ  be 

the total profits of two retailers at equilibrium in Models SCL and SCN, respectively, and we have the 

following theorem:  

Theorem 5. We compare retailers’ total profit in Models SCL and SCN and find that

SCL* SCN*
r rπ π> . 

Since Theorem 4 shows the manufacturer sets the same prices for retailers, the retailers actually 

make decisions in the same environments. Referring to Equations (2)–(4), we find that Theorem 5 is 

straightforward. The intuition behind Theorem 5 is that if the retailers make collusive decisions, they 

can gain more profit margin in the forward channel by reducing the total ordering quantity as well as 

save recycling investment cost by setting a lower return rate.  

5.2 Numerical Experiments 

To obtain more managerial insights, we conduct extensive numerical experiments to examine the 

effect of retailers’ collusion in comparison with Nash game and Stackelberg game. Referring to 

Savaskan and Van Wassenhove (2006), we set the base parameters as 1 100α = , 2 100α = , 

1000C = , 20nc = , 0.3d = , and 15∆ = . The numerical experiments follow the base setting 

unless otherwise clarified.  

5.2.1 The Comparison of Equilibrium Wholesale and Transfer Prices 

We compare the equilibrium wholesale and transfer prices among the three models. Intuitively, the 

market scale ( 1α  or 2α ) plays an important role in determining the wholesale price. The cost saving 

( ∆ ) plays an important role in determining the transfer price. Therefore, we design two scenarios 

where 15∆ =  or 5∆ =  and vary 1α  (with fixed 2α ). The former scenario represents the base 

case where the cost saving is relatively high, and the latter scenario represents the case where the cost 

saving is relatively low. The results are shown in Table 3.   

We find that the wholesale price in Model SS is higher than that in Models SCL and SCN when 

both ∆  and 1α  are rather small (see 5∆ = , 1 50α =  or 1 60α =  in Table 2). Under such 

conditions, Model SS is the worst in terms of the total profit of two retailers because the manufacturer 

sets a higher wholesale price in the forward channel and a lower transfer price in the reverse channel 

so that the profit margin of each retailer decreases.  

The market scale and cost saving show different effects on pricing decisions. As the market scale 

increases, the retailers can set higher retail prices, and therefore, the manufacturer charges them a 

higher wholesale price. To recycle more cores to satisfy the enlarged market demand, the 

manufacturer also sets a higher transfer price. In summary, the market scale has a positive effect on 

both the transfer and wholesale prices. In contrast, the cost saving has a positive effect on the transfer 



16 

 

price and a negative effect on the wholesale price. As the cost saving increases, the manufacturer has 

stronger motivation to set a higher transfer price to increase the return rate (see Lemma 1 for details). 

In addition, since the average production cost decreases, the manufacturer can still get considerable 

profit margin even if he distributes products with a lower wholesale price to retailers. Therefore, the 

wholesale price is nonincreasing with the cost saving.  

Table 3. The comparison of the wholesale and transfer prices among three models ( 0.5k = )  

Parameters Decision variables  

∆  1α
 

SC*w  SN*w  SS*w  SC*b  SN*b  SS*b  

15 

50 47.50 47.50 46.81 15.00 15.00 11.08 

60 50.00  50.00  49.22  15.00  15.00  11.17  

70 52.50  52.50  51.63  15.00  15.00  11.25  

80 55.00  55.00  54.04  15.00  15.00  11.31  

90 57.50  57.50  56.45  15.00  15.00  11.37  

100 60.00  60.00  58.86  15.00  15.00  11.42  

5 

50 47.50  47.50  47.58  5.00  5.00  3.67  

60 50.00  50.00  50.04  5.00  5.00  3.70  

70 52.50  52.50  52.50  5.00  5.00  3.72  

80 55.00  55.00  54.96  5.00  5.00  3.74  

90 57.50  57.50  57.42  5.00  5.00  3.76  

100 60.00  60.00  59.88  5.00  5.00  3.78  

5.2.2 The Value of Retailers’ Collusion 

In this part, we investigate whether two retailers’ collusion is always beneficial in terms of improving 

their overall profit. To enhance the robustness of numerical experiments, referring to Bulmus et al. 

(2014), we set three different values for each parameter (with fixed 1000C = ) to represent low, 

medium, and high levels, respectively, as Table 3 shows. For notational convenience, we let 

1 2/θ α α=  represent the relative market scale of two retailers. We also let / ncδ = ∆  represent the 

relative cost saving compared with unit cost of new product. (0,1)δ ∈  and a larger δ  represents 

higher cost saving, which implies remanufacturing is more economic than manufacturing . Note that 

the base setting is now just one case of the full fractional design.  

Table 4. Parameter setting in the full fractional design 

 2α  θ  nc   δ   k   d   

Low 75 0.85 5 0.25 0.3 0.3 

Medium 100 0.90 10 0.50 0.5 0.5 
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High 150 1.0 20 0.75 0.7 0.7 

Based on the data in Table 4, there are 
63 729=  cases in total and 44 cases are invalid because 

nonnegativity constraint is violated. For each valid case, we calculate and compare individual and total 

profits among the three models.  

We first compare the total profit of retailers. Our numerical experiments show that for 685 valid 

cases, Model SCL always results in the highest total profit for retailers, so collusion is valuable to the 

retailers as a whole. We define the relative profit improvement to Model SCN as

SC SN
SN

SN
PI 100%r r

r

π π
π

−= × . The relative profit improvement to Model SS can be defined in the same 

way. We record the average and maximum of the profit improvements among the 685 cases and report 

them as follows: For Model SCN, the average profit improvement is 5.0%, and the maximum profit 

improvement is 14.0%. For Model SS, the average and maximum profit improvements are 7.0% and 

16.0%, respectively.   

The individual effect of each parameter on profit improvement by collusion is investigated, as 

shown in Figure 2. The figure shows that the profit improvement is remarkable when the forward and 

reverse competition intensities are high, which indicates that collusion can dampen competitions to 

some degree. Interestingly, on average, the cost saving shows the positive effect in Model SCN, while 

it shows the negative effect in Model SS. Another interesting result is that the profit improvement is 

the largest when the market scale gap is medium, which indicates that when two retailers are too close 

or differentiated, they have less enthusiasm to make collusion.  

  

(a) Model SCL vs. SCN                       (b) Model SCL vs. SS 

Figure 2. Comparison of retailers’ total profit between Model SCL and Model SCN/SS 
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A natural question arises whether both two retailers can gain more profit. To answer this question, 

we investigate the value of collusion to each retailer. We can define Retailer 1’s profit improvement in 

the two models with the above method. However, numerical results show that among 685 valid cases, 

Retailer 1 suffers profit loss by collusion, compared with Model SCN or Model SS in 627 cases. 

Specifically, compared with Model SCN, Retailer 1 suffers 12% profit loss on average by collusion, 

and the number is 7% for Model SS. In the remaining 58 cases, Retailer 1’s profit is higher than with 

both Models SCN and SCL. The profit improvement can reach as high as 11% for Model SCN and 20% 

for Model SS, respectively.  

   The individual effect of each parameter is shown in Figure 3. One important finding is that Retailer 

1 gains positive profit improvement only when the market scale is rather close to Retailer 2 or the 

forward competition is rather small. In other cases, Retailer 1 suffers profit loss. In addition, we find 

that θ , nc , and δ  have a positive effect, while d  has a negative effect on the profit 

improvement. The effect of 2α  is U-shape. That is, when the market scale of Retailer 2 is medium, 

Retailer 1 suffers the smallest profit loss. Comparing the left and right bar charter in Figure 3, we find 

that the effect of each parameter in two models is very similar.    

   

(a) Model SCL vs. SCN                         (b) Model SCL vs. SS 

Figure 3. Comparison of Retailer 1’s profit between Model SCL and Model SCN/SS 

We also investigate the value of collusion to Retailer 2. Numerical experiments show that 

collusion always brings Retailer 2 profit improvement. Compared with Model SCN, the minimal, 

average, and maximum profit improvement by collusion is 2%, 11%, and 35%, respectively. 

Compared with Model SS, the minimal, average, and maximum profit improvement by collusion is 

1%, 9%, and 34%.  
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The individual effect of each parameter is shown in Figure 4. In Models SCN and SS, d and 

k  show positive effects, while nc  shows negative effects on profit improvement. The effect of 2α  

is U-shape. That is, when 2α  is medium, the improvement is the smallest. On the contrary, the effect 

of θ  is inverse U-shape. That is, the improvement is the highest when θ is medium. Figure 4 also 

shows that the effect of δ  is positive in Model SCN and negative in Model SS. 

 

(a) Model SCL vs. SCN                         (b) Model SCL vs. SS 

Figure 4. Comparison of Retailer 2’s profit between Models SCL and Model SCN/SS  

In summary, we find that Model SCL always yields larger total profit for two retailers compared 

with the case without collusion, especially when the forward competition is rather fierce. However, the 

smaller retailer is harmed by collusion in most cases, especially when the forward competition is 

rather fierce or their market scales are rather differentiated. Therefore, some elaborate coordination 

mechanism is necessary to achieve a win-win situation as specified below.  

5.2.3 The Profit Allocation Mechanism  

In the above parts, we study the retailers’ collusion behavior to maximize the total profit function 

while the profit function of each retailer is not specified. In fact, the profit of each retailer should be 

higher than the case without collusion; Otherwise, the collusion collapses. We now design a 

mechanism that allocates the total profit by collusion to guarantee that both retailers are better-off.  

For Model SCN, denote by 
SCN
1rπ%  (

SCN
2rπ% ) the profit of Retailer 1 (Retailer 2) after profit allocation. 

Obviously, 
SCN SCN SCL
1 2r r rπ π π+ =% % . In addition, 

SCN SCN
1 1r rπ π>%  and 

SCN SCN
2 2r rπ π>%  should hold so 

that both retailers would like make collusion rather than Cournot competition. Analogously, For 
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Model SS, denote by 
SS
1rπ% (

SS
1rπ% ) the profit of Retailer 1(Retailer 2) after profit allocation. We also 

have  
SS SS SCL
1 2r r rπ π π+ =% % , 

SS SS
1 1r rπ π>%  and 

SS SS
2 2r rπ π>% .  

Among those effective profit allocation mechanisms, Nash arbitration scheme is widely used 

(Leng and Zhu, 2009 ) Based on this mechanism, the objective is to maximize the following function: 

                  
0 0

1 1 2 2

0 0
1 1 2 2

,
max ( )( ),

f f f f

f f f f
≥ ≥

− −                         (7) 

where if  and 
0

if  ( {1, 2}i ∈ ) denotes the allocated surplus and security level of Retailer i , 

respectively. In this research, we let 
0 0

1 2 0f f= =  without loss of generality. For Model SCN,

SCN SCN
i ri rif π π= −%  holds and for Model SS 

SS SS
i ri rif π π= −%  holds.   

By solving the above problem, we can “fairly” allocate the profit surplus by collusion between 

two retailers (Gjerdrum et al., 2002). The allocated profits of two retailers for two models are 

presented in the following Table 5.  

Table 5. Profit Allocation Based on Nash Arbitration Scheme 

Parameters 
Collusio

n Profit  
Profits before Allocation Profits after Allocation 

  Model SCN Model SS Model SCN Model SS 

θ   d   
SCL
rπ  

SCN
1rπ   

SCN
2rπ   

SS
1rπ   

SS
2rπ   

SCN
1rπ%  

SCN
2rπ%  

SS
1rπ%  

SS
2rπ%  

0.85 

0.3 593.47  146.94  421.77  149.71  433.56  159.32  434.15  154.81  438.66  

0.5 529.79  104.01  388.76  100.87  399.95  122.52  407.27  115.35  414.43  

0.7 507.63  69.77  372.37  55.69  385.79  102.51  405.11  88.76  418.86  

0.90 

0.3 609.96  197.35  386.89  202.39  397.99  210.21  399.75  207.18  402.78  

0.5 531.76  149.84  346.22  148.72  356.89  167.69  364.07  161.80  369.96  

0.7 484.58  111.41  320.10  97.28  333.00  137.95  346.63  124.43  360.15  

1.0 

0.3 673.68  322.53  322.53  332.69  331.97  336.84  336.84  337.20  336.48  

0.5 576.58  269.56  269.56  273.95  278.73  288.29  288.29  285.90  290.68  

0.7 503.94  228.65  228.65  218.58  239.75  251.97  251.97  241.38  262.55  

 

5.2.4 The Comparison of Environmental Benefit  

We compare the environmental impact among the three models. Following Esenduran et al. (2017), 

the environmental benefit can be defined as a function of total recycled products, which implies the 

more recycled products, the less environmental burden. Specifically, e denotes the environmental 

benefit for unit recycled product, and the total environmental benefit can be written as

1 1 2 2( )E e q qτ τ= + . Referring to Esenduran et al. (2017) that sets {0.001,0.5}e∈ to represent 
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different levels for the economic measure of environmental benefit with the premise that the 

manufacturing cost is approximately $0.25, we think it is acceptable to set {0.08,40}e∈ , 

considering the value of nc  in this research. Different values of e do not change the relative rank of 

the three models regarding environmental benefit, so in this numerical experiment, we take 40e =  as 

an example. We also let k  and d change from 0.1 to 0.9 with a step of 0.01, and the results are 

presented in Figure 5.  

  

(a) Models SCL vs. SCN                      (b) Models SCL vs. SS 

Figure 5. Comparison of the environmental benefit between Models SCL and SCN/SS 

  We find that in the left panel, the environmental benefit is always negative, which means that Model 

SCL always yields smaller environmental benefit than Model SCN. Specifically, the environmental 

benefit gap between Models SCL and SCN ranges from -150.32 to -3.07. The loss by collusion is the 

smallest when 0.1k = , 0.1d =  and is the largest when 0.41k = , 0.35d = . On the contrary, the 

environmental benefit of Model SCL may be smaller or larger than that in Model SS, depending on the 

competition conditions. Specifically, the environmental benefit gap between Models SCL and SS 

ranges from -80.25 to 22.51. In addition, when 0.1k = , 0.1d = , collusion brings the largest 

improvement; when 0.31k = , 0.76d = , collusion brings the largest loss. These numbers indicate 

that the largest loss occurs under different conditions of forward competition for two models, i.e., 

relatively low d  ( 0.35d = ) for Model SCN while relatively high d  ( 0.76d = ) for Model SS. 

From the perspective of environmental protection, collusion behavior is not encouraged under such 

conditions.  

5.2.5 The Comparison of Social Welfare 
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We also compare the social welfare, which consists of firms’ profits, environmental benefit, and 

consumer surplus, among the three models. It can be written as 1 2m r rSW E CSπ π π= + + + + , 

where E  has been defined in Section 5.2.4. Following Singh and Vives (1984) and Yu et al. (2018), 

the consumer surplus can be defined as 
2 2

1 2
1 1 2 2 1 2 1 1 2 2( )

2 2

q q
CS q q dq q p q p qα α= + − − − − + .   

We seek to investigate whether collusion increases social welfare. To this end, we compare the 

social welfare between Model SCL and the other two models. In Figure 6, the left panel represents the 

comparison between Models SCL and SCN, and a positive gap implies that the social welfare in 

Model SCL is larger. The right panel represents the comparison result between Models SCL and SS, 

and the meaning of gap is the same. We set {0.08,40}e∈  and also let k and d  change from 0.1 

to 0.9 with a step of 0.01.  

 

(a) Model SCL vs. SCN ( 0.08e = )             (b) Model SCL vs. SS ( 0.08e = )   
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(c) Model SCL vs. SCN ( 40e = )       (d) Model SCL vs. Model SS ( 40e = )   

Figure 6. Comparison of the social welfare between Models SCL and Models SCN/SS 

We find the gap between Models SCL and SCN (or SS) may be positive or negative. Specifically, 

when the unit environmental benefit is low ( 0.08e = ), the gap with Model SCN ranges from -393.02 

to 128.47. The largest gap occurs when 0.1k = , 0.1d = , and the smallest gap occurs when 

0.39k = , 0.9d = ; the gap with SS ranges from -521.87 to 142.89. The largest gap occurs when 

0.1k = , 0.1d = , and the smallest gap occurs when 0.52k = , 0.90d = . When the unit 

environmental benefit is high ( 40e = ), the gap with Model SCN ranges from -521.92 to 125.41. The 

largest gap occurs when 0.1k = , 0.1d = , and the smallest gap occurs when 0.33k =  with 

0.90d = ; the gap with Model SS ranges from -597.55 to 165.35. The largest gap occurs when 

0.1k = , 0.1d = , and the smallest gap occurs when 0.36k = , 0.90d = . In summary, the largest 

gap always occurs when 0.1k = , 0.1d = , which means that the social welfare improvement by 

collusion is the most remarkable when the competitions in forward and reverse channels are very mild. 

The numbers means the social welfare loss by collusion is severest when the forward channel 

competition is very fierce ( 0.9d = for both models) and the reverse channel competition is relatively 

low ( 0.33k=  for Model SCN and 0.36k = for Model SS).  

5.3 Managerial Insights  

In a closed-loop supply chain where two competing retailers collect used items, their competition 

exists not only in the forward channel but also in the reverse channel. Faced with such a case, they 

have stronger motivation to make collusion to jointly determine corresponding decisions variables in 

both channels. Our research investigates such a case and suggests the following managerial insights.  
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(1) Faced with retailers’ different behavior, the manufacturer should adopt differentiated pricing 

strategy to maximize his profit. If two retailers move at the same time (collusion or Cournot 

competition), the manufacturer should set the transfer price equal to the cost saving of 

remanufacturing. In this case, he only benefits directly from the forward channel and the reverse 

channel plays a role in boosting the market demand. If two retailers move sequentially (Stackelberg 

competition), the manufacturer should set lower transfer price and he benefits from both channels.  

(2) From the perspective of profit maximization, collusion is indeed the optimal choice for two 

retailers. Collusion always brings retailers profit improvement, which is very remarkable if the 

forward/reverse competition is fierce or the gap between retailers’ market scale is medium.  

(3) The smaller retailer may suffer profit loss by collusion. To resolve this problem, we can design 

an elaborate profit allocation contract based on Nash arbitration scheme to guarantee that both retailers 

are better-off so that collusion is achieved.  

(4) From the perspective of environment protection or social welfare, collusion is not the optimal 

choice for two retailers under some conditions. In such cases, collusion is not encouraged to two 

retailers who concern environment protection or social welfare.   

6. Concluding Remarks 

In this paper, we consider a closed-loop supply chain consisting of a manufacturer and two competing 

retailers. These retailers compete for demand in the forward channel and for the cores in the reverse 

channel. Three models are proposed in terms of the manufacturer’s and retailers’ behaviors, such as 

Stackelberg-collusion game (Model SCL), Stackelberg-Cournot game (Model SCN), as well as 

Stackelberg-Stackelberg game (Model SS). We obtain the manufacturer’s and retailers’ equilibrium 

decisions in different model and find that the market scale and cost saving show different effects on 

the manufacturer’s pricing decisions.  We make further comparison among different models 

analytically and numerically. We set a full fractional design to test the value of retailers’ collusion and 

find that the average profit improvement is noticeable, compared with the cases that they are under 

Cournot competition or Stackelberg competition. As for each retailer, collusion cannot be achieved 

automatically unless some profit allocation contract is designed so that both of them can obtain profit 

surplus. We also find that under some conditions, there exists confliction between profit maximization 

and environment protection or social welfare maximization. In summary, we study the case that two 

competing retailers’ collusion behavior in the presence of the bidirectional competitions in the forward 

and reverse channels and make a comprehensive analysis on the impact from different perspectives. 
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Our research provides new theoretical findings and managerial insights to the practitioners in the 

remanufacturing industry.  

For future research, this paper can be extended in the following directions. In this study, we only 

consider the interaction between two retailers and the manufacturer in a decentralized system. We can 

further study the centralized supply chain to maximize the total profit of all supply chain members. It 

is interesting to design some supply chain contracts to coordinate the contracts so that the performance 

of decentralized/centralized is identical. In this research, we focus on the single case that retailers 

make collusive decisions on forward and reverse channels, which can be named total collusion. In 

contrast, we may investigate the other cases that they cooperate in one channel and compete in the 

other channel, which can be called partial collusion. We can further compare the decision variables 

and system performance among different collusion models. It is also interesting to consider the case 

that the manufacturer or third-party collector is involved in recycling and results in more competition. 

In this research, we assume that new and remanufactured products are sold with the same price. 

However, in practice, the willingness of consumers to pay for remanufactured and new products may 

be different, which implies that the prices of new and remanufactured products are different. We also 

assume that all information is public and there is no private information. In the practice, there may 

exist information asymmetry between the manufacturer and retailers. For example, it is interesting to 

investigate the case that the manufacturer does not know retailers’ investment cost or competition 

parameters.  
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The Proof of Lemma 1.  

In Model SCL, it is easy to prove the profit function in Eq. (2) is concave in corresponding decision 

variables. The Hessian matrix is as follows.  
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summarize, rπ  is concave with the decision variables.  

Further, by the first-order conditions, we can obtain optimal 1q , 2q , 1τ  and 2τ  under given 

w  and b . The results are shown as follows. 
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The proof of Lemma 1 is completed.  
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The Proof of Theorem 1.  

Substituting these results in Lemma 1 into the profit function in Eq. (1), we obtain 
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  is necessary.  

The proof of Theorem 1 is completed. 

 

The Proof of Lemma 2.   

In Model SCN, for retailer 1’s profit, the Hessian matrix given as follows is negative definite.  
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   The profit function in Equation (3) is concave in 1q  and 1τ . Therefore, for retailer 1, the 

first-order conditions are given as follows: 
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Again, if 
2 2(1 )

4

b k
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−> , the profit function in Equation (4) is concave in 2q  and 

2τ .Therefore, for retailer 2, we can also obtain the first-order conditions.  

 

2
2 2 1 2

2

2 2
1 2 2

2

2 0;

2
( ) 0.

1

r

r

q dq w b
q

C
b q q

k

π α τ

π τ
τ

∂ = − − − + = ∂
∂ = + − =
 ∂ −

   

Solving these four equations, we obtain the best-response functions given w  and b . 
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1 2 2

2
1 2

1

2

2 2

1 2
2 2 2

2
1 2

2

1

2 2

( 2 )
,

2(2 ) 2[ (2 ) (1 )]

1
,

2

( )( 2 )

[ ]

( )( 2 )

[

(2 ) (1 )

( 2 )
,

2(2 ) 2[ (2 ) (1 )]

1
.

2 (2 ) ( ]1 )

w
q

d d b k

b k

d b k

w
q

d d b k

b k

d b k

C

C

w

C

C

C

w

C

α α α α

α ατ

α α α α

α ατ

− + −=

+ −=

 + − + − −

 −
 + − −

 +
 − + − −


−
 + − −

+=


− + −=

−

   

The proof of Lemma 2 is completed.  

 

The Proof of Theorem 2.   

Substituting the result in Lemma 2 into the manufacturer’s profit function, we obtain the following 

result:                 

( ) ( ) ( )( ) ( ) ( )( )
( )( )

2 2 2
1 2 1 2

2
2 2

2 (2 ) 1 1 ( ) 2

(2 ) 1

n

m

C w w c C d b k b k b w

C d b k

α α α α
π

− + + − + + − + + − ∆ − − + +
=

+ + − +
. 

By the first-order condition, we obtain the stationary point as 1 2 2
( , ) ( , )

4
n

c
w b

α α+ += ∆ . Define

( ) 2 2
1 2 (1 )L C d k= + − − ∆  and ( ) 2 2

2 2 3(1 )L C d k= + + − ∆ . Therefore, the Hessian matrix at the 

stationary point 1 2 2
( , ) ( , )

4
n

c
w b

α α+ += ∆  is as follows:  

( ) ( )

( ) ( ) ( ) ( )

2
1 2

2

22 2
1 2 1 2

2

2 2

2
1 1

2

2

1 1
3

2

2

2 1 24

2 1 2 1 2

4

m m

m m

n

n n

CC

L Lw w b

k c

k
H

C C L

w b

c k c

b L L

απ π

α α α απ

α

π

− + ∆ − −
−

− + ∆ − − − + − +

 
 ∂ ∂  
   ∂ ∂ ∂ = =  
 ∂ ∂   

 ∂ ∂
 

+
∂ 
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If 
2 2(1 )

2

k
C

d

− ∆>
+

, the Hessian matrix is negative definite and the profit function is 

quasi-concave with w  and b . The stationary point is also the optimal solution, i.e., 

* *1 2 2
,

4
n

c
w b

α α+ += = ∆ . Note that to guarantee 
SCN* SCN*
1 20 1τ τ≤ + ≤ , we have 

2 2 2
1 2(1 )( 2 ) (1 )

2(2 ) 2
n

k c k
C

d d

α α∆ − + − ∆ −≥ +
+ +

 .    

The proof of Theorem 2 is completed. 

The Proof of Lemma 3. 

Given w , b , 2q , 2τ , we first prove that Retailer 1’s profit function is concave with 1q  and 1τ . 

The Hessian matrix is as follows.  

2 2
1 1

2
1 1 1

2 2
21 1

2
1 1 1

2

2

1

r r

r r

b
q q

H C
b

k
q

π π
τ

π π
τ τ

 ∂ ∂
−   ∂ ∂ ∂   = =

   −∂ ∂  
  −  ∂ ∂ ∂ 

    

   For 
2 2(1 )

4

b k
C

−> , the profit function is proven to be concave. Therefore, Retailer 1’s optimal 

decisions are obtained by the first-order conditions.  

 
( )

( )
( )

2 2
2 1

1 2 2

2
2 1

1 2 2

[ 2 ( 1 )] 2 ( )
,

4 1

( 1 ) ( 2 )
.

4 1

Cd b k q C w
q

C b k

b k w d q

C b k

α

α
τ

 − − − + + − += + − +


− + + − + − =
 + − +

   

     The proof of Lemma 3 is completed.  

 

The Proof of Lemma 4. 

Substituting these two equations in Lemma 3 into Retailer 2’s profit function, it is sufficient to prove 

that it is concave with 2q  and 2τ  if 
( )( )

( )
2 2 2 2

2

12 8 (2 ) 1

8 2

b d d d k k
C

d

− − − − −
>

−
. 

The first-order conditions are given as follows.  
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( )
( )

( )

2 2 2
2 1 22

2
2 2 22 2 2

2 1 2
2 2 2

2

2

2 ( 2 ) (1 ) (2 ) 2 ( 2 )
0;

4 (1 )(1 ) 4 (1 )

2 (2 ) 2
0.

4 (1 ) 1

r

r

b d kC C

q CC

k

C C

w d q b d

b kk b k

b w q

b kC

d

k

π

π
τ

α τ

α τ

− + − − − − − +− − =
− −− − −

− − −
− − =

− − −

∂ = ∂

∂ = ∂

   

For the sake of simplicity, some symbols are predefined as follows.  

2 2 2 2 2 2 4 2 2
1 8 ( 2) ( 12 8 (2 ) )( 1) ( 1)( 1)Z C d b C d d d k k b d k= − + − + + + − − + − − ,  

}{2 2 2
2 (1 ) 2 [8 (4 )] (4 3 )(1 )Z b k C d d b d k= − − + − − − , 

2 2 2 2 2
3 1 2(1 ){2[ ( 4 (2 )) (1 )(1 )] (2 )[ (1 ) 4 ] }Z b k C d d b d k d b k Cα α= − − + + + − − + − − − , 

2 2 2 4 2 2
4 8 (2 ) 2 [2 (2 ) ](1 ) ( 1)Z C d b C d k k b k= − − + − − + − ,  

( )2 2 2 2 2
5 1 22 {4 [2 2 ]( 1)} [4 ( 1)]Z C Cd b d k k C b kα α= + + − − − + − ,  

2 2

6 2 2

2 ( 1)

4 ( 1)

Cd b k
Z

C b k

− − −=
+ −

, and 7 2 2

2

4 ( 1)

C
Z

C b k
=

+ −
. Based on these definitions, the optimal 

decisions of 2q  and 2τ  are rewritten as 2 3
2

12

Z w Z

Z
τ += , 4 5

2
12

Z w Z
q

Z

+= . Further, we obtain 

4 5 6
1 7 1

1

( )
( )

2

Z w Z Z
q Z w

Z
α+= + − ，

2 3
1

12

Z w Z

Z
τ += . 

The proof of Lemma 4 is completed.  

 

Proof of Theorem 3.  

Substituting these expressions of Lemmas 3 and 4 into the manufacturer’s profit function, we obtain 

( ) ( )( )1 1 2 2 1 1 1 2 2 1 1/ /m nC Xw Y Y w c T Xw Y Y Z Zπ α α α α= + + − + + + , where 

( )2 22 (8 (4 )) (4 3 ) 1 0X C d d b d k= − + − − − > ， ( )2 2
1 2 ( 4 (2 )) ( 1 )( 1 ) 0Y C d d b d k= − + + + − + − + < ,

( )2
1 1 ( ) 0T b k b= − ∆ − > , ( )( )2 2

2 (2 ) 4 1 0Y d C b k= − − + − + < . 

It is easy to prove that for given b , the profit function is concave in w . Based on the 

first-order condition, we can obtain 
( )( )

( )
1 1 1 1 1 2 2*

1 1

2
( )

2
nXZ c XT Z Y Y

w b
X XT Z

α α− + +
=

+
.  
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Now we prove 
*b <∆ . Substituting 

( )( )
( )

1 1 1 1 1 2 2*

1 1

2
( )

2
nXZ c XT Z Y Y

w b
X XT Z

α α− + +
=

+
 into the 

manufacturer’s profit function, we obtain 
( )

( )

2

1 1 2 2

1 14
n

m

C Xc Y Y

X XT Z

α α
π

+ +
= −

+
. Therefore,  

2
1 2d (1 )

|
d 4

m
b

C k D D

b

π
=∆

−= , 

where 

( ) ( )
( )( )

22 2 2 5
1

2 2 3

4 64 4 (2 )( 9 4 ) ( 2 ) ( 8 (4 )) (8 9( 2 ) ) 1

4 2( 1 )( 16 (10 )) ( 2 ) ( 4 3 ) 1

D C d d d d d d k d d k

C d d d d d k k

= + + − + + − + − + + ∆ − + − + − + ∆

− − + − + + + − + − + − + ∆
and  

( )( ) ( )( )
( )( )

2 2 2 2
2 1

2 2
2

1 2 ( 8 (4 )) ( 4 3 ) 1 2 (4 (2 )) (1 ) 1

(2 ) 4 1 .

nD C d d d k c C d d d k

d C k

α

α

= + − + + + − + − + ∆ + − + − − − ∆

+ − + − + ∆

   Since 2 1 ncα α≥ > , it is easy to prove 2 0D > .  

 As for 1D , when 8 9(2 ) 0d d− − < , by contraction of k , we obtain  

( )
( )

2 2 5

1 1 3

4 64 4 (2 )(9 4 ) (2 ) (8 (4 )) (8 9(2 ) )
( )

4 2(1 )(16 (10 ))

C d d d d d d d d
D f C

C d d d

 − + − − − − + ∆ − − − ∆< ≡ 
− − − + ∆

. 

When 8 9( 2 ) 0d d+ − + > , by contraction of k , we obtain:   

( )
( )

2 2

1 2 3

4 64 4 (2 )(9 4 ) (2 ) (8 (4 ))
( )

4 2(1 )(16 (10 ))

C d d d d d d
D f C

C d d d

 − + − − − − + ∆< ≡ 
− − − + ∆

.  

With 
2C>∆ , it is easy to prove 1( ) 0f C <  and 2( ) 0f C < . Therefore, 1 0D <  and  

2
1 2d (1 )

| 0
d 4

m
b

C k D D

b

π
=∆

−= < . 

This result indicates that for the manufacturer, it is optimal to set b < ∆  to maximize his profit.  

Then, we prove when 0b=  or b=∆, * 1 2 2
( )

4
nc

w b
α α+ +>  by simple algebra as follows.  

( )
( )( )

2
* 1 2 12 2
(0) 0

4 4 8 4
n

dc
w

d d

α αα α −+ +− = >
− +

; 
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( ) ( )
( )( ) ( )

2 2

* 1 2 2 1

2 2

2 (1 )2
( ) 0

4 8 8 4 4 4 3 (1 )
n

d Cd kc
w

C d d d k

α αα α − − ∆ −+ +∆ − = >
− + − − − ∆

.  

By substituting the optimal b and w  into the functions of return rates, we can also obtain the 

conditions regrading C  to guarantee that the total return rates is no more than 1.   

Therefore, the proof of Theorem 3 is completed.  

 




