
HAL Id: hal-03490789
https://hal.science/hal-03490789

Submitted on 16 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

About blockchain interoperability
Pascal Lafourcade, Marius Lombard-Platet

To cite this version:
Pascal Lafourcade, Marius Lombard-Platet. About blockchain interoperability. Information Process-
ing Letters, 2020, 161, pp.105976 -. �10.1016/j.ipl.2020.105976�. �hal-03490789�

https://hal.science/hal-03490789
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


About Blockchain Interoperability

Pascal Lafourcadea, Marius Lombard-Platetb

aUniversit́e Clermont-Auvergne, LIMOS CNRS UMR 6158, Aubìere, France
pascal.lafourcade@limos.fr

bBe-Studys, Geneva, Switzerland
Département d’informatique

de l’ENS, École normale supérieure, CNRS, PSL Research University, Paris, France
marius.lombard-platet@ens.fr

Abstract

A blockchain is designed to be a self-sufficient decentralised ledger: a peer verifying
the validity of past transactions only needs to download the blockchain (the ledger)
and nothing else. However, it might be of interest to make two different blockchains
interoperable, i.e., to allow one to transmit information from one blockchain to
another blockchain. In this paper, we give a formalisation of this problem, and
we prove that blockchain interoperability is impossible according to the classical
definition of a blockchain. Under a weaker definition of blockchain, we demonstrate
that two blockchains are interoperable is equivalent to creating a ‘2-in-1’ blockchain
containing both ledgers, thus limiting the theoretical interest of making interoperable
blockchains in the first place. We also observe that all practical existing interoperable
blockchain frameworks work indeed by exchanging already created tokens between
two blockchains and not by offering the possibility to transfer tokens from one
blockchain to another one, which implies a modification of the balance of total
created tokens on both blockchains. It confirms that having interoperability is only
possible by creating a ‘2-in-1’ blockchain containing both ledgers.

Keywords: Decentralized ledger, interoperability.

1. Introduction

Blockchain was first introduced in 2008 by Nakamoto in [1]. In their paper, the
anonymous author(s) described the first decentralised ledger: a database in which
anyone can write, and that is not controlled by a single or a conglomerate of identities.
Since then, many other blockchains have been described: Ethereum [2], Ripple [3]
and many others. In May 2019, 248 active blockchains were listed on [4].

While many different blockchains exist, there is no direct way of reaching inter-
operability, at least without a trusted third party. Consider for instance a client
willing to convert their Bitcoins to Ether: they would need to consume the amount of
Bitcoins they wants to convert and to generate the equivalent amount of Ether. While
Bitcoin consumption may be reachable (by sending coins to a non-existing address,
such as the address 0), it is impossible to spontaneously generate Ether (or any other

Preprint submitted to Elsevier May 25, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0020019020300636
Manuscript_8c3cfae37aebcd72d8d96b472e2353ca

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0020019020300636
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0020019020300636


kind of cryptocurrency). For now, the problem is solved with the help of trusted
brokers (also called escrows), even though other solutions are on their way [5, 6].

The issue of interoperability is solved in some cases, like ”atomic exchanges” and
hash-locking [7], in which game theory ensures that a broker only benefits when
following the protocol. However the question of trustless interoperability in the
general context remains open.

Contributions. We introduce a theoretical background to blockchain interoperabil-
ity, providing a formal definition of a blockchain and of interoperability. We then
prove that, by definition, interoperability between two public blockchains is impos-
sible. However, we contend that there may be special conditions under which two
blockchains can be interoperable. This leads us to prove the equivalence between
two interoperable public blockchains and a ledger emulating both blockchains on two
separate registries.

Related Work. The concept of sidechains (a sidechain is a blockchain attached to
another blockchain, with exchanges possible between the two blockchains) has been
explored in [8]. The authors describe a two-way peg in which a sidechain is fed with
an SPV proof, a short proof of the transaction allowing for lightweight clients. The
sidechain plays the role of a lightweight client, and can thus allow subsequent opera-
tions following the SPV proof. However, this pegging system requires a contest period,
during which it is assumed that people will verify that the SPV proof does not come
from a fork. Hence, additional trust is required in this model. In a paper from 2016
[7], Buterin lists ways of reaching interoperability, and focuses on trusted inter-chains
exchanges, where one sends money on blockchain A and receives some in blockchain B.

Similarly, the Interledger protocol [6] (ILP) allows one to automatize money trans-
fers while leveraging the risk of fraud, thanks to micro-transactions. Yet, ILP is more
about escrow synchronization than interoperability as we define it later on. In an ILP
transaction from blockchainA to blockchainB, one must find an escrow having enough
money on B (or several escrows having in total enough money), so the transfer can
occur. More generally, we consider that interoperability can for instance allow money
to ‘disappear’ from A and to ‘reappear’ on B, without the need for trusted escrows.

Interoperability has been notably implemented in the blockchain network Kadena
[9], in which transfers from one blockchain of the network to another is possible. The
money is destroyed on one side and generated on the other. Kadena also uses smart
contracts for securing escrow transfer. However, there is no indication that Kadena
can operate with chains outside of their specific network. So in our terminology,
we say that Kadena is a ”N-in-1 blockchain”, which is to say one blockchain, with
several ledgers.

To the best of our knowledge, no theoretical work on interoperability has been
done to date. Our work, rather than giving a practical implementation of an inter-
operable blockchain, gives a theoretical background to the topic, and explores the
conceptual meaning of having interoperable blockchains.

Outline. In the next section, we formally define a blockchain and interoperability.
In Section 3, we prove that it is impossible by design to have interoperability be-
tween blockchains. In Section 4, we show that interoperability is possible with a

2



weaker definition of the blockchain. Before concluding, in Section 5, we prove that
interoperability is equivalent to having a blockchain with two ledgers.

2. Preliminaries

Sets and tuples are noted in calligraphic font: A, algorithms in serif: Mine. When
a deterministic algorithm, say Algorithm, returns some value x from some input i, we
use the notation x←Algorithm(i). If Algorithm is randomised, we use the notation

x
$←−Algorithm(i). A list of elements e1,...,en (in this order) is represented by [e1,...,en].

We denote concatenation of two lists a and b with a‖b. The set of elements belonging
to A but not to B is noted A\B (this set is also called the difference of A and B.)

2.1. Blockchain Definition

Various definitions of blockchain have already been given [10, 11]. In this work,
we rather give a formalization of blockchains, which we believe is easier to use for
proving theoretical results such as the one in this paper.

Intuitively, a blockchain is a chain of transactions. More precisely, each element
of the chain (each block) contains several transactions (or one or none), as well a
proof needed for consensus to take place. For instance in Bitcoin [1] or similar Proof
of Work blockchains, the proof is a nonce (a random number such that the hash of
the block is below a threshold value); in a Proof-of-Stake such as the Casper version
for Ethereum [2] the proof consists of the successive bets on what the next block
will be; in a Proof-of-Elapsed-Time as designed by Intel [12], the proof is instead a
certificate obtained from the SGX (a trusted enclave). Note that it exists blockchains
not requiring proofs (for instance, one can argue that PBFT consensus does not
require proof), in which case we consider the proof is empty.

Definition 1 (Blockchain). Let T be a set of transactions and P be a set of proofs.
A blockchain is a tuple of elements B=(L,W, Emit,Mine), where:
• A ledger L is a list of transactions with their proofs defined by: L =

[([t1,1,t1,2,...],p1),...,[([tn,1,tn,2,...],pn)] with ti,j∈T and pi∈P.
• W is such that W⊂T , W is called the pool of waiting transactions.
• Emit is a deterministic algorithm taking one transaction t∈T andW as input,

and returning an updated pool Emit(t,W)=W∪t.
• Mine is an algorithm taking L,W and returning a new ledger L′, a new pool

W′, where for any W⊂T , and for (L′,W′) $←−Mine(L,W), we have that L′ is
of the form L‖[(transacs,p)], where transacs is a list containing all elements
from W\W′, and p∈P a proof.

Furthermore, after a call to Emit or Mine, the ledger L and the waiting pool W
of B are updated with the values returned by said algorithms. In other words, Mine
and Emit are not pure functions [13], as they have side effects on the blockchain.

At this point, transactions are appended (or not) to the blockchain after a call
to Mine. We hereby give a formal definition of what a valid transaction is.

3



Definition 2 (Valid Transaction). Let B = (L,W,Emit,Mine) be a blockchain,
and let t be a transaction (t∈W), t is a valid transaction for B (currently in state
L) if and only if there exists a block in the ledger returned by Mine containing t.

As we can see, the validity of a transaction depends on the state of the ledger; if
a transaction is valid at one point, it may not be valid forever, and reciprocally. For
instance, a transaction from user U to user V is valid only as long as U has enough
funds. Yet, after the emission and the insertion of the transaction in the blockchain,
U may issue other transactions, emptying their wallet. This is the classical issue of
double spending.

The same is true for smart contracts: here, they are seen as a special subset of
transactions, and they affect the state of the ledger. Because Mine has access to the
whole ledger, it can take into account the smart contract’s side effects.

Note that Mine is a randomized algorithm, and as such, there is no guarantee that
all users will agree on the same ledger. Because blockchain is a decentralised ledger,
state synchronisation must be ensured. For this, we introduce a synchronisation
algorithm, called Consensus.

Definition 3 (Decentralised Blockchain). A decentralised blockchain is a tuple
B′=(L,W,Emit,Mine,Consensus) where:
• B=(L,W,Emit,Mine) is a blockchain,
• Consensus is a deterministic algorithm, taking as input B, a set S of tuples

(Li,Wi) such that ∀(Li,Wi)∈S, we have that (Li,Wi,Emit,Mine) is a blockchain.
Furthermore, for (L∗,W∗)←Consensus(B,S), then (L∗,W∗)∈S∪(L,W). In
other words, from a list of potential new blocks, Consensus chooses (or accepts)
one of them, or rejects them all (and returns (L,W)).
• After a call to Consensus, B′’s ledger and waiting pool components are replaced

with the values returned by said algorithms.

The idea of Consensus is that when a peer updates their local version of the
blockchain, they first receive possibly more than one new version (i.e., new blocks)
from peers. However only one of these new blocks will be accepted, and all the
network must agree on this block.

Definition 4 (Secure Blockchain). We say that a decentralised blockchain (L,W,
Emit,Mine, Consensus) is secure if it is computationally hard for a user to craft a new
ledger L′ and a new transaction pool W′ such that for all S such that (L′,W′)∈S,
we have both that Consensus(B,S)=(L′,W′) and L is not a prefix of L′.

This definition makes a blockchain immune against history rewriting (and double
spending), as it is computationally hard to rewrite old blocks.

2.2. Interoperability Definition

The concept of interoperability is to enable two blockchains to work together. A
classic blockchainA accepts transactions because given the current state ofA’s ledger,
the transaction does not violate A’s rules. Similarly, we say that a blockchain A that
is interoperable with blockchain B accepts transactions because, given the current

4



state of A and B’s ledgers, the transaction does not violate A’s rules. Furthermore, if
the rules for said transaction only imply conditions onA’s ledger, then the transaction
does not require B to be valid, and as such does not make use of the interoperability.
So an interoperable transaction on A must be dependent on B’s ledger: if B’s ledger
is equal to some values, then the transaction is valid; otherwise it is invalid.

We now give a formalization of this definition.

Definition 5 (Blockchain Interoperability). Let A=(LA,WA,EmitA,
MineA, ConsensusA) and B = (LB,WB,EmitB,MineB,ConsensusB) be two decen-
tralised blockchains. Let ΩA (resp. ΩB) be the set of all possible values for A’s
ledger LA (resp. LB). A is interoperable with B if there exists:

• a transaction t∈T ,

• a non-empty subset ωA⊂ΩA,

• a non-empty proper subset ωB ΩB

such that there exists a block containing t that is accepted by ConsensusA if
LA×LB∈ωA×ωB, and rejected otherwise.
A and B are interoperable if they are both interoperable with each other.

3. General Impossibility of Interoperability

Our first result is to show that it is impossible to have interoperability between
two blockchains in general.

Theorem 1 Under the definitions 3 and 5, blockchain interoperability is impossible.

Proof. Assume that an interoperable transaction t exists. Then there is a set
ωB of possible ledger values of B for which a block containing t is accepted by
ConsensusA, if LB∈ωB. Moreover, if LB∈ΩB\ωB, then ConsensusA will refuse any
block containing t.

However, ConsensusA only takes A,S as arguments, where S is a set of tuples
(Li,Wi) (see Definition 3). As a consequence, ConsensusA is independent from B,
and especially from LB. Then, if t is accepted by ConsensusA when LB∈ωB, then
t is also accepted by ConsensusA when LB∈ΩB\ωB; this implies that ΩB\ωB =∅,
i.e., ωB =ΩB, which is a contradiction with the hypothesis of Definition 5, namely
that ωB is a proper subset of ΩB. �

This result is actually quite straightforward if we remember that a blockchain is,
by construction, made to be self-sufficient: no blockchain can rely on external data.
Especially, no blockchain can rely on another blockchain for asserting the validity
of a transaction. Hence, interoperability is a contradiction of one of the intrinsic
characteristics of blockchain.

The interpretation of the result is as follows: without additional assumptions,
interoperability between two blockchains is impossible. Therefore, to achieve interop-
erability further assumptions need to be made. For instance, in the two-way pegged
blockchain mechanism, a dispute period is required for each interoperabilty operation;
as the blockchain cannot know by itself whether the proposed SPV proof is the one
of the latest block.

5



4. Interoperability with a Weaker Definition

Even though blockchain is not suited for interoperability stricto sensu, we can
generalise our blockchain definition, in order to make a blockchain interoperable.

Hypothesis 1 We assume that for two blockchains A = (LA,WA,EmitA,MineA,
ConsensusA) and B, with A both MineA and ConsensusA have access to both A
and B: ConsensusA is of the form ConsensusA(A,B,S), and MineA is of the form
MineA(LA,LB,WA,WB).

We now use the notation ConsensusA(A,B,·) to note the new consensus algo-
rithm. Hence, the ‘version’ of Consensus in the previous definition, is now noted
ConsensusA(A,∅,·). Similarly, the non-interoperable version of Mine is now noted as
MineA(LA,∅,WA,∅).

Definition 6 (Interoperable transaction). Under the assumption hypothesis 1,
a transaction t on the blockchain A is said to be interoperable with B if t can be
accepted by ConsensusA(A,B,·) but cannot be accepted by
ConsensusA(A,∅,·).

In this context, we have the following result.

Theorem 2 Under Hypothesis 1, it is possible to build interoperable blockchains.

Proof. Note that we already know that interoperable blockchains exist, such as
Kadena [9] or other blockchains listed in [5], but we give an example of interoperable
blockchain in our own theoretical framework.

Consider two decentralised blockchains A=(LA,WA,EmitA,MineA, ConsensusA)
and B. On the blockchains we define accounts. An account ownership is defined by
the knowledge of a private key, and for simplicity the public key is assimilated to the
account itself. A transaction t∈TA (resp. TB) specifies the sender’s public key, the
receiver’s public key, an amount and a signature of the previous fields by the sender’s
private key. An account i on blockchain A (resp. B) is designed by iA (resp iB).

We build blockchain B so that it is interoperable with blockchain A in the
following sense: a user can ‘create’ money on B if and only if at least the same
amount of money has been consumed on A, by sending it to a ‘bin’ account.

We first note that accounts owned by nobody exist. In our scheme, in most
cryptosystems the public key 0 (consisting of only zeroes) is not linked to any private
key. Thus, while the account 0A exists and money can be transferred on this account,
it cannot be claimed by anyone.

Let us construct B in order to fulfil the previous requirements. First, let us define
the interoperability transactions t∗(mB,pkB), which sends some amount of money
mB from 0B to the account pkB on B. t∗(mB,pkB) is only valid if1 there is at least
one transaction on LA sending m to the account 0A, with m>mB.

1Note that for a real cryptocurrency more checks would be needed for any practical use, notably
because of the fact that in the current setting, anyone can withdraw m from 0B as many times
as they want. However, for the sake of simplicity, we only describe a simple, naive interoperability
operation here, so these checks are omitted.

6



Then, let us construct MineB: a transaction t is valid for MineB(LB,LA,WB,WA)
if and only if t is valid for MineA(LA,∅,WA,∅), or if both statements are true:
• t is an interoperability transaction transferring some amount of money m from

0B to an account on B,
• LA contains a transaction sending at least m on the zero-address 0A.
Similarly, ConsensusB(B,A, ·) is conceived to accept new ledgers that would

have been accepted by ConsensusA(B,∅,·), as well as ledgers where the new blocks
are constituted solely of transactions that are accepted by ConsensusA(B,∅,·) and
valid interoperability transactions (valid in the meaning that at the time of their
incorporation in the ledger, the sender has enough funds to emit the transaction).

With this construction, we immediately get that B is interoperable with A: a user
can transfer assets from A to B, which is shown by the fact that some transactions
(here denoted t∗) are only valid on B if the sender has enough funds on A.

�

5. Equivalence of Interoperable Blockchains with a Single Blockchain

Even though interoperable blockchains can be tweaked into existence, we argue
that they are conceptually equivalent to a single blockchain. More precisely, we
argue that they are equivalent to one blockchain, composed of two ledgers. Such a
blockchain can be easily implemented: if the first bit of the transaction is 0, then
apply the transaction to the first ledger, and if 1 to the second.

We say that two blockchains are equivalent if any valid transaction on one
blockchain corresponds to one valid transaction on the other blockchain. This def-
inition implies that two equivalent blockchains will have very similar evolutions of
their ledgers. As Mine is not deterministic, we cannot ensure that the two ledgers
will be identical, but the definition we give is enough for practical uses.

Definition 7 (Blockchain equivalence). Let there be two blockchains A=(LA,
WA,EmitA,MineA) and B=(LB,WB,EmitB,MineB) accepting transactions from TA
and TB, respectively. A and B are said to be equivalent if there exists a bijection
ϕ :TA→TB such that, if both ledgers are equivalent, then there is an equivalence of
the valid transactions. In mathematical terms, ϕ(LA)=LB⇒∀tA∈TA,tA is a valid
transaction for A⇔ϕ(tA) is a valid transaction for B).

Note that ϕ(LA) is the generalization of ϕ to ledgers: if LA = [[t1,1,t1,2,...] ,
...,[tn,1,tn,2,...]], then ϕ(LA)=[[ϕ(t1,1),ϕ(t1,2),...],...,[ϕ(tn,1),
ϕ(tn,2),...]], in the case of a ledger without proofs. If the ledger has proofs (see
Definition 1), ϕ would need to work on a projection of the ledger: a projection in
which every poof is removed. This subtlety has been removed from the definition
for the sake of simplicity.

For instance, let us assume that two blockchains are equivalent, and two smart con-
tracts being the reciprocal image of each other. This means that whatever transaction
triggers one smart contract, the effects on the state of the blockchain will be equivalent
to the effects on the state of the image blockchain: in both cases, the acceptable

7



elements after the transaction are the same (up to a bijection). This definition does
not guarantee that the smart contract will behave identically: for instance, one could
image a smart contract updating a useless write-only variable, which by definition
does not affect the set of future acceptable transactions as it is write-only. However,
it ensures that the behaviour of the blockchain is strictly the same in both cases.

Theorem 3 A decentralised blockchain A interoperable with a blockchain B is equiv-
alent to a decentralised blockchain C containing both A and B’s ledgers.

Proof. Let A= (LA,WA,EmitA,MineA,ConsensusA) and B be two decentralised
blockchains, with A being interoperable with B. A being interoperable with
B, we have MineA of the form MineA(LA,LB, ·), and ConsensusA of the form
ConsensusA(A,B,·).

Let TA (resp. TB) be the set of transactions for A (resp. B). Note that TA
contains interoperability transactions. Let C be the tuple C=(LC,WC,EmitC,MineC,
ConsensusC).

We define the set of transactions for C, TC = (TA×∅)∪(∅×TB). Let cA (resp.
cB) be the canonical projector of TC on TA (resp. TB).

For (LA‖[(transacsA,pA)],W′A)=MineA(LA,LB,cA(WC)) and
(LB‖[(transacsB,pB)],W′B) = MineB(LB,cB(WC)), we define: MineC(LC,WC) =
(LC‖[(transacsA×∅‖∅×transacsB,pA×pB), (W′A×∅)∪(∅×W′B)])

Simply put, MineC is a parallelisation of MineA and MineB: a block proposed
by MineC is a block comprised of the transactions accepted by MineA and MineB.

Similarly, ConsensusC is built as a parallelisation of ConsensusA and ConsensusB.
If ConsensusA(A,B,cA(SC)) = (L∗A,W∗A) and ConsensusB(B,cB(SB)) = (L∗B,W∗B),
then we define ConsensusC =(LA×∅‖∅×LB,WA×∅∪∅×WB).

By construction, we see that C is a decentralised blockchain. Furthermore, by
construction each transaction accepted by MineC is either accepted by MineA or
MineB and, conversely, each transaction accepted by MineA or MineB is accepted by
MineC, hence the equivalence of the blockchains. �

In practice, Theorem 3 means that creating two interoperable blockchains is
equivalent to creating one blockchain, with a ledger divided into two separate reg-
istries: a ‘2-in-1‘ blockchain. So while creating interoperable blockchains (with a lax
definition of a blockchain) is possible, we argue that the conceptual interest of doing
so is limited. However, it may be interesting to create an interoperable blockchain
on top of an already existing blockchain. Doing so allows both blockchains to fully
operate, without the older blockchain being affected by anything. Nonetheless the
obvious restriction is that only one of the two blockchains will be interoperable with
the other, with all the limits implied by this fact.

6. Conclusion

In this paper, we explored the possibility of making two blockchains interoperable.
We showed that, under classical definitions, it is impossible to make a blockchain
interact with anything other than itself. If we relax the definition, we do get the
possibility of interoperable blockchains, but doing so is equivalent to creating a ‘2-in-1‘
blockchain, i.e., a blockchain with two ledgers.

8



References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2009).
URL http://www.bitcoin.org/bitcoin.pdf

[2] V. Buterin, Ethereum: A next-generation smart contract and decentralized
application platform (2014).
URL https://github.com/ethereum/wiki/wiki/White-Paper

[3] D. Schwartz, N. Youngs, A. Britto, The ripple protocol consensus algorithm
(2014).
URL https://ripple.com/files/ripple_consensus_whitepaper.pdf

[4] CryptoID, Crypto-currency blockchain explorers (2019).
URL https://chainz.cryptoid.info/

[5] S. Johnson, P. Robinson, J. Brainard, Sidechains and interoperability, arXiv
e-prints (2019). arXiv:1903.04077.

[6] S. Thomas, E. Schwartz, A protocol for interledger payments (2015).
URL https://interledger.org/interledger.pdf

[7] V. Buterin, Chain interoperability (2016).
URL https://www.r3.com/wp-content/uploads/2017/06/chain_

interoperability_r3.pdf

[8] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, P. Wuille, Enabling blockchain innovations with pegged
sidechains (2014).
URL http://www.opensciencereview.com/papers/123/

enablingblockchain-innovations-with-pegged-sidechains

[9] W. Martino, M. Quaintance, S. Popejoy, Chainweb whitepaper (2018).
URL http://kadena2.novadesign.io/wp-content/uploads/2018/08/

chainweb-v15.pdf

[10] J. Garay, A. Kiayias, N. Leonardos, The bitcoin backbone protocol: Analysis
and applications, in: Advances in Cryptology - EUROCRYPT, 2015.

[11] A. F. Anta, K. Konwar, C. Georgiou, N. Nicolaou, Formalizing and implementing
distributed ledger objects, SIGACT News (2018).

[12] IBM Hyperledger Consortium, Hyperledger sawtooth (2017).
URL https://sawtooth.hyperledger.org/docs/core/releases/latest/

index.html

[13] B. Milewski, Pure functions, laziness, i/o, and monads (2014).
URL https://www.schoolofhaskell.com/school/starting-with-

haskell/basics-of-haskell/3-pure-functions-laziness-io

9




