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Abstract

A common issue of deep neural networks-based methods for the problem of

Single Image Super-Resolution (SISR), is the recovery of finer texture details

when super-resolving at large upscaling factors. This issue is particularly re-

lated to the choice of the objective loss function. In particular, recent works

proposed the use of a VGG loss which consists in minimizing the error between

the generated high resolution images and ground-truth in the feature space of

a Convolutional Neural Network (VGG19), pre-trained on the very “large” Im-

ageNet dataset. When considering the problem of super-resolving images with

a distribution “far” from the ImageNet images distribution (e.g., satellite im-

ages), their proposed fixed VGG loss is no longer relevant. In this paper, we

present a general framework named Generative Collaborative Networks (GCN),

where the idea consists in optimizing the generator (the mapping of interest) in

the feature space of a features extractor network. The two networks (generator

and extractor) are collaborative in the sense that the latter “helps” the former,

by constructing discriminative and relevant features (not necessarily fixed and

possibly learned mutually with the generator). We evaluate the GCN frame-

work in the context of SISR, and we show that it results in a method that is

adapted to super-resolution domains that are “far” from the ImageNet domain.
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Figure 1: When super-resolving images from a different domain (e.g., satellite images on the

right) than the ImageNet domain (e.g., general objects on the left), the VGG loss introduced

by [1] is no longer relevant. We propose a method that outperforms the SRGAN method [1]

when super-resolving satellite images. Our method falls within a large class of methods which

constitutes our proposed Generative Collaborative Networks framework.

1. Introduction

The super-resolution problem (Psr) consists in estimating a high resolution

(HR) image from its corresponding low resolution (LR) counterpart. Psr finds

a wide range of applications and has attracted much attention within the com-

munity of computer vision [2, 3, 4]. Generally, the considered optimization5

objective of supervised methods to solve Psr is the minimization of the mean

squared error (MSE) between the recovered HR image and ground-truth. This

class of methods are known to be suboptimal to reconstruct texture details

at large upscaling factors. In fact, since MSE consists in a pixel-wise images

differences, its ability to recover high texture details is limited [1, 5, 6, 7]. Fur-10

thermore, the minimization of MSE maximizes the Peak Signal-to-Noise-Ratio

(PSNR) metric, which is commonly used for the evaluation of Psr methods [8].

In order to correctly recover finer texture details when super-resolving at

large upscaling factors, a recent (state-of-the-art) work [1] defined a perceptual
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loss which is a combination of an adversarial loss and a VGG loss. The for-15

mer encourages solutions perceptually hard to distinguish from the HR ground-

truth images, while the latter consists in using high-level feature maps of the

VGG network [9] pre-trained on ImageNet [10]. When considering the problem

of super-resolving images from a target-domain different than ImageNet (e.g.,

satellite images), the features produced by the pre-trained VGG network on the20

source domain (ImageNet) are suboptimal and no longer relevant for the target

domain. In fact, transfer-learning methods are known to be efficient only when

the source and target domains are close enough [11, 12, 13]. In this work, we

present a general framework which we call Generative Collaborative Networks

(GCN), where the main idea consists in optimizing the generator (i.e., the map-25

ping of interest) in the feature space of a network which we shall refer to as a

features extractor network. The two networks are said to be collaborative in the

sense that the features extractor network “helps” the generator by constructing

(here, learning) relevant features. In particular, we applied our framework to the

problem of single image super-resolution, and we demonstrated that it results in30

a method that is more adapted (compared to SRGAN [1]) when super-resolving

images from a domain that is “far” from the ImageNet domain.

The rest of the paper is organized as follows. In Section 2 we present the

state of the art on the problem of single image super-resolution. We describe our

Generative Collaborative Networks framework in Section 3. Section 4 presents35

our proposed method for the super resolution task and related experimental

results. Section 5 provides some discussions and concludes the article.

2. Related work

The problem of super-resolution has been tackled with a large range of ap-

proaches. In the following, we will consider the problem of single image super-40

resolution (Psisr) and thus the approaches that recover HR images from multi-

ple images [14, 15] are out of the scope of this paper. First approaches to solve

Psisr were filtering-based methods (e.g., linear, bicubic or Lanczos [16] filter-
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ing). Even if these methods are generally very fast, they usually yield overly

smooth textures solutions [6]. Most promising and powerful approaches are45

learning-based methods which consist in establishing a mapping between LR

images and their HR counterparts (supposed to be known). Initial work was

proposed by Freeman et al. [17]. This method has been improved in [18, 19]

by using compressed sensing approaches. Patch-based methods combined with

machine learning algorithms were also proposed: in [20, 21] upsampling a LR50

image by finding similar LR training patches in a low dimensional space (us-

ing neighborhood embedding approaches) and a combination of the HR patches

counterparts are used to reconstruct HR patches. A more general mapping of

example pairs (using kernel ridge regression) was formulated by Kim and Kwon

[22]. Similar approaches used Gaussian process regression [23], trees [24] or55

Random Forests [25] to solve the regression problem introduced in [22]. An en-

semble method-based approach was adopted in [26] by learning multiple patch

regressors and selecting the most relevant ones during the test phase.

Convolutional neural networks (CNN)-based approaches outperformed other

Psisr approaches, by showing excellent performance. Authors in [27] used an60

encoded sparse representation as a prior in a feed-forward CNN, based on the

learned iterative shrinkage and thresholding algorithm of [28]. An end-to-end

trained three layer deep fully convolutional network, based on bicubic inter-

polation to upscale the input images, was used in [29, 30] and achieved good

Psisr performances. Further works suggested that enabling the network to di-65

rectly learn the upscaling filters, can remarkably increase performance in terms

of both time complexity and accuracy [31, 32]. In order to recover visually more

convincing HR images, Johnson et al. [33] and Bruna et al. [34] used a closer

loss function to perceptual similarity. More recently, authors in [1] defined a

perceptual loss which is a combination of an adversarial loss and a VGG loss.70

The latter consists in minimizing the error between the recovered HR image and

ground-truth in the high-level feature space of the pre-trained VGG network [9]

on ImageNet [10]. This method notably outperformed CNN-based methods for

the problem Psisr.
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3. Generative Collaborative Networks75

3.1. Proposed Framework

Consider a problem P of learning a mapping function F , parameterized by

θF , that transforms images from a domain X to a domain Y, given a training

set of N pairs {(xi, yi)}Ni=1 ∈ X × Y. Denote by pX and pY the probability

distributions respectively over X and Y. In addition, we introduce a given fea-

tures extractor function denoted Φ, parameterized by θΦ, that maps an image

y ∈ Y to a certain euclidean feature space SΦ of dimensionality d. The map-

pings F and Φ are typically feed-forward Convolutional Neural Networks. The

Generative Collaborative Networks (GCN) framework consists in learning the

mapping function F by minimizing a given loss function1 in the space of features

SΦ, between the generated images (through F) and ground-truth. Formally,

θ̂F = arg min
θF

λ1

N d

N∑
i=1

d∑
j=1

(Φj (yi)− Φj (F(xi)))
2

+ λ2 Ω(θF ), (1)

where Ω(θF ) is a certain regularization term (detailed below) on the weights

θF and λ1 and λ2 are summation coefficients. The two networks F and Φ are

collaborative in the sense that, the latter learns specific features of the domain

Y and “helps” the former, as it is learned in the space SΦ. An important80

question arises about how to learn the mapping Φ. In following, we describe

different classes of methods depending on the learning strategy of Φ. In fact, the

features extractor function Φ can take different forms and be learned by different

strategies. In particular, we distinguish two learning strategies (illustrated in

Figure 2), which we shall call disjoint-learning and joint-learning. The four85

following cases belong to the disjoint-learning strategy:

(1.a) When Φ is the identity operator (Φ = Id). In that case, the objective in

Eq.(1) becomes a simple pixel-wise MSE loss function. We refer to this

class of methods by P/mse.

1`2-loss is considered in the following.
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Figure 2: Overview of the GCN framework with examples of the two learning strategies.

The GCN framework consists in optimizing a generator in the feature space of an extractor

as illustrated in (a). The extractor can be trained beforehand and used to optimize the

generator, which we refer to as disjoint-learning strategy (b). The extractor can also be

optimized jointly with the generator, i.e., using a joint-learning strategy (c).
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(1.b) When Φ corresponds to a random feature map neural network, that is to90

say, the weights θΦ are set randomly according to a given distribution µ.

We refer to this class of methods by P/ran.

(1.c) When Φ is a part of a model that solves a reconstruction problem (jointly

with an auxiliary mapping function Ψ : SΦ → Y), by minimizing the

pixel-wise `2-loss function between the reconstructed images (through Ψ)

and ground-truth:

(θ̂Φ, ) = arg min
(θΦ,θΨ)

1

N dim(Y)

N∑
i=1

dim(Y)∑
j=1

((yi)j − (Ψ ◦ Φ(yi))j)
2
. (2)

Notably, this strategy allows for the learning of reconstruction features

which are different from classification-based features. We refer to this

class of methods by P/rec.95

(1.d) When Φ is trained to solve a multi-label classification problem [1], that

is to say, when labels are available for the domain Y. More precisely, it

exists a dataset {(yi, ci)}ni=1 ∈ Y ×{1, . . . ,m} of n images labelled among

m classes and Φ is learned to minimize the following objective:

(θ̂Φ, ) = arg max
(θΦ,θΨ)

P {Ψ ◦ Φ(yi) = ci | yi ; i ∈ {1, . . . ,m}} , (3)

where Ψ : SΦ → {1, . . . ,m}. We refer to this class of methods by P/cla.

The features extractor function Φ can also be trained jointly with the desired

mapping function F . Indeed, as in the GANs paradigm, one can use a discrim-

inator to distinguish the generated images (through F) and ground-truth, and

thus learn more relevant and specific features for the problem of interest P. In100

particular, the joint-learning strategy contains two cases:

(2.a) When Φ is a part of a discriminator. D = Ψ◦Φ : Y → {0, 1} that classifies

the generated images (through F) and ground-truth. D is optimized in

an alternating manner along with F to solve the adversarial min-max

problem [35]:

min
θF

max
(θΦ,θΨ)

Ey∼pY [log Ψ ◦ Φ(y)] + Ex∼pX [log {1−Ψ ◦ Φ ◦ F(x)}] . (4)
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The adversarial loss (second term of Eq. (4)) can thus be seen as a regular-

ization of the parameters θF by affecting this quantity to Ω(θF ) in Eq. (1).

This regularization “pushes” the solution of the problem in Eq. (1) to the

manifold of the images in the domain Y. We refer to this class of methods105

by P/adv. When λ2 = 0, we refer to it by P/dis.

(2.b) When Φ is a part of a discriminator and an auto-encoder. Namely, by

optimizing its weights θΦ to solve simultaneously, an adversarial problem

as in Eq. (4); through D = Ψ1 ◦ Φ : Y → {0, 1}, and a reconstruction

problem as in Eq. (2); through a mapping Ψ2 : SΦ → Y. We refer to this110

class of methods by P/adv,rec or P/dis,rec depending on the value of λ2

in Eq. (1).

3.2. Existing Loss Functions

The natural way to learn a mapping from a manifold to another is to use

P/mse methods. It is well known [5, 1, 7, 6] that this class of methods lead115

to overly-smooth and poor perceptual quality solutions. In order to handle

the mentioned perceptual quality limitation, a variety of methods have been

proposed in the literature. First methods used generative adversarial networks

(GANs) for generating high perceptual quality images [36, 37], style transfer [38]

and inpainting [39], namely the class of methods P/adv with λ1 = 0. Authors in120

[40] proposed to use P/mse with an adversarial loss (λ1 > 0 and λ2 > 0) to train

a network that super-resolves face images with large upscaling factors. Authors

in [34, 33] and in [41] used P/cla by considering respectively Φ =VGG19 and

Φ =AlexNet networks as fixed features extractors (learned disjointly from the

mapping of interest), which result in a more perceptually convincing results for125

both super-resolution and artistic style-transfer [42, 43]. More recently, authors

in [1] used P/cla,adv by considering Φ =VGG19 as a fixed features extractor

combined with an adversarial loss (λ2 > 0). To the best of our knowledge, as

summarized in table 1, the use of the other learning strategies of Φ; namely

(1.c), (2.a) and (2.b), have not been explored in the literature. We particularly130

apply these strategies in the context of Single Image Super-Resolution, which
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Standard methods P/mse P/cla P/rec P/dis P/dis, rec

Existence 3[5] 3[41] 7 7 7

Adversarial methods P/adv,mse P/adv, cla P/adv P/adv, rec

Existence 3[40] 3[1] 7 7

Table 1: Existent loss functions of the proposed GCN framework.

results in methods that are more suitable (comparing to the SRGAN method

[1]) to super-resolution domains that differ from the ImageNet domain. The

proposed methods as well as the corresponding experiments are presented in

the following section.135

4. Application of GCN to Single Image Super-Resolution

4.1. Proposed Methods

In this section, we consider the problem of Single Image Super-Resolution

(Psisr). In particular, we suppose we are given N pairs {(ILRi , IHRi )}Ni=1 of low-

resolution images and their high-resolution counterparts. Recalling our GCN140

framework (presented in Section 3) the proposed methods for the problem Psisr
are: Psisr/rec, Psisr/dis, Psisr/dis,rec, Psisr/adv and Psisr/adv,rec. We show

in the following that the most convincing results are given by Psisr/adv,rec. In

particular, we show on a dataset of satellite images (different from the ImageNet

domain) that our method Psisr/adv,rec outperforms the SRGAN method [1]145

by a large margin on the considered domain. Note that, as our goal is to

show the irrelevance of the VGG loss for some visual domains (different from

ImageNet), we do not consider the well-known SR benchmarks (e.g., Set5, Set14,

B100, Urban100) for the evaluation, as these benchmarks are relatively close to

the ImageNet domain. The evaluation of the different methods is based on150

perceptual metrics [44] which we recall in the following section.

4.2. Evaluation Metrics

The evaluation of super-resolution methods (more generally image regression-

based methods) requires comparing visual patterns which remains an open prob-

lem in computer vision. In fact, classical metrics such as L2/PSNR, SSIM and155
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FSIM often disagree with human judgments (e.g., blurring causes large percep-

tual change but small L2 change). Thus, the definition of a perceptual metric

which agrees with humans perception is an important aspect for the evaluation

of Psisr methods. Zhang et al. [44] recently evaluated deep features across differ-

ent architectures (Squeeze [45], AlexNet[46] and VGG[9]) and tasks (supervised,160

self-supervised and unsupervised networks) and compared the resulting metrics

with traditional ones. They found that deep features outperform all classical

metrics (e.g., L2/PSNR, SSIM and FSIM) by large margins on their introduced

dataset. As a consequence, deep networks seem to provide an embedding of

images which agrees surprisingly well with humans judgments.165

Zhang et al. [44] compute the distance between two images x, y with a

network2 Φ in the following way:

dΦ(x, y) =
∑
l

1

HlWl

∑
h,w

‖wl � (Φl(x)hw − Φl(y)hw)‖22, (5)

where Φl(·) are the extracted features from layer l and unit-normalized in the

channel dimension. wl is a re-scaling vector of the activations channel-wise at

layer l. Hl and Wl are respectively the height and width of the lth feature map.

Thus, we compute the perceptual error (PE) of a Psisr method (a mapping

F) on a given test-set of N low-resolution images and their high-resolution

counterparts Π = {(ILRi , IHRi )}Ni=1 as the mean distances between the generated

images (through F) and ground-truth as follows:

PEΦ(Π) =
1

N

N∑
i=1

dΦ(F(ILRi ), IHRi ). (6)

Note that we use the implementation of [44] to compute the perceptual dis-

tances dΦ(·, ·) using six variants which are based on the networks Squeeze[45],170

AlexNet[46] and VGG[9] and their “perceptual calibrated” versions. The best

2The considered networks are Squeeze[45], AlexNet[46] and VGG[9] and their ”perceptual

calibrated” versions which we refer to respectively as Squeeze-l, AlexNet-l and VGG-l. See

[44] and the provided github project within for further details.
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method is considered to be the one which minimizes the maximum amount of

PEs across different networks Φ ∈ {Squ, Squ-l, Alex, Alex-l, VGG, VGG-l}.

4.3. Experiments

The overall goal of this section is to validate our statement about the rel-175

evance of the VGG loss when super-resolving images from a different domain

than the ImageNet domain. To highlight this aspect, we first present the con-

sidered datasets, architectures and training details. Then we select the more

appropriate method (across the GCN framework methods) for the Psisr problem

based on perceptual metrics [44]. Finally, we compare our proposed method to180

some baselines and the state-of-the-art SRGAN method [1], on three different

datasets (detailed in the following section). We show in particular that our

method outperforms SRGAN on the satellite images domain.

4.3.1. Datasets

The idea of replacing the MSE pixel-wise content loss on the image by a loss185

function that is closer to perceptual similarity is not new. Indeed, [1] defined

a VGG loss on the feature map obtained by a specific layer of the pre-trained

VGG19 network and shows that it fixes the inherent problem of overly smooth

results which comes with the pixel-wise loss. Nevertheless, VGG19 being trained

on ImageNet, their method would not perform particularly well on different190

images, the distribution of which is far away from that of ImageNet. Therefore,

we propose a similar method where the difference is that our features extractor

is not pre-trained, but trained jointly with the generator. This removes the

aforementioned limitation since the features extractor is trained on the same

dataset as the generator and thus extract relevant features.195

To show that, we trained our different networks (i.e., with different features

extractors) on three distinct datasets (examples of images of these datasets are

shown in Figure 3):

• A subset of ImageNet [10], for which we sampled 70, 000 images. Since

VGG19 was trained on ImageNet for many (more than 300K) iterations,200
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Figure 3: Examples of images from the considered datasets.

we expect to have similar or worse results than the state-of-the-art method

SRGAN from [1] on this database.

• The Describable Textures Dataset (DTD) [47], containing 5, 600 images

of textural patterns. These data are relatively close to ImageNet and we

show that our method gives convincing results relatively close to SRGAN.205

• A dataset containing satellite images3, which we generated by randomly

cropping 256 × 256 images on a 7205 × 7205 satellite image which result

in 235, 183 images. We particularly show that our method significantly

outperforms SRGAN on this dataset. We refer to this dataset by Sat.

All experiments are performed with a scale factor of 4× between low- and210

high-resolutions images and the formers are obtained during the training by

down-scaling the original images by a factor 1/4.

3Can be found in http://www.terracolor.net/sample_imagery.html
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4.3.2. Architectures

Our overall goal is to prove that the proposed GCN framework, is adapted

to train a generative mapping model and that it surpasses the MSE loss in215

keeping perceptual similarity in the generated image (whereas the MSE loss

tends to smooth things out and lose high frequency details). As opposed to [1]’s

work, our framework does not require to have a pre-trained network, like VGG,

to extract helpful features for training. In this paper, we focus on the Super

Resolution problem. Therefore, we chose our mapping function F , or generator,220

to be that of Ledig et al. [1]: a feed-forward CNN parametrized by θF , composed

of 10 residual blocks. These blocks are made of two convolutional layers with

3 × 3 kernels and 64 features maps, each followed by batch normalization and

PReLU as activation. The image’s size is then increased of a factor 4 by two

trained upsamplings. The architecture of all the used discriminators follows225

the guidelines of Radford et al. [48] as it is composed of convolutional layers,

followed by a batch normalization and a LeakyReLU (α = 0.2) activation. This

block is repeated eight times and each time the number of 3×3 kernels increases

by a factor 2 (ranging from 64 to 512), a strided convolution is used to reduce

the image resolution by 2. Two dense layers and a sigmoid activation then230

return the discrimination probability. In the case of an auto-encoder (every

Reconstruction problem), we follow the same architecture for the encoder and a

symmetric one for the decoder. Figure 4 depicts an overview of the architectures

for both the generator and the discriminator.

4.3.3. Training details and parameters235

All networks were trained4 on a NVIDIA Geoforce GTX 1070 GPU using

the datasets described in Section 4.3.1, which do not contain the (1000) testing

images shown as results. We scaled the range of both the LR input images and

the HR images to [−1, 1], which explains the tanh activation for the last layer

of the generator. All variants of our networks, which differ in their features ex-240

4A Keras implementation is provided in https://github.com/melaseddik/GCN
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Figure 4: Overview of the used architectures for the generator and the discriminator. We

have considered the same architectures as that of Ledig et al. [1].

tractor, were trained from scratch (for the generator and the features extractor)

with mini batches of 10 images. We used the Adam optimizer with a learning

rate of 2 · 10−4 and a decay of 0. The generator and the feature extractor are

updated alternatively. As we realized training was stable and quite fast, we

trained with only 5, 000 update iterations to pinpoint the best method among245

the different GCNs. Finally, the regularization parameters in our global loss

are set by default as λ1 = 1 and λ = 10−3. As a reminder, our goal here is,

given a generator architecture (or mapping function F), to find the best strat-

egy to train it, following our GCNs paradigms. The best method is then further

compared to baselines.250

4.3.4. Features Extractor Selection

As we said above, we investigated the ability of different features extractor

to construct relevant perceptual feature maps for training and improving the

rendering quality of the generator. In order to select the best learning strat-

egy given a certain dataset, we train the generator on each dataset (presented255

in Section 4.3.1) using the different learning strategies: Psisr/rec, Psisr/dis,

Psisr/dis,rec, Psisr/adv and Psisr/adv,rec. Note that, the features extractor for

14



all the considered methods correspond to the first layer of the discriminators (or

encoder-decoders). In fact, as the problem Psisr consists in recovering low-level

perceptual cues, we limited our study to the first layer.260

Table 2 summarizes the results of the proposed Psisr methods in terms of

low-level metrics (L2 and SSIM) and perceptual metrics [44] which are given

by Eq. (6). We notice from this table that the method Psisr/adv, rec performs

relatively well on the datasets ImageNet and Sat in terms of perceptual metrics.

While Psisr/dis, rec gives better results on the DTD dataset. The main dif-265

ference between these two methods is that the former considers an adversarial

loss on the objective function while the latter does not consider the adversarial

term. This explains the reason why Psisr/adv, rec does not perform well on

DTD. In fact, texture images belong to a complex manifold and their distribu-

tion is relatively hard to fit by a generative model.270

Figure 5 shows qualitative results of the different proposed methods on the

different presented datasets. Generally, the methods which were trained with

an additional adversarial loss (Psisr/adv and Psisr/adv,rec) output images of

higher quality (on the datasets ImageNet and Sat) as GANs were introduced to

do just so: generate images that follow the distribution of the dataset. Among275

these two adversarial methods, it seems to us (as suggested by the quantitative

results of table 2) that Psisr/adv,rec (column (c) of Figure 5) is able to detect

and render more details, due to its ability to generate more relevant features

as the features extractor Φ is learned to solve a multi-task problem; namely a

discrimination and a reconstruction problem, in particular, this method allows280

for the learning of both classification and reconstruction-based features. We

will thus further investigate the Psisr/adv,rec method for the comparison to the

baseline and the state-of-the-art method SRGAN [1], on the satellite images

domain.
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Low-level Perceptual metrics

Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l
Im

a
g
e
N

e
t

Psisr/dis 0.018 0.147 1.606 0.279 1.470 0.398 2.088 0.358

Psisr/rec 0.020 0.162 1.723 0.301 1.595 0.425 2.243 0.388

Psisr/dis, rec 0.017 0.147 1.587 0.279 1.420 0.382 2.052 0.353

Psisr/adv 0.028 0.202 1.820 0.222 1.554 0.322 2.598 0.432

Psisr/adv, rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340

D
T

D

Psisr/dis 0.027 0.184 1.873 0.327 1.739 0.440 2.401 0.421

Psisr/rec 0.027 0.183 1.851 0.320 1.726 0.438 2.398 0.420

Psisr/dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392

Psisr/adv 0.036 0.227 2.077 0.281 1.812 0.375 2.770 0.473

Psisr/adv, rec 0.046 0.236 2.089 0.277 1.793 0.344 2.796 0.481

S
a
t

Psisr/dis 0.011 0.129 1.484 0.210 1.508 0.356 2.121 0.355

Psisr/rec 0.060 0.168 1.705 0.245 1.762 0.423 2.260 0.395

Psisr/dis, rec 0.011 0.138 1.493 0.215 1.435 0.351 2.108 0.372

Psisr/adv 0.030 0.214 1.719 0.181 1.627 0.306 2.711 0.419

Psisr/adv, rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344

Table 2: Results of the proposed Psisr methods in terms of traditional metrics (L2 and SSIM)

and the perceptual error (PE) given by Eq. (6) on different datasets. As we can notice, the

method Psisr/adv, rec outperforms the other methods in the datasets ImageNet and Sat,

while Psisr/dis, rec gives the best results on DTD.

4.3.5. Psisr/adv, rec against baseline methods on the satellite images domain285

Our main objective is to show that the VGG loss function (namely, the

SRGAN method [1]) is no longer relevant when super-resolving images from

a domain different than the ImageNet domain. In particular, by considering

the satellite images domain, we show in this section that the selected method

from the previous section (Psisr/adv, rec) outperforms some baselines, which290

are Psisr/mse (pixel-wise MSE loss) and Psisr/adv,mse (pixel wise MSE loss

combined with an adversarial loss), and the state-of-the-art super-resolution

method, SRGAN [1]. Note that all the methods use the same architectures

(depicted in figure 4) for the generator and discriminator and are trained on

the same domain (here, on satellite images). Our purpose being to show the295

relevance of the proposed method on a domain “far” from the ImageNet domain,

we do not consider standard SR benchmarks, which are raltively “close” to the
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Low-level Perceptual metrics

Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l
S
a
t

Psisr/mse 0.011 0.134 1.873 0.245 1.855 0.411 2.536 0.419

Psisr/adv,mse 0.082 0.197 1.458 0.205 1.466 0.352 2.125 0.347

SRGAN [1] 0.228 0.188 1.510 0.220 1.361 0.282 2.230 0.412

Psisr/adv, rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344

Table 3: Comparison of our method Psisr/adv, rec with baselines and the SRGAN method

[1] on the satellite images domain, in terms of classical metrics (L2 and SSIM) and perceptual

metrics [44].

ImageNet domain.

Table 3 presents quantitative results, in terms of classical metrics (L2 and

SSIM) and perceptual metrics given by Eq. (6), of the different methods on the300

Sat dataset. As we can notice, our method Psisr/adv, rec outperforms the other

methods in terms of perceptual metrics. Knowing that the perceptual metrics

agree with human judgments [44], these results validate the effectiveness of the

Psisr/adv, rec method. Note also that even if SRGAN [1] is optimized to min-

imize a VGG loss, it does not give the lowest perceptual errors in terms of the305

perceptual metrics VGG and VGG-l, this is due to the fact that the VGG fea-

tures are not relevant for the satellite images domain. In addition, Psisr/adv, rec

gives the lowest perceptual errors in terms of the perceptual metrics Alex and

Alex-l which agrees with a human perception. In fact, AlexNet network may

more closely match the architecture of the human visual cortex [49].310

HR (REF) Psisr/mse Psisr/adv,mse SRGAN [1]

Psisr/rec Psisr/dis,rec Psisr/adv Psisr/adv,rec

Figure 6: Results of different Psisr methods on a patch of an image from the Sat dataset.
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Figure 6 shows some qualitative results of different methods on a patch of an

image from the Sat dataset. As we can notice, the Psisr/adv, rec method gives

the perceptually closest result to the ground-truth image, which agrees with the

quantitative results of table 3.

4.3.6. Further results315

In this section, we provide further qualitative and quantitative comparisons

to the considered baselines of the previous section. In particular, we consider

all the presented datasets for the comparisons. Qualitative results are provided

in figure 7. SRGAN performs better on ImageNet, which is not that surprising

considering our features extractor was trained much less than VGG19 used in320

[1] and the VGG features being more relevant for images from the ImageNet

domain. Nonetheless, we do have sharper images than the MSE based methods,

although we show some artifact (especially on the boat) which we attribute to

the competition between the content and adversarial losses. On DTD though,

we can see the benefit of our method over a pre-trained VGG loss. Indeed,325

SRGAN is blurrier on both the house (first row) and the cliff (third row), in

spite of having less artifacts than our method. On the “cracks” example (second

row), SRGAN even totally obliterates the details in the center. Finally, results

on the dataset Sat, which is the most different dataset compared to ImageNet,

are the most compelling. Our method generates super resolved images that330

are really close to the real high resolution images, while we can clearly see

imperfections on SRGAN’s results because of VGG19 which was not trained to

detect perceptual features on satellite images.

Quantitative results are summarized in Table 4. As shown in [1, 44], the

standard quantitative measures such as L2 and SSIM fail to highlight image335

quality according to the human visual system. In fact, while the results of

Psisr/mse are overly smooth perceptually, it has the lowest L2 and SSIM errors

on Sat. However, perceptual metrics agree with what we assess qualitatively:

SRGAN performs best on ImageNet but not on Sat, the distribution of which is

the farthest from ImageNet. Actually, SRGAN ranks third of all four methods340
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Low-level Perceptual metrics

Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l
Im

a
g
e
N

e
t Psisr/mse 0.017 0.146 1.568 0.280 1.435 0.391 2.064 0.349

Psisr/adv,mse 0.020 0.156 1.634 0.241 1.397 0.329 2.223 0.384

SRGAN 0.028 0.170 1.303 0.177 1.084 0.225 2.045 0.342

Psisr/adv, rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340

D
T

D

Psisr/mse 0.029 0.185 1.972 0.342 1.856 0.470 2.479 0.434

Psisr/adv,mse 0.025 0.188 1.880 0.268 1.586 0.349 2.512 0.430

SRGAN 0.031 0.191 1.557 0.209 1.298 0.241 2.308 0.393

Psisr/dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392

Table 4: Comparison of our methods Psisr/adv, rec and Psisr/dis, rec with baselines and the

SRGAN method [1] on the datasets ImageNet (a subset of 200,000 randomely selected images)

and DTD, in terms of classical metrics (L2 and SSIM) and perceptual metrics [44].

on Sat, just before Psisr/adv,mse, while still performing best on DTD which

still is pretty close to ImageNet. This shows that the VGG features become

less and less relevant as the dataset’s distribution part from ImageNet. On the

other hand, our training framework allows to construct relevant features on any

(never seen) dataset. Thus our method Psisr/adv,rec performs best on Sat. Our345

method performing better than Psisr/adv,mse also shows that our framework

helps finding detail preserving features. Figure 7 provides the results of the dif-

ferent baselines and our method on some examples of the considered datasets.

We notice from these images that our method Psisr/adv, rec recovers finer de-

tails on the different datasets while it outperforms the considered baselines on350

satellite images. Table 5 summarizes the results of the different methods on

the considered datasets through the paper. From these results, we make the

following conclusions:

• When the considered domain is far enough from the ImageNet domain,

the VGG loss introduced by [1] is no longer relevant.355

• The VGG network can not be fine-tuned when considering a domain for

which there is no available labels for the images (e.g., satellite images).

Thus, the SRGAN method cannot be exploited efficiently in this case.

• Our framework results in a method (Psisr/adv, rec) that outperforms some
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baselines and the SRGAN method on the satellite images domain.360

• Even on a domain close to the ImageNet domain (e.g., texture images),

one can find within our framework methods which give almost similar

results to the SRGAN method, while the later is based on VGG features

and thus need to train the VGG network on the whole ImageNet dataset.

Low-level Perceptual metrics

Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l

Im
a
g
e
N

e
t

Psisr/mse 0.017 0.146 1.568 0.280 1.435 0.391 2.064 0.349

Psisr/adv,mse 0.020 0.156 1.634 0.241 1.397 0.329 2.223 0.384

SRGAN 0.028 0.170 1.303 0.177 1.084 0.225 2.045 0.342

Psisr/dis 0.018 0.147 1.606 0.279 1.470 0.398 2.088 0.358

Psisr/rec 0.020 0.162 1.723 0.301 1.595 0.425 2.243 0.388

Psisr/dis, rec 0.017 0.147 1.587 0.279 1.420 0.382 2.052 0.353

Psisr/adv 0.028 0.202 1.820 0.222 1.554 0.322 2.598 0.432

Psisr/adv, rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340

D
T

D

Psisr/mse 0.029 0.185 1.972 0.342 1.856 0.470 2.479 0.434

Psisr/adv,mse 0.025 0.188 1.880 0.268 1.586 0.349 2.512 0.430

SRGAN 0.031 0.191 1.557 0.209 1.298 0.241 2.308 0.393

Psisr/dis 0.027 0.184 1.873 0.327 1.739 0.440 2.401 0.421

Psisr/rec 0.027 0.183 1.851 0.320 1.726 0.438 2.398 0.420

Psisr/dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392

Psisr/adv 0.036 0.227 2.077 0.281 1.812 0.375 2.770 0.473

Psisr/adv, rec 0.046 0.236 2.089 0.277 1.793 0.344 2.796 0.481

S
a
t

Psisr/mse 0.011 0.134 1.873 0.245 1.855 0.411 2.536 0.419

Psisr/adv,mse 0.082 0.197 1.458 0.205 1.466 0.352 2.125 0.347

SRGAN 0.228 0.188 1.510 0.220 1.361 0.282 2.230 0.412

Psisr/dis 0.011 0.129 1.484 0.210 1.508 0.356 2.121 0.355

Psisr/rec 0.060 0.168 1.705 0.245 1.762 0.423 2.260 0.395

Psisr/dis, rec 0.011 0.138 1.493 0.215 1.435 0.351 2.108 0.372

Psisr/adv 0.030 0.214 1.719 0.181 1.627 0.306 2.711 0.419

Psisr/adv, rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344

Table 5: Comparison of the proposed Psisr methods in terms of traditional metrics (L2 and

SSIM) and the perceptual error (PE) given by Eq. (6) on all the considered datasets. In terms

of perceptual metrics, the proposed Psisr methods rank in the second position after SRGAN

[1] on the datasets ImageNet and DTD, while they outperform all the baselines on the satellite

images domain which is far from the ImageNet domain.
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5. Conclusion and Perspectives365

In this paper, we propose a general framework named Generative Collabora-

tive Networks (GCN) which generalizes the existing methods for the problem of

learning a mapping between two domains. The GCN framework highlights that

there is a learning strategy of mappings that is not explored in the literature. In

particular, the optimization of these mappings in the feature space of a features370

extractor network, which is mutually learned at the same time as the consid-

ered mapping (joint-learning strategy). The GCN framework was evaluated in

the context of super-resolution on three datasets (ImageNet [10], DTD [47] and

satellite images). We have shown that the proposed joint-learning strategy leads

to a method that outperforms the state of the art [1] which uses a pre-trained375

features extractor network (VGG19 on ImageNet). Specifically, this holds when

the domain of interest is “far” from the ImageNet domain (e.g., satellite images

or images from the medical domain5). However, note that even for domains

close to the ImageNet domain, the proposed method gives convincing (almost

similar to [1]) results without using the whole ImageNet dataset to learn the380

features extractor network (as performed in [1]).

In this work, we systematically designed the proposed methods by using

the first layer of the features extractor networks, while it could be interesting to

evaluate in more detail the impact of this choice regarding the learning strategy.

Moreover, the impact of the selected layer may also depend on the considered385

dataset. More generally, the GCN framework offers a large vision on the wide

variety of existing loss functions used in the literature of learning mappings-

based problems (e.g., super-resolution, image completion, artistic style transfer,

etc.). In fact, we show that these loss functions can be simply reformulated,

in the proposed framework, as a certain combination of a particular type of390

5This domain is particularly relevant for the proposed framework as it seems very far from

the ImageNet domain. Unfortunately, we have not found a big amount of publicly available

data (to the best of our knowledge) for medical images which prevented us from considering

this domain through the paper.
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features extractor networks (P/rec, P/dis, P/dis,rec, P/adv and P/adv,rec)

and a particular learning strategies (joint-learning or disjoint-learning). There-

fore it will be interesting to explore this promising framework in other learning

mappings-based problems.
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