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Abstract

MRI is the leading method of evaluation in traumatic shoulder pathologies rang-

ing from soft tissue or bone edema to rupture of tendons or ligaments and subtle

fractures of bone. MRI has the power of evaluating both of the soft tissues and

bone at the same time. PD weighted MRI sequences are very powerful in demon-

strating bone trauma in terms of edema and cortical disruption in the shoulder

pathologies. The alterations in the intensity of the metaphyseal bone may be

used to predict the presence of the bone trauma or pathologies.

Although it is superior to many other imaging modalities to uncover the ef-

fects of trauma on the each anatomical structure of shoulder, PD weighted MRI

has innate obstacles to image processing like low signal to noise ratio besides

close anatomical relations and unclear bony borders. We proposed an innovative

representation of a learning framework for diagnosis of bone lesions from PD

MRI sequences that integrates deep learning techniques to automatically learn

discriminative features while avoiding the design of specific hand crafted image

based feature descriptors. In this study automatically segmented PD weighted

shoulder images were evaluated by the proposed convolutional neural network

(CNN) to extract features and classify humeral head in three groups as normal,

edematous and Hill -Sachs lesion with a success rate of %98.43. Compared to

I.
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the state of art methods, our proposed CNN based diagnosis system is very

promising to assist radiologists and orthopedists in decision making.

Keywords: Convolutional neural network, bone pathologies, PD weighted

MRI, image classification,

1. Introduction

Traumatic shoulder instability is a very important topic of the orthopaedic

practice. It is a common reason for surgery as well in young athletes because of

the tendency of the shoulder joint to grow instability due to anatomical changes

after each episode [1]. Therefore understanding the pathological conditions lead-5

ing to instability is very important to prevent further dislocations. The ideal

imaging technique for evaluation of shoulder instability must reveal the loca-

tion and magnitude of all affected anatomical parts to uncover the manner and

extent of the trauma.

During a dislocation the magnitude of trauma is often high enough to trau-10

matize bone besides soft tissues surrounding the joint. The recognition of all

of the traumatized tissues is essential for understanding the whole picture of

affected anatomical elements after a dislocation which is the key for treatment.

To localize all of the traumatic changes after a dislocation often required an

imaging modality which is capable of visualizing shoulder joint from more than15

one aspect [2].

The bone is the basic support of the locomotion and provides attachment

to surrounding ligaments and muscles. It is a solid tissue which is resistant to

trauma due to its hard nature and its relatively deep location in the human

body. The response of bone to trauma is peculiar to itself which begins with20

minor changes like bone edema but eventually ends up with plastic deforma-

tion. The soft tissues surrounding the bone plays a barrier role against trauma.

Therefore in the presence of bone trauma, soft tissue edema is also anticipated

[3]. Moreover if the integrity of vasculature of bone is disrupted, the bleed-

ing leads to hematoma formation in the vicinity of bone rather than inside of25
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its boundaries because the bone has no space to capacitate bleeding inside its

contours [4].

X-ray is the first line of the radiological examination to evaluate bone patholo-

gies. The plain X-ray is very useful in providing the global information of bone in

many conditions but sometimes it may not be sufficient due to overlapping bony30

contours. Computerized tomography (CT) is another method utilizing X-rays

in order to produce slices of bone and generating 360o information. Nonethe-

less, CT is not as powerful in evaluating soft tissues as it is for bone pathologies.

Moreover these imaging modalities are accused of the radiation exposure which

has many unwanted effects on the human body. The ultrasound is a valuable35

and a noninvasive method for evaluation of soft tissues but is ineffective in the

examination of bone [5].

The MRI is one of the mostly used imaging modalities of the present time for

the diagnosis of musculoskeletal disease. MRI is a safe and a very powerful tool

which can be used to detect the early phases of diseases due to its high sensitivity40

in detection of edema which may result from inflammation or trauma [6]. In

disease situations like traumatized or instabile shoulder both of the bone and

soft tissue pathologies are critical in the diagnostic evaluation. Therefore it is

not hard to expect that the MRI would be the choice of visualization method

in shoulder region.45

MRI has different sequences all of which have special distinctive capacity

for different tissues or pathologies. The proton density (PD) weighted MRI

sequence is very useful in evaluating extremities. PD weighted MR images are

able to localize bone and soft tissue pathologies at the same time. It provides

better anatomical details than T1 sequences. However discrimination of soft50

tissue and bone is not easy in some parts of the body like shoulder [7].

The philosophy of MRI is based on the assumption that under strong mag-

netic fields of the MR machine, protons of the different tissues behave differ-

ently which can be detected and calculated. There is a high water content in

the diseased portions of the body. In the proton density weighted MR images55

the tissues having high water content are labeled as high intensity values [8].
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Therefore the detection of the white colored items means that there is increased

density of protons in that tissue which is the sign of the disease process in the

PD weighted sequences of MRI.

Bone edema is present in many painful conditions of shoulder like trauma,60

avascular necrosis etc. [9, 10]. In the traumatized shoulder the magnitude of

trauma is somewhat directly proportional to the pathological changes in the

humeral head. For example after a shoulder dislocation the trauma to the

humeral head has a sequential effect on the bone. The humeral head may

stay unaffected, may be edematous or with greater forces there may be cortical65

disruptions of bone which may lead to instability of the shoulder joint or fracture

of bone. Therefore the detection of presence of edema in the humeral bone

and its distribution may be used for prediction of direction and magnitude of

trauma and concomitant pathologies of the other parts of shoulder joint. Not

surprisingly the PD weighted MRI sequence is the imaging modality of choice70

by many clinicians and radiologists in order to investigate traumatic instability

of shoulder in terms of the bone edema or cortical deformations of the humeral

head bone like Hill-Sachs lesions [11].

The Hill-Sachs lesion (HSL) is the cortical defect of the posterosuperior

portion of humeral bone which is mostly encountered after anterior dislocation75

of shoulder joint. The presence of bone edema in the posterosuperior portion of

humeral head in PD sequences after anterior dislocation of shoulder joint may

lead to clinical suspicion of the presence of HSL [9, 2]. Traumatic deformation of

the humeral head also means that there is an alteration of shape of the humeral

bone coinciding with bone edema. Nevertheless the location of the bone edema80

which is nearby the cortical deformation may jeopardize the visual detection of

the cortical disruption of bone in the PD weighted MRI sequences even by the

visual inspection which is critical in both the therapeutic and legal means.

Alterations of the shape of the humeral head may have additive effect on

instability of the shoulder. Clinical importance of the detection of HSL in85

the presence of anterior shoulder instability is the bipolar instability pattern

which may require additive surgery of the humeral head [2]. The computer
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aided diagnosis (CAD) of the cortical disruption in the metaphyseal bone in

the PD sequences of MRI may help clinicians and radiologists to diagnose these

clinically significant defects of humeral head more precisely. A previous study90

to discriminate edematous bone from normal bone in the axial PD weighted

MR images with a CAD system was done by the authors [12]. There is no other

CAD system addressing the bony pathologies of shoulder using PD weighted

MR images.

In our previous study, we reduced Rician noise which is present in the MRI95

and extended the use of speckle reducing anisotropic diffusion (SRAD) method

in PD-weighted MR images by estimating speckle scale function from the region

of interest. We applied region based active contour method to segment the nor-

mal and edematous humeral heads and measured performance of Hermite-based

texture features in classification of edematous and normal humeral bones. We100

concluded that Hermite based textures features are more robust than curvelet,

contourlet and gray level co-occurrence matrix-based texture feature descriptors

to classify edematous and normal images [12, 34].

In this study we proposed a fully automatic CAD system based on CNN

for diagnosis of bone pathologies of proximal humerus as normal, edematous105

and humeral head with Hill-Sachs lesion. We extended our dataset by adding

MR images including Hill-Sachs lesion in the dataset. The whole dataset was

segmented with the same manner. As would be predicted the presence of edema

might interfere with the diagnosis of subtle fractures like a small Hill-Sachs le-

sion. Therefore the success rate of the classification of Hermite based features110

decreased to 94.7% in the extended dataset compared to the 98.23% classifica-

tion rate of the proposed system on the previous dataset which included only

the edematous and normal humeral heads.

This study has contributions by several aspects:

• To the best of our knowledge there is no study in the literature addressing115

computer based diagnosis of pathologies of bony structures of shoulder

utilising CNN.
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• We proposed a new computer aided diagnosis system for detection of bone

pathologies of shoulder which is unique in both utilising PD weighted MR

images and introducing deep learning to the diagnosis of bone patholo-120

gies from MRI and studying classification of shoulder pathologies from

automatically segmented image patches.

• This study includes comparative results of state of art hand-crafted meth-

ods with CNN.

• A new dataset composed of axial PD weighted shoulder MR images of 219125

patients were included in the study.

The remainder of paper is organized as follows: Section III describes the dataset

and proposed method in detail. Experimental result and discussion are given in

Section IV and V.

2. Related Work130

The recognition and classification of diseases from the different imaging

modalities have been proposed for many fields of medicine in the last decades.

With the development of computer vision technologies, many morphological fea-

tures can easily be extracted from images and used as the basis for classification

by machine learning algorithms. These cover first order statistical moments,135

Histograms of Oriented Gradients (HOG) [13], bag of features [14, 15], Local

Binary Pattern (LBP) [16], Gray Level Co-occurrence Matrices (GLCM) [17]

etc. called as hand crafted methods. However many CAD systems in liter-

ature are based on hand-crafted, shape and texture features from the spatial

domain and-or frequency domain [18, 19]. The hand-crafted shape or texture140

features are dependent on the training level of the evaluator. Multiscale geo-

metric analysis algorithms such as curvelet, contourlet, shearlet transforms are

successfully used to extract shape and texture feature from image with promis-

ing results. However this handcrafted texture and shape feature extraction
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approach is somewhat heuristic of which the success of the system depends ba-145

sically on the insight and experience of the researchers. Therefore the sensitivity

and specificity rates of many of these proposed systems are not in the desired

level to be utilized in the clinical field.

Since its introduction deep learning has become one of the trend topics in

the field of computer perception. Because deep CNNs are capable of overcom-150

ing the limitation of former medical CAD systems by extracting discriminative

shape and texture features according to their varying depth and breadth archi-

tecture. Deep CNNs are used in the form of adjustable architectures to solve

different image feature extraction and classification problems. Shallow networks

have more capacity for learning low level features such as edge information while155

deep networks are more suitable for learning high level features like shape in-

formation. By constructing multi-layered networks, more complex features and

irregular structures of the medical images can be learned by the CNNs. As a

consequence deep CNNs have an applaudable capacity of representing signals

in object recognition, image segmentation and classification fields which makes160

them promising tools for medical diagnosis systems even with small amounts of

training samples. Thus it is not surprising that CNNs drawn the attention of

the researchers who work in many fields.

There are valuable studies in this new research area with different medical

imaging modalities in the literature. Zhang et al. proposed a diagnosis system165

based on two layers deep learning architecture for classifying breast tumors with

shear-wave elastography [20]. Accuracy of their system was 93.4%. Hao et al.

localized the fetal abdonominal standart plane from ultrasound videos with a

success rate of 90% by using a deep CNN [21]. Arevalo et al. classified breast

cancer lesions from manually segmented mammography films with a deep CNN170

model with a success rate of 82% [22]. Ma et al. classified thyroid nodules from

ultrasound image patches with fusion of two pre-trained CNNs with an average

success rate of 83.02% [23]. Marios et. al. classified lung CT images with five

convolutional layers and a Leaky activation layer with a performance rate of

85% [24].175
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There are a few studies in the literature employing deep CNNs on mus-

culoskeletal images of different modalities in the literature. Roth et al. used

deep CNNs for detection of sclerotic spinal metastasis from spinal CT images

and reported 83% success rate from a study group of 59 patients [25]. Geng et

al. studied bone tumors with deep CNNs in the segmentation of scintigraphy180

images and reported 88% success rate according to dice metric [26] . Differ-

ent CNN architectures were applied for vertebrae localization and segmentation

with the CT [27, 28] and MRI [29, 30]. Age assessment studies were reported

from hand MRI [31] and X-ray [32] with deep learning. Prasoon et al studied

knee cartilage segmentation using multi-stream CNNs in knee MRI [33].185

3. Material and Methods

3.1. Image dataset and pre-processing operation

We included 219 shoulder MR images of randomly selected patients who

admitted with painful shoulder due to traumatic and acute conditions. 38 of

the patients had the complaint of anterior shoulder instability. 100 patients190

were labeled as having bone edema by the orthopedist. All of the included

images were 1.5 Tesla PD weighted axial MRI images. The slice thickness was

4 millimeters and the size of the images were 256x256 pixels.

A healthy humeral head, being composed of cancellous bone, has an almost

homogenous architecture presented as a dark round bony structure (Fig 1a).195

An edematous humeral head contains intensity changes in the form of whitish

patchy irregularities not specific to any area in the humeral head (Fig 1b). A

Hill-Sachs lesion is a more localized version of humeral head abnormality which

is located in the posterosuperior aspect of the humeral head and causing not

only increased intensity due to bone edema but also disruption of cortical bone200

in the form of a depression fracture (Fig 1c, Fig 2).

2D MR images were used in this study instead of 3D MR images because

2D MR images demonstrate the inner structure of the bone where the bone

edema exist. Moreover 2D MRI slices are also more suitable to the scope of
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Figure 1: Axial PD MR images of humeral heads representing a) normal b) edematous c)

Hill-Sachs lesion

Figure 2: Demonstration of a) anterior shoulder dislocation and b)Hill-Sachs lesion

this study due to their capability of representing both of the cortical disruption205

and intensity changes of the cancellous bone of the humeral head simultaneously.

The same as the many clinicians preference, we also selected PD weighted images

due to their superiority to the other imaging modalities and other sequences of

MRI in presenting bone edema and the anatomic details. Besides the advantages

of PD weighted images in the shoulder region, there are many difficulties of210

segmentation of humeral head in this sequence, as well.

3.2. Segmentation of Humerus Bone and Determination of ROI

The segmentation of the normal humeral head is a challenging task due to

anatomical complexity of the shoulder. Humeral bone serves as an attachment of

complex ligamentous and tendinous structures of the shoulder which has nearly215
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the same intensity as the cortical bone in the PD weighted images. From the

point of view of segmentation there is innate poor signal to noise ratio (SNR)

and the blurred transition zones in the PD weighted images. Moreover in a

traumatized shoulder the altered anatomical shape and texture of the humeral

bone due to cortical discrepancies and resulting edema may further complicate220

a successful segmentation operation.

In the presence of such difficulties we proposed a strategy to facilitate the

segmentation process by decreasing noise before the segmentation process and

also decreasing the size of target area by determining the area of region of

interest. For this purpose we applied circular Hough transform (CHT) to au-225

tomatically localize the humeral head. Afterwards we applied active contours

without edges described by Chan-Vese (CV) in the area determined by the CHT.

The CV method uses the statistical information to evolve the curve with the

level set function to segment images. It is a well-known and successful method

to segment inhomogeneous images.230

The segmentation success of this approach is prone to the intensity inho-

mogeneities and the determination of the initial contour. To overcome both of

these problems the CHT was to be applied successfully. The CHT was first used

to exclude unnecessary fields from the image in which large amounts of intensity

inhomogenous tissues inhabitate. Secondly the location of the initial contour235

was automatically determined with the center point function of the CHT which

is indeed the center of the humeral head. By this way we successfully segmented

the humeral head despite the presence of local intensity inhomogeneity problem.

The segmentation result is demonstrated in the Fig 3. for three groups of

humeral head. The image patches were constructed according to segmented240

humeral head regions (for further detail we refer to read [34] ).

3.3. Convolutional Neural Networks

CNNs are multilayered mechanisms that work in synergy. The main struc-

tures that constitute a CNN are convolution layer, activation function and pool-

ing layer which have a cascaded mechanism of functioning that serves the output245
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Figure 3: Segmentation results of humeral heads labelled as a) normal, b) edematous and c)

Hill-Sachs lesion

of one layer to the following layer as an input. According to the requirements of

the specific pattern recognition problem there may be a number of intermediate

layers to extract effective low level features which are used to build high level

features. CNNs have a learning capability by analyzing the hierarchy of these

effective features.250

Not so different from the mechanism of human visual conception every neu-

ron of a layer is connected to its own specific region of image which commonly

overlap to other neuronal output. CNNs can better represent the texture and

geometrical structure of an image by analyzing the overlapping information of

local areas defined by each neuron of the layer.255

CNNs have hierarchical organization structure which can be multiplied in

order to increase the depth and breadth of the network to represent images

that have a more complex structure. There is no strict rule of estimating the

optimum depth and breadth configuration of the CNNs to achieve a desired

goal proven mathematically. Therefore it is an expert dependent path which is260

principally a trial and error minimization approach for prediction of the opti-

mum architecture of the CNN. The training of CNNs, like other artificial neural

networks is through minimizing a loss function which produces information to

feedback the CNN.

The convolutional layer is the key block of CNN which has a particular265

importance in extracting features from the raw image. It uses learnable filters
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each of which represents a small portion of the image called as a local receptive

field. Every kernel is slidable on the image, the magnitude of which is defined

by the stride parameter. According to the width and height of the input volume

the convolving operation produces a feature map. The specific type of features270

produced by different filters as an input are learned by the network which will

be used to produce the full output volume through the stacking of all of the

activation maps in the next step.

Activation function uses the feature maps produced by the convolutional

layer as input information. In case of non-linear problems an activation function275

which adds non-linearity to the system is required. Recently the rectified linear

unit (RELU) is the mostly used function in this step. RELU replaces negative

values of the feature maps with zero which considerably increase the speed of

the convergence of the CNN [35].

The pooling layer is another important parameter of the CNN which is280

actually a form of down-sampling. It provides to reduce feature maps with

using several non-linear functions of which the max and average pooling are the

mostly used. The pooling layer prevents overfitting by decreasing the amount of

parameters and computation. The output of the convolution and pooling layers

are high level features extracted from image. The fully connected layer of CNN285

utilizes these discriminative features as input and provides classification of the

test data according to training dataset.

3.4. Proposed Convolutional Neural Network

The proposed CNN consisted of five convolution and three max pooling

layers. Each image patch of humeral head was convolved with the kernel of290

size 3x3 in the first convolution layer to obtain feature maps. 192 feature maps

of size 64x64 were generated by the first convolution layer. Output of the

first convolution layer was given to the second convolution layer as an input to

extract useful low level features. At this stage 64 feature maps of size 64x64 were

obtained. Pooling operation was generated after suppression of non-negative295

values in the feature maps by rectified linear unit. Max-pooling was applied to
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Table 1: Detail of proposed CNN components (Conv: Convolution; MP: Max poling layer;

FC: Fully connected layer)

Details of proposed

CNN1 architecture

Details of proposed

CNN2 architecture

Layers Input size CNN1 Stride Layers Input size CNN2 Stride

Conv1 64x64 3x3x64 1 Conv1 64x64 3x3x192 1

MP1 32x32 2x2 2 Conv2 64x64 5x5x64 1

Conv2 32x32 5x5x128 1 MP1 32x32 2x2 2

MP2 16x16 2x2 2 Conv3 32x32 7x7x128 1

Conv3 16x16 7x7x256 1 Conv4 32x32 5x5x64 1

MP3 8x8 2x2 2 MP2 16x16 2x2 2

Conv4 8x8 9x9x512 1 Conv5 16x16 9x9x256 1

MP4 4x4 2x2 2 Conv6 16x16 5x5x64

FC1 128 - MP3 8x8 2x2 2

FC1 128 - -

feature maps with the stride (S) size of S=2 to make input representation in

smaller size.

In the second stage, we applied again two cascading convolution layers once

again but with different parameters to detect different high level features as300

edges, circular shape structure of humeral head. 128 features maps of size

32x32 were generated with parameters F=7x7, S=1 and padding (P) size of

P=1 in the first, and 256 features maps of size 16x16 F=9x9, S=1, P=0 in the

second convolution layer. In the last stage one convolution layer was used to

obtain 64 feature maps of size 16x16 with F=5x5, S=1, P=0. Finally, a fully305

connected layer with 128 hidden units with max-out activation function was

stacked to label each image patches as normal, edematous and Hill-Sachs based

on training dataset (Table 1).

We tested different CNNs architectures to recognize humeral head bone. We

realized that applying convolution layer one after another instead of directly310
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Figure 4: Demonstration of the proposed CNN architecture for classification of humeral head

(Conv: Convolution; MP: Max pooling layer; FC: Fully connected layer)

reducing the dimension by application of pooling layer provides to extract more

discriminative features. Therefore CNN2 architecture was more useful to dis-

tinguish HSL with edema than the proposed CNN1 structure (Fig 4).

4. Experimental Results

Classification of PD weighted shoulder MR images is a difficult mission due315

to both anatomical complexity of the shoulder region and image quality of the

selected MR sequence. Discrimination of soft tissues covering the humeral head

which are represented by a very close intensity level to the bone is already a

problematic task. In addition the low signal to noise ratio of the PD weighted

sequences complicates the segmentation and classification of humeral head. In320

order to decrease the workload and increase the precisions of the classification we

automatically segmented humeral head using region based active contour model

and created image patches which include humeral head and minimal amount of

surrounding tissues. Each image patch has a size of 64x64 pixels. Each image

patch was validated and also labeled by the expert.325

The success of diagnostic system depends on the selected approaches of fea-

ture extraction as well as the segmentation success of the humeral head. Our
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proposed diagnosis system of bone pathologies of proximal humerus is based on

CNN. CNNs are capable of learning discriminative features according to their

architecture. The size and the number of filters used in the convolution layer330

of CNN has an important role of capturing the distinctive features during the

training process. It is possible to construct many different CNN architectures

each of which has a different behavior and success rates for a given condition.

However it is still a trial and error approach to define the most fitting CNN

architecture for a specific problem.335

Table 2: The confusion matrix of overall accuracy for our CNN1 architecture with 10 iterations.

Humerus Type

Classification accuracy

of humeral head by

our proposed CNN1 (%)

Confusion matrix

for our proposed

CNN1 (%)

Normal Edematous HSL Normal Edematous HSL

Normal 100 0 0 79 0 0

Edematous 2.53 97.80 0 2 89 0

HSL 0 1.09 97.95 0 1 48

Table 3: The confusion matrix of overall accuracy for our CNN2 architecture with 10 iterations.

Humerus Type

Classification accuracy

of humeral head by

our proposed CNN2 (%)

Confusion matrix

for our proposed

CNN2 (%)

Normal Edematous HSL Normal Edematous HSL

Normal 100 0 0 79 0 0

Edematous 1.26 98.90 0 1 90 0

HSL 0 0 100 0 0 49

The focus of this study is to discriminate between normal, edematous humeral

heads and humeral heads with Hill-Sachs lesion. All of the experiments were

carried out on a server having a NVIDIA Geforce GTX Titan X (6 GB on

board memory). The CNN algorithms were performed with the TensorFlow.

15



Table 4: Classification accuracy of several state of art methods

Methods For Diagnosis of

Bone Pathologies

Overall accuracy rate

of the system (%)

PHOG evaluated on original data set 85 ± 0.30

Gray level co-occurence matrix (GLCM) 91.6 ± 0.26

Hermite based GLCM 94.7 ± 0.20

PHOG + GLCM (composite kernel) 94 ± 0.17

AlexNet evaluated on original data set 85.48 ± 0.05

GoogLeNet evaluated on original data set 82.25 ± 0.06

Proposed CNN2 98.43 ± 0.02

To evaluate the reliability and stability of our proposed diagnosis system which340

was based on CNN, the data set was split into two parts as 70% for training

and 30% for testing. The images employed in the training set were excluded

from the test data. Random sampling was done ten times in order to produce

different training and testing sets from the data-set in order to decrease the

selection-bias.345

Table 2 and Table 3 demonstrate the confusion matrix of the proposed CNN1

and CNN2 method for classifying the normal, edematous humeral heads and

humeral heads having Hill-Sachs lesion. The accuracy rate of CNN1 was 95.31%

while the accuracy rate of CNN2 was 98.43 % for ten iterations. Although the

defective and edematous humeral heads were supposed to be more difficult to350

differentiate visually by experts, our proposed CNN2 had 100% accuracy rate

for diagnosis of Hill-Sachs lesion. Only one edematous image was confused with

the normal humeral head image group.

We evaluated traditional feature extraction methods as pyramid HOG, GLCM

and Hermite based GLCM in order to compare the performance of our proposed355

CNN method. Each image patch of shoulder MRI was divided into cells and

histogram of gradient directions were calculated for each cells. Pyramid of HOG

is a useful shape feature extraction method but its success rate was 85% for our
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dataset.

Although the main differences of HSL group from normal or edematous360

groups was the shape of the humeral head the texture information also has a

positive effect on the recognition. Normal humeral head images has a more

homogeneous distribution of intensity values than HSL and edematous humeral

head images. Thus both of the shape and texture features might be accepted

as essential components of the proposed shoulder bone recognition system.365

We calculated conditional probability density function of gray level pair with

different offset and orientation parameters to better define second order statisti-

cal texture features. We concatenated extracted GLCM features with Pyramid

HOG feature by composite kernel. By this way the overall accuracy rate for

classification of humeral head pathologies increased up to 94 %. In order to ob-370

tain more robust texture features, we calculated second order GLCM features as

entropy, autocorrelation, energy, maximum probability... etc by using Hermite

coefficients which were proven to be more powerful than curvelet and contourlet

transforms [12].

Instead of exploiting traditional texture and shape features we classified our375

dataset with pre-trained CNNs of GoogLeNet and AlexNet which are two suc-

cessful CNNs used very commonly for pattern recognition problems. Nonethe-

less optimization of the hyperparameters and determining the optimal learning

rate of AlexNet and GoogLenet for different layers are very challenging tasks

due to the limited knowledge about the relevance of the large number of archi-380

tectural and training hyperparameters. We followed the approach of Sharif et al.

in which they assumed to utilise very small learning rates compared to default.

After meticulous parameter tuning, we obtained the most successful model for

our problem, which was very difficult to further improve. The accuracy rates of

GoogLeNet and AlexNet were 82.25% and 85.48% respectively as demonstrated385

in Table 4. The GoogLeNet and AlexNet were also popular for their success in

classification of images however their success rates were not in desired levels in

differentiation of edematous humeral heads from humeral heads with Hill-Sachs

lesion. Another possible reason might be the fact that GoogLenet and AlexNet
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were pre-trained on natural image datasets which are completely different from390

the MR images of the humeral head. GoogLeNet and AlexNet were originally

designed for the fixed image dimension of 256x256x3 pixels whereas our dataset

was composed of MR images of 64x64x3 pixels.

Utilizing pre-trained CNNs may be a solution for problem of limited number

of samples. Unfortunately there is no existing pre-trained CNN model in the395

literature on medical images or images with similar structure. Our proposed

CNN architecture was performing well despite the fact that it is not deep as

GoogLeNet and AlexNet.

5. Discussion

When the extent of trauma reaches to the bone not only the surrounding400

tissues but also the trabecular bone inside the cortical borders present abnor-

malities. MRI is a very powerful tool for imaging of shoulder pathologies be-

cause of its high capacity of representing pathologies both inside and outside the

bone. The PD weighted MR images has the ability to demonstrate the extent

of trauma by means of edema of the tissues. The reaction of many tissues to405

trauma is edema which is represented as increased intensities in PD weighted

MRI sequence. Therefore as the edema reaches to the bone the increased inten-

sity in other words ”noise in the image” scatters through the borders of bone.

To differentiate the tissue characteristics in such a noisy condition is not easy

to overcome in an area of complex anatomical architecture.410

A successful automatic classification of the pathological humeral head re-

quires a successful identification of the target anatomical region. We auto-

matically segmented humeral head and produced image patches from axial PD

weighted MR images of shoulder. Each image patch then was given to the pro-

posed CNN to classify the humeral heads according to the extracted features.415

CNN is a kind of self-learning mechanism which uses filters to represent

signals each of which serves as an input to another. The role of a filter is to sort

the given signal according to image characteristics and to produce quantitative
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values. The CNN learns these values regardless of the location of the object and

recognize these patterns in the image. We hypothesized to construct a CNN420

ultrastructure containing a cascaded convolutional layers to extract low level

features from the MR images of the humeral head. Using multiple convolutional

layers in each stage increases the effectiveness of extraction of low level texture

features which will serve to construct the high level features. This approach

enabled our CNN to produce high quality representative features (Table 1).425

Pooling operation is a very important part of CNN which reduces workload

and prevents overfitting by decreasing the size of feature maps. However an

aggressive pooling operation may result with loss of important information pro-

duced by convolutional layers which may be useful in representing the image

details. Therefore we avoided an assertive pooling operation which enabled us430

to handle translation invariance problem while protecting important features.

Sensitivity and specificity rates of a CAD system are very important in order

to evaluate its validity which is the key measure for the usability in the clinical

field. Sensitivity (true positive rate) is the measure of correctly labelling the

true positives. Whereas specificity (true negative rate) is the ability of a test435

to correctly classify a person as healthy when there is no illness. Our proposed

CAD system classified humeral heads with a sensitivity rate of 100% (95% CI

97.38% to 100%) and a specificity rate of 98.75% (95% CI 93.23% to 99.97%)

within a 95% confidence level. The proposed system correctly labelled all of the

patients with Hill-Sachs lesion but only one patient having edema was labelled440

as normal. Therefore our system may be regarded as precise in determining Hill-

Sachs lesions. Although the sensitivity rate of the system is at desired levels the

specificity level is to be improved in order to overcome misclassification problem

which may lead to misdiagnosis. For this reason many medical diagnosis systems

reported in the literature which were proposed to handle diverse pathologies in445

different anatomical regions had no chance for use in real life.

Although the specificity rate of the system is at desired levels the sensitivity

level is to be improved in order to overcome misclassification problem which may

lead to overdiagnosis. For this reason many medical diagnosis systems reported
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in the literature proposed to handle diverse pathologies in different anatomical450

regions had no chance for use in real life.

The difference between an edematous humeral head from a normal humeral

head is the texture information. On the other hand discrimination of Hill-Sachs

lesion from the edematous humeral heads requires successful extraction of shape

features besides texture features because the traumatized humeral head with a455

Hill-Sachs deformity mostly contains cortical deformation in addition to bone

edema. The high success rate of the proposed system in diagnosing a Hill-Sachs

lesion might be due to its excellent capacity to differentiate the shape features.

According to our knowledge this is the first study in the literature handling

classification of MR images of shoulder pathologies by using CNNs460

According to our knowledge this is the first study in the literature handling

classification of MR images of shoulder pathologies by using CNNs. Although

MRI is the gold standard in the diagnosis of bone edema, automatic classification

of bone pathologies especially from PD weighted MR images was not studied

possibly due to the challenges in the segmentation and also the heterogeneity465

of the magnitude and distribution of edema in the bone.

6. Conclusions

Humeral head defects is a challenging topic in the orthopedic practice. There

are ongoing studies on this subject in the orthopaedic literature which address

both of the humeral and glenoid defects in the shoulder also called bipolar470

lesions. The treatment of the bipolar lesions is still under research. This study is

concentrated on the humeral pathologies and detection of humeral bone defects.

Further research may be on measuring the bone defects and the combined effect

of bipolar bone lesions on the MR images. We proposed a CNN architecture to

classify bone pathologies of the humeral head. To increase the success of the475

classification by the CNN, increasing either the number of filters or the number

of convolution layers may be addressed. The small number of data present in our

dataset was one of the limitations of this study. The repetition of convolution
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layers in each step with different size and number of filters besides avoiding an

aggressive reduction in the pooling layer in such a small dataset are the key480

points of this CNN architecture.
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