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A new algorithm is presented for the resolution of the Geometrical Shock Dynamics model in presence of obstacles in an Eulerian framework. The numerical method relies on a Fast-Marching like algorithm on a Cartesian grid, which allows dealing with complex geometrical configurations and shock waves interactions at a reduced computational cost. The application of an homogeneous Neumann condition at the border of rigid obstacles, not aligned with the mesh, is based on the Immersed Boundary Method. For a given obstacle, a set of ghost points is defined in the solid area and the corresponding unknown flow parameters are updated using a compatibility condition. A good agreement is observed between numerical results, experimental data and CFD simulations, both in 2D and 3D, which demonstrates the validity and the capabilities of this method.

Introduction

The direct simulation of shock waves propagation in a complex environment, such as in an urban area or in presence of topography, is a challenging problem. Indeed, the shock front undergoes diffraction, reflection and recombination phe-nomena along its path, making difficult to predict its effective local intensity.

The need to develop a method for rapidly calculating the mechanical effects of shocks is, however, of prime importance in many applications such as the prevention of industrial accidents and the computation of structure loading, or the definition of source models for acoustic propagation codes. Recent researches have shown that a promising solution [START_REF] Ridoux | Beyond the limitation of Geometrical Shock Dynamics for diffraction over wedges[END_REF][START_REF] Ridoux | Extension of geometrical shock dynamics for blast wave propagation[END_REF] could be envisaged thanks to the Geometrical Shock Dynamics model (GSD).

In 1957, Whitham introduced the GSD model for the propagation of singlepass shock waves in air [START_REF] Whitham | A new approach to problems of shock dynamics, Part I : Two-dimensional problems[END_REF][START_REF] Whitham | Linear and Nonlinear Waves[END_REF]. In this theory, the shock evolution depends on its local velocity and curvature only, neglecting the post-shock flow. Doing so, this simplified model is essentially valid in the context of strong shocks. However, studies have shown that relatively good results can be obtained even for weaker shocks (see e.g. [START_REF] Baskar | Propagation of curved shock fronts using shock ray theory and comparison with other theories[END_REF][START_REF] Ridoux | Beyond the limitation of Geometrical Shock Dynamics for diffraction over wedges[END_REF]). In comparison to the equations of fluid dynamics, the main advantage of GSD is the significant reduction in the cost of calculation since the computation of the flow behind the shock is not necessary. Only a surface problem with two independent variables must be solved. This property may explain the various extensions of GSD over the last decades in different contexts: unsteady flow behind the shock [START_REF] Best | A generalisation of the theory of geometrical shock dynamics[END_REF][START_REF] Best | A generalisation of the theory of geometrical shock dynamics[END_REF][START_REF] Best | Accounting for transverse flow in the theory of geometrical shock dynamics[END_REF], non-uniform gas properties [START_REF] Han | Chapter 3.7 -Geometrical Shock Dynamics[END_REF], imploding shock waves [START_REF] Anand | Shock dynamics of strong imploding cylindrical and spherical shock waves with non-ideal gas effects[END_REF][START_REF] Anand | On dynamics of imploding shock waves in a mixture of gas and dust particles[END_REF][START_REF] Cates | Shock wave focusing using geometrical shock dynamics[END_REF], atmospheric propagation [START_REF] Besset | Propagation of vertical shock waves in the atmosphere[END_REF], detonation in explosives [START_REF] Aslam | Investigations on detonation shock dynamics[END_REF][START_REF] Aslam | Level set methods applied to modeling detonation shock dynamics[END_REF][START_REF] Lieberthal | Geometrical shock dynamics applied to condensed phase materials[END_REF], supersonic engine start [START_REF] Varadarajan | Geometrical shock dynamics and engine unstart, 41st AIAA Fluid Dynamics Conference and Exhibit[END_REF], or astrophysics [START_REF] Goodman | Ultra-relativistic geometrical shock dynamics and vorticity[END_REF]. Most of these applications rely on the historical Lagrangian algorithm of Henshaw et al. [START_REF] Henshaw | Numerical shock propagation using Geometrical Shock Dynamics[END_REF] which makes difficult to achieve 3D applications and fluid structure interaction where multiple shock waves can interact.

More recently, Noumir et al. presented an algorithm, based on the Fast-Marching formalism, to efficiently solve the GSD model on Cartesian grids [START_REF] Noumir | A fastmarching like algorithm for geometrical shock dynamics[END_REF].

Comparisons with the exact solution of Riemann problems proved the validity and the accuracy of the method. In order to deal with more complex configurations, we now aim to extend this method by considering obstacles of arbitrary shape, not aligned with the mesh. The numerical procedure is inspired by the Immersed Boundary Method, taking into account the specificities of the Fast-Marching paradigm.

In this paper, we first recall the formulation of the GSD model as well as Noumir et al.'s algorithm in Section 2. Then, the extension of the Immersed Boundary Method (IBM) to this model is presented in Section 3. Finally, in section 4, the resulting algorithm is confronted to different configurations in 2D and 3D, the results being compared to experimental data and CFD simulations 40 when available.

The Geometrical Shock Dynamics model

In this section we recall the formulation of the GSD model together with Noumir et al.'s Fast-Marching like algorithm for its numerical approximation.

Physical model

The GSD model [START_REF] Whitham | A new approach to problems of shock dynamics, Part I : Two-dimensional problems[END_REF] is a simplified method describing the propagation of shock waves. According to a geometrical vision, the shock evolution is decomposed along ray tubes (i.e. orthogonal curves to the front) of slowly varying cross sectional area A. Using an approximation of the Euler equations together with the Rankine-Hugoniot relations, Whitham obtained an expression linking A and the local shock Mach number M , known as the A -M rule:

M λ(M ) M 2 -1 ∇M • n + ∇A • n A + F = 0, (1) 
where n denotes the outward unit normal to the front and

λ(M ) = 1 + 2 γ + 1 1 -µ(M ) 2 µ(M ) 1 + 2µ(M ) + 1 M 2 , (2a) 
µ(M ) = 2 + (γ -1)M 2 2γM 2 + 1 -γ , (2b) 
with γ the polytropic coefficient of the gas, fixed at the value 1.4 for the air in this study. The term F represents the influence of the post-shock flow, which can be neglected under the hypothesis of strong shock.

The level-set formalism is employed to represent the shock front, evolving according to its normal local speed V n and curvature only. On a domain Ω ⊂ R d (d = 1, 2, 3), at a given time t, the front is seen as a surface Γ(t) = {x ∈ Ω; φ(x, t) = 0}, where φ denotes a level-set function satisfying the Hamilton-Jacobi equation

∂ t φ + V n |∇φ| = 0. ( 3 
)
Assuming the front is single pass, the function φ is defined as φ(x, t) = α(x)-c 0 t, where c 0 is the constant speed of sound in air, in the unshocked part of the domain, and α is the shock position. The relation (3) then reduces to the Eikonal equation

M |∇α| = 1, (4) 
where M = V n /c 0 is the local Mach number. Following Whitham [START_REF] Whitham | Linear and Nonlinear Waves[END_REF], one may also show the relation

div n A = 0. (5) 
The GSD model is therefore composed of Eqs. ( 4)-( 5), together with the A -M relation [START_REF] Ridoux | Beyond the limitation of Geometrical Shock Dynamics for diffraction over wedges[END_REF] in which the term F is neglected. This model is hyperbolic, meaning that discontinuities can develop on the front. These disturbances, called shockshock by Whitham, are the traces of waves (not modeled) behind the shock.

For example, in the case of irregular reflection, the shock-shock is the locus of the triple point of the Mach stem.

In practice, following the procedure of Noumir et al. [START_REF] Noumir | A fastmarching like algorithm for geometrical shock dynamics[END_REF], we choose to write the model in a simpler way, although non conservative. Noting that

div(n) = ∇α • ∇M + M ∆α, (6) 
the combination of Eqs. (1) (with F = 0) and ( 5) leads to the formulation

M |∇α| = 1, ( 7a 
) ∇α • ∇M = S(M )∆α, ( 7b 
)
where the function S is defined by the formula

S(M ) = - M (M 2 -1) M 2 (λ(M ) + 1) -1 . (8) 
Doing so, we get rid of the quantity A and the GSD model [START_REF] Best | A generalisation of the theory of geometrical shock dynamics[END_REF] results in a set of two equations associated to two unknowns, namely α and M . The model is completed with the initial boundary conditions

α| Γ0 = α 0 , (9a) 
M | Γ0 = M 0 , (9b) 
where α 0 and M 0 are given functions on the hypersurface Γ 0 . In theory, the non conservativity of the formulation (7) could induce precision loss in numerical results. However, as we shall see in Section 4, a good agreement with experimental data is observed.

Numerical approximation

A well-known efficient way to solve isotropic Eikonal equations on Cartesian grids is the Fast-Marching Method (FMM), first introduced by Tsitsikllis [START_REF] Tsitsiklis | Efficient algorithms for globally optimal trajectories[END_REF] and popularized later by Sethian [START_REF] Sethian | Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry[END_REF]. An important feature of these equations is that their characteristic lines coincide with the gradient lines of the viscosity solution. However, the GSD model [START_REF] Best | A generalisation of the theory of geometrical shock dynamics[END_REF] does not fall in this category. It can be seen as an anisotropic Eikonal equation where the shock speed is defined implicitly through the nonlinear formula (7b). In such cases, alternative methods have to be considered for the numerical resolution. Some of these, called Ordered Upwind Methods, were introduced by Sethian and Vladimirsky [START_REF] Sethian | Ordered upwind methods for static Hamilton-Jacobi equations[END_REF][START_REF] Sethian | Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms[END_REF] for a class of Hamilton-Jacobi equations. Nevertheless, we choose to follow the work of Noumir et al. [START_REF] Noumir | A fastmarching like algorithm for geometrical shock dynamics[END_REF] dealing with an extension of the FMM, which showed encouraging results. In this subsection, we first recall the principle of the standard FMM applied to Eq. (7a) only, to better explain its extension to handle the GSD model [START_REF] Best | A generalisation of the theory of geometrical shock dynamics[END_REF].

Let Ω = [0, L x ]×[0, L y ]×[0, L z ] be a computational domain, discretized by an uniform Cartesian mesh with grid spacings ∆x, ∆y and ∆z. The approximate solution of the shock position α and the Mach number M at grid points are denoted by α i,j,k = α(x i , y j , z k ) and M i,j,k = M (x i , y j , z k ) respectively, where

x i = i∆x, y j = j∆y and z k = k∆z. The FMM takes advantage of the single pass front configuration to compute the values of α i,j,k in the shock vicinity.

The computational domain is divided into three distinct zones:

1. Known: set of points already intercepted by the front whose values are frozen and no longer computed.

2. Narrow Band: neighboring points of the Known set, not yet intercepted.

3. Far: rest of the points, i.e.

those not yet intercepted, but remaining far from the front.

In the FMM, one iteration of the algorithm consists in three steps. First, the Narrow Band point associated to the minimal trial value of α is considered as intercepted by the front and thus moved to the Known set. In the next step, its direct neighbors in the Far set are transferred to the Narrow Band set. Finally, the trial values of α in the vicinity of the new accepted point are updated, using information from the Known set only. The performance of the algorithm is greatly improved using a min-heap data structure to find the point with minimum trial value. For a single pass front, the complexity of the algorithm is O(N log(N )) where N denotes the total number of points in the domain, and can be reduced to as low as O(N ) under further assumptions [START_REF] Yatziv | O(N) implementation of the fast marching algorithm[END_REF].

As explained in [START_REF] Noumir | A fastmarching like algorithm for geometrical shock dynamics[END_REF], the FMM needs to be updated to handle the GSD model: two trial values, one for α and the other for M , must be considered at each point of the Narrow Band. In the following, they will be denoted by ϑ and m respectively. Before discussing the enhancements of the FMM, let us present the discrete version of (7). To begin with, the approximation of the Eikonal equation (7a) is done classically using the first order Godunov's scheme [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF]:

max ϑ -α i+1,j,k ∆x , ϑ -α i-1,j,k ∆x , 0 2 + max ϑ -α i,j+1,k ∆y , ϑ -α i,j-1,k ∆y , 0 2 + max ϑ -α i,j,k+1 ∆z , ϑ -α i,j,k-1 ∆z , 0 2 = 1 m 2 . ( 10 
)
This upwind procedure has proven to be efficient in many applications [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF][START_REF] Sethian | Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry[END_REF] as it captures the correct viscosity solution of the problem [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]. Looking at

/* Approximation of D x = ∂ x α ∂ x M */ D x = 0 if ϑ > α i+1,j,k or ϑ > α i-1,j,k then if max(ϑ -α i+1,j,k , 0) > max(ϑ -α i-1,j,k , 0) then D x = ϑ -α i+1,j,k ∆x m -M i+1,j,k ∆x else D x = ϑ -α i-1,j,k ∆x m -M i-1,j,k ∆x end end Algorithm 1: Approximation of ∂ x α ∂ x M at (x i ,y j ,z k ). A similar ap- proach applies to ∂ y α ∂ y M and ∂ z α ∂ z M .
Eq. (7b), the approximation of ∇α • ∇M is based on the upwind directions selected in Eq. ( 10). This ensures a coherent computation of ∇M regarding ∇α. The procedure is detailed for the x direction in Algorithm 1.

Concerning the term ∆α, as mentioned in [START_REF] Noumir | A fastmarching like algorithm for geometrical shock dynamics[END_REF], a second order centered approximation is preferred in order to allow the development of intermediate states during shock-shock or shock-obstacle interactions. To this end, as shown in Fig. 1, the Narrow Band is extended to further points, so that this method can be performed at direct neighbors of the Known set. If a central discretization is not possible (neighbor points of the Far set for example), then a second order upwind formula is chosen, again according to the directions selected in Eq. [START_REF] Anand | Shock dynamics of strong imploding cylindrical and spherical shock waves with non-ideal gas effects[END_REF].

The summary of this procedure in the x direction is presented in Algorithm 2.

Finally, at each point of a subset of the Narrow Band, a local nonlinear system is solved to find the corresponding values of ϑ and m. Newton's method is used for this purpose. Contrary to the standard FMM, this extended version uses indifferently values from the Known or Narrow Band sets to compute the trial values. This is illustrated in Fig. 1. In practice, the updated neighbors of P are the points within a distance of at most 2 neighbors in every direction. This set can be extended; however, taking into account more points does not seem

/* Approximation of ∆ α x = ∂ 2 xx α */ ∆ α x = 0 if α i+1,j,k < INF and α i-1,j,k < INF then /* Centered formula */ ∆ α x = α i+1,j,k -2ϑ + α i-1,j,k ∆x 2 else /* Upwind formula */ if ϑ > α i+1,j,k or ϑ > α i-1,j,k then if max(ϑ -α i+1,j,k , 0) > max(ϑ -α i-1,j,k , 0) then if α i+1,j,k > α i+2,j,k then ∆ α x = ϑ -2α i+1,j,k + α i+2,j,k ∆x 2 end else if α i-1,j,k > α i-2,j,k then ∆ α x = ϑ -2α i-1,j,k + α i-2,j,k ∆x 2 end end end end Algorithm 2: Approximation of ∂ 2 xx α at (x i ,y j ,z k ).
A similar approach applies to ∂ 2 yy α and ∂ 2 zz α.

to have much influence on the precision of the numerical solution.

The iterative procedure of the algorithm can be summarized as follow:

1. Find the Narrow Band point P associated to the smallest value of ϑ. •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ⋆ Shock front • Known set Narrow Band
Far set ⋆ Newly intercepted point Updated neibourhood 

Treatment of rigid obstacles

Only fixed, infinitely rigid obstacles are considered in this work. For GSD, the natural boundary condition at a rigid frontier is the orthogonality of the front to it. This leads to the homogeneous Neumann condition

∇α • N = 0, on ∂Ω s , (11) 
where N denotes the outward-pointing unit normal vector of the obstacle Ω s .

In this section we first recall the underlying procedure of the classical Immersed Boundary Method. Then an alternative version compatible with the 125 Fast-Marching like algorithm for GSD is presented.

Classical Immersed Boundary Method

One way to handle rigid obstacles on a Cartesian grid is to use the so-called Immersed Boundary Method [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF][START_REF] Mittal | Immersed boundary methods[END_REF]. The procedure first consists in identifying grid points belonging to the solid domain while having at least one neighbor in 
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A direct and simple method to compute the values α IP is to employ an interpolation from the nearest points in the fluid domain [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF]. This technique provides satisfactory results for the resolution of the Euler equations, but it may fail when applied as such in combination with the Fast-Marching like algorithm.

The reason is that neighbors of image points may not have been assigned trial 140 values yet, which makes the approximation of α IP hazardous.

Modified Immersed Boundary Method

The modification of the Immersed Boundary Method, adapted to the Fast-Marching context, is now presented. Suppose trial values have been computed on a Narrow Band point (x i , y j , z k ) of the fluid domain, located near a rigid wall. The idea consists in updating the values of its neighboring ghost points, say (x i-1 , y j , z k ), (x i , y j-1 , z k ) and x i , y j , z k-1 ), in a way compatible with [START_REF] Anand | On dynamics of imploding shock waves in a mixture of gas and dust particles[END_REF].

A similar 2D configuration is illustrated in Fig. 2. The question to answer is:

what would be the gradient of α at (x i , y j , z k ) computed from its neighbors in the solid domain satisfying the Eikonal equation (7a) and the slip condition (11)?

At the current point location, this gradient, denoted ∇α, satisfies the relations

M ∇α = 1, ( 12a 
) ∇α • N = 0. ( 12b 
)
The equation (12b) then leads to ∇α = ( ∇α • T)T, where T = (T x , T y , T z ) is a vector locally tangent to the obstacle. Here we suppose the vectors N and T are orthonormal. Written in each coordinate, this relation reads

• N T • • • • • • Narrow Band • Ghost points (x i , y j-1 ) (x i-1 , y j ) (x i , y j ) (x i+1 , y j ) (x i , y j+1 ) Ω s
∂x α = ( ∇α • T)T x , (13a) 
∂y α = ( ∇α • T)T y , (13b) 
∂z α = ( ∇α • T)T z , (13c) 
that is, assuming each coordinate of T is nonzero,

∇α • T = ∂x α T x = ∂y α T y = ∂z α T z . ( 14 
)
Combining this result with the Eikonal equation (12a), one gets

M ∂x α T x = 1, (15a) 
M ∂y α T y = 1, (15b) 
M ∂z α T z = 1. ( 15c 
)
In the special case a coordinate of T is zero, the corresponding relation in [START_REF] Besset | Propagation of vertical shock waves in the atmosphere[END_REF] must be used.

To compute the derivatives, the expression of the vector T has to be established. Let us recall that by hypothesis, trial values are available at the point (x i , y j , z k ). Therefore, there exists a priori another approximation of the gradient of α, computed from the fluid domain; this quantity is denoted by ∇α. The decomposition along N and T then leads to

( ∇α • T)T = ∇α -( ∇α • N)N. (16) 
Note that the quantity ∇α•N is a priori nonzero as the approximation ∇α does not take the obstacle into account. Moreover, the right hand side in Eq. ( 16)

can be calculated since it depends only on known quantities. Thus, to obtain the expression of T, the previous vector are normalized , that is

T = ∇α -( ∇α • N)N ∇α -( ∇α • N)N . (17) 
However, an uncertainty is present in Eq. ( 15) because of the absolute values.

It is possible to get rid of this limitation by setting that ∇α and T are in the same direction. This way, the ratio between each component of these vectors is always nonnegative. Under this assumption, an approximation at first order of α at ghost point is obtained using the formulae Concerning the values of the Mach number M , we simply impose

α i,j,k -α i-1,j,k ∆x = T x M i,j,k , (18a) 
α i,j,k -α i,j-1,k ∆y = T y M i,j,k , (18b) 
α i,j,k -α i,j,k-1 ∆z = T z M i,j,k . (18c) 
M i-1,j,k = M i,j-1,k = M i,j,k-1 = M i,j,k , (19) 
where this equality holds only for non-Known points.

In the Fast-Marching like algorithm, once the point (x i , y j , z k ) is moved to the Known set and the values of the neighboring ghost points are updated, these are fixed for the rest of the simulation. Hence the presented procedure applies only at ghost points for which discrete values have not been fixed yet.

A particular treatment should be performed locally at corner points. More precisely, ghost points having neighbors in the fluid domain across multiple obstacle faces should be assigned multiple values for α and M (i.e. one set of unknowns associated to each face). This enhancement has not been implemented because of the complex data structure it requires. In practice, replacing sharp corners by smoothed ones avoids the aforementioned situation, and provides satisfactory results.

The proposed algorithm is simple, straightforward to implement, robust, and compatible with 3D configurations.

Algorithm validation

We now present a series of numerical experiments on uniform Cartesian meshes to attest the capabilities of our algorithm. Comparisons with experimental data as well as with the CFD code UBIK are performed. UBIK is an home-made code solving the compressible Euler equations of fluid dynamics with higher order numerical schemes [START_REF] Jiang | Efficient Implementation of Weighted ENO Schemes[END_REF] and an Immersed Boundary Method for fluid-structure interaction [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF]. This code has been previously validated and 165 used in several configurations [START_REF] Zhao | Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent nonreacting and reacting high-speed shear flows[END_REF]. 

Numerical convergence

To attest the numerical convergence of the method, we consider the diffraction of a planar shock moving at Mach number 10 around a 90 degrees corner on a domain of size [0, 7] × [0, 7]. The approximate solution on a 800 × 800 mesh is represented in Fig. 3. Error estimates as well as the convergence rates and CPU times are gathered in Tab. 1. The relative L 2 norm defined as

Err(M ) 2 = Ω |M approx. -M ref. | 2 Ω |M ref. | 2 (20) 
for M (and a similar formula for α) is employed to measure the numerical error, seeing approximate solutions as piecewise constant functions over the domain.

Concerning the orders of convergence, these are given by the formula

order = log(E 2 ) -log(E 1 ) log(N 2 ) -log(N 1 ) , (21) 
where E 1 and E 2 represent the errors related to the meshes N 1 ×N 1 and N 2 ×N 2 respectively. This numerical convergence study is performed using the approximate solution on a 6400 × 6400 mesh as the reference solution. This explains the rise in convergence rates for the more refined mesh. The measured CPU times confirm the expected complexity of the algorithm in O(N log(N )), where N is the total number of points.

Influence of the mesh orientation and of the Narrow Band width

A desirable property to check concerns the independence of the results regarding the mesh orientation. To this end we consider a well-known configuration, namely the interaction of a planar shock with a circular obstacle. This problem has been studied by many authors and is well documented in the literature (see e.g. [START_REF] Aslam | Investigations on detonation shock dynamics[END_REF][START_REF] Whitham | Linear and Nonlinear Waves[END_REF]). The computational domain of size [0, 7] × [0, 7] is discretized by 800 × 800 points, while the obstacle has a radius of 0. to the formation of a Mach stem. A very good agreement is observed between the different configurations. Moreover, one may also note that the symmetry of the problem is preserved. Superimposing the shock positions, as shown in Fig. 5, only few discrepancies are found and may be imputed to the local discretization of the obstacle.

The influence of the Narrow Band width is now discussed. We consider the case where the initial shock is parallel to the y-axis, and the Narrow Band has a fixed width between 2 and 10 (corresponding to the stencil size used in the update procedure of the algorithm). In this configuration, this parameter seems to have little influence as the numerical results are almost identical. In Fig. 6 the locus of the triple points is compared with Bryson's experimental data [START_REF] Whitham | Linear and Nonlinear Waves[END_REF] and the results of the UBIK code for several width values. An overall good agreement is observed regarding the simplicity of the GSD model. A slight underestimation of the trajectories is found with our algorithm, which may be due to the non conservativity of the method. In Fig. 7 is gathered the evolution of some quantities during the front propagation:

1. the total number of points in the Narrow Band, 2. the number of points to update in the Narrow Band, 3. the CPU time.

First, for a given width parameter, the total number of points in the Narrow Band does not vary much (see Fig. 7a), except when the front is located near the obstacle. The number of points in the Narrow Band grows linearly with the Narrow Band width parameter. Indeed, in the case of a planar shock, setting E the width of the Narrow-Band and N the number of grid points in the tangential direction, there is E × N points in the Narrow Band. Then the figure 7b shows that the number of points to update is approximately constant for a given width. However, this quantity evolves quadratically with the Narrow Band width. With the aforementioned notations, one can see that it is of the order of (2E + 1)E. As a consequence, this behavior is also observed for the evolution of the CPU time in Fig. 7c. Regarding this study, considering a Narrow Band width of 2 is a good compromise between accuracy and computation time.

More generally, we checked that this value gives satisfactory results even on more complex configurations.

Compression wedge

This validation step consists in analyzing the interaction of a planar shock with compression wedges. A similar study was made by Noumir et al. [START_REF] Noumir | A fastmarching like algorithm for geometrical shock dynamics[END_REF].

However, back then no obstacle was taken into account as the compression occurred against a border of the domain. The numerical domain has a size of are presented in Fig. 8a and8c. The interaction of the shock with the obstacle gives birth to a triple point whose trajectory depends on the wedge angle and the initial Mach number. In Fig. 8b and 8d are presented the evolution of the reflected angle and of the Mach number at the obstacle wall as a function of the wedge angle. As a general trend, the steeper the wedge is, the smaller the Mach stem length is and the higher the Mach number at the border gets. The results given by the GSD model are compared with the ones from the UBIK code and the theoretical values for GSD in the strong shock limit (see [START_REF] Noumir | A fastmarching like algorithm for geometrical shock dynamics[END_REF]).

In comparison to the theoretical values, a good agreement is found for angles less than 30 degrees. Beyond this angle, our algorithm suffers from the non conservativity hypothesis and underestimates the reference data. For angles larger than 45 degrees, the method seems not able to generate a shock-shock. 

Transition between regular reflection and Mach reflection

In this section we focus on the capacity of our algorithm to deal with regular reflection (RR) and Mach reflection (MR) when a shock impinges a rigid obstacle. In the former case, the reflected shock is attached to the structure wall, 240 whereas in the latter, both the reflected and incident waves are detached from the obstacle and are linked to it through a third wave, known as Mach stem.

Strictly speaking, the GSD model cannot deal with the RR case. A shock-shock is always present in the model. Nevertheless, the height of this shock-shock is so small in practice that the numerical model does not allow its development. Heilig [START_REF] Heilig | Diffraction of a Shock Wave by a Cylinder[END_REF] and Itoh et al. [START_REF] Itoh | On the transition between regular and Mach reflection in truly non-stationary flows[END_REF]. The obstacle is a cylinder of diameter unity.

The computational domain, of size [0, 1.5] × [0, 1.25], is meshed with 960 × 800 points. Experimentally, during a first phase, the reflection with the structure is regular. Then, when the angle between the incident shock and the obstacle wall is high enough, the reflection becomes irregular and gives birth to a Mach stem.

The path of the associated triple point is shown in Fig. 9b. The GSD results

are compared with the experimental data from Heilig [START_REF] Heilig | Diffraction of a Shock Wave by a Cylinder[END_REF] and Itoh et al. [START_REF] Itoh | On the transition between regular and Mach reflection in truly non-stationary flows[END_REF],

and with the numerical results from UBIK. Although slightly underestimated, as in the case of Subsection 4.1 at a higher Mach number, we observe that our numerical procedure is able to reproduce experimental results with quite a good accuracy.

An opposite configuration, that is the interaction of a planar shock with a circular concave wedge of radius unity, is presented in Fig. 10a. The corresponding domain of size [0, 1.5] × [0, 1.2] is discretized by 1000 × 800 points.

As an initial condition, the shock moves at a Mach number equal to 1.8. This time, the reflection is irregular in the first place with the formation of a growing Mach stem. Then, when the decreasing angle between the incident shock and the obstacle gets under some limit angle, the reflection becomes regular with the disappearance of the Mach stem. The computed triple point path is compared to Itoh et al.'s data [START_REF] Itoh | On the transition between regular and Mach reflection in truly non-stationary flows[END_REF] in Fig. 10b, and with the results from UBIK. In this case, an excellent agreement is found with our approach.

As mentioned by Itoh et al., among others, it should be noted that, given a Mach number for the incident shock, the angle φ associated to the transition RR→MR is different from the one associated to the transition MR→RR.

Tube

We are now concerned with the propagation of a plane shock down a tube, following a study by Schwendeman [START_REF] Schwendeman | A higher-order Godunov method for the hyperbolic equations modelling shock dynamics[END_REF]. The obstacle is delimited by the curves 

y 0 (x) = 1 2 + 1 2 cos(x) (22a) 

Interaction with a sphere

We now present a 3D test case, namely the interaction of a plane shock with a sphere, as studied by Bryson and reported by Whitham [START_REF] Whitham | Linear and Nonlinear Waves[END_REF]. Here we consider the case where the initial shock Mach number is 2.85. The computational domain of size [0, 5] 3 is discretized by 200 points in each direction. In Fig. 12a, 12b and 12c are represented a 3D view as well as slices at y = 2.5 and z = 2.5 of the results obtained with our GSD algorithm. Similar results are found on these slices, which is an expected behavior due to the symmetry of the problem. As for the configuration presented in Subsection 4.2, the interaction of the shock and the obstacle produces surfaces of triple points locus. Their trajectories are compared with Bryson's data and results from the UBIK code in Fig. 12d. In this configuration, the triple point position is in excellent agreement between all references. This behavior is also observed at higher resolution.

Conclusion

A methodology has been presented in detail to take into account obstacles of arbitrary shape in the GSD model. The numerical method is compatible with the Fast-Marching paradigm on Cartesian grids by using available information in the fluid domain. The procedure relies on ghost points in the inner obstacle wall, on which unknowns are updated to implicitly impose an homogeneous Neumann condition. The proposed algorithm is simple and straightforward to implement. Comparisons on various configurations showed that the algorithm is able to reproduce reference data with a satisfactory precision, even at first order.

Slight discrepancies, such as underestimation of the triple point trajectories, may be imputed to the non conservativity of the model formulation. In the future we plan to extend our method to weak shocks following the Lagrangian idea developed in [START_REF] Ridoux | Beyond the limitation of Geometrical Shock Dynamics for diffraction over wedges[END_REF], and to develop a conservative high order formulation to improve the computational efficiency.
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 2 Add P to the Known set and its neighbors not yet intercepted by the front in the Narrow Band.

120 3 .

 3 Update the values of ϑ and m at neighbors of P in the Narrow Band.

Figure 1 :

 1 Figure 1: Classification of grid points for the extended FMM.

  130 the fluid domain. These points are called ghost points (GP). One then defines boundary points as the orthogonal projection of ghost points onto the obstacle wall. In the fluid part, image points (IP) represent the symmetric of ghost points with respect to the corresponding boundary point. In this context, the Neumann condition (11) locally reads α GP = α IP .

Figure 2 :

 2 Figure 2: Example of configuration in 2D.

Figure 3 :

 3 Figure 3: Diffraction of a planar shock moving at Mach number 10 around a 90 degrees corner. Representation of the successive positions of the shock (grey lines) superimposed on the Mach number colormap.

  5. The initial Mach number of the shock is 2.81. The results obtained with the GSD model are represented in Fig. 4 for different orientations of the front. When hitting the obstacle, the shock splits into two parts, each one forming a triple point. The front then diffracts around the cylinder before recombining, leading(a) θ = 0 degrees. (b) θ = 15 degrees. (c) θ = 30 degrees. (d) θ = 45 degrees.

Figure 4 :

 4 Figure 4: Interaction of a planar shock moving at Mach number 2.81 with a cylinder. Initially the shock is tilted at an angle θ regarding the y-axis. Representation of the successive positions of the shock (grey lines) superimposed on the Mach number colormap.

[0, 7 ]

 7 × [0, 7] and is discretized by 800 × 800 points. Initially, the shock has a Mach number of 10. Results obtained with wedge angles of 10 and 35 degrees

Figure 5 :

 5 Figure 5: Interaction of a planar shock moving at Mach number 2.81 with a cylinder. Comparison of shock positions for different tilt angle θ regarding the y-axis of the initial front.

Figure 6 :

 6 Figure 6: Interaction of a planar shock moving at Mach number 2.81 with a cylinder. Comparison of shock-shock trajectories between Bryson's data [4], the UBIK code and the GSD model with a Narrow Band (NB) width set to 2, 3 and 10.
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  Two cases are considered to illustrate this behavior.In Fig.9ais represented the interaction of a planar shock, initially moving at Mach number 1.92, with a convex wedge, following the experiments of Evolution of the number of points in the Narrow Band.

  Evolution of the number of points to update in the Narrow Band.

  Evolution of the CPU time.

Figure 7 :

 7 Figure 7: Interaction of a planar shock moving at Mach number 2.81 with a cylinder. Evolution of the number of points in the Narrow Band and of the CPU time.

  (a) θ0 = 10 degrees. Representation of the successive positions of the shock (grey lines) superimposed on the Mach number colormap.

  Evolution of the wall Mach number Mw versus θ0. (c) θ0 = 35 degrees. Representation of the successive positions of the shock (grey lines) superimposed on the Mach number col-Evolution of the reflected angle θw versus θ0.

Figure 8 :

 8 Figure 8: Interaction of a planar shock moving at Mach number 10 with a compression wedge of angle θ 0 regarding the x-axis.

  (a) Representation of the successive positions of the shock (grey lines) superimposed on the Mach number colormap. Itoh et al.'s data UBIK GSD (b) Comparison of the shock-shock trajectory of our algorithm with the ones from Heilig's data [33], Itoh et al.'s data [34] and the UBIK code.

Figure 9 :

 9 Figure 9: Interaction of a planar shock moving at Mach number 1.92 with a convex wedge.

( a )

 a Representation of the successive positions of the shock (grey lines) superimposed on the Mach number colormap. Comparison of the shock-shock trajectory of our algorithm with the ones from Itoh et al.'s data [34] and the UBIK code.

Figure 10 :

 10 Figure 10: Interaction of a planar shock moving at Mach number 1.8 with a concave wedge.

and y 1 (

 1 of size [-0.1, 3] × [0, 2.5], which is discretized by 930 × 750 points. Initially, a planar shock moving at Mach number 2 is located at the entrance of the tube at x = 0. The results obtained with the GSD model are presented in Fig. 11a. The upper boundary wall acts as a compression wedge, hence generating a triple point which propagates down the tube. On the contrary, the lower wall induces an expansion which decreases the shock speed. A comparison of the triple point trajectory with the UBIK code and Schwendeman's data is performed in Fig. 11b. In this configuration, where the angle varies slowly, an excellent agreement with the CFD computation is found.

  (a) Representation of the successive positions of the shock (grey lines) superimposed on the Mach number colormap. Comparison of the shock-shock trajectory of our algorithm with the ones from Schwendeman's data [35] and the UBIK code.

Figure 11 :

 11 Figure 11: Propagation of a planar shock moving at Mach number 2 down a tube.

( a )

 a Slice at y = 2.5. Representation of the successive positions of the shock (grey lines) superimposed on the Mach number colormap. (b) Slice at z = 2.5. Representation of the successive positions of the shock (grey lines) superimposed on the Mach number col-Comparison of shock-shock trajectories with Bryson's data [4] and the UBIK code in the plane z = 2.5.

Figure 12 :

 12 Figure 12: Interaction of a planar shock moving at Mach number 2.85 with a sphere.

Table 1 :

 1 Diffraction of a planar shock of Mach number 10 around a 90 degrees corner. The reference solution for the computation of the error estimates refers to the solution obtained on a 6400 2 mesh.

	Number of points	Relative L 2 error (M )	Convergence rate (M )	Relative L 2 error (α)	Convergence rate (α)	CPU time (s)
	50 2 100 2 200 2 400 2 800 2 1600 2 3200 2	3.525 • 10 -2 2.181 • 10 -2 1.257 • 10 -2 6.990 • 10 -3 3.714 • 10 -3 1.777 • 10 -3 6.538 • 10 -4	-0.693 0.795 0.847 0.912 1.064 1.442	3.441 • 10 -2 2.167 • 10 -2 1.225 • 10 -2 6.536 • 10 -3 3.299 • 10 -3 1.505 • 10 -3 5.439 • 10 -4	-0.667 0.823 0.907 0.987 1.132 1.469	2.400 • 10 -2 7.823 • 10 -2 0.277 1.051 4.055 16.041 68.108
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