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What is New?

• We illustrate how clinical prediction models used under a counterfactual framework could allow the inference of individualised treatment effects;

• Counterfactual prediction models return, given a patient, the predicted risks of outcome under different scenarios (e.g. patient risk of outcome under treatment versus patient risk of outcome under control); • The comparison of counterfactual predicted risks may help refine clinical therapeutic decision-making at the patient level, as shown in this illustration.

Introduction

The randomised controlled trial (RCT) has long been recognised as the standard experimental method for providing clinical evidence of therapeutic intervention [START_REF] Guyatt | What is "quality of evidence" and why is it important to clinicians?[END_REF] -yet stated at the population level, whilst clinical decision-making is often made at the individual level. [START_REF] Bassler | Evidence-based medicine targets the individual patient, part 1: how clinicians can use study results to determine optimal individual care[END_REF][START_REF] Bassler | Evidence-based medicine targets the individual patient, part 2: guides and tools for individual decision-making[END_REF][START_REF] Rothwell | Can overall results of clinical trials be applied to all patients?[END_REF][START_REF] Rothwell | External validity of randomised controlled trials: "to whom do the results of this trial apply?[END_REF] As an individual treatment effect is not directly observed in RCTs, an average treatment effect is commonly estimated, thereby assuming a homogeneous response to the treatment, which is unlikely to hold in clinical practice. Given this deficiency of precision, a medicine effective on average can improve outcomes in most patients, though worsening outcomes in a minority of patients -the estimation of these respective proportions being regrettably neglected from RCT analysis. This duality between global evidence-based medicine and personalised decision-making therefore emphasises the need for methods that can provide patient-level evidence about treatment effects.

To address this issue, subgroup analyses have been used to stratify the treatment effect by subpopulations. [START_REF] Kent | Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification[END_REF][START_REF] Rothwell | Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation[END_REF] However, these approaches are deemed suboptimal and prone to multiple testing. [START_REF] Brookes | Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test[END_REF][START_REF] Brookes | Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and falsenegatives[END_REF] Exploring one variable at a time, based on patient characteristics that are believed to modify the treatment effect, is often limited when many underlying characteristics are involved and may lead to false-positive findings. [START_REF] Brookes | Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test[END_REF][START_REF] Brookes | Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and falsenegatives[END_REF] Recent methodological developments have led to considering multivariable predictive approaches to treatment effect heterogeneity. [START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement[END_REF][START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement: Explanation and Elaboration[END_REF] In this article, we illustrate how the methodology of clinical prediction models (i.e. non-causal models) used under a counterfactual framework may allow a causal interpretation of individualised treatment effects.

We reanalyse the International Stroke Trial (IST), [START_REF]The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group[END_REF] which evaluated the effect of Aspirin in stroke, a disease responsible for 6.7 million deaths in 2012 according to the World Health Organisation. [START_REF]Global status report on noncommunicable diseases[END_REF] With more than 65% of strokes being ischaemic, [START_REF] Jauch | Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[END_REF][START_REF] Tsai | Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review[END_REF][START_REF] Warlow | Stroke, transient ischaemic attacks, and intracranial venous thrombosis. Donaghy[END_REF] effective treatments are required, particularly in the large number of patients who cannot receive intravenous thrombolysis. In Western countries, guidelines for the management of acute ischaemic stroke recommend the use of Aspirin, [START_REF] Jauch | Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[END_REF][START_REF]Guidelines for management of ischaemic stroke and transient ischaemic attack 2008[END_REF]18 which demonstrated a clinical, albeit moderate, benefit. Nonetheless, it remains unclear whether this treatment is beneficial to all patients. The original article of the IST reported no clear evidence from the multiple subgroup analyses. [START_REF]The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group[END_REF] In this reanalysis, we derive models that predict the patient counterfactual risks of death or dependency at six months after stroke -with and without Aspirin. We aim to show how the comparison of counterfactual risks of outcome could refine clinical decision-making on therapeutic strategy, given patient clinical characteristics.

Methods

Data and settings

The IST was a large, multi-centre trial assessing the effect of Aspirin and Heparin on a primary (composite) outcome of death or dependency at six months after stroke, using a 2 x 2 factorial design. [START_REF]The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group[END_REF] It enrolled 19,435 adults with acute ischaemic stroke from 36 countries and collected over 99% complete follow-up data. The dataset from this RCT was recently released under an open-access license on behalf of the International Stroke Trial Collaborative Group. [START_REF] Sandercock | The International Stroke Trial database[END_REF] As we performed a secondary analysis, our study was exempt from patient consent form collection. The trial originally reported a non-significant, moderate average risk reduction in the primary outcome at six months in the Aspirin group (62.2% versus 63.5%, two-tailed P = 0.07). [START_REF]The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group[END_REF] To estimate the individualised responses to Aspirin, we used the methodology of clinical prediction models under a counterfactual framework. This approach aligns with precedents described in the statistical literature, to which we invite readers to refer for further theoretical justification and technical contents. [START_REF] Lamont | Identification of predicted individual treatment effects in randomized clinical trials[END_REF][START_REF] Li | A predictive enrichment procedure to identify potential responders to a new therapy for randomized, comparative controlled clinical studies[END_REF][START_REF] Cai | Analysis of randomized comparative clinical trial data for personalized treatment selections[END_REF][START_REF] Kang | Combining biomarkers to optimize patient treatment recommendations[END_REF][START_REF] Foster | Subgroup identification from randomized clinical trial data[END_REF][START_REF] Zhao | Effectively Selecting a Target Population for a Future Comparative Study[END_REF][START_REF] Porcher | Identifying treatment responders using counterfactual modeling and potential outcomes[END_REF][START_REF] Huang | Assessing Treatment-Selection Markers using a Potential Outcomes Framework[END_REF] 

Counterfactual prediction models

Let us define the treatment status: = 1 denotes 'treated', and = 0 denotes 'control'. Following Rubin's causal model, let ( ) and ( ) denote the potential outcomes (or 'counterfactuals') that would be observed if individuals were to receive the treatment or control, respectively. [START_REF] Rubin | Estimating causal effects of treatments in randomized and nonrandomized studies[END_REF] In the International Stroke Trial, 12 ( ) denotes the risk of death or dependency at six months under Aspirin, whilst ( ) denotes that risk under control (i.e. without Aspirin). For a particular individual , the comparison of these two counterfactual outcomes defines the individual treatment effect: = ( ) -( ) . (Note, this effect can also be expressed as a ratio.) In a RCT, as an individual can only be either treated or untreated, according to their actual treatment allocation, the individual treatment effect cannot be measured directly (an issue referred to as 'the fundamental problem of causal inference'. [START_REF] Holland | Statistics and causal inference[END_REF] )

Clearly, only ( ) is observed in the Aspirin arm, and only ( ) is observed in the control arm.

Denoting the observed outcome by , one can write: = ( ) + (1 -) ( ) (which is referred to as 'consistency'. [START_REF] Pearl | On the Consistency Rule in Causal Inference: Axiom, Definition, Assumption, or Theorem?[END_REF] )

Further, let denote the baseline covariates. Given complete randomisation, is assumed independent from , but also from This general method can be regarded as similar to the parametric g-formula proposed by Robins, 32 with two differences: (i) as we focus on the ITE, we spare the step of treatment effect averaging for a causal interpretation at the population level; (ii) treated and control patients are assumed exchangeable -given randomisation -regardless of the set of covariates included in the prediction models.

We applied this approach to reanalyse the International Stroke Trial (IST).

Statistical analysis

Before developing the counterfactual prediction models, we split the initial sample of the IST at the hospital centre level to generate a derivation sample and a validation sample. By creating two independent sets of patients hospitalised in structures within which practices and measurements were likely to differ, this procedure allowed us to conduct a geographical validation (sometimes called "broad" validation) of the prediction models. [START_REF] Moons | Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[END_REF] We defined a split ratio of 2:1 which ensured that both samples included enough outcomes to avoid overfitting in derivation (> 50 events per variable), [START_REF] Austin | Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models[END_REF] and to precisely quantify model performance during validation (> 200 events). [START_REF] Collins | Sample size considerations for the external validation of a multivariable prognostic model: a resampling study[END_REF] We fit separate logistic regressions, using 23 predictors (no variable selection), to predict the occurrence of death or dependency at six months to each treatment arm (Aspirin and control)

of the derivation sample. The predictors included in both models were the covariates that the trial investigators had specified for subgroup analyses (i.e. factors originally presumed to be responsible for heterogeneity). The non-linearity of the continuous variables was handled using restricted cubic splines. [START_REF] Collins | Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model[END_REF] Any covariate included in one of the two regressions was also included in the other regression to allow differences in covariate effect across the two models (i.e. effect modification). The large sample size of the IST allowed us to include this large set of covariates. (Note, this procedure should not be conducted without precaution in small samples, in which penalisation of regression models might be appropriate for covariate selection. [START_REF] Van Klaveren | Models with interactions overestimated heterogeneity of treatment effects and were prone to treatment mistargeting[END_REF] ) Given the low rate of missing data, the analysis was performed in complete case data.

We used the two models to predict the probability of the counterfactual outcomes, ( ) = 1| and ( ) = 1| , that would have occurred within six months for all individuals had they been treated and not with Aspirin, respectively. To evaluate predictive ability of both models, we calculated the discrimination (c-statistic) in the derivation and validation samples and calibration (slope and intercept) in the validation sample (intercept and slope will be 0 and 1 by definition for the derivation sample). We also graphically assessed the calibration, using local regression curves. [START_REF] Austin | Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers[END_REF] Ninety-five percent confidence intervals (95% CI) were calculated by bootstrapping (500 iterations). We transparently reported our analysis following the TRIPOD statement. [START_REF] Moons | Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[END_REF][START_REF] Collins | Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[END_REF] We calculated the as the difference between the two counterfactual prognoses returned by the models, which corresponds to an absolute risk difference.

Results

Of the 19,435 included patients, 6,000 patients (62.2%) in the Aspirin arm and 6,125 patients (63.5%) in the control arm experienced the primary composite outcome (absolute risk difference = -1.3%, 95% CI: -2.6% to +0.1%, P = 0.07; number needed to treat: 77 patients).

After random splitting at the hospital level, the derivation sample included 12,598 patients, whilst the validation included 6,937. The baseline characteristics at randomisation are reported in Table 1. The average treatment effects were equal to -1.3% (95% CI: -3.0% to +0.4%, P = 0.13) and -1.1% (95% CI: -3.5% to +1.2%, P = 0.33), in the derivation and validation data, respectively.

In the derivation sample, we fit a regression model with 23 covariates to each arm. The Aspirin arm model included 59 non-events per degree of freedom and the control arm model included 58 non-events per degree of freedom. There were 557 missing values (4.4%) across the primary outcome and the 23 covariates. The two models are presented in Table 2. The predictive performance of both models was good, as measured by discrimination and calibration (Figure 1). Performance was consistent in both the derivation and the validation We estimated the ITE for each patient as the difference between the counterfactual risks of outcome under Aspirin and control, returned by the two prediction models. As depicted in Figure 2, we found that Aspirin effect may have been beneficial for certain patients (e.g.

reducing the risk of death/dependency by more than 20%), but harmful for others (increasing the risk by 20% or more). Following the suggestion of an anonymous reviewer, we reported the calibration and discrimination performance of these predicted ITEs in Appendix.

We then stratified the trial with regard to the predicted ITE (i.e. stratum with expected benefit, < 0; stratum without expected benefit, ≥ 0). These two strata represented 74.0% and 26.0% of the overall trial, respectively. In the beneficial stratum, the average Aspirin effect was more than two-fold greater than the one originally reported in the trial with, in the derivation sample, an absolute risk difference equal to -3.4% (95% CI: -5.5% to -1.4%, P < 0.001; number needed to treat: 29 patients), which was confirmed in the validation sample: -3.3% (95% CI: -6.1% to -0.4%, P = 0.025; number needed to treat: 30 patients). In the stratum without expected benefit, the average effect of Aspirin was equal to +3.3% (95% CI: 0.3% to 6.3%, P = 0.031; number needed to harm: 30 patients) in the derivation sample and to +1.6% (95% CI: -2.9 to +6.1, P = 0.49; number needed to harm: 63 patients) in the validation sample.

Discussion

We have illustrated how the methodology of clinical prediction models may be used under a counterfactual framework to predict individualised treatment responses. By reanalysing the IST, we show that using counterfactual risk prediction models may help clinicians determine which patients with suspected ischaemic stroke may benefit from Aspirin.

The fairly good predictive performances of the two prediction models suggest consistent predictions that allow ITEs to be estimated. Our analyses in the derivation sample concur with those conducted in the validation sample, in finding that Aspirin had a heterogeneous effect across the population, with a benefit in three quarters of patients. This finding raises a concern of the naïve analysis of RCTs: If a significant average effect (as previously demonstrated for Aspirin) shows a glass half full, an analysis of individualised effects can show it half empty.

Meta-analyses have established a benefit of Aspirin on average, [START_REF] Chen | Indications for early aspirin use in acute ischemic stroke : A combined analysis of 40 000 randomized patients from the chinese acute stroke trial and the international stroke trial. On behalf of the CAST and IST collaborative groups[END_REF][START_REF] Sandercock | Oral antiplatelet therapy for acute ischaemic stroke[END_REF] yet a quarter of patients may instead experience harmful effects under Aspirin.

Though the concept of evidence-based medicine has been widely implemented in clinical practice, evidence obtained from RCTs is stated at the population level, whilst clinical decisions are often made at the patient level. [START_REF] Rothwell | Can overall results of clinical trials be applied to all patients?[END_REF][START_REF] Rothwell | External validity of randomised controlled trials: "to whom do the results of this trial apply?[END_REF] This contrast warrants the need for methods to estimate treatment effects at individualised and subpopulation levels. [START_REF] Kent | Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification[END_REF][START_REF] Rothwell | Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation[END_REF] In traditional subgroup analysis, a population is subdivided on one variable at a time according to what researchers and clinicians consider to be potentially modifying treatment effects; thereby limiting how many characteristics can simultaneously explain heterogeneity in therapeutic response. [START_REF] Brookes | Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test[END_REF][START_REF] Brookes | Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and falsenegatives[END_REF] Recent approaches propose stratifying populations using disease-risk scores, [START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement[END_REF][START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement: Explanation and Elaboration[END_REF][START_REF] Burke | Using internally developed risk models to assess heterogeneity in treatment effects in clinical trials[END_REF][START_REF] Kent | Risk and treatment effect heterogeneity: re-analysis of individual participant data from 32 large clinical trials[END_REF][START_REF] Kent | Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal[END_REF] that is, prediction models without treatment (i.e. models that return ( ) = 1| ). In contrast to one-variable-at-a-time analyses, these methods rely upon multivariable models, which enable to create subpopulations that differ by many covariates ('multivariable' subgroup analysis). Nonetheless, the way thresholds are defined to create such strata may be arbitrary, particularly in cases of non-monotonic relationships between the prognosis without treatment and the treatment effect itself. In this regard, we highlight a practical issue of disease risk-stratified analysis: Since the analyst might be unable to properly define thresholds, they may be inclined to repeatedly create strata and conduct statistical analyses until finding results that satisfy their hypothesis (i.e. multiple analyses increase the risk of false-positive findings). Using counterfactual prediction models, there is no need to define thresholds: the ITE is directly inferred from comparing the counterfactual risks of outcome (i.e. ( ) = 1| and ( ) = 1| ). As treatment effects are estimated at individualised levels (these estimates can then be averaged at the (sub)population level), this refers to a 'bottom-up' approach as opposed to previous methods estimating effects from the population to the patient ('top-down').

Counterfactual prediction modelling may address issues faced by existing approaches. Those seeking to assess heterogeneity are often limited by the unobserved distribution of the ITEs, [START_REF] Schlattmann | Medical Applications of Finite Mixture Models[END_REF][START_REF] Adams | Estimating Heterogeneous Treatment Effects in Randomized Control Trials[END_REF] whilst existing methods for predicting ITEs do not consider heterogeneity at all. [START_REF] Dorresteijn | Estimating treatment effects for individual patients based on the results of randomised clinical trials[END_REF][START_REF] Van Der Leeuw | Personalized cardiovascular disease prevention by applying individualized prediction of treatment effects[END_REF] For example, Dorresteijn et al. (2011) suggest calculating the ITE by assuming a homogenous treatment effect and multiplying the pre-treatment risk of outcome (obtained from an existing model) by the average treatment effect. [START_REF] Dorresteijn | Estimating treatment effects for individual patients based on the results of randomised clinical trials[END_REF] Other approaches, such as that proposed in van Kruijsdijk et al. (2015), [START_REF] Van Kruijsdijk | Individualised prediction of alternate-day aspirin treatment effects on the combined risk of cancer, cardiovascular disease and gastrointestinal bleeding in healthy women[END_REF] or Yeh et al. (2016), [START_REF] Yeh | Development and Validation of a Prediction Rule for Benefit and Harm of Dual Antiplatelet Therapy Beyond 1 Year After Percutaneous Coronary Intervention[END_REF] require appropriate interaction terms to be included in a modelling step to handle treatment effect heterogeneity. [START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement[END_REF][START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement: Explanation and Elaboration[END_REF] However, precedents have shown that modelling strategies that omit interactions may result in misleading estimates of ITE. [START_REF] Van Klaveren | Estimates of absolute treatment benefit for individual patients required careful modeling of statistical interactions[END_REF][START_REF] Groenwold | Explicit inclusion of treatment in prognostic modeling was recommended in observational and randomized settings[END_REF] Counterfactual prediction modelling uses a different paradigm: Where testing interactions can only suggest statistically significant differences in effects between subpopulations, estimating separate models allow differences that are informative at the individual level to be captured. In fact, this corresponds to a model including all (two-way) interactions possible with the treatment variable. This flexible approach can still be completed by including additional high-order interactions. The use of separate counterfactual models complies with recent proposed approaches for identifying and targeting beneficial subpopulations. [START_REF] Lamont | Identification of predicted individual treatment effects in randomized clinical trials[END_REF][START_REF] Li | A predictive enrichment procedure to identify potential responders to a new therapy for randomized, comparative controlled clinical studies[END_REF][START_REF] Cai | Analysis of randomized comparative clinical trial data for personalized treatment selections[END_REF][START_REF] Kang | Combining biomarkers to optimize patient treatment recommendations[END_REF][START_REF] Foster | Subgroup identification from randomized clinical trial data[END_REF][START_REF] Zhao | Effectively Selecting a Target Population for a Future Comparative Study[END_REF][START_REF] Porcher | Identifying treatment responders using counterfactual modeling and potential outcomes[END_REF][START_REF] Huang | Assessing Treatment-Selection Markers using a Potential Outcomes Framework[END_REF] Since counterfactual prediction modelling allows a causal interpretation of ITE based on prediction models, it may combine advantages and solve concerns of the disease-risk model approach and the effect-interaction model approach -both described in a recent statement on predictive approaches to treatment effect heterogeneity. [START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement[END_REF][START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement: Explanation and Elaboration[END_REF] Diverse limitations have to be considered to counterfactual prediction models. This methodology should not be applied without precaution. As with any clinical prediction model, three key-steps should be undertaken: model development, external validation and impact analysis, [START_REF] Steyerberg | Prognosis Research Strategy (PROGRESS) 3: prognostic model research[END_REF] with models being transparently reported as stated for diagnostic and prognostic research. [START_REF] Moons | Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[END_REF][START_REF] Collins | Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[END_REF] In addition to assessing the predictive performances of the counterfactual prediction models, further methods are needed for calibrating the estimated ITEs. Ideally, counterfactual prediction models approach should be applied to identify responders in RCTs which have demonstrated a significant benefit; failing that, they may be useful to refine inclusion criteria for secondary trials. Appropriate confirmatory studies must nonetheless be conducted to prove the benefits revealed by such a reanalysis. Optimally, with regard to our reanalysis of the IST, further studies on external trials should be conducted to confirm our results; we intended to provide an illustrative example rather than results ready to be applied in clinical practice. From an analytic perspective, counterfactual prediction models combines two regression models (or more, in the case of multiple treatment arms), which might require more meticulous practices than usual. Further studies are needed to explore the robustness of this approach against model misspecification. The applicability of this method for reanalysing RCTs may be limited by the need for large RCTs, since samples including sufficient outcomes within each treatment arm are required to avoid overfitting. [START_REF] Austin | Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models[END_REF] Our illustration takes advantage of the considerable sample size of the IST, which may not be found in most RCTs.

In the (likely) case of smaller trials, penalisation of regression models might be required. [START_REF] Van Klaveren | Models with interactions overestimated heterogeneity of treatment effects and were prone to treatment mistargeting[END_REF] Finally, it is worth noting that the 'individualised treatment effect', which is defined on a limited set of covariates, is to be distinguished from the individual -'indivisible', etymologically -treatment effect, which is non-identifiable. [START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement[END_REF][START_REF] Kent | The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement: Explanation and Elaboration[END_REF] In this sense, our approach is to be understood as a support for clinical decision-making based on evidence inferred in (fine) groups of patients sharing similar characteristics. Epistemic uncertainty is therefore to be acknowledged in this decision-making: uncertainty about the evidence drawn from the groups, and uncertainty due to the gap between groups and individuals.

In conclusion, we have illustrated how using the methodology of clinical prediction models under a counterfactual framework may potentially help infer individualised therapeutic responses. Negative values correspond to an outcome risk reduction under Aspirin (beneficial effect), whilst positive values denote an increase of risk under Aspirin (harmful effect).
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  samples, with no concerns of overfitting. The model predicting the outcome in the presence of Aspirin had a c-statistic of 0.815 (95% CI: 0.805 to 0.825) in the derivation sample and 0.798 (95% CI: 0.782 to 0.813) in the validation sample. The calibration slope in the validation sample was 1.009 and the calibration intercept was -0.011. Similarly, the model predicting the outcome in the absence of Aspirin had a c-statistic of 0.799 (95% CI: 0.788 to 0.811) in the derivation sample and 0.794 (95% CI: 0.778 to 0.809) in the validation sample, with a calibration slope of 1.026 and an intercept of -0.005 in the validation sample.

Figure 1 .

 1 Figure 1. Calibration curves of the counterfactual prediction models within each treatment group of the validation sample. The red dotted lines refer to ideal calibration.

Figure 2 .

 2 Figure 2. Distribution of the individualised effect of Aspirin (absolute risk difference).

Table 1 .

 1 Baseline characteristics at randomisation and outcomes. Medians (interquartile ranges) and counts (proportions) are reported for continuous and binary or categorical variables, respectively.

		Derivation sample	Validation sample
		Aspirin	Control	Aspirin	Control
		6 260 (49.7%)	6 338 (50.3%)	3 460 (50.6%)	3 377 (49.4%)
	Age (years)	74 (65-80)	74 (65-81)	73 (65-80)	73 (65-80)
	Delay (hours)	18 (9-28)	19 (9-29)	20 (10-30)	20 (9-30)
	Systolic blood pressure (mmHg)	160 (140-180)	160 (140-180)	160 (140-180)	160 (140-180)
	Male sex	3 278 (52.4%)	3 358 (53.0%)	1 875 (54.2%)	1 896 (56.1%)
	Computerised tomography (CT)	4 175 (66.7%)	4 228 (66.7%)	2 316 (66.9%)	2 305 (68.3%)
	Infarct visible at CT	2 036 (32.5%)	2 146 (33.9%)	1 140 (32.9%)	1 093 (32.4%)
	Atrial fibrillation	1 092 (17.4%)	1 081 (17.1%)	530 (15.3%)	466 (13.8%)
	Missing value	278 (4.4%)	279 (4.4%)	215 (6.2%)	212 (6.3%)
	Aspirin within previous 3 days	1 317 (21.0%)	1 340 (21.1%)	644 (18.6%)	639 (18.9%)
	Missing value	278 (4.4%)	279 (4.4%)	215 (6.2%)	212 (6.3%)
	Face deficit				
	Not assessable	89 (1.4%)	84 (1.3%)	34 (1.0%)	40 (1.2%)
	No 1 679 (26.8%)	1 658 (26.2%)	888 (25.7%)	864 (25.6%)
	Yes 4 492 (71.8%)	4 596 (72.5%)	2 538 (73.3%)	2 473 (73.2%)
	Arm/hand deficit				
	Not assessable	39 (0.6%)	43 (0.7%)	16 (0.5%)	25 (0.7%)
	No 872 (13.9%)	870 (13.7%)	476 (13.7%)	449 (13.3%)
	Yes 5 349 (85.5%)	5 425 (85.6%)	2 968 (85.8%)	2 903 (86.0%)
	Leg/foot deficit				
	Not assessable	94 (1.5%)	77 (1.2%)	39 (1.1%)	45 (1.3%)
	No 1 469 (23.5%)	1 473 (23.2%)	803 (23.2%)	757 (22.4%)
	Yes 4 697 (75.0%)	4 788 (75.6%)	2 618 (75.7%)	2 575 (76.3%)
	Dysphasia				
	Not assessable	190 (2.9%)	220 (3.5%)	91 (2.6%)	83 (2.5%)
	No 3 250 (53.2%)	3 348 (52.8%)	1 922 (55.6%)	1 822 (53.9%)
	Yes 2 820 (43.9%)	2 770 (43.7%)	1 447 (41.8%)	1 472 (43.6%)
	Hemianopia				
	Not assessable 1 391 (22.2%)	1 375 (21.7%)	596 (17.2%)	583 (17.2%)
	No 3 896 (62.2%)	3 949 (62.3%)	2 301 (66.5%)	2 248 (66.6%)
	Yes 973 (15.6%)	1 014 (16.0%)	563 (16.3%)	546 (16.2%)
	Visuospatial disorder				
	Not assessable 1 181 (18.9%)	1 192 (18.8%)	534 (15.4%)	541 (16.0%)
	No 4 037 (64.5%)	4 076 (64.3%)	2 379 (68.8%)	2 317 (68.6%)

Table 2 .

 2 Models with and without Aspirin predicting death or dependency at 6 months. A restricted cubic spline with three knots was used to describe the effects of age (knots at 56, 74 and 85 years) and systolic blood pressure (knots at 130, 160 and 200 mmHg). PACS, partial anterior circulation syndrome; TACS, total anterior circulation syndrome; LACS, lacunar syndrome; POCS, posterior circulation syndrome.

		With Aspirin		Without Aspirin	
	Odds ratio (95% CI)	P	Odds ratio (95% CI)	P
	Intercept	0.08 (0.03 -0.20)		0.12 (0.05 -0.32)	
	Age (years)	1.03 (1.02 -1.04)	<0.001	1.03 (1.02 -1.04)	<0.001
	(Age)'	1.03 (1.01 -1.04)		1.03 (1.01 -1.04)	
	Delay (hours)	1.00 (1.00 -1.01)	0.061	1.00 (1.00 -1.01)	0.001
	Systolic blood pressure (mmHg)	1.00 (0.99 -1.00)	0.001	1.00 (0.99 -1.00)	0.003
	(Systolic blood pressure)'	1.00 (0.99 -1.01)		1.00 (1.00 -1.01)	
	Male sex	0.76 (0.67 -0.86)	<0.001	0.79 (0.70 -0.90)	<0.001
	Computerised tomography (CT)	0.55 (0.47 -0.64)	<0.001	0.55 (0.47 -0.64)	<0.001
	Infarct visible at CT	1.47 (1.26 -1.73)	<0.001	1.51 (1.30 -1.76)	<0.001
	Atrial fibrillation	1.19 (0.99 -1.43)	0.046	1.28 (1.06 -1.54)	0.005
	Aspirin within previous 3 days	1.20 (1.03 -1.40)	0.094	1.28 (1.10 -1.48)	0.005
	Face deficit (reference: No)		<0.001		<0.001
	Not assessable	1.13 (0.55 -2.32)		0.87 (0.43 -1.78)	
	Yes	1.24 (1.07 -1.44)		1.18 (1.02 -1.36)	
	Arm/hand deficit (reference: No)		<0.001		<0.001
	Not assessable	0.57 (0.20 -1.58)		1.03 (0.32 -3.32)	
	Yes	1.42 (1.13 -1.79)		1.41 (1.12 -1.76)	
	Leg/foot deficit (reference: No)		<0.001		<0.001
	Not assessable	1.93 (0.96 -3.86)		2.10 (0.89 -4.98)	
	Yes	2.21 (1.84 -2.64)		1.97 (1.65 -2.35)	
	Dysphasia (reference: No)		0.002		0.397
	Not assessable	2.36 (1.12 -4.97)		1.18 (0.72 -1.94)	
	Yes	1.14 (0.96 -1.35)		1.20 (1.02 -1.43)	
	Hemianopia (reference: No)		<0.001		<0.001
	Not assessable	1.53 (1.16 -2.01)		1.41 (1.08 -1.85)	
	Yes	1.70 (1.30 -2.22)		1.66 (1.27 -2.15)	
	Visuospatial disorder (reference: No)		< 0.001		< 0.001
	Not assessable	1.57 (1.22 -2.03)		1.69 (1.31 -2.18)	
	Yes	1.59 (1.28 -1.99)		1.79 (1.44 -2.23)	
	Brainstem/cerebellar signs (reference: No)	0.019		0.414
	Not assessable	1.20 (0.85 -1.69)		1.10 (0.80 -1.50)	
	Yes	2.87 (0.89 -9.26)		1.98 (0.78 -5.07)	
	Other deficit (reference: No)		0.001		0.233
	Not assessable	1.57 (1.05 -2.34)		0.75 (0.53 -1.06)	
	Yes	1.60 (1.21 -2.13)		1.07 (0.82 -1.40)	
	Consciousness (reference: Fully alert)	< 0.001		< 0.001
	Drowsy	2.84 (2.31 -3.49)		2.73 (2.22 -3.36)	
	Unconscious	8.98 (2.05 -39.39)		11.57 (3.38 -39.67)	
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