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Vibration characteristics of elastic nanostructures embedded in fluid medium have been used for biological and mechanical sensing, and also to investigate the materials mechanical properties. An analytical approach based on the exact theory has been developed in this paper, to establish a new accurate and simple generalized frequency equation to predict spheroidal vibration of an elastic nanosphere, in a compressible viscoelastic fluid using linear Maxwell fluid model. To demonstrate the accuracy of the present approach, a comparison is made with the published theoretical results in the literature in some particular cases, which shows a very good agreement. Thus, the obtained frequency equation can be very useful to interpret the experimental measurements of vibrational dynamics of nanospheres and can serve as benchmark solution in design of liquid sensors.

Introduction

During recent years, owing to various applications, especially in designing biological and mechanical sensors, and in characterizing material properties, vibration analysis of embedded nanoparticles in fluid medium has attracted significant attention [START_REF] Verbridge | Optically driven resonance of nanoscale flexural oscillators in liquid[END_REF][START_REF] Portales | Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations[END_REF][START_REF] Jensen | An atomic-resolution nanomechanical mass sensor[END_REF][START_REF] Arlett | Comparative advantages of mechanical biosensors[END_REF][START_REF] Ruijgrok | Damping of Acoustic Vibrations of Single Gold Nanoparticles Optically Trapped in Water[END_REF][START_REF] Chakraborty | Vibration of nanoparticles in viscous fluids[END_REF]. The damping level present in these applications can be defined by its quality factor. A high quality factor that describes low damping is desirable for better detection sensitivity. Consequently, it is of interest to understand the damping phenomenon due to transfer of energy or energy dissipation to the surrounding medium. In addition, incited by the idea to destroy biological nanoparticles such as viruses using resonance concept of an ultrasonic wave, the elastic spheres models have also been used to study the vibration characteristics of viruses in different media. [START_REF] Babincova | Resonant absorption of ultrasound energy as a method of HIV destruction[END_REF][START_REF] Ford | Estimate of the vibrational frequencies of spherical virus particles[END_REF][START_REF] Saviot | Comment on estimate of the vibrational frequencies of spherical virus particles[END_REF][START_REF] Talati | Acoustic phonon quantization and lowfrequency Raman spectra of spherical viruses[END_REF][START_REF] Sirotkin | Viruses as nanoparticles: Structure versus collective dynamics[END_REF].

The damping mechanism and resonant frequencies of nanostructures with different shapes have been measured by a many experimental techniques [START_REF] Ruijgrok | Damping of Acoustic Vibrations of Single Gold Nanoparticles Optically Trapped in Water[END_REF][START_REF] Hartland | Coherent excitation of vibrational modes in metallic nanoparticles[END_REF][START_REF] Fujii | Lowfrequency Raman scattering from small silver particles embedded in SiO2 thin films[END_REF]. From the modeling perspective of the vibration characteristics of these nanostructure, vibrations of elastic structures are classical problems in continuum mechanics. For example, Lamb [START_REF] Lamb | On the vibrations of an elastic sphere[END_REF] proposed a theoretical aspect to investigate the spheroidal modes of a dry elastic sphere. In spheroidal modes, the volume or shape of the sphere subjected to vibration is not constant. In addition, there are a number of works that have considered the vibration modes of elastic structures with different geometries [START_REF] Chakraborty | Vibration of nanoparticles in viscous fluids[END_REF][START_REF] Saviot | Comment on estimate of the vibrational frequencies of spherical virus particles[END_REF][START_REF] Dubrovskiy | Natural vibrations of a spherical inhomogeneity in an elastic medium[END_REF][START_REF] Kheisin | Radial oscillations of an elastic sphere in a compressible fluid[END_REF][START_REF] Jain | Scattering of elastic waves by an elastic sphere[END_REF].

Low frequency inelastic Raman scattering and far-infrared spectroscopy are very interesting to study the geometry and the elastic properties of nanoparticles. It was shown that the vibration of spherical nanoparticles which are visible by Raman scattering are spheroidal modes: breathing and quadrupolar [START_REF] Duval | Vibration Eigenmodes and Size of Microcrystallites in Glass: Observation by Very-Low-Frequency Raman Scattering[END_REF][START_REF] Duval | Far-infrared and Raman vibrational transitions of a solid sphere: Selection rules[END_REF][START_REF] Goupalov | Comment on Infrared and Raman selection rules for elastic vibrations of spherical nanoparticles[END_REF][START_REF] Bachelier | Size dispersion effects on the low-frequency Raman scattering of quasispherical silver nanoparticles: Experiment and theory[END_REF][START_REF] Reymond-Laruinaz | Growth and size distribution of Au nanoparticles in annealed Au/TiO2 thin films[END_REF]. By far infrared spectroscopy, only the dipolar spheroidal mode can be observed. Furthermore, investigations on the dynamical properties of viruses through inelastic Brillouin light-scattering [START_REF] Stephanidis | Elastic Properties of Viruses[END_REF] highlight also spheroidal modes: breathing and quadrupolar. The dipolar spheroidal mode is the only to directly interact with microwaves [START_REF] Liu | Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations[END_REF][START_REF] Yang | Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses[END_REF]. However the free sphere model used to interpret the experimental results is an approximation of the actual environmental conditions of nanoparticles.

A recent theoretical study based on the purely radial vibration mode (Breathing mode) of a gold nanosphere was developed to predict a viscoelastic response in water-glycerol mixtures [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF]. This study demonstrates that an increase in glycerol mass fraction, the non-monotonic variations of quality factor are displayed and not captured by Newtonian fluid model. However a viscoelastic fluid model highlights the non-monotonic behavior. Nevertheless, the spheroidal vibrations modeling (quadrupolar and dipolar mode) is still lacking. Different vibration modes of nanosphers have been experimentally observed [START_REF] Stephanidis | Elastic Properties of Viruses[END_REF][START_REF] Liu | Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations[END_REF][START_REF] Yang | Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses[END_REF], and hence it is very important to establish a generalized eigenfrequency equation based on the exact theory in order to characterize the general vibration behavior other than the breathing mode [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF][START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF]. In this paper, a more general theory for predicting the spheroidal vibrations of an elastic sphere is proposed, in a compressible viscoelastic fluid using the Maxwell model.

Compressible viscoelastic fluid

We begin by briefly reviewing the conservation equations for a general fluid. Throughout, we assume that the flow exhibits small-amplitude acoustic oscillations so that all nonlinear convective terms can be neglected. Hence, the velocity field, , is governed by the linearized Navier-Stokes equation for compressible flows

= ∇ ⋅ ( ) (1) 
where is the fluid density at equilibrium. The total stress in a compressible fluid, ( ) , can be written as

( ) = -+ + (2)
where is the thermodynamic pressure and I is the identity tensor. For a compressible Newtonian fluid, and are the compressional and shear contributions to the deviatoric stress tensor, respectively, and which are related to the deformation by the following constitutive equations

= (tr ) , = 2 - tr 3 (3) 
where and are respectively, the bulk and shear viscosities of the fluid, and = ∇ + (∇ ) ∕2 is the strain rate tensor. In order to describe the fluid viscoelasticity, the linear Maxwell model is employed. In this case, the relation between force and deformation can be written as [START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF] + = (tr )

+ = 2 - tr 3 (4) 
where and are respectively, the shear and compressional relaxation time. In a Maxwell fluid, the viscoelastic behavior is modeled as a purely viscous damper and a purely elastic spring connected in series. Note that more details about tensor representations of constitutive equations for viscoelastic fluids can be found in [START_REF] Joseph | Fluid Dynamics of viscoelastic liquids[END_REF][START_REF] Jongen | Tensor representations and solutions of constitutive equations for viscoelastic fluids[END_REF].

The linearized Navier-Stokes equation ( 1) must be completed by the continuity equation. Because the small-amplitude acoustic oscillations are considered, the continuity equation for a compressible fluid is given by

+ ∇ ⋅ = 0 (5) 
where represents the density fluctuation. In addition, the equation of state relating the density fluctuation to the thermodynamic pressure is given by = 2 , where is the speed of sound in the fluid [START_REF] Landau | Fluid Mechanics[END_REF]. In other words, for smallamplitude acoustic waves, one can assume that a small change in fluid density induces small changes in pressure by fast adiabatic process.

Velocity potential formulation

Equation (1) can be transformed into simple scalar equations by introducing the velocity potentials. Any sufficiently smooth vector field can be written as the sum of the gradient of a scalar field and the curl of a vector field. This is called the Helmholtz representation [START_REF] Morse | Methods of theoretical physics Part II[END_REF]. For the velocity field considered here, that representation is

= + (6) 
where each component has specific properties : ( ) Potential component with curl-free component, i.e. ∇ × = , so it stems from a scalar potential :

= ∇ . This component describes the compressible part of the velocity field. ( ) Solenoidal component with divergence-free component, i.e. ∇ ⋅ = 0, so it stems from vector potential : = ∇ ×

. This component describes the incompressible part of the velocity field. Substitution of Eq. ( 6) into Eq. ( 1) and taking into account Eq. ( 4), yields the acoustic pressure in terms of the velocity potential

= 1 + -1 + 4 3 1 + -1 ∇ 2 - (7) 
In the same way, one can easily demonstrate that the potential satisfies the following equation

1 + = ∇ 2 (8) 
Concerning the potential , combination of Eq. ( 5), equation of state and Eq. ( 7) yields

= 2 + 1 + -1 + 4 3 1 + -1 ∇ 2 (9) 
The determination of the potentials and requires the resolution of the Helmholtz equation ( 9) and the diffusion equation ( 8), respectively. In this work time-harmonic dependence is assumed. Therefore, using previously developed techniques [START_REF] Morse | Methods of theoretical physics Part II[END_REF], the potentials and take the following forms

= ∞ ∑ =0 ∑ =- √ 2 1 + 1 2 + 1 + 1 2 × sin( ) (cos ) = ∞ ∑ =0 ∑ =- √ 2 2 + 1 2 + 2 + 1 2 × cos( ) (cos )
where , the components of the velocity field and stress tensor that will be further used in boundary conditions are given by

= √ √ √ √ 1 + 2 1 + + 4 3 1 + = √ 1 + (10) 
= + 2 ( ) 2 -2 = 1 + ( ) (11) 
( ) 2 * = 2 2 + 2 2 + 2 + 2 ( ) 2 -2 ( ) 2 * = 1 2 - + 1 ( ) - 2 2 (12) 

Elastic sphere

In this section, the constitutive equation Eq. ( 4) for a compressible viscoelastic fluid is used to study the fluidstructure interaction of a submerged elastic sphere. The aim here is to demonstrate how mode shape affects the resulting flow dynamics. This solution also finds direct application in practice, because these particles are often measured using ultrafast laser spectroscopy to probe their dynamics [START_REF] Ruijgrok | Damping of Acoustic Vibrations of Single Gold Nanoparticles Optically Trapped in Water[END_REF][START_REF] Hu | Vibrational response of nanorods to ultrafast laser induced heating: Theoretical and experimental analysis[END_REF][START_REF] Pelton | Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures[END_REF][START_REF] Pelton | Damping of acoustic vibrations in gold nanoparticles[END_REF][START_REF] Major | Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments[END_REF]. Therefore, it has been established that nanometer-sized solid particles obey the continuum hypothesis [START_REF] Chakraborty | Vibration of nanoparticles in viscous fluids[END_REF][START_REF] Hartland | Coherent excitation of vibrational modes in metallic nanoparticles[END_REF][START_REF] Saviot | Damping by Bulk and Shear Viscosity of Confined Acoustic Phonons for Nanostructures in Aqueous Solution[END_REF][START_REF] Juvé | Probing Elasticity at the Nanoscale: Terahertz Acoustic Vibration of Small Metal Nanoparticles[END_REF] with their dynamics being governed by Navier's equation

= 2 ∇ 2 -∇∇ ⋅ + 2 ∇∇ ⋅ ( 13 
)
where is the displacement field and, = √ ( + 2 ) ∕ and = √ ∕ are the propagation velocities of compressional and shear waves in the elastic sphere, respectively. is the solid density and and are the Lamé parameters. As before, it is assumed that the particle undergoes smallamplitude oscillations, and thus the usual assumption of linear elasticity is applicable. In a similar manner that fluid velocity potential, the Navier's equation ( 13) can be easily transformed into the following form in terms of the scalar potentials

2 ∇ 2 Φ -Φ = 0 , 2 ∇ 2 Ψ -Ψ = 0 (14) 
The solution of Eq. ( 14) can, of course, be expressed in terms of Bessel functions

Φ = ∞ ∑ =0 ∑ =- √ 2 3 + 1 2 sin( ) (cos ) Ψ = ∞ ∑ =0 ∑ =- √ 2 3 + 1 2 cos( ) (cos )
where 3 and 3 are arbitrary constants and = ∕ and = ∕ are the compressional and shear wavenumbers. Also, according to the generalized Hooke's law, the radial stress in terms of displacement potential, that will further used in boundary conditions is expressed

( ) 2 = 2 Φ 2 - 2 2 Φ + 2 ( Ψ) 2 + 2 Ψ
In addition, to obtain the displacement components and tangential stress, the velocity potentials ( , ) must be replaced by the displacement potentials (Φ, Ψ) in Eq. ( 11), and viscosity * by shear modulus in Eq. ( 12).

Sphere-fluid interaction

The vibration frequencies of the coupled system shall be obtained by application of the appropriate boundary conditions. Therefore, the following relations are suitable : ( ) Flux continuity that describes mass conservation and equilibrium of the normal forces at the sphere-fluid interface

= , = , ( ) = ( ) , ( ) = ( ) (15) 
( ) The nonslip boundary condition for the outside surface of viscoelastic fluid is assumed

= 0 , = 0 (16) 
Eqs. ( 15)-( 16) give for each mode number the following equation of the spheroidal vibrations (or vibrations of second-class [START_REF] Lamb | On the vibrations of an elastic sphere[END_REF])

[ ] { } = , { } = 1 , 1 , 2 , 2 , 3 , 3 (17) 
In spheroidal vibrations, the volume of the sphere subjected to vibration is not constant and the displacement vector must be defined by two independent components and . In spheroidal modes, = 0 corresponds to purely radial vibration mode, the so-called breathing, = 2 occurs at frequencies lower than = 0 and is characterized by an oscillation of the field between the forms of an oblate spheroid and a spheroid elongated at the poles (oblate-prolate). Furthermore, is a 6 × 6 matrix whose elements are designated as and are given in Appendix A. For a non-trivial solution, the determinant of the matrix must be equal to zero, which leads to the following eigenfrequency equation

det = 0 (18) 
where 18) constitutes an implicit transcendental function of and . The roots may be computed for a fixed . It is interesting to note that this eigenfrequency equation is independent of the values of due to the spherical symmetry. It should be pointed out that in the eigenfrequency [START_REF] Duval | Vibration Eigenmodes and Size of Microcrystallites in Glass: Observation by Very-Low-Frequency Raman Scattering[END_REF], dipolar mode corresponds to = 1 and quadrupolar mode to = 2.
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Some particular cases

For the general analytical approach developed in this paper for spheroidal modes of vibration, it is very important to check its accuracy in some particular cases. In the case of radial vibration mode, it is easy to show that the equation ( 18) takes the following simple form

2 2 ⎡ ⎢ ⎢ ⎣ 1 - + tan -1 -1 ⎤ ⎥ ⎥ ⎦ + 4 1 - + 4 2 = 0 (19) 
Thus, when compressional relaxation time is neglected = 0 , the equation ( 19) becomes

2 2 ⎡ ⎢ ⎢ ⎣ 1 - * + tan -1 -1 ⎤ ⎥ ⎥ ⎦ + 4 1 - + 4 2 = 0 (20) 
which was previously obtained by Galstyan et al. [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF] and

* = = 0 = √ √ √ √ 1 - 2 + 4 3 1 - 
A comprehensive review of radial mode of a vibrating sphere in Newtonian and linear Maxwell fluids can be found in [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF][START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF].

Comparison studies

For the general analytical approach developed in this paper, it is very important to check its accuracy and numerical robustness in some particular cases. Firstly, a comparison study is performed for a first breathing mode of a sphere submerged in a compressible linear Maxwell fluid. To compare the results derived from the equation ( 19) (or Eq. ( 18) for = 0) with other theoretical established results, the same dimensionless parameters that used by Chakraborty and Sader [START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF] are introduced

De = , De = , = , = 2 , =
where De is the Deborah number. Morever, the quality factor = -√ 2 + 2 ∕ 2 , and the vibration frequency = ∕ (2 ) are the same as those adopted by [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF][START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF], where and are, respectively, the real and imaginary parts of the angular frequency. Figure 1 difference between the compressible and incompressible results was observed. The behavior changes completely for non zero values of De . First, the elasticity results in qualitatively different behavior in the low -regime. The quality factor increases monotonically with decreasing . For > 1 the scenario is different, the quality factor converges to a constant value as increases while the incompressible solution gives a monotonically increasing quality factor. In addition, the results in the Figure 1 predected by Eq. ( 19) (or Eq. ( 18) for = 0) agree exceptionally well with those obtained by Chakraborty and Sader [START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF].

A second and last comparison can be drawn between the present solution and that of Galstyan et al. [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF] in the case of the first breathing mode vibration of a sphere submerged in a Maxwell fluid without compressional relaxation process (i.e. De = 0). Quality factor variation versus glycerol mass fraction in both compressible Maxwell and Newtonian fluids are investigated. Figure 2 shows that the Newtonian fluid highlights a monotonically decreasing correlation between the quality factor and glycerol mass fraction. However, the Maxwell fluids predicted a non monotonically behavior of the quality factor and glycerol mass fraction. Thus, the results in the Figure 2 agree exceptionally well with those obtained by Galstyan et al. [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF].

Numerical results

Having established the accuracy through the comparison study illustrated in Figures 1 and2, further numerical results are given in this section. The material properties used by Galstyan et al. [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF] were taken to construct this numerical example. Thus, effect of different parameters, including sphere radius, fluid compressibility, viscosity and viscoelas- ticity on the vibrations characteristics of the sphere are investigated.

In this work, the generalized eigenfrequency equation ( 18) is solved employing Mathematica software. After finding the real part and the imaginary part of the angular frequency, the frequency and quality factor can be calculated. First ten vibration frequency and quality factor of the spheroidal modes are given in Table 1 for Newtonian and Maxwell fluids with compressional relaxation process. For simplicity, Deborah numbers with De = De is a good approximation for some real fluids [START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF]. It can be seen that the frequencies of the spheroidal vibrations corresponding to the angular mode number 1 ≤ ≤ 6 are lower than the frequency of the radial mode. Different vibration modes of nanosphers have been experimentally observed [START_REF] Stephanidis | Elastic Properties of Viruses[END_REF][START_REF] Liu | Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations[END_REF][START_REF] Yang | Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses[END_REF], and hence it is very important to establish an eigenfrequency equation in order to characterize the general vibration behavior other than the radial mode.

To highlight the difference between the spheroidal vibration modes and the compressional relaxation effect, the quality factor of the gold nanosphere with 40 nm radius vibrating in water ( = 0) and in water-glycerol mixture ( = 0.56 and = 0.71) are summarized in Table 2 for Newtonian and Maxwell fluids with (De = De ) and without (De = 0) compressional relaxation process. This Table shows a significant reduction in the quality factor due to the fluid viscosity when water is replaced by water-glycerol mixture. Table 2 also shows a sensitivity of the breathing mode to the compressional relaxation process. However, the dipolar and quadrupolar modes are not affected by this compressional relaxation process. Therefore, to reasonably predict the quality factor, the compressional relaxation effect should be considered for the breathing mode. In other words, the Maxwell fluid with compressional relaxation process proposed by Chakraborty and Sader [START_REF] Chakraborty | Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales[END_REF] sional relaxation process presented by Galstyan et al. [START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF] is more suitable for dipolar and quadrupolar modes.

The quality factor of a gold nanosphere vibrating in Newtonian and Maxwell fluids with and without compressional relaxation effect as a function of angular mode number is depicted in Figure 3. On the one hand, Figure 3 shows that for the low glycerol mass fraction (i.e. small viscoelasticity effect) such as = 0.36, and lower modes, the difference between the Maxwell and Newtonian fluids is not very significant. However, increasing angular mode number, this difference increases gradually. Moreover, for high glycerol mass fractions (i.e. important viscoelasticity effect) such as = 0.71, the obtained quality factor by the two fluid models is different over the entire mode range. As the angular mode number increases, the quality factor predicted using Maxwell fluids increases almost linearly, while that based on the Newtonian model monotonically decreases for increasing values of the angular mode number. On the other hand, in Figure 3 it can be seen that, for low mass fractions, the compressional relaxation effect on the higher-order modes is less significant. For high mass fractions, the quality factor strongly depends on the compressional relaxation process over the whole mode range.

The variations of the quality factor of the quadrupolar and dipolar modes of a gold nanosphere with the glycerol mass fractions in both Maxwell and Newtonian fluids are depicted in Figure 4. Increasing the glycerol mass fraction considering a Newtonian fluid, an increase in the glycerol mass fraction causes a monotonic reduction in the quality factor. However, a Maxwell fluids predicted a non-monotonic behavior due to the intrinsic viscoelastic properties of fluids.

The variations of the quality factor of the quadrupolar, dipolar and breathing modes with the elastic sphere radius for a glycerol mass fraction of = 0.56 are illustrated in figure 5 using the Maxwell and Newtonian fluids. The predicted quality factor by the Newtonian fluid monotonically decreases with decreasing radius for all modes due to the increasing viscous dissipation effect. For the quadrupolar mode, a monotonic increase with the radius has been observed for the Maxwell fluid. Thus, the compressional relaxation effect on the quality factor is less significant. The same behavior for the dipolar mode has been highlighted. However, for the breathing mode, by varying the sphere radius, the compressional relaxation process strongly affects the quality factor because of its compressional motion behavior. A non monotonic variations of the quality factor with the radius has been observed for the maxwell fluid without the compressional relaxation process. In addition, for the quadrupolar mode, the viscoelasticity effect occurs for radius values less than 25 nm, 35 nm for the dipolar mode and 50 nm for the breathing mode using Maxwell fluid without the compressional relaxation process.

Conclusion

In the this paper a generalized eigenfrequency equation has been established in order to characterize the vibration behavior of spherical particles which execute for example a dipolar, quadrupolar and breathing modes, and the following concluding remarks could be drawn :

• The obtained eigenfrequency equation ( 18) using the general constitutive equation ( 4) exhibits all the required features of a linear Maxwell fluids at low frequencies (fluid-like behavior) and at high frequencies (solid-like behavior). Therefore, this equation provides a general formalism to characterize the fluid-structure interaction of vibrating spheres in Maxwell fluids. This should be very useful to interpret the experimental measurements of vibrational dynamics of spheres.

• The eigenfrequency equation ( 18) can highlight that the combined effects of fluid compressibility and viscoelasticity can strongly affect the dynamics of spheres embedded in Maxwell fluids.

• The vibrational dynamics of nanospheres in compressible and incompressible viscoelastic fluids can changes dramatically, and this can be due to the effects of compressional and shear elasticity.

• The proposed model highlights by solving analytically the fluid-structure interaction of an elastic sphere executing spheroidal vibrations in fluid, the importance of combined effects of fluid compressibility and viscoelasticity on nanoscale flows.

• A significant reduction in the quality factor due to the fluid viscosity when water is replaced by water-glycerol mixture is observed for the spheroidal modes.

• A sensitivity of the breathing mode to the compressional relaxation process is also highlighted. However, the dipolar and quadrupolar modes are not affected by this compressional relaxation process. Therefore, to reasonably predict the quality factor, the compressional relaxation effect should be considered for the breathing mode. In other words, the Maxwell fluid with compressional relaxation process is more appropriate for breathing mode and, the Maxwell fluid without compressional relaxation process is more suitable for dipolar and quadrupolar modes.

• For low mass fractions, the compressional relaxation effect on the higher-order modes is less significant.

For high mass fractions, the quality factor strongly depends on the compressional relaxation process over the whole mode range.

• The predicted quality factor by the Newtonian fluid monotonically decreases with decreasing radius for all modes due to the increasing viscous dissipation effect. For the quadrupolar mode, a monotonic increase with the radius has been observed for the Maxwell fluid. Thus, the compressional relaxation effect on the quality factor is less significant. The same behavior for the dipolar mode has been highlighted. However, for the breathing mode, by varying the sphere radius, the compressional relaxation process strongly affects the quality factor because of its compressional motion behavior. A non monotonic variations of the quality factor with the radius has been observed for the Maxwell fluid without the compressional relaxation process.

A. Appendix

Matrix elements given in Eq. ( 18) : 

and 1 , 1 , 2 1 2 and + 1 2are 2 and + 1 2

 1121121 and 2 are arbitrary constants, + Bessel functions of the first and second kind and + 1 are modified Bessel functions of the first and second kind, (cos ) are associated Legendre polynomials. In addition, the time factor is omitted for simplicity. Hence, introducing the parameter * = ∕ 1 +

Figure 1 :

 1 Figure 1: Quality factor of the first breathing mode of a gold nanosphere; effect of viscoelasticity and fluid compressibility. Results for radius = 50 nm, Poisson's ratio = 0.44, density ratio ∕ = 20, viscosity ratio = 1, and Deborah numbers are chosen so that De = De and normalized wavenumber = 1. Compressible fluid (solid lines); Incompressible fluid (dashed lines).

Figure 2 :

 2 Figure 2: Quality factor of the first breathing mode of a gold nanosphere with radius = 40 (nm) as a function of glycerol mass-fraction .

Figure 3 :

 3 Figure 3: Quality factor of a gold nanosphere with radius = 40 (nm) versus angular mode number.= 0.71 (solid lines); = 0.36 (dashed lines).

Figure 4 :

 4 Figure 4: Quality factor of the first mode vibration of a gold nanosphere with radius = 40 (nm) versus glycerol massfraction.

Figure 5 :

 5 Figure 5: Quality factor of the first mode of a gold nanosphere with glycerol mass-fraction = 0.56 versus gold nanosphere radius. Maxwell fluid De = 0 (red), Maxwell fluid De = De (green) and Newtonian fluid (blue).

Table 2

 2 is more appropriate for breathing mode and, the Maxwell fluid without compres-Quality factor of the gold nanosphere with 40 nm radius vibrating in water-glycerol mixture.

	Mode		× 10 11	× 10 9	
	1	2	0.7819	2.6353	14.8439 12.4449
	2	1	1.1184	2.0315	27.5317 17.8004
	3	3	1.1761	3.1861	18.4649 18.7196
	4	4	1.5181	3.5985	21.0997 24.1619
	5	2	1.5871	3.1856	24.9152 25.2598
	6	5	1.8399	3.9674	23.1927 29.2829
	7	3	2.0758	4.0805	25.4412 33.0383
	8	6	2.1519	4.3087	24.9770 34.2493
	9	0	2.3739	3.8636	30.7254 37.7820
	10	7	2.4585	4.6208	26.6071 39.1286
	Table 1				
	Quality factor,	and vibration frequency,	(GHz) of the
	gold nanosphere with 40 nm radius vibrating in water-glycerol
	mixture with = 0.56.		
	= 0.00		= 0	= 1	= 2
	Newtonian		52.581 * 91.513 25.329
	Maxwell (De = De ) 51.211 89.255 25.070
	Maxwell (De = 0)	52.221 * 89.233 25.338
	= 0.56		= 0	= 1	= 2
	Newtonian		33.380 * 27.864 14.378
	Maxwell (De = De ) 30.725 27.531 14.444
	Maxwell (De = 0)	34.474 * 27.467 14.473
	= 0.71		= 0	= 1	= 2
	Newtonian		18.763 * 10.008	9.175
	Maxwell (De = De ) 25.804 17.289 11.294
	Maxwell (De = 0)	32.090 * 16.879 12.162

* same value predicted by Galstyan et al.

[START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF]

.

where

2

Breathing mode vibration : For a breathing mode vibration, the nonzero component of displacement can be denoted = ( , ). In this case the angular dependence of the breathing mode is equal to zero ( = 0), and the incompressible part of the velocity field (and displacement field) are equal to zero (i.e. = = ). Therefore, the scalar potentials, velocity, displacement and stress tensor components become :

Hence, the matrix given in Eq. ( 18) takes the following form

It can be shown, after some manipulation, that the determinant of this 2 × 2 matrix is given in Eq. [START_REF] Duval | Far-infrared and Raman vibrational transitions of a solid sphere: Selection rules[END_REF].

To obtain Eq. ( 20), must be replaced by * in Eq. ( 19) .