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Abstract

A growing number of linked data sources are published on the Web. They
form a single huge data space referred to as the Web of data. These data
sources contain both the data and the schema describing them, but the data is
not constrained by this schema. Indeed, two instances of the same class may
be described by different properties. This flexibility for describing the data
eases their evolution, but it comes at the cost of losing the description of the
data, which can be useful in many contexts. The different structures of a class
represent its versions. These versions provide useful information on property co-
occurrence for a class, but their discovery can be very costly, and even impossible
because the data sources are remote. Furthermore, they may have some access
limitations, either on the query execution time, or on the number of queries, or
on the size of the results.

In this paper, we present SchemaDecrypt++, a novel approach for the par-
allel discovery of a versioned schema for a remote data source. Our approach
discovers the versions on-line, without uploading or browsing the data source.
Broadly speaking, SchemaDecrypt + + allows to discover co-occurrences be-
tween properties from any set of properties: (i) specified by the user; (ii) describ-
ing the instances of a class or (iii) specified in the schema. SchemaDecrypt+ +
relies on our previous approach for schema discovery, SchemaDecrypt; in the
present work we introduce a new strategy of parallelization of class version explo-
ration, based on the discovery of a set of occurrence rules between the properties
of the class. This strategy enables to overcome the source querying restrictions,
the combinatorial explosion of the candidate versions and it improves the perfor-
mances. We present some experimental evaluations on DBpedia to demonstrate
the effectiveness of our approach.
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1. Introduction

Modern applications dealing with huge collections of data have evidenced the
limitations of relational database management systems, leading both researchers
and companies to explore non-traditional ways of storing data. This has moti-
vated the development of a continuously growing number of new data models,
with the purpose of tackling the requirements of such applications. Among
these requirements, a very flexible and schema-less data model, the ability to
represent complex data and achieve scalability.

Users and applications are also provided with a huge amount of data on the
Web. This Web of data is enabled thanks to the standard languages provided by
the W3C for describing data, such as RDF1(S2)/OWL3. Data is made available
through query endpoints, where users and applications can issue their queries
expressed in dedicated query languages such as SPARQL4.

Languages used to describe data in the semantic Web provide a high flexi-
bility due to the lack of an explicit or strict schema for the data. RDF(S)/OWL
data sources can store data with different structures for the same class, and data
evolution is eased due to the lack of restrictions imposed on the data structure.
However, this lack of structure makes the interrogation of these data sources
more difficult.

The different structures of the instances of a class represent the different
versions of this class. Class versions could be viewed as a summary of the co-
occurrence between the properties, which is useful for many purposes such as
formulating queries, providing a description of the data, identifying the relevant
sources for a specific usage, decomposing queries over distributed data sources
and optimizing their execution plan.

Our goal is to infer a versioned schema for a remote RDF data source, i.e.
versions of the classes defined in the schema. In our previous work [15], we have
proposed SchemaDecrypt an on-line approach which discovers the versions of
each class in the schema, along with the number of occurrences for each one.
Our approach does not require to upload or browse the data to find the class
versions, it is therefore suitable for large evolving data sources. In this paper,
we propose SchemaDecrypt + +, an extension of our approach enabling the
parallel exploration of the candidate versions of a class. We have conducted some
experiments with both SchemaDecrypt and SchemaDecrypt+ + on DBpedia
which is a real remote data source. The results show that significant performance
improvement is achieved by our extended approach.

The remainder of this paper is organized as follows. We motivate our ap-
proach for discovering a versioned schema in section 2, then we present the
baseline approach and its challenges in section 3. In section 4, we present
SchemaDecrypt, our approach for discovering class versions. We propose a

1Resource Description Framework: http://www.w3.org/RDF/
2RDF Schema: http://www.w3.org/TR/rdf-schema/
3Web Ontology Language: http://www.w3.org/OWL/
4SPARQL Query Language: https://www.w3.org/TR/rdf-sparql-query/
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parallel exploration of class versions with SchemaDecrypt+ + in section 5. We
discuss the cost of our approach in section 6. In section 7, we present our eval-
uation methodology and the results achieved on a real remote data source. We
then discuss some related works in section 8 and finally, a conclusion is provided
in section 9.

2. Motivation

A data source described in RDF(S)/OWL is defined as a set of triples D ⊆
(R ∪B)× Y × (R ∪B ∪ L), where the sets R, B, Y and L represent resources,
blank nodes, properties and literals respectively. Such data sources are subject
to constant evolution and the nature of the languages used to describe them do
not impose any constraint on the structure of the data: instances of the same
class may have different properties.

Figure 1: On-line Access to Remote Data Sources.

Figure 1 shows an example of user who wants to find the different descrip-
tions of a museum in three remote data sources on the Web (S1, S2 and S3).
Several descriptions might be found in each source. We assume that the search
is performed using a desktop computer with limited computing power and that
there is a limited time to answer the user’s query. In the context of a remote
data source on the Web, the user can not browse the data; his only access is
through queries to the Web server that manages the data source.

Figure 2: Example of a Versioned Schema for a Semantic Data Source.
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We represent graphically the schema of a data source by a set of classes and
links between them. Each class represents a group of instances with the same
type in the data source. A link represents a property, either between a class
and a literal, or between two classes. A link p from a class ci and with no target
class indicates that an instance of the class ci may have the property p for which
the value is a literal. A link p from a class ci to another class cj indicates that
an instance of the class ci may have the property p for which the value is an
instance of the class cj . It represents a property for which the domain is ci and
the range is cj , declared in the data source by the two triples (p rdfs:domain
ci) and (p rdfs:range cj). There is no information in the data source about the
co-occurrence between the properties of a class.

We propose to describe the content of a data source by a versioned schema.
Figure 2 shows a partial example of versioned schema for the source S1. The
class Museum has three versions in this data source. Class versions show which
properties occur together in the data source, and ideally the number of instances
for which this co-occurrence holds. The description of such a versioned schema
could be useful for a user in various data processing and data management tasks,
such as:

• Identifying the relevant sources. A data source may contain a class
described by properties which are of interest to a user. However, there is
no guarantee that these properties occur together in the instances of the
class. Class versions provide information about property co-occurrence,
which is useful to determine whether the relevant properties for a user are
simultaneously present in some instances in a data source.

For example, assume that the user of Figure 1 would like to know the archi-
tects and the number of floors of museums by architectural style. To find
this information, he has to query the three sources. However, the versions
in Figure 2 show that in source S1, the properties

−−−−−−−−−−−−−→
architecturalStyle and−−−−−−−−→

floorCount never occur together to describe museum instances. There-
fore, this source is not relevant for the user’s needs and it is useless to
query it.

• Formulating queries. A description of the different structures of a class
and the number of occurrences for each one could help the user to formu-
late the most appropriate query in order to obtain the needed information.
Depending on the versions of the class, it would sometimes be necessary
to write a query for each version containing the required information in
order to obtain the most complete answer.

For example, assume that the user is looking for information on the loca-
tion of museums. Versions could show that this information is sometimes
described by v1 = {−−−−−−−−−−→streetNumber,

−−−−−−−−→
streetName,

−−−−−→
zipCode} with 95 occur-

rences and sometimes by v2 = {−−−−−→address} with 5 occurrences. To have the
most complete answer, it is better to write a query for each version that
describes the same information. However, each query will respond in a
different form. If the user wants to have a homogeneous result, he could
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decide to query the source only with v1 which represents the vast majority
of answers according to the number of occurrences of v1 and v2.

• Decomposing and optimizing a distributed query. When a query is
issued over several data sources, query decomposition is a key problem, as
well as finding optimal execution plans as addressed in [22]. The set of class
versions for each source could help in decomposing the query and sending
the sub-queries to the relevant sources, and the number of occurrences of
the versions could be useful in order to optimize the execution plans by
ordering the sub-queries according to the selectivity of their criteria.

For example, assume that the data is distributed across three data sources
D1, D2 and D3. Properties of an instance could be distributed over the
different sources. To answer a query, we have to collect the data from D1,
D2, D3 and we have to combine them. Let us consider a user interested
in the following query:

– “Select * where {?x rdf:type Museum . ?x architect ?y . ?x floorCount
?z} ”

SchemaDecrypt++ could be applied to process each source on the proper-
ties
−−−−−−→
architect and

−−−−−−−−→
floorCount for the class Museum. Let the discovered

versions be the followings:

– D1: v1 = {−−−−−−→architect,
−−−−−−−−→
floorCount} with 20 occurrences ; v2 = {−−−−−−→architect}

with 30 occurrences ;

– D2: v1= {−−−−−−→architect} with 10 occurrences ; v2 = {−−−−−−−−→floorCount} with
15 occurrences;

– D3: the properties do not exist in D3, therefore no version is found.

The data, described by the versions containing all the properties of the
query, should first be found as for the data described by the version v1 of
D1. Then, the possible combinations between the versions of the different
sources should be detected to have a complete answer as for the version
v2 of D1 which can be combined with the version v2 of D2. To reduce the
size of the intermediate results as early as possible, the data described by
version v2 of D2 which counts less occurrences should be extracted first,
then the matching data in version v2 of D1 should be extracted.

• Improving data description. The information about a schema of a data
source is provided to describe its content. However, for an RDF(S)/OWL
data source, this information is not accurate [12], because the data do
not have to follow the initial schema. Indeed, instances of the same class
may have different structures, and in this case, a schema with the different
versions of the classes is more accurate to describe the data than a schema
with a general description for each class.

In the next section, we present the baseline approach for discovering the
versions of a class, as well as the challenges we are faced with when tackling this
problem.
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3. Baseline Approach and Challenges

To find the versioned schema of a data source we have to find the different
versions of each class. In this section, we first discuss the set of input properties
according to the user’s needs. We then define the class versions and finally,
we present the version discovery process as a combinatorial problem which will
highlight the main challenges of discovering a versioned schema. Finally, we
present the restrictions imposed by the data sources in our setting.

3.1. Input Properties

The instances of an RDF(S)/OWL data source do not have to strictly follow
the schema of a class. Indeed, they can have different structures, representing
the different versions of this class. The problem of finding the versions of a
class is related to the problem of finding the co-occurrence relations between
properties. Indeed, a version of a class represents the co-occurrence of its set of
properties for at least one instance in the class. The difference is that finding the
versions of a class is more general and complete than finding the co-occurrence
among properties. However, a user could be interested by the co-occurrence
between a specified set of properties or between all the properties describing
instances of a class even if they are not declared in the schema. Note that our
approach allows to discover the possible versions from any set of properties. We
could identify the following three possible sets of input properties according to
the user’s needs:

1. The set of properties specified by the user. The user may be in-
terested only in some properties declared or not in the schema. He would
like to know how these properties co-occur to describe the instances of
a class. In this case, our approach allows to discover the versions of the
classes for these properties only. Other properties of the class will not be
considered in the search and will not be included in the discovered ver-
sions. This will result in the description, in the form of versions, of the
different co-occurrence relations between the specified properties.

2. The set of properties describing the instances of a class. The set
of properties describing the instances of a class c could be obtained using
the following queries:

• “Select distinct ?p WHERE {?e rdf:type c . ?e ?p ?y}”(Query 1
(a))

• “Select distinct ?p WHERE {?e rdf:type c . ?y ?p ?e}”(Query 1
(b))

Query 1 (a) returns the outgoing properties of an instance of the class
c, while Query 1 (b) returns the incoming properties of an instance of
the class c. Note that, if the class c has subclasses, the properties of the
instances of these subclasses could be considered to discover the versions
of these sub-classes. Indeed, an instance of a subclass of c is an instance
of c.
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3. The set of properties of a class specified in the schema. In the data
source, a property p is declared for the class c by these specific triples: (p
rdfs:domain c) or (p rdfs:range c). In addition to the properties declared
for a class c, an instance of this class may be described by the properties
declared for the super-classes or the sub-classes of c. Indeed, the classes of
a data source are organized in a hierarchy, as it is shown in the example of
Figure 3, extracted from DBpedia, which represents the hierarchy contain-
ing the class Museum. An instance e of the class ArchitecturalStructure
in Figure 3 could be described by the property

←−−−−−−−−−
touristicSite defined for

the class Place. The instance e could also be described by the property−−−−−−−−→
floorCount defined for the class Building. Therefore, our approach takes
into account the properties of both the super-classes and the sub-classes
when it searches for the different versions of a class. We define the set of
associated classes as follows.

Figure 3: The Class Hierarchy of the Class Museum in DBpedia.

Definition 1 (Set of Associated Classes). The set of associated classes
C for a class c is the set containing c, all its super-classes and all its sub-
classes.

For example, the set of associated classes of the class ArchitecturalStruc-
ture in Figure 3 is: C = {ArchitecturalStructure, Tunnel, Building, Mu-
seum, Restaurant, Place, Thing}.

The set of properties describing the instances of a class (case 2) may contain
properties which do no belong to the set of properties of a class specified in the
schema (case 3), if some rdfs:domain and rdfs:range declarations are missing.
If we make the assumption that the source contains missing declarations, then
there may be some declarations about type which are also missing, and therefore
there are instances of a class which will not be considered in this case. Note that
finding missing declarations about the schema is out of the scope of this paper.
This problem was addressed by several works such as in [13, 20, 28, 9, 29, 10].

During the version discovery process, only the properties belonging to the
set of considered properties are taken into account. We define the set of consid-
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ered properties as follows.

Definition 2 (Set of Considered Properties). The set of considered
properties P for a class c is defined according to the user’s needs by one of the
following cases:

• From the user: if pi is specified by a user then pi ∈ P ;

• From the schema: let C be the set of associated classes of c, ∀ c′ ∈ C:
if ∃ (pi rdfs:domain c′) or ∃ (pi rdfs:range c

′) in the data source, then
pi ∈ P ;

• From the instances: for each instance e of c, if ∃ (e pi x) or ∃ (x pi e) in
the data source, then pi ∈ P .

For example, in Figure 3, the set of considered properties for the class Mu-
seum according to the schema is: P = {−−→label, −−−−−−−−−−−−−→architecturalStyle,

−−−−−−−−→
floorCount,

−−−−−−→
architect,

←−−−−−−−−−
touristicSite}.

To find the different versions of a class, candidate versions are generated
from the set of considered properties. A candidate version is validated if it
describes some instances in the source.

3.2. Class Versions

Let P be the set of considered properties. To find the different versions of c
from P , we first generate a candidate version from the properties in P , then we
query the data source to get the number of instances having the properties of
the candidate version. We define a class version, the set of class versions, and a
candidate version in the following.

Definition 3 (Class Version). A version vi of a class c is a set of properties
which describes some instances of c. For vi = {p1, ..., pn} to be a version of a
class c for the set of considered properties P , the class c must contain at least
one instance e such that:

• ∀pj ∈ P : if pj ∈ vi then pj is a property describing e;

• and, ∀pk ∈ P : if pk describes e, then pk ∈ vi.

Definition 4 (Set of Class Versions). The set of versions V of a class c
represents the set of possible structures of c for a set of considered properties
P . It is defined as follows:

• For each instance e of c, ∃vi ∈ V , such that vi describes e

• For each vi ∈ V , there is an instance e of c, such that vi describes e

8



In order to discover the versions of a class for a large remote data source, we
propose to generate a set of queries based on the set of considered properties P .
We now define a candidate version as follows.

Definition 5 (Candidate Version). A candidate version vi of a class c is
a combination of k properties from the set of the considered properties P , with
k ≤ |P |. vi = {p1, ..., pk} is a candidate version for the class c if:

• ∀pj ∈ vi: pj ∈ P .

For example, in order to test the candidate version v1 = {−−−−−−−−→floorCount,
←−−−−−−−−−
touristicSite,

−−→
label} of the class Museum, we use the following SPARQL query:

• “Select (COUNT(DISTINCT(?e)) as ?Nb) WHERE

– {?e rdf:type Museum . ?e floorCount ?m . ?y touristicSite ?e . ?e
label ?n}”; (Query 2)

If the number of instances is positive, then there are instances of c described
by the properties of v1.

We propose to store the class versions and the number of instance of a version
using the VoID5 vocabulary. It is an RDF Schema vocabulary for expressing
metadata about RDF data sources. For example, the version v1 for the class
Museum of the Figure 2 is described as follows:

:Museum v1 a void:Dataset;
void:classPartition [

void:class Museum;
];
void:propertyPartition [

void:entities 5000;
void:property label.out;
void:property architecturalStyle.out;
void:property touriscticSite.in;
void:property architect.out;

];
.

When the number of properties of a class is large, this approach is faced
with a combinatorial challenge; in addition, some constraints may be imposed
by the server of the data source.

5VoID: https://www.w3.org/TR/void/
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3.3. A Combinatorial Problem

To find the versions of a class, we propose to generate the possible combina-
tions from the considered set of properties of a class in order to form candidate
versions.

Figure 4: Exhaustive Search of the Versions of the Class Museum.

Let P = {p1, p2, ...pn} be the set of considered properties for a class c. The
candidate versions are all the combinations of k elements from P , where k varies
from 1 to n, which represents 2n combinations and therefore candidate versions.
The validated versions are those for which there are instances of the class con-
forming to this version, and the number of instances represents the number of
occurrences of the version. In our approach, a code is associated to each version,
where each property in P corresponds to one bit; the version code is defined
hereafter.

Definition 6 (version code). A version code is a binary codification of
a class version. We represent each property pi in the set P of the considered
properties of a class by one bit in the version code as follows:

• bit(pi) = 1 if pi is present in the version

• bit(pi) = 0 otherwise

The number of occurrences of each version is estimated according to the
number of instances of the class conforming to this version using a Count query
as in Query 2.

Figure 4 represents the baseline approach for discovering the versions of
the class Museum, which consists in testing all the possible versions. This
can be compared to the process of finding a key in cryptanalysis [27]: the
baseline approach which is an exhaustive search of the versions corresponds to
a brute force attack. The number of candidate versions generated from the
set of properties P of the class Museum, which has 5 properties, is 25 = 32.
More generally, the exhaustive search of versions for a class with n properties
requires to generate and test 2n candidate versions. This number may soon
be astronomical when the number of properties becomes important. As an
example, the number of properties for the class Museum in DBpedia is 285,
and the average number of properties for a class is 150 [17]. To give an order
of magnitude of this number: there are 2150 candidate versions to be tested,
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the DBpedia online server6 can test a maximum of 15 queries per second [17],
the best estimated time for the processing of 2150 queries therefore is 2150/15
seconds ≈ 2146 seconds, knowing that 1 year = 31 536 000 seconds ≈ 225 seconds,
2146 seconds ≈ 2121 years ≈ 1036 years. This is obviously impossible to test.

In addition to the combinatorial problem, two additional difficulties arise in
our context:

• All the versions of a class have to be discovered, however we do not know
a priori how many versions are valid, and thus when to stop the search;

• Some overlapping between versions may occur, for example, we can see
that the set of properties of the candidate version vi = {−−−−−−−−−−−−−→architecturalStyle,
−−→
label} is included in the set of properties of the candidate version vj =

{−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite}, and when the data source is

queried to get the number of instances of version vi, the answer will in-
clude instances of both versions vi and vj .

3.4. Data Source Restrictions

Our goal is to find the versions of a class on a large remote data source. This
means that we can not browse the data, but we can only query the server which
manages the data source on-line. However, the Web server has generally some
restrictions on the data access. Indeed, some queries generate exceptions when
a restriction of the Web server is not respected. These restrictions are in place
to make sure that everyone has an equal chance to query data from the server,
and also to guard against badly written queries and robots. The restrictions
could be the followings:

• A limited result size: a Web server limits the maximum size of the returned
data to avoid clogging the network;

• A limited time for processing a query: when the number of properties
contained in a query is large, this may cause a timeout;

• A limited number of queries: a Web server may have HTTP Access Control
Lists which allow the administrator to state a limit for some IP addresses.
If too many queries are sent to the server, this may cause loss of processing
priority and the server could even deny access to the source.

For example, if we consider the DBpedia data source, its online server4

is configured to process queries with a timeout window allowing a maximum
execution time of 120 seconds, and a maximum result set size of 2000 rows [17].
In addition, if too many queries are sent to the server, this may cause the loss
of processing priority.

6DBpedia Online Access:
http://wiki.dbpedia.org/OnlineAccess
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As our approach queries the server on the number of instances, it is not
affected by the restriction on the result set size. However, as the number of
properties in a query may be large to test a candidate version, the query cost
estimation may exceed 120 seconds. In addition, finding all the versions of a
class requires several queries, and a high number of queries may cause loss of
processing priority.

Our additional requirements for finding the versions of a class are therefore:
using a minimum number of properties in a query to reduce its execution time,
and sending the minimum number of queries to the server in order to avoid
loosing the processing priority.

4. SchemaDecrypt: Enabling On-Line Discovery of Schema Versions

Finding the versioned schema of a data source consists in finding the different
versions of its classes. In order to find the versions of a class from a large
remote data source, we propose the SchemaDecrypt approach. It is based on
the construction of a probabilistic class profile which allows to: (i) guide the
exploration of candidate versions by testing the most probable versions first;
(ii) reduce the search space of candidate versions and (iii) define a stopping
criteria for the exploration. We also propose to reduce the considered set of
properties to be combined based on the class profile. To reduce the number
of candidate versions and the number of queries sent to the data source, we
propose to generate some rules between the properties of the class. These rules
are exploited during the dynamic generation of candidate versions.

We present our probabilistic class profile in section 4.1, then the reduction
of the set of considered properties for a class in section 4.2. We present our
approach for deducing some rules between the properties of the class in section
4.3. The dynamic generation of candidate versions is presented in section 4.4,
then the exploitation of the rules during the dynamic generation of candidate
versions is presented in section 4.5. Finally, a case study for the SchemaDecrypt
approach is presented in section 4.6.

4.1. Building a Probabilistic Class Profile

As the instances of the same class do not have to follow the exact description
of the class, we define a class profile as follows.

Definition 7 (Class Profile). A profile CP of a class c is formed by the
set of considered properties P for a class c with their probabilities, as follows:

• CP = {(p1, α1), ..., (pn, αn)}, pi ∈ P , and αi represents the probability
for an instance of c to have the property pi.

Each pi represents a property of an instance of the class. The probability
αi associated with a property pi in the profile of the class c is evaluated as the
number of instances of the class c for which pi is defined over the total number
of instances in c.
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Note that a property can be incoming, such as the
←−−−−−−−−−
touristicSite property,

or outgoing, such as the
−−−−−−−−−−−−−→
architecturalStyle property in Figure 2. The range

and the domain of a property are therefore important when querying the data
source. To build the profile of a class c, we query the data source on each
incoming property pi of the set of considered properties P for a class c as in the
Query 3 (a), and on each outgoing property pj as in the Query 3 (b).

• “Select (COUNT(DISTINCT(?e)) as ?propertyOccur) WHERE

– {?e rdf:type c . ?e pi ?n }”; (Query 3 (a))

• “Select (COUNT(DISTINCT(?e)) as ?propertyOccur) WHERE

– {?e rdf:type c . ?n pj ?e }”; (Query 3 (b))

The probability of a property is therefore the value of propertyOccur divided
by the number of instances of the class.

4.2. Reduction of the Number of Properties

We propose to reduce the number of combinations to form candidate versions
by decreasing the number of properties to test. Given P , the set of considered
properties of a class, some properties in P always occur together for the instances
of the class; in other words, they are defined for the same occurrences. We
propose to identify properties that always occur together and represent them as
a single property, which will reduce the number of properties to be tested and
therefore the number of combinations and the number of candidate versions to
explore.

Algorithm 1: Properties with the same occurrences

Input : The set of considered properties P , the class profile CP
Output: All the subsets of properties with the same occurrences Ei

1 for ∀pi ∈ P do
2 for ∀pj ∈ P with pi! = pj do
3 if (αi = αj in CP ) then
4 αi,j = the occurrence probability of pi and pj ;
5 if (αi,j = αi) then
6 if (∃ pi ∈ subSet of properties Ei) then
7 add pj to Ei;
8 else
9 create subSet of properties Ei with pi and pj ;

10 end

11 end

12 end

13 end

14 end
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Algorithm 1 represents our approach for detecting properties with the same
occurrences. Two properties could have the same occurrences if they have the
same probability. Therefore, each pair of properties from the class profile is
tested only if these properties have the same probability. The two properties
have the same occurrences if the probability to have an instance of the class
described by the two properties is equal to the probability of one of the two
properties. To compute αi,j , the probability of the properties pi and pj to be
defined at the same time for an instance of a class c, we query the data source
to get the number of instances in the class described by pi and pj , as follows:

• “Select (COUNT(DISTINCT(?e)) as ?x) WHERE

– {?e rdf:type c . ?e pi ?n. ?e pj ?b }”; (Query 4)

Then x is divided by the number of instances of the class c to compute αi,j ,
the probability of pi and pj . The direction of a property (incoming of outgoing)
is taken into account when formulating the query.

We represent each subset Ei (see Algorithm 1) of properties having the
same occurrences by a single property in our approach. However, this single
property is replaced in the discovered versions by the subset that it represents.
In addition, the properties in the class profile with a probability of 1 are in all
versions, and therefore it is not worth introducing them during version testing.
However, they are added in each discovered version. In the same manner, the
properties in the class profile having a probability of 0 are not considered be-
cause they are not present in any version of the class. We define the reduced
set of considered properties for a class as follows.

Definition 8 (Reduced Set of Considered Properties). A reduced set
E of the set of considered properties P for a class, is formed by properties of P
such that ∀pi ∈ P , pi ∈ E if:

• 6 ∃pj ∈ E, and pj with the same occurrences as pi

• and αi ∈ ]0, 1[

4.3. Rule Deduction

Due to the restrictions of the online server on the data source, if too many
queries are sent, this may cause the loss of processing priority and may even
result in a denied access by the server. In addition, when the number of prop-
erties contained in a query is large, this may cause a timeout. To reduce the
number of issued queries and minimize the number of properties in a query, we
propose to detect rules between the considered properties of the class.

We propose to deduce two types of rules between the properties of a class:
(i) inclusion rules (pi ⇒ pj) which indicate that the occurrences of the property
pi are included in the occurrences of the property pj and (ii) exclusion rules
(pi | pj) which indicate that the properties pi and pj never occur together and
therefore the occurrences of pi are disjoint from the occurrences of pj .
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These rules will allow, among other things, to know locally if some candidate
versions can be actual versions of the class, without sending the associated
queries to the remote data source. Indeed, if each time a property pi occurs
then the property pj occurs, we can deduce that pi ⇒ pj . This means that
the candidate versions with pi and without pj do not exist, and it is not worth
sending the associated queries to the data source. Another type of rule is defined
when the properties pi and pj never occur together; this Not AND (NAND)
relation is denoted pi | pj . This means that candidate versions with pi and pj
do not exist, and therefore there is no need to sent the associated queries to the
data source.

Let E be the reduced set of considered properties of a class c, αi (resp. αj)
the probability of a property pi (resp. pj) to describe an instance of a class c in
the class profile, and αi,j the probability of the properties pi and pj to describe
an instance of c. We propose to find inclusion and exclusion rules between the
properties of the class c as follows.

4.3.1. Inclusion Rules

To determine the inclusion rules between the properties of a class, we do
not test each pair of the considered properties for the class, but only the ones
for which an inclusion is possible. Indeed, an inclusion is possible between two
properties if the probability of one of them is higher than the probability of the
other. We determine the inclusion rules in a class as follows:

• ∀ pi, pj ∈ E, if αi != αj in the class profile, then:

– Compute αi,j as in Query (3)

– If (αi,j = αi) then (pi ⇒ pj) is an inclusion rule

– Else, if (αi,j = αj) then (pj ⇒ pi) is an inclusion rule

Note that an inclusion rule is not a functional dependency. Indeed, a func-
tional dependency expresses a constraint on the values of the properties while
in our approach, an inclusion rule expresses a constraint on the existence of the
properties.

4.3.2. Exclusion Rules

To determine the exclusion rules between the properties of a class, we do
not test each pair of the considered properties of the class, but only the ones
for which an exclusion is possible. Indeed, an exclusion is possible between two
properties if the addition of the probabilities of the two properties is less than
1 or equals to 1. We determine the exclusion rules in a class as follows:

• ∀ pi, pj ∈ E, if αi + αj ≤ 1 in the class profile, then:

– Compute αi,j as in Query (3)

– If (αi,j = 0) then (pi | pj) is an exclusion rule
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4.4. Dynamic Generation of Candidate Versions

In order to find the different versions of a class, we gradually generate can-
didate versions from the reduced set of properties E, until all the versions of
the class are found, as described in Algorithm 2. We use our version code as
a binary codification of a candidate versions, where each property in E is rep-
resented by one bit. We propose to initialize the version code to its maximum
value (2|E|− 1) and decrement it until finding all the versions of the class. This
allows to test candidate versions in an ordered manner and avoid building the
graph of combinations a priori, which optimizes the memory used during the
process.

Initializing the version code to its maximum value allows to test first the
versions which contain the highest number of properties, in order to obtain the
exact number of their occurrences in the data source. Indeed, some overlapping
between versions may occur, and testing the ones with the highest number of
properties will avoid counting the same instances several times. For example, we
can see that the properties of the version vi = {−−→label, −−−−−−−−−−−−−→architecturalStyle} are

included in the set of properties of the version vj = {−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite}, and when the data source is queried to get the number of in-
stances having the properties of the version vi, the answer will also include
instances having the properties of both versions vi and vj . We consider the
number of occurrences of a version Occurrences(vi) as the number of instances
having only the exact properties in the version, and Count(vi) the number of
instances returned by the data sources. Let V be the set of versions which are
validated when vi is being tested. The number of occurrences of vi is computed
as in Formula 1.

Occurrences(vi) = Count(vi)−
∑

∀vj∈V ∧vi⊂vj

Occurrences(vj) (1)

If Occurrences(vi) > 0, the candidate version vi is validated and added to
the set of validated versions V .

Each time a candidate version is validated, the class profile is updated so
that the probabilities reflect only the versions which have not been discovered
yet. This will allow to define the stopping criterion, which will be reached when
the value of all the probabilities in the class profile are equal to 0, which means
that all the versions of the class have been discovered (see lines 13 and 14). The
corresponding profile of the class is updated using the UpdateClassProfile
function presented in Algorithm 3, which updates the probability of each
property in the discovered version.

If a property probability changes to 0 in the class profile, this means that
all the versions that contain this property have been found. In this case, the
property is removed from E, the set of properties from which the versions will
be generated (see line 14 in Algorithm 2). We then reset the version code to
have a bit number equals to the number of properties in E.

In order to test the most probable versions first, we order the set E from the
most probable to the least probable property (see lines 2 and 17 in Algorithm
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Algorithm 2: Dynamic Generation of Candidate Versions

Input : The class profile CP , the reduced set of properties E, the set
of rules R

Output: The set of validated versions V with the number of
occurrences of each version

1 version code = 2|E| − 1;
2 Order the set E from the most probable property to the least probable;
3 while (E 6= ∅) do
4 Build candidate version vi from E formed by the properties with

bit(pj) = 1 in the version code;
5 if (∀r ∈ R: vi complies with r) then
6 Let q the corresponding query of vi;
7 Reduce the size of q according to the inclusion rules in R;
8 Send the query q to the data source;
9 if (Count(vi) > 0) then

10 Occurrences(vi) =
Count(vi)−

∑
∀vj∈V ∧vi⊂vj Occurrences(vj);

11 if (Occurrences(vi) > 0) then
12 Add vi to V and save Occurrences(vi);
13 UpdateClassProfile(CP , vi);
14 Remove from E the property with probability equals to 0

in CP ;
15 if (the size of E has changed) then
16 version code = 2|E|;
17 Order the set E from the most probable property to

the least probable;

18 end

19 end

20 end
21 version code = version code - 1;

22 else
23 version code = version code - Jump(version code, E, R);
24 end

25 end

Algorithm 3: UpdateClassProfile

Input : The class profile CP , a validated version v
Output: Updated CP

1 for ∀p ∈ v do
2 Let α the probability of p in CP ;

3 α← α− Occurrences(v)
nbInstancesInClass ;

4 end
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2). For each generated candidate version, SchemaDecrypt checks whether this
version complies with the rules. A candidate version has some instances in the
data source if it complies with all the rules. If a candidate version complies with
all the rules, we generate the corresponding query and use the inclusion rules
to reduce its size. However, if a candidate version violates any of the rules, the
algorithm jumps to the next candidate version which does not violate the rules.
We exploit the deduced rules for different purposes in Algorithm 2: (i) testing
if a candidate version is possible (see line 5); (ii) reducing the size of a query
(see line 7) and (iii) jumping to the next candidate version that does not violate
the rules (see line 23). In the next subsection, we detail each of these steps.

4.5. Rule Exploitation

We propose to exploit the inclusion and exclusion rules during class version
discovery in Algorithm 2. Let r = pi ϕ pj be a rule, where ϕ ∈ {⇒ , |}. If
r is an inclusion rule, this means that if any instance of the class is described
by the property pi, then it is also described by the property pj . Therefore the
property pj is unnecessary in a query which includes the property pi, and pj can
be removed from the query to have a better response time. Indeed, the more
properties in a query, the higher the response time, which may cause a timeout.

If a candidate version does not comply with a given rule, there is no need to
send its query to the data source, because it will return a number of occurrences
which is equal to 0: if r is an inclusion rule, there are no instances in the data
source with bit(pi) = 1 and bit(pj) = 0; if r is an exclusion rule, there are no
instances in the data source with bit(pi) = 1 and bit(pj) = 1.

If a candidate version does not comply with a rule, some of its following
versions might not comply with the rule as well. In this case, it is more efficient
to jump directly to the next version which complies with the rule, but the
problem is how to find this version?

Figure 5: A Jump in version code.

The next version which complies with the rule is the first which modifies
either bit(pi) or bit(pj). The first bit which will be modified by decreasing the
version code is the minimum between i and j, as shown in Figure 5. The next
version which complies with the rule has a version code calculated as described
in Formula 2.

version code = version code− Jump (2)

With the Jump calculated as described in Formula 3.

Jump = version code (mod 2min(i,j)) + 1 (3)
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Figure 6: Example of Exploiting Several Rules.

4.5.1. Rule Processing

Let r = pi ϕ pj be a rule, where ϕ ∈ {⇒ , |}. As previously described, we
propose to exploit this rule as follows:

• The property pj is removed from the query if ((ϕ = ⇒) ∧ (bit(pi) = 1) ∧
(bit(pj) = 1))

• A candidate version is discarded if it does not comply with the rule, in
the following cases:

– (ϕ = ⇒) ∧ (bit(pi) = 1) ∧ (bit(pj) = 0)

– (ϕ = | )∧ (bit(pi) = 1) ∧ (bit(pj) = 1)

• If a rule is violated then the next version code to test is calculated as
described in Formula 2.

Even if a property is removed from a query, its probability in the class profile
will still be updated for each validated version to which it belongs.

4.5.2. Rule Selection

A candidate version may violate several rules, in this case which rule should
be considered first? The problem here is whether there is an optimal order to
process the rules.

Consider the set of rules R ={ p0 ⇒ p2, p2 | p3, p4 | p6 }. Figure 6 shows an
example of versions which violate several rules. We can observe that the rule
p4 | p6 cancels the effect of the rule p0 ⇒ p2 and p2 | p3, which requires a new
processing of these rules. More generally a rule r = pi ϕ pj , where ϕ ∈ {⇒ , |},
can affect the processing of all the rules r′ = pi′ ϕ pj′ having their min(i′, j′)
< min(i, j). This is due to the fact that for each property which index is less
than min(i, j), the corresponding bit will be set to 1 after processing the rule r.
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In order to avoid unnecessary loops, rules which are violated by the current
version code must be ordered, so as not to cancel the effect of the previous
rules. This requires maximizing the first jumps by processing the rules having
the highest min(i, j) first. Let R = {r1, ...rn} be a set of rules, the first property
Index to change is calculated as in Formula 4.

Index = Maxnk=1Min(i, j); rk = piϕpj (4)

Figure 7 shows the example with the optimal exploitation of the same rules.
We can observe that, for three rule violations, there are three rule processing
instead of five in Figure 6.

Figure 7: The Optimal Exploitation of Several Rules.

4.6. Case Study

Considering our example given in section 2, let us assume that a data source
have these different instances ei of Museum described as follows:

• e1 : {−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect};

• e2 : {−−→label, −−−−−−−−−−−−−→architecturalStyle};

• e3 : {−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect};

• e4 : {−−→label, −−−−−−−−→floorCount,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect};

• e5 : {−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect};

• e6 : {−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect};

• e7 : {−−→label, −−−−−−−−→floorCount,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect};

• e8 : {−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect};

• e9 : {−−→label, −−−−−−−−−−−−−→architecturalStyle};

• e10 : {−−→label, −−−−−−−−→floorCount,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect}.
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To find the different versions of a Museum from the schema of this remote
data source, SchemaDecrypt first discovers the considered set of properties for
the class Museum (see section 3.1):

• P = {−−→label, −−−−−−−−−−−−−→architecturalStyle,
−−−−−−−−→
floorCount,

←−−−−−−−−−
touristicSite,

−−−−−−→
architect}.

Then, it builds the profile of the class (see section 4.1), which is the following:

• CP = {(−−→label, 1), (
−−−−−−−−→
floorCount, 0.3), (

−−−−−−−−−−−−−→
architecturalStyle, 0.7), (

←−−−−−−−−−
touristicSite,

0.8), (
−−−−−−→
architect, 0.8)}.

After that, the set of considered properties is reduced if possible (see section
4.2). This is done according to the following steps:

• The properties with the same occurrences (see Algorithm 1) are detected:

the properties
←−−−−−−−−−
touristicSite and

−−−−−−→
architect have the same occurrences as

they describe the same instances of Museum, therefore they are repre-
sented by a single property (considering

←−−−−−−−−−
touristicSite this property);

• The properties with a probability equals to 1 are ignored, such as the
property

−−→
label.

SchemaDecrypt deduces the following reduced set of considered properties:

• E = {−−−−−−−−−−−−−→architecturalStyle,
−−−−−−−−→
floorCount,

←−−−−−−−−−
touristicSite}.

From the remote data source, SchemaDecrypt discovers inclusion and ex-
clusion rules between the properties in E (see section 4.3), as follows:

• The sum of probabilities corresponding to the properties
−−−−−−−−→
floorCount and−−−−−−−−−−−−−→

architecturalStyle in the class profile CP is less than or equal to 1 (
0.3 + 0.7 <= 1), which indicates that they may never occur together.
SchemaDecrypt queries the remote data source on the number of in-
stances of Museum described by these two properties. The source returns
0 which indicates that these two properties never occur together and there-
fore the occurrences of the property

−−−−−−−−→
floorCount are disjoint from the oc-

currences of
−−−−−−−−−−−−−→
architecturalStyle. Indeed, in the remote data source, the set

of instances {e4, e7, e10} which are described by the property
−−−−−−−−→
floorCount

is disjoint from the set of instances {e1, e2, e3, e5, e6, e8, e9} which are

described by the property
−−−−−−−−−−−−−→
architecturalStyle.

• The properties
−−−−−−−−→
floorCount and

←−−−−−−−−−
touristicSite have different probabilities

in the class profile CP . SchemaDecrypt computes, by querying the re-
mote data source, the probability for an instance of Museum to be de-
scribed by the two properties. This probability is equal to 0.3 which is the
same probability of the property

−−−−−−−−→
floorCount. Therefore, the occurrences

of the property
−−−−−−−−→
floorCount are included in the occurrences of the prop-

erty
←−−−−−−−−−
touristicSite. Indeed, in the remote data source, the set of instances

{e4, e7, e10} which are described by the property
−−−−−−−−→
floorCount is included

in the set of instances {e1, e3, e4, e5, e6, e7, e8, e10} which are described

by the property
←−−−−−−−−−
touristicSite.
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The following rules are therefore valid:

• r1 =
−−−−−−−−→
floorCount | −−−−−−−−−−−−−→architecturalStyle;

• r2 =
−−−−−−−−→
floorCount ⇒ ←−−−−−−−−−touristicSite.

In the following, SchemaDecrypt gradually generates candidate versions
from the reduced set of properties E, until all the versions of the class are found
(see Algorithm 2).

The set E is ordered according to the probabilities of the properties in the
class profile CP , as follows:

• E = {←−−−−−−−−−touristicSite,
−−−−−−−−−−−−−→
architecturalStyle,

−−−−−−−−→
floorCount}

The version code is initialized to its maximum value: version code = 2|E|−1
= (111)2. The candidate version which corresponds to the version code violates
the rule r1, therefore, the corresponding query is not sent, and SchemaDecrypt
jumps to the next version which complies with the rule: next version code
= version code - jump = version code - 1 = (110)2. The candidate version
complies with all the rules, therefore the corresponding query is generated and
sent. The answer from the data source to this query is 5. SchemaDecrypt adds
the following version to the set of validated versions V :

• v1 = {−−→label, −−−−−−−−−−−−−→architecturalStyle,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect}, with a number

of occurrences of 5.

In order to check if all the versions are found and if the stopping criterion is
reached, SchemaDecrypt updates the class profile to take into account instances
of version v1 as follows: CP = {(−−−−−−−−→floorCount, 0.3), (

−−−−−−−−−−−−−→
architecturalStyle, 0.2),

(
←−−−−−−−−−
touristicSite, 0.3)}. Since no probability has reached 0, the next version code

is 1012. According to the rule r2, the data source is queried with the prop-
erty

−−−−−−−−→
floorCount only, because the set of instances described by this property is

included in the set of instances described by the property
←−−−−−−−−−
touristicSite. The an-

swer from the data source to this query is 3. SchemaDecrypt adds the following
version to the set of validated versions V :

• v2 = {−−→label, −−−−−−−−→floorCount,
←−−−−−−−−−
touristicSite,

−−−−−−→
architect}, with a number of oc-

currences of 3.

SchemaDecrypt updates the class profile to take into account instances
of version v2 as follows: CP = {(−−−−−−−−→floorCount, 0), (

−−−−−−−−−−−−−→
architecturalStyle, 0.2),

(
←−−−−−−−−−
touristicSite, 0)}. We remove from E the properties which probabilities reach

0:

• E = {−−−−−−−−−−−−−→architecturalStyle}.

The next version code = 2|E|−1 = 12. The candidate version complies with all
the rules, therefore the corresponding query is built and sent. The answer from
the data source to this query is 7 for version v3 = {−−→label, −−−−−−−−−−−−−→architecturalStyle}.
As v3 ⊂ v1 then Occurrences(v3) = Count(v3) - Occurrences(v1) = 7 - 5 = 2.
SchemaDecrypt adds the following version to the set of validated versions V :
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• v3 = {−−→label, −−−−−−−−−−−−−→architecturalStyle}, with a number of occurrences of 2.

SchemaDecrypt updates the class profile which results in having all the
probabilities set to 0. The properties for which the probabilities are equal to 0
are removed from E, and the stopping criteria is reached as E = ∅.

Note that properties ignored during version discovery are added in validated
versions as follows:

−−→
label property has been added to all versions (v1, v2, v3)

because it has a probability equals to 1;
−−−−−−→
architect property has been added to

versions (v1, v2) which contain
←−−−−−−−−−
touristicSite property because they have the

same occurrences;
←−−−−−−−−−
touristicSite property has been added to version (v2) which

contains
−−−−−−−−→
floorCount according to r2.

The class Museum has 3 versions. SchemaDecrypt has generated 4 candi-
date versions and it has sent 3 queries to the data source which are all validated,
while an exhaustive search (baseline approach) would have generated 32 candi-
date versions and sent 32 queries (see Figure 4).

5. SchemaDecrypt++: Parallel and On-Line Discovery of Class Ver-
sions

In this section, we present an extension of SchemaDecrypt which consists
in parallelizing the exploration of candidate class versions. Two versions can be
tested in parallel if their sets of instances are disjoint. In order to parallelize the
discovery process, we propose to identify sets of versions that do not overlap,
and we represent them using the notion of version template.

In this section, we present the generation of version templates which can be
explorable in parallel in section 5.1. We describe the dynamic generation of the
exploration graph of the version templates in section 5.2. Then, we describe our
approach for pruning this exploration graph in section 5.3. In section 5.4, we
describe how a version template is processed.

5.1. Building Version Templates

Exclusion rules highlight properties that never occur together. The approach
SchemaDecrypt uses these rules to reduce the search space by avoiding the test
of candidate versions that do not respect them. In SchemaDecrypt + +, we
also propose to use these rules to parallelize the discovery process. This is done
by forming subsets of properties from the reduced set of properties E of a class
(see section 4.2), using the exclusion rules. We introduce the notion of version
template to represent each subset of versions.

The parallelization of the exploration of two version templates is possible
if there is no overlap between their respective sets of candidate versions. Two
candidate versions have disjoint sets of instances if they respectively contain
properties that never occur together, i.e. two properties that are part of the
same exclusion rule. For example, consider the exclusion rule r1 = p3 | p4 and
the two candidate versions v1 = {p1, p2, p3} and v2 = {p1, p2, p4}; v1 and v2 have
two disjoints sets of instances because they contain respectively the properties
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p3 and p4, which are part of an exclusion rule. We define a version template as
follows.

Definition 9 (A Version Template). A version template M is a set
of properties that characterizes a set of candidate versions VM . Let E be the
reduced set of properties of a class c; the set M is such that:

• Each property in M is a property in E;

• Some properties in M may be mandatory; if p is mandatory in M then
p must appear in all candidate versions of VM . A mandatory property is
denoted p̄;

• The set VM is the set of all possible candidate versions generated from M .

Note that the reduced set of properties E is a particular version template
where no property is mandatory. A version template is first extracted from
the reduced set of properties E. It can also be extracted from another version
template.

We propose to build version templates which are explorable in parallel by
exploiting an exclusion rule. Let F = {p1, ..., pi, ..., pj , ..., pn} be a version tem-
plate, and consider the exclusion rule r1 = pi | pj . For F to be explorable in
parallel, as described in Figure 8, three version templates are built:

• A version template M1 = {p1, ..., p̄i, ..., pj−1, pj+1, ..., pn}, which contains
all the properties of F except pj and in which the property pi is mandatory
for all its candidate versions (noted p̄i);

• A version template M2 = {p1, ..., pi−1, pi+1, ..., p̄j , ..., pn}, which contains
all the properties of F except pi and in which the property pj is mandatory
for all its candidate versions (noted p̄j);

• A version template M3 = {p1, ..., pi−1, pi+1, ..., pj−1, pj+1, ..., pn} which
contains all the properties of F except pi and pj .

Figure 8: Generation of Version Templates from F Guided by an Exclusion Rule.

The version templates M1 and M2 are explorable in parallel because each
contains a mandatory property that does not exist in the other version template.
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As a result, there is no overlap between the candidate versions of M1 and M2.
However, the version template M3 does not contain any mandatory property
from the exclusion rule r1, which makes it non exclusive of M1 and M2. As a
result, there may be an overlap between the candidate versions of M1 and M3, or
between M2 and M3. For example, let v3 = {p1, p2, p4} a candidate version from
M3, v1 = {p1, p2, pi, p4} a candidate version from M1, and v2 = {p1, p2, pj , p4} a
candidate version from M2. When the data source is queried for the number of
instances of v3, the answer will include instances of v1, v2, and v3. To obtain the
number of instances of v3 only, we must first query the source for the number of
instances of v1 and the number of instances of v2, then subtract these numbers
from the number of instances returned for v3, as in Formula 1 (see section 4.4).
Generally speaking, we first have to find versions of the templates M1 and M2

in parallel and then explore the template M3 as described in Figure 8.

Figure 9: Exploiting an Exclusion Rule having a Mandatory Property.

In Figure 9, let us assume the version template M1 = {p1, ..., p̄i, ...pk, ..., pn}
and the rule r2 = pi | pk. In this case, the exclusion rule r2 is exploited by
removing the property pk from M1 because the property p̄i is mandatory in M1

and therefore must be included in all its sub-sets.

5.2. Dynamic Generation of the Version Template Graph

The properties of a class can have several exclusion rules. We propose to
order these rules starting from those which properties have the most constraints,
i.e. which are affected by the largest number of exclusion rules, in order to
minimize the potential size of the graph to explore. Let R = {r1, r2, ..., rn} be
this ordered set of exclusion rules.

The number of version templates to explore in parallel at any given time
should not be greater than the data source’s ability to process queries in parallel.
Indeed, each version template is explored by a sub-process which sequentially
queries the source to validate its candidate versions. If the number of sub-
processes is greater than the capacity of the data source to process queries in
parallel, this will increase the response time. In this case, it is preferable not to
parallelize some exploration tasks so as not to overload the data source and thus
keep an optimal response time. We propose to generate parallel sub-processes
without exceeding the maximum number of parallel queries supported by the
data source denoted MaxTask. Indeed, it is better to exploit some exclusion
rules locally by jumps, as described for the sequential exploration of versions
with SchemaDecrypt (see section 4.5), than to introduce waiting times.
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Algorithm 4: Dynamic generation of version templates exploration
graph

Input: list of properties to combine E, the profile Pc, list of validated
versions version list, set of exclusion rules R, parallelizable
task number for the data source MaxTask

1 version templates = {E}; setM = ∅; j = 1; NbThread = 0;
2 while (∃αi ∈ Pc: αi! = 0 //αi the probability of a property in Pc) do
3 for (∀ri ∈ R, i from j to n) do
4 if (NbThread == MaxTask) then
5 break;
6 end
7 for (∀Mr ∈ version templates) do
8 if (NbThread == MaxTask) then
9 break;

10 end
11 if (NonRespect(Mr, ri)) then
12 setM = MakeCompatible(Mr, ri);
13 if (|setM | == 2) then
14 Remove from Mr the properties of the rule ri;

15 Stack(stackM , Mr); Stack(stackR, i);

16 end
17 Check for pruning from the templates in the setM

//described later in section 5.3;
18 Replace in version templates Mr by what contains setM

after pruning;
19 if (|setM | == 2 //after pruning) then
20 NbThread+ +;
21 end

22 end

23 end

24 end
25 for (∀Mr ∈ version templates) do
26 Create a thread Tk;
27 Tk explores Mr //each thread updates the list of validated

versions version list and Pc;

28 end

29 j = Unstack(stackR);
30 Wait until all the threads created by the rule j have finished; //each

time that a thread finishes: NbThread−− ;

31 version templates = ∅; Mr = Unstack(stackM );
32 Remove from Mr the properties with a probability equals 0 in Pc;
33 version templates.add(Mr);

34 while (HeadList(stackR) == j) do
35 Mr = Unstack(stackM );
36 Remove from Mr the properties with a probability equals 0 in

Pc;

37 version templates.add(Mr); Unstack(stackR);

38 end
39 j++ ;

40 end
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Figure 10: Example of an Exploration of a Graph of Version Templates.

Algorithm 4 describes the dynamic generation of version templates explo-
ration graph. Version templates are generated from E by successively consider-
ing each exclusion rule in the set R until the current number of version templates
(NbThread) has not reached the maximum capacity of the data source to pro-
cess queries in parallel (MaxTask).

Let version templates be the list of version templates from E to be pro-
cessed in parallel at a given time. This list initially contains the property set
E. Each element Mr in the list version templates is checked with respect to
the current exclusion rule ri. If Mr violates the rule, new version templates are
generated as described in section 5.1. Processing Mr can generate two paral-
lel version templates to be saved in the list version templates, and a version
template to be explored later in stackM . The exclusion rule that caused the
stack of a version template is also stacked in stackR to synchronize the pro-
cessing of stacked version templates. When the number of version templates in
the list version templates reaches MaxTask or when all exclusion rules have
been processed, a sub-process is created for each version template in the list
version templates.

We propose to prune the exploration graph of the version templates (line
17 in Algorithm 4) by removing the ones which have no instances in the data
source. We describe this process in section 5.3.

Each version template is explored by a sub-process (line 27 in Algorithm
4), which will be described in section 5.4. In order to synchronize the discovery
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process among the parallel sub-processes, the following data is shared between
them:

• Pc: the class profile with the probabilities of the properties; this profile is
updated each time a sub-process validates a version;

• version list: the list of validated versions. Each time a sub-process vali-
dates a version, it is added to this list with its number of occurrences;

• NbThread: The number of parallel versions to explore. This number
is incremented each time a sub-process is created to explore a version
template, and it is decremented when the sub-process completes its explo-
ration. NbThread should not exceed the capacity of the data source to
process parallel queries MaxTask.

Each sub-process updates the list of validated versions (version list) and
the profile of the class (Pc) according to the number of occurrences of the
validated versions. Each time a sub-process finishes, the value of NbThread
is decremented. When all the sub-processes created by the current rule are
terminated or whenNbThread = 0, the version templates stacked by the current
rule are processed. Properties which probability has reached 0 in the type profile
are removed from these version templates. The resulting templates are then
checked against the other rules. The process stops when all the probabilities in
the class profile are equal to 0.

Figure 10 illustrates the execution of Algorithm 4. We can see that the
process of building and processing version templates is represented by a graph.
The generation of the graph is done dynamically as the sub-processes are created
and as they complete their execution, until all versions of the class have been
found.

Figure 11 shows a possible instanciation of the graph in Figure 10, assuming
that the data source can process at most 3 queries in parallel (MaxTask = 3).
Exclusion rules is exploited for parallelization as long as the number of version
templates has not reached MaxTask.

The function MakeCompatible described in Algorithm 5 is used to trans-
form a version template Mr that does not respect an exclusion rule ri into one
or two version templates that respect this exclusion rule as described in section
5.1.

5.3. Pruning the Version Template Exploration graph

During the generation of the version templates, some of them may have
no actual instances in the data source and are therefore not considered. In
this section, we describe this pruning process. When creating a new version
template with several mandatory properties in the exploration graph, a query
is generated to check if there are instances in the data source having these
mandatory properties. If the answer is equal to 0, then the version template is
removed from the exploration graph. This reduces the number of combinations
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Figure 11: Example of a Dynamic Exploration of Version Templates with Parallelization
Capability of the Data Source Limited to MaxTask = 3.

to test by 2n, where n represents the number of non-mandatory properties of
this version template.

Figure 12 illustrates this pruning process on the example of Figure 10 as-
suming that the properties p8 and p9 are mandatory. When exploiting the rule
r1 = p1 | p2, a version template is created, containing the mandatory properties
p2, p8 and p9. The data source is queried to find if there are instances of the
class having the mandatory properties p2, p8, and p9. The data source returns a
value of 0, and therefore the corresponding branch is pruned in the exploration
graph. We can see that in Figure 12, 6 sub-processes are executed, whereas in
Figure 10, 9 sub-processes are executed.

5.4. Version Template Exploration

In the previous sections, we have described the dynamic generation of ver-
sion templates and the pruning of the exploration graph. In this section, we
present the exploration of a given version template. This process is similar
to the dynamic generation of candidate versions presented for SchemaDecrypt
(see section 4.4), considering that there may be some mandatory properties in
the candidate versions of the template. In addition, we propose to reduce the
number of optional properties in a version template: an optional property p is
removed if there are no instances having p and all the mandatory properties of
the version template.
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Algorithm 5: Function MakeCompatible

Input: version template Mr, exclusion rule ri
1 Let ri = p | p’ ;
2 if (p and p′ are not mandatory in Mr) then
3 Let Mj = Mr - {p};
4 Set p′ as mandatory in Mj ;
5 Mr = Mr - {p′};
6 Set p as mandatory in Mr ;
7 Return {Mr, Mj};
8 else
9 Remove from Mr the property which is not mandatory : p or p′;

10 Return {Mr}
11 end

Figure 12: Example of a Pruned Dynamic Exploration Graph.

A version template can be characterized by new inclusion and exclusion rules,
in addition to those that characterize the class, because it has some mandatory
properties. In what follows, we will show how these rules can be discovered in
section 5.4.1, then we will present the exploitation of the rules in section 5.4.2.
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5.4.1. Discovering New Rules

A version template identifies a subset of instances of the class in the data
source. Instances of a version template are characterized by the mandatory
properties of the template. Inclusion and exclusion rules that characterize the
class are checked for instances that match this version template; but in addi-
tion, other rules can characterize them in their own right. These new rules
are detected in the same way as for the instances of the class, except that the
mandatory properties of the version template are added to each query to be able
to distinguish the instances of that version template from the other instances of
the class.

In order to discover the exclusion and inclusion rules that hold for a given
version template, the profile of the version template is first built: the probability
of each non-mandatory property of the template is calculated, adding for each
one the mandatory properties in the query so that it only considers the version
template explored by the sub-process.

Each sub-process finds the inclusion and exclusion rules between the prop-
erties of its version template. Let Poblig be the set of mandatory properties,
αi,Poblig

(resp. αj,Poblig
) the probability of a property pi (resp. pj) to describe

an instance of a subset c′ of instances of a class c, and αi,j,Poblig
the probability

of the properties pi and pj to describe an instance of the subset c′. We propose
to find the inclusion and exclusion rules between the properties of the versions
template M as follows:

Inclusion rule. The inclusion rules between the properties of a version
template M are determined by testing each pair of properties pi, pj ∈ M , with
αi,Poblig

!= αj,Poblig
in the profile of the sub-set c′ of instances of the template

M , as follows:

• If (αi,j,Poblig
= αi,Poblig

) then (pi ⇒ pj in c′)

• If (αi,j,Poblig
= αj,Poblig

) then (pj ⇒ pi in c′)

Exclusion rule. The exclusion rules between the properties of a version
template M are determined by testing each pair of properties pi, pj ∈ M , with
(αi,Poblig

+ αj,Poblig
<= 1) in the profile of the sub-set c′ of instances of the

template M , as follows:

• If (αi,j,Poblig
= 0) then (pi | pj in c′)

5.4.2. Rule Exploitation

In SchemaDecrypt + +, some inclusion rules are exploited specifically be-
cause of the presence of mandatory properties in the version template and be-
cause some of these rules apply only to this version template. Exploiting these
rules for a version template M is as follows:

31



1. If there is an inclusion rule p̄i ⇒ pj , this means that the non-mandatory
property pj is still present in the versions of the template. In this case,
it is not useful to test it and it is removed from M and added directly to
each validated version;

2. If all the versions containing a non-mandatory property pk are found,
which corresponds to a probability of 0 for pk in the class profile, then
pk and all the properties pj such that: pj ⇒ pk are removed from each
version template M . Note that this case is only possible if this rule is
specific to M . Indeed, if it was valid for all the instances of the class, a
value of 0 for the probability of pk would only occur if the value of the
probability for pj was also 0;

3. If the non-mandatory property with the highest probability is pk, and all
versions containing this property are explored for M , then all the proper-
ties pj such that: pj ⇒ pk are removed from M . Note that this case is
only possible if this rule is specific to M . Indeed, if it was valid for all the
instances of the class, it would not be possible to have explored all the
versions containing pk without having first explored those containing pj .

More generally, the inclusion rules are exploited by deleting each optional
property pj in M , in the two following cases:

• pi is a mandatory property and p̄i ⇒ pj (pj is then added to each validated
version in M);

• When deleting a non-mandatory property pk or completing its exploration,
and pj ⇒ pk is an inclusion rule specific to M .

Note that despite the deletion of a property, its probability in the profile
is updated for each version found. In addition, as in SchemaDecrypt, each
exploration process of a version template exploits its inclusion rules by executing
jumps in the version code and reducing the number of properties in a query as
previously described in section 4.5.

In SchemaDecrypt + +, exclusion rules are initially exploited to find the
version template graph. However, if the number of version templates reaches
the maximum number of queries that the data source can process in parallel, as
in Figure 11, some rules remain unexploited in some version templates, such as
rule r3 = p4 | p5 in version template M2 = {p̄2, p3, p4, p5, p6, p7}. Such rules are
exploited by executing jumps as previously described in SchemaDecrypt (see
section 4.5).

6. Analyzing the Cost of Version Discovery

In this section, we discuss the cost of the proposed approach. Each exclusion
rule allows to parallelize the exploration of the candidate versions. However, for
parallel exploration to actually improve performance, the data source must be
able to process multiple queries in parallel. In this analysis of the cost of our
approach, we consider the worst case where the source can only process one
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query at a time.

The number of queries sent to a data source reflects the cost of an on-line
approach for discovering the versions of a class. SchemaDecrypt(++) performs
a statistical analysis of the properties of a class before attempting to discover
its versions. This results in building a probabilistic class profile by sending n
queries to the data source, with n being the number of considered properties
for a class. It also computes probabilities between some pairs of properties
to deduce sets of properties with the same occurrences and identify inclusion
and exclusion rules. Only the pairs of properties satisfying some conditions are
tested, as seen in sections 4.2 and 4.3. Therefore, SchemaDecrypt(++) queries
the data source at most C2

n = n× (n− 1)/2 times. This represents the number
of combinations of each pair of properties among n.

The processing time for a query testing a candidate version is more impor-
tant than the time required to detect a rule: a query for a candidate version is
composed of all the properties of the candidate version while a query for detect-
ing a rule is composed of only two properties. Note that the query answering
time increases as the number of properties in the query increases. The key issue
to evaluate the complexity of our approach is therefore the a priori estimation
of the number of queries sent to the data source to find the versions.

We can not determine a priori the number of candidate versions tested by
a query, as they are generated until all the versions of the class are found (we
can not determine the number of versions of a class a priori). However, we
can estimate the number of queries sent to the data source in the worst case:
the versions of the class are not found until all candidate versions are tested by
issuing a query.

The number of queries sent by SchemaDecrypt(++) to the data source
is related to the number of considered properties of a class and the number
of discovered inclusion and exclusion rules. Let n be the number of considered
properties for a class in the set E, the complexity of the exhaustive search of the
class versions is therefore 2n, which represents the number of candidate versions.

Let h be the number of discovered inclusion and exclusion rules for the
entities of the class. Each rule decreases the complexity of an exhaustive search
(2n) by 2n−2, because each rule implies two properties. For example, for a rule
r = pi | pj , the number of combinations not to be tested is 2n−2 (2n - 2n−2

combinations remain to be tested), as follows:

Each rule decreases the complexity of an exhaustive search by 2n−2, because
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each rule implies two properties. However, a rule r1 may collide with another
rule r2. We consider that a collision between the rules r1 and r2 occurs when
a candidate version does not comply with both rules r1 and r2. In this case,
the reduction in the number of combinations is not (2 ∗ 2n−2), but (2 ∗ 2n−2

- the number of collisions). More generally, let NbCollision be the number
of collisions between the rules; the number of combinations combNb to test
according to the number of rules h for a class is calculated as in Formula 5.

combNb = 2n − h ∗ 2n−2 +NbCollision (5)

For example, consider the two rules: r1 = pi ⇒ pj and the rule r2 = pi | pk;
the discarded combinations are the followings:

In this example, the number of collisions is 2n−3, because the two rules in-
volve three properties. Two rules are independent if they do not share any
property and therefore, they involve four distinct properties. In this case, the
number of collisions is 2n−4. For example, consider the rule r1 = pi | pj and the
rule r2 = pk ⇒ pv; the discarded combinations are the followings:

In some case, two rules never collide. For example, consider the rules r1 =
pi ⇒ pj and r2 = pj | pk. A collision occurs when:

• r1 is violated if: bit(pi) = 1 and bit(pj) = 0
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• r2 is violated if: bit(pj) = 1 and bit(pk) = 1

The collision is impossible because bit(pj) can not be equal to 1 and to 0 at
the same time, therefore the number of collisions between the rules r1 and r2 is
equal to 0.

We can observe that the number of collisions between the rules differs ac-
cording to the types of the rules and whether they are independent. We sum-
marize the different cases to determine the number of collisions between two
rules collisionNb(ra, rb) in Formula 8.

The number of queries sent by SchemaDecrypt(++) to discover the ver-
sions depends on the number of deduced rules h and the number of considered
properties n for a class. Each rule decreases the complexity of an exhaustive
search (2n) by 2n−2, because each rule involves two properties. However, some
candidate versions do not comply with several rules at the same time, which
causes a collision between the rules. Let collisionNb(ra, rb) be the number of
collisions between two rules ra, rb as described in Formula 8. Let NbQueries
be the number of queries sent to the data source to test candidate versions ac-
cording to the number of collisions TotalColl between each pair of rules. The
number of queries sent to the data source is calculated as in Formula 6.

NbQueries(n, h) = 2n − h ∗ 2n−2 + TotalColl (6)

The number of collision between each pairs of rules TotalColl is calculated
as in Formula 7.

TotalColl =

h∑
a=2

a−1∑
b=1

collisionNb(ra, rb) (7)
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7. Evaluation

This section presents some experimental results using SchemaDecrypt+ +
to find different versions of a class. We have evaluated the performances of
SchemaDecrypt and compared them to those of SchemaDecrypt+ +, to show
the effect of parallelism and dynamic pruning of the exploration graph on a real
data source. We have also illustrated the usefulness of versions for the example
presented in the motivation section.

7.1. Data Source and Methodology

We have evaluated the performance of our approach to provide exact ver-
sions of classes from the properties declared in the schema, using a real remote
data source: DBpedia7, which currently contains over 3.77 million instances; it
contains more than 1.89 billion RDF triples. We chose this data source because
the number of properties of an instance is rather high: 150 properties on aver-
age. To discover versions of a class, SchemaDecrypt(++) queries this remote
data source through a SPARQL endPoint8.

We have used SchemaDecrypt(++) to discover the versions of the following
classes in DBpedia: Historian, Poet, Restaurant, Museum, ShoppingMall, Sta-
dium, Mountain and Park. We have deliberately selected classes with a high
number of properties in the schema (between 243 and 462) to test the effec-
tiveness of the approach. Note that DBpedia is in constant evolution because
it is automatically enriched from Wikipedia. As a result, there may be a slight
difference in the number of properties and versions of a class at different times,
as between our experiments made in [15] and the one presented in this paper.

To illustrate the usefulness of versions to identify relevant sources, for the
case presented in the motivation section, we have build from the instances of the
class Museum three different data sources: S1, S2 and S3. These sources are
not described by a versioned schema. To test our approach on a set of properties
defined by the user, we consider for example that the user is interested by archi-
tectural informations about museums, which are described through the follow-
ing set of specified properties: P = {−−−−−−−−−−−−−→architecturalStyle,

−−−−−−−−−−−−−−−−→
yearOfConstruction,

−−−−−−−−→
floorCount,

−−−−−−→
architect,

−−−−−→
location}. SchemaDecrypt+ + is used to discover, for

each data source, the versions of the class Museum on this set of considered
properties P . In this experiment, we conduct a preliminary user study to show
how versions could help a user to identify relevant sources and reducing the
number of queries send to these sources.

SchemaDecrypt++ is implemented in Java with multithread programming.
A thread is started for each version template exploration. To synchronize the
search for class versions, some resources (class profile, list of validated versions
and the number of running threads) are shared among the threads which con-
currently write in them.

7DBpedia Data Set 3.8: dbpedia.org
8DBpedia, SPARQL endPoint : http://dbpedia.org/sparql
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SchemaDecrypt and SchemaDecrypt + + are available online9. We per-
formed our experiment on November 15, 2017, with a bandwidth of 2.4 GHz,
on a desktop computer: Intel (R) Xeon (R), 2.80 GHz CPU, 64 bit with 4 GB
of RAM.

7.2. Results

Table 1 summarizes the description of the classes according to their number
of properties, the number of discovered inclusion and exclusion rules and the
number of versions. The number of properties of each class is very high: from
243 for the class Park to 462 for the classes Historian and Poet.

Table 1: Class Description.

Classes Properties Inclusion rules Exclusion rules
Versions
number

Historian 462 123 440 84

Poet 462 89 264 42

Restaurant 285 19 156 89

Museum 285 36 371 148

ShoppingMall 281 33 227 79

Stadium 268 25 141 234

Mountain 264 71 804 479

Park 243 47 207 44

Figure 13 represents the performances of SchemaDecrypt + + in terms of
processing time and the number of candidate versions tested by a query, accord-
ing to the number of properties of a class, the number of rules discovered and
the number of validated versions that represent the actual versions of a class.

SchemaDecrypt+ + allows to discover the different versions of a class even
when the number of properties is very high, such as for the class Historian which
has 462 properties. As Figure 13 (a) shows, SchemaDecrypt + + succeeds in
discovering the different versions of the class in few minutes. This result is due
to three main ideas in SchemaDecrypt + +: (i) using the class profile and or-
dering the properties according to their probabilities, which leads to testing the
most probable combinations first and to converge quickly; (ii) parallelizing the
exploration of the candidate versions, which accelerates the process of version
discovery and (iii) exploiting the inclusion and exclusion rules to eliminate some
combinations and executing jumps in the version code, which considerably re-
duces the search space.

The processing time to build the class profile (see Figure 13 (a)) is propor-
tional to the number of properties of a class (see Figure 13 (d)). The processing
time to discover the rules (see Figure 13 (a)) is proportional to the number of
rules (see Figure 13 (c)). The processing time to discover the versions of a class
(see Figure 13 (a)) is proportional to the number of queries sent to the data

9SchemaDecrypt(++): http://github.com/Kenza-Kellou-Menouer/SchemaDecrypt
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Figure 13: Processing Time (a) of SchemaDecrypt + + According to: (b) the Number of
Versions and Queries, (c) the Number of Inclusion and Exclusion Rules and (d) the Number
of Properties of each Class.
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source (see Figure 13 (b)). Indeed, the response time of the query represents
the most important part of the total processing time.

SchemaDecrypt+ + is also influenced by the number of versions of a class
which is represented by the number of validated versions in Figure 13 (b). The
time required to find the versions of a class is proportional to the number of its
versions: the more versions in a class, the longer it takes for SchemaDecrypt+
+ to find them. Indeed, the time required to reach the stopping criteria is
proportional to the number of versions because the probabilities of the properties
of the class profile decrease more slowly. For example, the class Historian and
Poet have exactly the same number of properties (462); but the time required
to generate the candidate versions for the class Historian is 279 seconds with 84
validated versions. For the class Poet the processing time is 26 seconds with 42
validated versions. The class Mountain has fewer properties (264), but it takes
the most important time to generate the candidate versions (844 seconds) as it
has the most important number of version (479).

Table 2 summarizes the performances of SchemaDecrypt, SchemaDecrypt+
+ and the estimated performances of the baseline approach for finding class
versions from a remote data source. The baseline approach is an exhaustive
search of the versions as described in section 3.3. We have tested the baseline
approach in order to estimate the time needed to find the first versions; however,
no version was found because timeout exceptions occurred for queries sent to
the Web server.

We have empirically estimated the performances of the baseline approach in
table 2. The number of queries sent to the source by the baseline approach is
2n, with n the number of considered properties of a class. We have estimated
the execution time of the baseline approach as follows: as the DBpedia data
source can test a maximum of 15 queries per second [17], the best estimated
time for processing 2n queries, is 2n/15 seconds ≈ 2n−4 seconds.

The results in table 2 show that the baseline approach is unrealistic even
without restrictions of the Web server. Finding versions of these classes using
the baseline approach takes more than a billion times the age of the universe.
However, SchemaDecrypt(++) succeeds in discovering the different versions of
the classes. The justification for these results in the field of cryptanalysis is
simple: the baseline approach is a brute force attack that makes an exhaustive
search for versions of a class; while SchemaDecrypt(++) is a probabilistic at-
tack guided by the class profile, that allows to test the most probable versions
first and therefore quickly reach the stopping criteria, in addition to the rules
between the properties that can reduce the search space.

The execution time of SchemaDecrypt++ is always less than the execution
time of SchemaDecrypt. The difference between the two execution times is
even greater when the execution time of SchemaDecrypt is important, as for
the class Mountain with an execution time of 39.8 hours for SchemaDecrypt
and an execution time of 14 minutes for SchemaDecrypt + +, which is 160
times less important; a similar result can be observed for the class Historian
with an execution time of 6.85 hours for SchemaDecrypt and an execution
time of 4.65 minutes for SchemaDecrypt+ +, which is 88 times less important.
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Table 2: The performances of the Baseline approach, SchemaDecrypt and SchemaDecrypt+
+.

Classes Number of candidate versions Processing time
Validated
versions

Baseline
ap-

proach
Schema
Decrypt

Schema
De-

crypt++

Baseline
ap-

proach*
Schema
Decrypt

Schema
De-

crypt++

Historian 2462
19738 ≈
214,26

409 ≈
28,67

2458 sec
≈ 2433

years ≈
10129,9

years

24692
sec

(6.85 h)
279 sec
(4,64mn) 84

Poet 2462
1130 ≈
210,14

121 ≈
26,9

2458 sec
≈ 2433

years ≈
10129,9

years 232 sec 26 sec 42

Restau-
rant 2285

1098 ≈
210,1

197 ≈
27,62

2281 sec
≈ 2256

years ≈
1076,8

years 206 sec 59 sec 89

Museum 2285
2757 ≈
211,42

262 ≈
28,03

2281 sec
≈ 2256

years ≈
1076,8

years

585 sec
(9,75
mn) 70 sec 148

Shopping
Mall 2281

2245 ≈
211,13

123 ≈
26,94

2277 sec
≈ 2252

years ≈
1075,6

years

426 sec
(7,1
mn) 28 sec 79

Stadium 2268
8004 ≈
212,96

619 ≈
29,27

2264 sec
≈ 2239

years ≈
1071,7

years

1828 sec
(30,5
mn)

302 sec
(5.03
mn) 234

Mountain 2264
92510 ≈
216,49

2501 ≈
211,28

2260 sec
≈ 2235

years ≈
1070,5

years

143395
sec

(39.8 h)

844 sec
(14.06
mn) 479

Park 2243
396 ≈
28,62

76 ≈
26,24

2239 sec
≈ 2214

years ≈
1064,2

years 80 sec 16 sec 44

*1 year = 31 536 000 sec ≈ 225 sec; and 2n = 10n×log(2)

When the processing time of SchemaDecrypt is of the order of a few seconds,
the difference between the processing time with SchemaDecrypt++ is not very
visible, however, the processing time with SchemaDecrypt+ + remains always
lower.

The number of candidate versions generated by SchemaDecrypt + + is al-
ways less than the number of candidate versions generated by SchemaDecrypt.
For example, for the class Historian, SchemaDecrypt++ generates 409 candi-
date versions to validate 84 versions, while SchemaDecrypt generates 48 times
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more, (19738 candidate versions) to find the same result.
The number of exclusion rules can significantly speed up the execution of

SchemaDecrypt + +, especially for the class Historian. This is because the
higher the number of exclusion rules between the properties of a class, the
higher the number of generated version templates. Exploring parallel version
templates not only speeds up the process, but also reduces the number of can-
didate versions, because for each version template, the first generated versions
are the most probable ones.

Table 3: Results of querying data sources using versions.

Queries Number of sent queries
Total results
size (lines)

without versions using versions

Q1: What is the year of
construction of each museum? 3 2 340

Q2: What are the architects
and the number of floors of

museums by architectural style? 3 0 0

Q3: What is the average floor
number of museums by

architect? 3 1 5

Q4: What is the architectural
style of museums by architect? 3 1 77

Q5: What is the architectural
style of museums by location? 3 3 223

Table 3 shows the usefulness of versions for identifying relevant sources for a
set of queries. To query 3 sources without versions, the user has always to send
a query for each source, which results in 3 queries sent in total. Versions allow
to identify relevant sources for a given query as follows:

• for the query Q1, the versions show that unlike S1 and S2, the source S3
has no version which contains the property

−−−−−−−−−−−−−−−−→
yearOfConstruction. There-

fore, the source S3 is not relevant for the query Q1, and only S1 and S2
will be queried (2 queries sent);

• for the query Q2, there is no version in the three sources where the prop-
erties

−−−−−−−−→
floorCount and

−−−−−−−−−−−−−→
architecturalStyle occur together. Therefore, it is

useless to query these sources (0 queries sent);

• for the query Q3, the sources S1 and S3 contain versions with the property−−−−−−→
architect without the property

−−−−−−−−→
floorCount. However, in source S2, there

are versions where these two properties occur together. Therefore, a query
is sent to S2 only (1 query sent);

• for the query Q4, source S1 contains versions with
−−−−−−−−−−−−−→
architecturalStyle

without the property
−−−−−−→
architect, while source S2 contains versions with

the property
−−−−−−→
architect without the property

−−−−−−−−−−−−−→
architecturalStyle. Source

S3 contains versions with these two properties. Therefore, a query is sent
to S3 only (1 query sent);
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• for the query Q5, the three sources contain versions with the properties−−−−−−−−−−−−−→
architecturalStyle and

−−−−−→
location, therefore all three are queried (3 queries

sent).

The size of the returned result is the same with or without the use of the
versions, which shows that the versions are useful for identifying the relevant
sources.

8. Related Work

Proposed approaches for discovering structural versions of a data source are
provided for local Json data sources [23, 3, 2], local RDF data sources [33, 34,
8, 1], streamed RDF data [4] or distributed RDF data sources [16]. Unlike our
approach, all of these approaches only consider the outgoing properties of the
instances. In addition, they require browsing the data to find the structural
versions, making their use impossible on remote data sources.

Some of these structural version discovery approaches [3, 2, 33, 34, 8] provide
approximate versions. Unlike an exact version, in an approximate version, the
co-occurrence of some optional properties is not specified. In the approach
proposed in [3, 2], the optional properties of a version are identified, whereas
the approach proposed in [8] does not identify them; the approaches proposed
in [33, 34], do not consider the optional properties as part of the description of
a version.

Unlike SchemaDecrypt(++), most of these approaches require the use of
powerful machines [23, 16, 3, 2, 33, 34, 1] and big data technology [23, 3, 2].
The approach proposed in [33, 34] discovers the top-K approximate patterns
of an RDF graph by applying a pattern mining algorithm (PaNDa+ [19]). It
builds a binary matrix of size N x M , where N is the number of instances of
the data source and M represents the number of properties and types if de-
fined. The size of this matrix is very large and it even exceeds the size of the
data source, which requires a large memory capacity, which is not the case for
SchemaDecrypt(++). Indeed, our approach uses the memory optimally: (i)
data are not loaded in memory; (ii) the exploration graph of the candidate ver-
sions is not generated in memory; (iii) the current candidate versions as well
as the simulation of the exploration of all the search space of the versions are
represented through a “version code” on a few bits. The work presented in [1]
discovers the co-occurrence of properties of the same class to refine the classes.
A class is refined by dividing its instances according to their structure. The re-
sulting refined classes, provided by a solver, improve the structural homogeneity;
this discovery process is equivalent to finding class versions.

The work in [18] uses association rule mining to discover properties that
are frequently defined together. However, the minimum support parameter is
explicitly specified by the user, whereas our approach does not require such pa-
rameter. Besides, the association rule mining algorithm is not adapted for large
data sources. SchemaDecrypt(++) could be applied to reduce the size of the
data source before applying association rule mining algorithm. Indeed, the class
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versions and their number of occurrences provide the information enabling to
find frequent item-sets and to generate association rules between the properties
of a class.

Different pattern mining algorithms such as FP-Growth [11], GSP [26],
SPADE [31], could be used to discover versions. However, all these algorithms
require browsing the data source and often several times, which does not allow
processing a remote data source with restricted access.

The existing structural version discovery approaches [23, 4, 16, 3, 2, 33, 34, 8,
1, 18] can not process a remote data source because they require data browsing;
our approach SchemaDecrypt(++) is able to discover the class versions of a
remote data source without having to load it locally. The difficulty of this task
lies essentially in the fact that we can not browse the data, the only access is
performed using queries. In addition to access restrictions implemented by the
server such as timeout on the execution of a query and the limitation of the
number of queries sent to avoid clogging the network.

Some works on summarization are presented in [7]. However, these works
are not all interested in discovering versions and above all they do not allow
processing a remote source with restricted access. ABSTAT [25, 21] summarizes
a dataset exploiting an ontology and the triples of the dataset . It provides a
minimal set of patterns for describing RDF data. For each triple (x P y) in
the dataset, patterns of the form (C, P , D) are generated, where C is in the
minimal type set of x and D is in the minimal type set of y. Note that C is in
the minimal type set of x if it is not a super-type of another type of x. Unlike
SchemaDecrypt(++), ABSTAT aims to discover patterns having a form which
differs from our versions, and it could not process a remote data source with
access restriction as it requires browsing the data.

In [24], the goal is to discover the k patterns which maximize an informa-
tiveness measure. The algorithm takes as input an integer distance, which will
be used to control the neighborhood in which we will look for similar enti-
ties, and a bound k as the maximum number of the desired patterns. Unlike
SchemaDecrypt(++), the patterns provided by this approach [24] represent
the approximate possible versions for sets of entities grouped according to their
similarities and not necessarily representing the same class. This method also
does not allow processing a remote data source with restricted access since it
requires browsing the data.

T. Zeimetz et R. Schenkel analyze in [32] some online approaches that pro-
vide a general overview of a schema, such as: LODeX [6, 5], ViziQuer [35] and
LD-VOWL [30]. LODeX [6, 5] extracts a set of indices containing represen-
tative information about a data source. Then, the schema is generated offline
by using only the previous extracted indices. A schema shows the classes and
the properties involving these classes. However, LODeX might infer missing or
additional links between classes and it does not work on large endpoints such as
DBpedia. ViziQuer [35] deals with visual query languages at schema level. It
does not describe how the schema is extracted as the focus is on the exploration
and querying a part of knowledge base. In addition, the server must not have a
limit on the answer size. LD-VOWL [30] discovers an approximate schema con-
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sidering the most used information. It extracts the top k classes of a knowledge
base, then connects them using properties. However, weak servers or servers
with large amounts of data are quickly brought to their limits, as the approach
uses costly operators such as ORDER BY. Unlike SchemaDecrypt(++), these
approaches do not discover class versions and often face restrictions imposed by
the data source. Indeed, LODex [6, 5] can not handle a large data source such
as DBpedia; in ViziQuer [35], the server must not have a limit on the answer
size; and in LD-VOWL [30] some of these queries can not be executed due to
the restrictions imposed by the source.

Our work can also be positioned in the broader context of inductive meth-
ods for acquiring or refining schema-level knowledge for semi-structured data.
Indeed, SchemaDecrypt(++) could complement the existing approaches for
schema discovery, such as [13, 9, 28] which discover the classes of a data source
but not their different versions. Each version of a class may have a specific
meaning which differs from the others versions of the class. This meaning could
be captured using annotations techniques as proposed in [14].

9. Conclusion

We have proposed SchemaDecrypt, the first on-line approach for discovering
the versioned schema of a large remote data source, without having to upload or
browse the data. To find the different versions of a class, we propose to build a
probabilistic class profile to guide the exploration of the candidate versions. We
reduce the number of candidate versions by discovering inclusion and exclusion
rules between the properties of a class.

We have also proposed a parallel exploration of versions with the approach
SchemaDecrypt + + which significantly improves the performances of version
discovery. Indeed, the presence of exclusion rules allows to build version tem-
plates that can be explored in parallel. A version template must conform
to the exclusion rules, and contain the properties of the class, so that there
are no exclusion rules that imply them. Parallel exploration of versions with
SchemaDecrypt + + greatly optimizes the number of candidate versions by
exploring the most probable candidate versions first in each version template.

We have presented some evaluations on the DBpedia data source, accessed
through a SPARQL endPoint. As a result, the exact class versions are provided.
The good performances of SchemaDecrypt(++) show that it is a powerful tool
for understanding the hidden structure of Web data. The experimentation also
shows that SchemaDecrypt+ + is always faster than SchemaDecrypt.

Note that our approach could also be used for a remote data source without
access restrictions. Indeed, reducing the number of properties in a query not
only avoids the timeout server exception but also significantly reduces the time
required to answer a query. The jumps during the exploration and the pruning
of the exploration graph not only reduce the number of queries sent to the server
so that we do not lose the processing priority, but also reduce the time required
to discover the class versions. Exploring parallel version templates not only
speeds up the processing time considerably, but also allows to retrieve versions
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of a class by testing fewer candidate versions, because in each version template,
the first versions generated are the most probable ones.

The discovered versions could be used for different tasks, such as decompos-
ing a query into sub-queries and building an execution plan on distributed data
sources. Indeed, the versions describe not only the number of occurrence of a
property but also the co-occurrence between the properties. Unlike a schema,
versions allow to describe the different structures of instances of the same class.
Another interesting problem is to evaluate the gap between a data source and
its versioned schema.
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