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Abstract

In the context of centralized electricity markets, we propose an integrated planning model for power pricing and

network expansion, which endogenizes the scaling costs from power losses. While the substitutability pattern

between pricing and expansion has been overlooked in the power flow optimization literature, this becomes

particularly relevant in centralized electricity markets (where the headquarters are enabled to take decisions

over a wide range of operational factors). In this paper, we tailor an optimization model and solution approach,

that can be effectively applied to large-scale instances of centralized power systems. Specifically, we develop

bounds to the optimal operator profit and use them within a mixed-integer linear programming problem, derived

from the linearization of an extended power flow model. On the empirical side, we conduct computational tests

on a comprehensive power system data set from the Saudi Electricity Company, uncovering the value of the

proposed integrated planning. The results reveal the complex substitutability patterns which appear when

deciding about integrated operational factors in centralized power systems and support the correctness and

efficiency of the proposed resolution mechanism.

Keywords: OR in Energy; Centralized electricity markets; Integrated pricing and expansion; Power network

flow; Linearization-approximation

1 Introduction

In the context of centralized electricity markets, a single company is in charge of the electricity production at

generation facilities, as well as its distribution to the end consumers throughout a power network. Despite the

alternatives to replace this paradigm with decentralized grids (Roh et al. 2007, Le Cadre et al. 2015), centralized

systems are still attractive for the large economy of scale and positive spillovers they rely upon.

One important benefit of centralized electricity markets is that these systems enable simultaneous decisions

on electricity pricing and network expansion, driving a profitable integrated policy from their effects on power

demand and distribution costs.1 In fact, while prices have a direct impact on the total company revenue, they

affect indirectly the scaling distribution costs, through their relations with power demands. This indirect effect

acts on the company cost structure by causing variations on the power flow at each transmission line, similar

to the outcome of building (or dismantling) parallel lines.

How this substitutability pattern between pricing and expansion translates into profit depends on the specific

scaling behaviour of electricity distribution costs from large generation facilities to the end consumers. In fact,

∗Corresponding author
Email addresses: francesc.lopezr@gmail.com (Francisco López-Ramos), s.nasini@ieseg.fr (Stefano Nasini),

mohamed.hosny@outlook.de (Mohamed H. Sayed)
1Throughout this work, the term policy is employed to refer to an integrated strategy used by a centralized agency to regulate

the electricity market in a unified way.

Preprint submitted to European Journal of Operational Research March 27, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377221720304173
Manuscript_25453338afde3b0dd8d317c0d2bbe5fc

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377221720304173


these scaling costs are driven by the presence of power losses at transmission level across the interconnected

sub-networks, inducing a congestion-like type of cost on the electricity company.2

While the integrated pricing and expansion planning can counterbalance the impact of these scaling costs,

the resulting decisional trade-off gives rise to a complex combinatorial problem, whose dependency structure has

been largely overlooked in the recent literature. One reason for this neglect can be attributed to the growing

emphasis given to decentralized electricity markets (Le Cadre et al. 2015, Lohmann & Rebennack 2016, Al-

Gwaiz et al. 2016, Steeger & Rebennack 2017, Aussel et al. 2019), in which electricity prices and investment

decisions are taken by different agents. Another reason is the increase in the model size as well as the appearance

of different sources of non-linearities in the resulting formulations, which make its solvability more challenging

for state-of-the-art optimization solvers.

This work proposes an Extended DC Power Flow model (EDCPF from now on) derived from the linearization

of an original AC model, for the analysis of the integration and substitution between pricing and expansion in the

context of a centralized electricity market. This model relies on a multi-partite network in which the power flow

originates at generation stations, passes through transmission substations and terminates at consumption centers

(cities and towns). In this model, a profit maximizer electricity company selects the optimal combination of price

levels (affecting the total flow through demand sensitivity), capacity expansion (affecting the total flow through

impedance reduction), generation and recovery (counterbalancing power losses). Because of the stochasticity of

power demands, the proposed EDCPF model is embedded within a two-stage stochastic program, where losses

(and recovery from dedicated equipments) are formulated as distinct flows interacting at substations.

For the computational resolution, we rely upon different levels of reformulation, approximating the original

model by a mixed-integer linear program (MILP from now on), which is then solved in a four-step procedure.

First, an upper bound (UB from now on) is obtained by removing power losses from the MILP. Second, using

the obtained power flow as an initial solution, we define interpolation knots for a piecewise linear approximation

of the power losses curve. Third, we solve a linear program representing a lower bound (LB from now on) to the

optimal profit by using the so defined piecewise approximation and fixing all integer variables to the previously

obtained optimal values. Fourth, we solve the complete MILP problem by requiring the profit to be within LB

and UB, while using the interpolation knots given at the second step.

This four-step procedure resulted particularly effective in practice, as revealed by comprehensive computa-

tional tests conducted on a large-scale power system from the Southern Region of Saudi Arabia. Specifically,

the proposed empirical assessment relies on detailed data from the Saudi Electricity Company (SEC from now

on). The Southern Region network (managed by an independent authority within SEC) contains 383 stations

and 402 transmission lines, distributing power toward 163 consumption centers. The station capacities are only

working at their 46 % on average, and the network connectivity is significantly low (only 1.2 % of the possible

feasible lines are constructed).

Focusing on the simultaneous decision on pricing and expansion (while endogenizing the impact of power

losses and recovery), we show that when the construction costs increase, the network expansion effect on

profit can be substituted by a combination of pricing and recovery adjustment to correct marginal excess of

consumption and losses that can be hardly compensated. Building on a factorial computational experiment,

we explore the differences in the optimal expansion when prices are fixed and when prices are jointly decided.

Similarly, to assess the impact of the aforementioned scaling costs, the same tests are performed under the cases

2While modern advances on material engineering (Rajarman et al. 1998) have boosted important enhancements on lessening line

impedance, its scaling effect on large power systems has still foremost consequences on transmission losses (Jenabi et al. 2015, Papier

2016, Shen et al. 2018, Kovacevic 2019). Often, losses are compensated by dedicated recovery equipments (such as synchronous

condenser), which act locally at substations.

2



when looses are not considered and when losses are not recovered. The results reveal substantial expansion

variations, induced by the lack of integration, as well as an underestimation/overestimation of the expected

profit. Overall, the proposed methodology allows SEC to assess the opportunity to increase the station capacities

and the number of transmission lines, when alternative decisions on pricing can act as operational substitutes.

At the same time, we show that this significant improvement on the company’ expected profit is achievable with

a low computational times within the solution approach.

The rest of the paper is organized as follows. In Section 2, we survey the relevant studies on the optimal

power flow problem highlighting the contributions of the proposed approach. In Section 3, we identify the

ecosystem related to the problem formulation and set up the EDCPF model. In Section 4, we provide an

analytical assessment of the policy integration and substitution in the proposed EDCPF model. In Section 5,

we describe the solving approach. In Section 6, we present the real network data obtained in cooperation with

SEC. A large collection of computational experiments on SEC data set are being analyzed in Section 7. Finally,

Section 8 concludes the paper with directions for further research. Supplementary material and mathematical

proofs have been reported in Appendix A.

2 Literature review

This work is connected to several streams of literature, pivoting around the purported optimal power flow

problem and its extensions to electricity pricing and capacity expansion (Frank et al. 2012a,b, Frank & Reben-

nack 2016, Krasko & Rebennack 2017). Hereafter, they are grouped into four domains in which we highlight

the relationship with our contribution.

Optimal power flow problem. Dommel & Tinney (1968) present the first mathematical programming formulation

of the optimal power flow problem with control variables, followed by contributions focusing on several specific

variants (Garver 1970, Carpentier 1979). Decades later, Romero et al. (2002) propose the first extension to

case of transmission expansion, comparing four formulations: a DC power flow model, a transportation model,

a hybrid model, and a disjunctive model. Contextually, our approach integrates the constraints traditionally

present in state-of-the-art AC models and provides a mathematical programming treatable reformulation.

Power generation. A growing number of operations research contributions have covered the production side

of the electricity market (Lahdelma & Hakonen 2003, Al-Gwaiz et al. 2016, Fischetti & Pisinger 2018, Lara

et al. 2018). Building on the optimal power flow framework of Romero et al. (2002), Olave-Rojas et al. (2017)

incorporate the energy storage systems into the power generation, followed by a recent extension to the case of

wind-based electricity generation by Zhou et al. (2019). As our model has been tailored for annual level data,

power storage is not taken into account, avoiding the analysis of daily fluctuations, having marginal impact on

the long run pricing and expansion policy. Additionally, the different energy sources are considered in aggregate

production, as fossil-based energy sources account of 98 % of the generated power in SEC.

Power distribution and network design. When looking at the power distribution, traditional models largely

formulate the power system as a bi-partite network, where generators are located in one layer, while consumption

centers are in the other. The first attempt to tackle general network topologies is the work of Jensen &

Bhaumik (1977), where the efficient solution of a generalized-flow problem capturing losses in water resources

and electrical networks is addressed. Subsequent works overlooked the impact of network topological properties

on power losses, mainly focusing on resilience to failures and robustness to exogenous shocks (Benavides et al.

2013, Wang et al. 2016). Our approach addresses the issue of the energy distribution topology from the outlook

of multi-partite power networks, where multiple layers of intermediary substations mediate the transmission
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from generators to consumption centers. We study the creation of new lines between disconnected substations

and their enlargement to mitigate the scaling costs induced from power losses.

Power demand. Traditional models have considered power demand as an exogenous term, which is either

deterministically (Benavides et al. 2013, Correa-Florez et al. 2014, Jenabi et al. 2015, Wang et al. 2016, Lara

et al. 2018) or stochastically (Waller & Ziliaskopoulos 2001, Atamtürk & Zhang 2007, Lium et al. 2009) specified.

In this vein, Shen et al. (2018) propose an alternative probabilistic approach to deal with exogenous stochastic

demands, based on interval uncertainties on power flow, and Zou et al. (2019) study a multi-stage stochastic

version of Lara et al. (2018) model. Conversely, endogenous demand models have been mainly considered in the

context of decentralized electricity markets, where consumers can switch between competing operators (Roh

et al. 2007, Özdemir et al. 2016). Unlike the bulk of contributions, our model considers a stochastic demand

whose distribution is sensitive to prices.

Power pricing. Power pricing has been studied in the context of endogenous demand models (Le Cadre et al.

2015, Lohmann & Rebennack 2016, Steeger & Rebennack 2017, Aussel et al. 2019). Some economic oriented

contributions have focus on pricing from the viewpoint of the social welfare (Lohmann & Rebennack 2016) or

the producer profit (Kovacevic 2019) maximization. Kök et al. (2016) study the impact of power prices on

the renewable energy investments and carbon emissions. Most formulations rely on leader-follower games that

bring non-convexity and entails substantial computational challenges. Our model considers a collection of price

variations (with arbitrary levels of granularity) from the current prices at each consumption center, allowing

for a discrete reformulation of the power demand.

3 Problem formulation and modeling

This section proposes a static (one-shot) stochastic problem for integrated decisions on prices and expansion

in centralized power systems, that endogenizes the scaling cost from power losses.3

3.1 Baseline definitions and notation

We start by considering a power system composed by multiple layers. Following Ahuja et al. (1993), a graph

G = 〈H,A〉 is m-partite if we can partition the set of nodes H into m subsets H(1) · · ·H(m), which we call

layers, so that for each arc i ∈ H(h) and j ∈ H(h), (i, j) /∈ A. In the modelling framework introduced hereafter,

A contains linkages across which power transmissions and losses occurs.

Contextually, we let H(1) be a collection of generation stations (Genstat from now on), with |H(1)| = n1;

H(2) · · ·H(m − 1) be a collection of substations (substat from now on) from layer 1 up to layer m − 2, with

|H(2)| = n2 · · · |H(m − 2)| = nm−2; and H(m) be a collection of consumption centers (Concent from now on)

at layer m − 1, with |H(m)| = nm. Therefore, the electricity power is produced at generation stations; passes

through substations, where its voltage is transformed; arrives at the last substations where its voltage is reduced;

and is finally delivered to consumption centers for its domestic and/or industrial use. To distinguish substations

from consumption centers and generators, we also define sets Ĥ = H\H(m) and HI = H(2) · · ·H(m− 1).

Let us define i(a) and j(a) as the left and right stations of line a ∈ A, respectively. Then, the notations

a ∈ A, (i(a), j(a)) ∈ A and (i, j) ∈ A are interchangeably used. Next to it, we define a partition of A into

a collection of working lines AE and a collection of new possible lines AN to be built. Finally, we create the

3Multi-period decisions on investments are not analyzed, as the Electricity and Co-generation Authority of Saudi Arabia estab-

lishes the annual budgets for the construction of new transmission lines and for the expansion of station capacities, looking at the

annual level impact and without the possibility of spreading the budget along a longer time horizon.
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subset of lines connecting generation stations to transmission stations AG = {(i, j) ∈ A : i ∈ H(1)} for the ease

of formulating terms related to power generation later on this section.

To tailor a well-suited mathematical programming model, integrating the above components, the following

assumptions have been made:

- Directional power flow. We consider a directional power flow, from highest voltage stations to lowest

voltage ones, proceeding downstream from left to right in the m-partite graph.

- Power losses and recovery. Uniform power losses are assumed for transmission lines between two points

in the system and do not account for transitions sometimes incorporated into the network.4 Losses are

recovered by injecting reactive power using dedicated equipment.

- Aggregate energy sources. Motivated by the observation in the data set, the different energy sources are

considered in aggregate production.5

- End user aggregation. Given the large number of consumers in the area under study, the local end users

at each district have been aggregated to one point. This assumption is made to reduce the model size

without affecting its functionality.

- Uniform pricing within locations. In most electricity markets prices vary for residential, commercial and

industrial customers. We assume a unique price level for each consumption center.

The detailed model formulation for this described power system is presented in the next subsection.

3.2 Optimization model

The two-stage stochastic models presented hereafter relies on two types of first-stage decisions taken by the

electricity company under demand uncertainty: (i) the electricity pricing for the consumption centers and (ii)

the capacity expansion at each station and line level. We build our model by defining the profit structure of

the electricity company and the collection of operational requirements restricting the company decisions. To do

so, a list of decision variables and state variables (whose values are determined for each operator decision) are

introduced below.

First-state decision variables:

µh price variation at consumption center h ∈ H(m);

ui level of expansion of station i ∈ Ĥ;

za binary decision for the creation of line a ∈ AN ;

State variables:

xa power transmitted through line a ∈ A;

La(xa) loss from power transmitted through line a ∈ A;

rj(a) power recovered at substation j(a) ∈ HI .
θj(a) current/voltage angles (phase difference) at station j(a) ∈ HI .6

4Such transitions (for instance, infrastructural or natural obstructions) have a minor impact on line losses.
5Fossil-based energy sources are the main energy source in SEC as the renewable sources represent only 0.2% of the total energy

generation in Saudi Arabia (IRENA 2019). For that reason, energy storage stations are also disregarded.
6In AC circuits, the sinusoidal wave of the current and voltage magnitudes do not reach their maximum values at the same time.

The fraction of a period difference between the maximum values is said to be the phase difference or nodal angles, representing

state variables in optimal power flow models.
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In vector form, let x ∈ R|A| and r ∈ R|HI | be made of the xa and rj components respectively, and define

x+
i ∈ R|HI | and x−i ∈ R|HI | as the corresponding vectors of energy inflow and outflow from i ∈ HI . The vectors

for expansion decisions are u ∈ R|Ĥ| and z ∈ R|AN |, respectively.

Using these variables, generation is defined as the total power flow produced in the first layer H(1), while

the recovery at each substation is (lower and upper) bounded by fixed proportions (ρ̌ and ρ̂) of the total loss

from the incoming lines. Likewise Aussel et al. (2019), we assume that the electricity supplier influences the

demand of the customers by setting prices. Defining Ph as the current price level and µh ∈ [−µ̂, µ̂] ⊂ [−1, 1]

as a proportion of price adjustment at each consumption center h ∈ H(m), we consider the updated electricity

price Ph (1 + µh). Similarly, by letting Dh be the expected demand at price Ph and ξh a random quantity

(taking values between ξmin and ξmax) at each consumption center h ∈ H(m), we define its electricity demand

as Dh(1 + δh(µh) + ξh), i.e., the current demand plus a shift induced by the price variation, where δh is a

real-valued function mirroring the price sensitivity of demands.

Overall, the profit structure of the electricity company can be expressed as the revenue from real sales minus

the aforementioned sources of costs using the following formula:

Profit :=
∑

h∈H(m)

Ph (1 + µh)Dh (1 + δh(µh) + ξh)

︸ ︷︷ ︸
R(µ)

−Cg
∑
a∈AG

xa − Cr
∑
j∈HI

rj︸ ︷︷ ︸
T (x,r)

−
∑
i∈Ĥ

eiui︸ ︷︷ ︸
ES(u)

−
∑
a∈AN

βdaza︸ ︷︷ ︸
EL(z)

where Cg and Cr are the generation and recovery costs (per KW), ei is the unitary cost (per KW) for capacity

expansion at station i ∈ Ĥ, da is the physical length of a line a ∈ A connecting station i(a) ∈ Ĥ to sta-

tion/consumption center j(a) ∈ H(m), and β is a proportionality constant.7 Therefore, while the total revenue

comes from the realized demand, the cost structure is made up with three terms corresponding to generation

and recovery T (x, r), stations expansion ES(u), and line construction EL(z).

The resulting profit maximization problem (for centralized risk-neutral electricity companies) is formulated

as a stochastic programming model, taking advantage of the fact that the probability distributions governing

the demands are known:8

Ĝ(C,ρ) =



max
u,z,µ

R(µ)− Eξ [Qξ(λ;C,ρ)]− ES(u)− EL(z)

subj. to Ph (1 + µh)− Ph′ (1 + µh′) ≤ Θ, for h, h′ ∈ H(m)∑
a∈A

ẑa ≤ B

f̂i − ŝi ≥ ui ≥ 0, for i ∈ Ĥ

µ̂ ≥ µh ≥ −µ̂, for h ∈ H(m)

za ∈ {0, 1}, for a ∈ AN

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

where λ> = [µ> u> z>] is the vector of first stage decisions, Qξ(λ;C,ρ) is a random variable (the generation

and recovery cost) induced by ξ, for any decision λ, Eξ is the expectation operator with respect to the random

7We are assuming that the construction cost of lines is β (exogenous parameter) times the distance da between the stations to

be connected (i.e., βdaza). This parameter will be empirically calibrated for the computational experiments run in Section 7.
8Two-stage stochastic models have been applied in a broad range of areas ranging from production planning, scheduling problems,

routing and transportation, and portfolio management. A general discussion on this class of problems is presented by Birge &

Louveaux (2011).
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term ξ, and C> = [Cg Cr], ρ
> = [ρ̌ ρ̂]. Constraints (1b) impose a maximum variation on prices between pairs

of consumption centers;9 constraints (1c) set the maximum number of lines which can be potentially built, due

to available expansion resources;10 constraints (1d) limit the maximum expansion on station capacities given

their upper and lower bounds f̂i and ŝi; finally, constraints (1f)-(1e) set the variables domain.

Once the pricing and expansion decisions are taken, function Qξ(λ;C,ρ) (whose expectation is often called

recourse function) is computed by finding the x, θ and r minimizing the generation and recovery costs and

subject to a collection of physical laws involving the power flow going through the electricity grid. This problem

can be written as a parameterized optimization model taking a realized demand noise ξ together with pricing

and expansion decisions λ as inputs:

Qξ(λ;C,ρ) =



max
x,r,θ

−Cg
∑
a∈AG

xa − Cr
∑
j∈HI

rj

subj. to (x+
h )>1 = Dh (1 + δh(µh) + ξh) , for h ∈ H(m)(

x+
i + ri − L(x−i )

)>
1 = (x−i )>1, for i ∈ HI

(x−i )>1 ≤ ŝi + ui, for i ∈ Ĥ

ρ̌L(x−i ) ≤ ri ≤ ρ̂L(x−i ), for i ∈ HI

xa = γa sin(θi(a) − θj(a)), for a ∈ AE

xa = zaγa sin(θi(a) − θj(a)), for a ∈ AN

|θi(a) − θj(a)| ≤ π/4, for a ∈ AE

|θi(a) − θj(a)| ≤ (π/4)za, for a ∈ AN

|xa| ≤Mza, for a ∈ AN

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

(2h)

(2i)

(2j)

where γa is the line conductance from station i(a) ∈ Ĥ to station j(a) ∈ Ĥ. The objective function (2a) is

the sum of generation and recovery costs.11 Constraints (2b) ensure that the amount of electricity required by

each consumption center is supplied; constraints (2c) enforce the flow balance at substations (Kirchhoff’s first

law); constraints (2d) limit the amount of outgoing power at stations;12 constraints (2e) establish lower and

9The electricity tariffs for all categories of consumption are set by a governmental decree from the Saudi Council of Ministers,

being reviewed on regular basis. There are a number of different determinants of the electricity prices, such as the oil price,

government subsidies, local weather patterns, transmission and distribution infrastructure, among others. The last review of the

electricity prices was made in 2017 and the latest tariffs were approved by the council on 12/12/2017 and applied starting from

1/1/2018. The decision taking process unfolds in two steps. Firstly, SEC propose a collection of price adjustment to the Saudi

Council of Ministers. Secondly, the latter decide on the approval of the proposed prices. Indirectly, this procedure forces SEC to

set prices which are likely to verify the regulatory requirements by the Saudi Council of Ministers (among which is the uniformity

across locations).
10The decision of building a new line is governed by numerous technical constraints such as the availability of spare feeder at

the corresponding station, the availability of reserve capacity to be fed to the line as well as the results of the line feasibility study

conducted by the electricity company.
11Recovery is carried out based on local equipment at a rate comprised within [ρ̌, ρ̂] of the total loss from the incoming lines.

The problem of finding the optimum location for introducing compensation has been already studied in the electrical engineering

literature (Rajarman et al. 1998). Nowadays utilities tend to install this equipment in the proximity of the transmission point.

Two main classes of compensation technologies can be considered: static technologies (such as capacitor bank, series compensator,

shunt reactor and static synchronous compensator), as well as dynamic technologies (such as synchronous condenser). The main

advantage of dynamic over static compensation schemes is their near-instantaneous response to changes in the system voltage. The

power system studied in this paper is made up of dynamic compensation.
12Note that lines have no electricity limit since the excess of power flow is translated into losses through lines resistance.

7



upper bounds on power loss recovery with the aid of parameters ρ̌ and ρ̂, respectively; constraints (2f)-(2g)

represent the admittance matrix in polar coordinates to verify the Kirchhoff’s second law on new possible lines

and working lines;13 constraints (2h) and (2i) force phase stability by requiring the absolute difference between

phase angle of each node pair to be less than π/4.; Finally, constraints (2j) prevent the circulation of electricity

flow in new transmission lines if not constructed.

Conventionally, Qξ(λ;C,ρ) takes value minus infinite when pricing and expansion decisions are not feasible

for all the possible realizations of the random demands, requiring λ to be feasible for any realization of ξ. As

discussed by Birge & Louveaux (2011), when modeling daily or hourly power demand, focus is on the system

reliability. For this reason, alternative technologies (called a backstop technologies) can be embedded in the

system and formulated in the model by expressing a minimum probability for meeting demands using the non-

backstop technologies (known as probabilistic constraints). Looking at average demands over the annual period

(see Section 6) allows circumventing the hourly and daily fluctuations of the power demand, while capturing a

stable behavior for the purpose of price setting and capacity expansion.

3.3 Linearization

The two-stage stochastic model (1) is a non-linear and non-convex optimization problem containing different

sources of non-linearities: the nonlinear revenue term R(µ) in (1a), the sinusoidal terms in constraints (2f)-(2g),

and the functional form of L characterizing power losses. This subsection addresses the linearization of all these

terms, resulting in a MILP approximating the original power flow model.

The linearized revenue. The revenue function R(µ) is a non-linear function due to the term µhδh(µh). We

proposed a linearization strategy based on a discretized collection of price increments P+ and price decrements

P− per KW with respect to the current price level Ph, along with the following decision variables:

w+
ph binary decision for a price increase of level p ∈ P+ at consumption center h ∈ H(m);

w−ph binary decision for a price decrease of level p ∈ P− at consumption center h ∈ H(m);

This discretization strategy often reflects the actual price adjustment policy, where a finite collection of incre-

ments or decrements are proposed to the public authority by the electricity company. The discrete approximation

of price levels and associated demands are respectively defined as

µh ≈
∑
p∈P+

µ+
phw

+
ph −

∑
p∈P−

µ−phw
−
ph and δh(µh) ≈ −

∑
p∈P+

φ+phw
+
ph +

∑
p∈P−

φ−phw
−
ph (3)

under the condition

∑
p∈P+

w+
p +

∑
p∈P−

w−p ≤ 1. (4)

where the parameters µ+
ph and µ−ph denote predefined price increments and decrements (expressed as a proportion

of the current price Ph), respectively; while φ+ph and φ−ph are the corresponding demand increase and decrease

Conversely, as extensively described in Section 7, the inclusion of stations capacities relies on the availability of annual demand

at consumption centers. Therefore, station capacities can be directly imposed, rather than probabilistic constrains to prevent

persistent excess of power flow at the daily or hourly based demand (see Birge & Louveaux (2011) for more details on the use of

probabilistic constraints for capacity expansion in power systems).
13This formulation assumes that the line reactance is much smaller compared to the line resistance. This assumption is valid for

low transmission frequencies (around 50 Hertz), which are proportional to the reactance value.
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from the price variation, respectively (expressed as a proportion of the current demand Dh). From (3)-(4), we

obtain:

R(µh) ≈ PhDh

(
1 +

∑
p∈P+

µ+
phw

+
ph −

∑
p∈P−

µ−phw
−
ph

)(
1−

∑
p∈P+

φ+phw
+
ph +

∑
p∈P−

φ−phw
−
ph + ξh

)
= PhDh

( ∑
p∈P+

κ+phw
+
ph

)
− PhDh

( ∑
p∈P−

κ−phw
−
ph + ξh

)
+ PhDh

= PhDh

( ∑
p∈P+

κ+phw
+
ph −

∑
p∈P−

κ−phw
−
ph

)
+ Sξ

(5)

where κ+ph = µ+
ph(1− φ+ph + ξh)− φ+ph and κ−ph = µ−ph(1− φ−ph + ξh)− φ−ph are exogenous parameters obtained by

factorizing the demand sensitivity coefficients with the price variations and Sξ =
∑
h∈H(m) PhDh(1 + ξh).

The linearized Kirchhoff’s second law. As assumed in the main literature, DC power flow problems

(Romero et al. 2002, Alguacil et al. 2003, Correa-Florez et al. 2014, Jenabi et al. 2015) can approximate the

power flow model (2) under normal operating conditions, in which the difference between the nodal angles

prevailing at lines extremes is small enough. This is enforced by stability constraints (2h) and (2i), as suggested

by Jenabi et al. (2015). Based on these constraints and the use of recovery equipment injecting reactive power

for the losses recovery, the sinusoidal components in (2f)-(2g) can be linearized as sin(θi − θj) ≈ θi − θj .

By replacing the product between binary and continuous variables with the aid of additional constraints, we

linearize (2f)-(2h) as follows:

xa = γa(θi(a) − θj(a)), for a ∈ AE (2e-lin)

xa ≤ γa(θi(a) − θj(a)) +M(1− za), for a ∈ AN (2f-lin-ub)

xa ≥ γa(θi(a) − θj(a))−M(1− za), for a ∈ AN (2f-lin-lb)

π/4 ≤ θi(a) − θj(a), for a ∈ AE (2g-lin-ub)

π/4 ≥ θi(a) − θj(a), for a ∈ AE (2g-lin-lb)

(π/4)za ≤ θi(a) − θj(a), for a ∈ AN (2h-lin-ub)

(π/4)za ≥ θi(a) − θj(a), for a ∈ AN (2h-lin-lb)

where M is a sufficiently large value (i.e., larger than the maximum power flow that can pass though the line).

The linearized loss function. The functional form of L constitutes another source of non-linearity in the

model, induced also from a sinusoidal function of the difference between nodal angles at the line extremes.

Based on a second order approximation of the cosine function, and using the already mentioned linearization

of the Kirchhoff’s second law (2f)-(2g), Alguacil et al. (2003) describe the power losses as:

La(xa) = εa
[
1− cos(θi(a) − θj(a))

]
≈ εa(θi(a) − θj(a))2 =

εa
γ2a

(xa)2. (6)

where εa is the line susceptance from station i(a) ∈ Ĥ to station j(a) ∈ Ĥ. This quadratic form can be

approached from below by a piece-wise linear approximation14, inducing a model relaxation that can be made

14As stated in (Krasko & Rebennack 2017), piece-wise linear approximations (see, for instance, Rebennack & Kallrath (2015))

and their representation (Vielma & Nemhauser 2011) have not been fully utilized for power flow models, while they have a successful

story for another network transmission problem such us gas pipeline transportation (see, for instance Fügenschuh et al. (2014)).
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arbitrarily close to the original feasible region by increasing the number of linear cuts.15 Hereafter, we consider

T pivot nodes and define a Taylor expansion of La(xa) around x̂a,1 . . . x̂a,T . The power losses on line a can be

bounded from below as:

La(xa) =
εa
γ2a

(xa)2 ≥ max
t

{
εa
γ2a

(x̂a,t)
2 + 2

εa
γ2a

(x̂a,t)(xa − x̂a,t)
}

(7)

Note that, the piece-wise linear function coincides with the actual power losses function in the pivots

x̂a,1 . . . x̂a,T ; whereas, the maximum deviation values are in the knots x̂0a,1 . . . x̂
0
a,T .

The linearized two-stage stochastic problem. Using (5), (2e-lin)-(2h-lin-lb) and (7), a linearized version

of (2a)–(2j) can be written as:

Q̂ξ(λ;C,ρ) =



max
x,r,`,θ

−Cg
∑
a∈AG

xa − Cr
∑
j∈HI

rj

s.t. (x+
h )>1 = Dh

(
1− φ>hwh + ξh

)
, for h ∈ H(m)(

x+
i + ri −

∑
a∈A+

i

`a

)>
1 = (x−i )>1, for i ∈ HI

(x−i )>1 ≤ ŝi + ui, for i ∈ Ĥ

ρ̌
∑
a∈A+

i

`a ≤ ri ≤ ρ̂
∑
a∈A+

i

`a, for i ∈ HI

xa = γa(θi(a) − θj(a)), for a ∈ AE

xa ≤ γa(θi(a) − θj(a)) +M(1− za), for a ∈ AN

xa ≥ γa(θi(a) − θj(a))−M(1− za), for a ∈ AN

`a ≥ 2
εa
γ2a

(x̂a,t)xa −
εa
γ2a

(x̂a,t)
2, for a ∈ A, t ∈ T

−π/4 ≤ θi(a) − θj(a) ≤ π/4, for a ∈ AE

−(π/4)za ≤ θi(a) − θj(a) ≤ (π/4)za, for a ∈ AN

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

(8h)

(8i)

(8j)

(8k)

while the first stage problem becomes

Ĝ(C,ρ) =



max
u,z,w

∑
h∈H(m)

PhDhκ
>
hwh − Eε

[
Q̂ξ(λ;C,ρ)

]
− ES(u)− EL(z)

s.t. Phµ
>
hwh − Ph′µ>h′wh′ ≤ Θ̂h,h′ , for h, h′ ∈ H(m),

w>h 1 ≤ 1, for h ∈ H(m)

z>1 ≤ B

z,w,u verifying the variable bounds

(9a)

(9b)

(9c)

(9d)

(9e)

15Note that the intrinsic difficulty in solving that problem using standard MILP techniques might increase substantially with the

number of approximation lines, thus the resulting trade-off between accuracy and performance must be considered. (See Section 7

for a numerical analysis of this aspect.)
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where we redefined Θ̂h,h′ = Θ + Ph′ − Ph and dropped the term Sξ from the revenue, as it is a constant

with respect to the problem variables. Therefore, G(C,ρ) ≈ Ĝ(C,ρ) + Sξ. We also introduced the vector

notation κh,wh,φh,µh ∈ R|P+|+|P−|, containing the components of κ+ph, κ−ph; w+
ph, w−ph; φ+ph, φ−ph; and µ+

ph,

µ−ph. Constraints (9b) are the linearized version of (1c), which are enforced by (9c), setting the selection of a

unique pricing policy.

The multi-scenario formulation. The two-stage stochastic problem (9)-(8), has still a remaining source

of non-linearity, driven by the implicitly defined recourse function Q̂ξ(λ;C,ρ). Under very specific cases (as

explored in Section 4) this problem can be analytically solved, by the algebraic characterization of the functional

form of Q̂ξ(λ;C,ρ). However, for its general solvability, two-stage stochastic problem (8)-(9) can be approxi-

mated (with arbitrary precision) by a mixed-integer linear program by means of a finite realization of ξ (often

referred to as scenarios): ξ1 . . . ξS , with associated probabilities π1 . . . πS . We denote with S the collection of

indexes corresponding to the S scenarios and consider the following deterministic equivalent problem:



max
u,z,w,x,r,`,θ

∑
s∈S

πs

 ∑
h∈H(m)

PhDhκ
>
hwh − Cg

∑
a∈AG

xas − Cr
∑
j∈HI

rjs

 −ES(u)− EL(z)

s.t. (x+
hs)
>1 = Dh

(
1− φ>hwh + ξhs

)
, for h ∈ H(m), s ∈ S(

x+
is + ris −

∑
a∈A+

i

`as

)>
1 = (x−is)

>1, for i ∈ HI , s ∈ S

(x−is)
>1 ≤ ŝi + ui, for i ∈ Ĥ, s ∈ S

ρ̌
∑
a∈A+

i

`as ≤ ris ≤ ρ̂
∑
a∈A+

i

`as, for i ∈ HI , s ∈ S

xas = γa(θi(a)s − θj(a)s), for a ∈ AE , s ∈ S

xas ≤ γa(θi(a)s − θj(a)s) +M(1− za), for a ∈ AN , s ∈ S

xas ≥ γa(θi(a)s − θj(a)s)−M(1− za), for a ∈ AN , s ∈ S

`as ≥ 2
εa
γ2a

(x̂ats)xas −
εa
γ2a

(x̂ats)
2, for a ∈ A, t ∈ T

Phµ
>
hwh − Ph′µ>h′wh′ ≤ Θ̂h,h′ , for h, h′ ∈ H(m),

w>h 1 ≤ 1, for h ∈ H(m)

z>1 ≤ B

za ∈ {0, 1}, for a ∈ AN

w+
ph ∈ {0, 1}, for p ∈ P+, h ∈ H

w−ph ∈ {0, 1}, for p ∈ P−, h ∈ H
f̂i − ŝi ≥ ui ≥ 0, for i ∈ H\H(m)

(π/4) ≥ θi(a)s − θj(a)s ≥ −(π/4), for a ∈ AE

(π/4)za ≥ θi(a)s − θj(a)s ≥ −(π/4)za, for a ∈ AN

(10)

The final MILP (10) involves (|P+|+ |P−|)|H(m)|+ |AN | binary variables and |S|(2|A|+ |Ĥ|)+
∑m−1
i=1 |H(i)|

continuous variables. A solution procedure for this large MILP is proposed in Section 5, based on a bounding

approach which exploits the cost and revenue structure to build valid inequalities.
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4 Illustrative cases of integrated planning

The modeling standpoints of this work is the substitutability among integrated decisions on electricity prices

and expansion in centralized power systems, based on the different behaviours of the scaling cost induced by

power losses. In this subsection, we consider four stylized cases in which this intricate substitution pattern can

be analytically assessed.

Let P and D be the current price level and expected demand, respectively. The following notation is adopted

throughout this section:

A = D(1 + E[ξ])(P − Cg), A− = A−D(Pκ− + Cgφ
−), A+ = A+D(Pκ+ + Cgφ

+)

along with ξ̂ = E[ξ] and ξmax = max{ξ1 . . . ξS}. The details of the algebraic development of the four examples

presented in this Section are reported in Appendix A.

4.1 Power system with two generators and one consumption center

Consider a power system with two generators and no transaction station, i.e., m = 2, H(1) = {1, 2},
H(2) = {3}, so that AE = {(1, 3)} and AN = {(2, 3)}. The following two examples provide closed-form

solutions for the optimal price and expansion in this small system, under two different assumptions on the

behaviour of power losses.

Example 1. Let us assume ρ̌ = ρ̂ = 1 and Cg = Cr. We assume that the activation of the second generator

(and its corresponding line) is endogenously decided by setting the binary variable z, with a fix cost βd. Using

the quadratic approximation (6), the optimal expected profit when prices are fixed is
A− CgD2E[(1 + ξ)2]

ε1
γ21

if z = w+ = w− = 0

A− CgD2E[(1 + ξ)2]Ξ0 − βd if z = 1, w+ = w− = 0

and when prices are endogenously decided is

A− − CgD2E[(1 + φ− + ξ)2]
ε1
γ21

if z = w+ = 0, w− = 1

A+ − CgD2E[(1− φ+ + ξ)2]
ε1
γ21

if z = w− = 0, w+ = 1

A− − CgD2E[(1 + φ− + ξ)2]Ξ0 − βd if w+ = 0, z = w− = 1

A+ − CgD2E[(1− φ+ + ξ)2]Ξ0 − βd if w− = 0, z = w+ = 1

where Ξ0 = ε2
γ2
2

+ ( ε2
γ2
2
)2( ε1

γ2
1
− ε2

γ2
2
)( ε1
γ2
1

+ ε2
γ2
2
)−1. The following list details the optimal policy for the described

power system.

- When Ξ0 >
ε1
γ21

, the activation of the second generator can never be profitable.

- When the electricity price is kept at the current level, if
ε1
γ21

> Ξ0+βd/(CgD
2E[(1+ξ)2]) then the activation

of the second generator is profitable.

- When the electricity price is increased by 100(φ+) percent, if
ε1
γ21

> Ξ0 + βd/(CgD
2E[(1− φ+ + ξ)2]) then

the activation of the second generator is profitable.

- When the electricity price is reduced by 100(φ−) percent, if
ε1
γ21

> Ξ0 + βd/(CgD
2E[(1 + φ− + ξ)2]) then

the activation of the second generator is profitable.
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Example 2. Let us assume ρ̌ = ρ̂ = 0. We assume that the substation capacity can be expanded with a unitary

cost of e monetary units per KW. Using the quadratic approximation (6), the optimal expected profit when prices

are fixed is
PD(1 + ξ̂)− Cg

γ21
2ε1

(1−R(1, 0)) if z = w+ = w− = 0

PD(1 + ξ̂)− Cg
[
γ21
2ε1

(1−R(Ξ1, 0)) +
γ22
2ε2

(1−R(1− Ξ1, 0))

]
− βd if z = 1, w+ = w− = 0

and when prices are endogenously decided is

PD(1− κ− + ξ̂)− Cg
γ21
2ε1

(
1−R(1, φ+)

)
if z = w+ = 0, w− = 1

PD(1 + κ+ + ξ̂)− Cg
γ21
2ε1

(
1−R(1,−φ−)

)
if z = w− = 0, w+ = 1

PD(1− κ− + ξ̂)− Cg
[
γ21
2ε1

(
1−R(Ξ1, φ

+)
)

+
γ22
2ε2

(
1−R(1− Ξ1, φ

+)
)]
− βd if w+ = 0, z = w− = 1

PD(1 + κ+ + ξ̂)− Cg
[
γ21
2ε1

(
1−R(Ξ1,−φ−)

)
+

γ22
2ε2

(
1−R(1− Ξ1,−φ−)

)]
− βd if w− = 0, z = w+ = 1

where Ξ1 = ε2
γ2
2

(
ε1
γ2
1

+ ε2
γ2
2

)−1
and R(a, b) = E[(1− 4 ε2

γ2
2
aD(1 + b+ ξ))1/2]. Below, we list some properties of the

optimal pricing and expansion policy for the described power system.

- When the second generator is not activated, the pricing decision depends on the demand distribution and

sensitivity φ+ and φ−, as well as on the conductance and susceptance of the first line.

- When the second generator is activated, the pricing decision depends on the demand distribution and

sensitivity φ+ and φ−, as well as on the conductance and susceptance of both lines.

- The expansion decision is mainly driven by counter-effects of Ξ1 and βd.

Both examples reveal that the optimality of price variation and expansion strongly depends on the specific

form of the scaling cost induced by power losses. In the first example, the presence of the new line (associated to

the second generator) gives rise to a switch in the impact of the demand sensitivity φ+ and φ− on the optimal

pricing policy. In the second example, since losses are not recovered the price decrease is never a profitable

option, as a higher demand gives rise to non-compensated losses.

4.2 Power system with one generators, one transaction substation and one consumption center

Consider a power system with one generator, a transaction substation and a consumption center, i.e., m = 3,

H(1) = {1}, H(2) = {2} and H(3) = {3}, so that AE = {(1, 3), (2, 3)} and AN = ∅. The following two example

provide closed-form solutions for the optimal price and expansion in this small system, under two different

assumption on the behaviour of power losses.

Example 3. We assume that ρ̌ = ρ̂ = 1 and Cg = Cr and that the substation capacity can be expanded with a

unitary cost of e monetary units per KW. Using the quadratic approximation of power losses (6), the optimal

expected profit for this power system when prices are fixed is:

A− CgD2E[(1 + ξ)2]

(
ε1
γ21

+
ε2
γ22

)
− e(D(1 + ξmax)− ŝ)
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and when prices are endogenously decided is
A− − CgD2E[(1 + φ− + ξ)2]

(
ε1
γ21

+
ε2
γ22

)
− e(D(1 + φ− + ξmax)− ŝ) if w+ = 0, w− = 1

A+ − CgD2E[(1− φ+ + ξ)2]

(
ε1
γ21

+
ε2
γ22

)
− e(D(1− φ+ + ξmax)− ŝ) if w+ = 1, w− = 0

In this case, while higher-order moments of ξ have a negative impact on the profit with sensitivity CgD
2( ε1
γ2
1

+
ε2
γ2
2
), the optimal pricing policy is not sensitive to the right-tail of the demand distribution. We see that when

losses are fully recovered, an increase in the unitary cost of substation expansion makes the electricity price

reduction become less profitable on average.

Example 4. We assume that ρ̌ = ρ̂ = 0 and that the substation capacity can be expanded with a unitary cost

of e monetary units per KW. Using the quadratic approximation of power losses (6), the optimal expected profit

for this power system when prices are fixed is:

A− Cg
[
4− 8

ε2
γ22
T (ξ̂)− 1

2
S(0) + (Ξ1 − 1)R(0)

]
− e[T (ξmax)− ŝ]

and when prices are endogenously decided is
A+ − Cg

[
4− 8

ε2
γ22
T (ξ̂ − φ−)− 1

2
S(−φ−) + (Ξ1 − 1)R(−φ−)

]
− e[T (ξmax − φ−)− ŝ] if w+ = 1, w− = 0

A− − Cg
[
4− 8

ε2
γ22
T (ξ̂ + φ+)]− 1

2
S(φ+) + (Ξ1 − 1)R(φ+)

]
− e[T (ξmax + φ+)− ŝ] if w+ = 0, w− = 1

where Ξ1 = ε2
γ2
2

(
ε1
γ2
1

+ ε2
γ2
2

)−1
and

T (a) = D(1 + a), R(a) = E
[√

1− 4
ε2
γ22
T (a+ ξ)

]
, S(a) = E

[√
1− 2Ξ1

(√
1− 4

ε2
γ22
T (a+ ξ)− 1

)]

In this case, the sensitivity on profit of higher-order moments is 8CgD
ε2
γ2
2

, the optimal pricing policy is not

sensitive to the right-tail of the demand distribution. Hence, in the case of non recovered losses, within a certain

rage the optimal pricing policy is poorly sensitive to the unitary cost of substation expansion (i.e. in the interval

in which they are sufficiently low).

Also in this second illustrative power system, both examples reveal that the optimality of price variation

and expansion strongly depends on the specific form of the scaling cost induced by power losses, unfolding at

the second-stage problem.

5 Solution method

Apart from the stylized cases studied in Section 4, the resolution of (10) for real electricity markets requires

the application of efficient algorithmic strategies. As explained by Krasko & Rebennack (2017), the use of

bounding approaches on optimal power flow problems is a promising direction that has already given rise to

good results (Frank & Rebennack 2015). Likewise, the use of piecewise-linear approximations, which have

not been fully utilized for the OPF (Vielma & Nemhauser 2011, Rebennack & Kallrath 2015), have shown a

success story in a wide range of applications (Rebennack & Krasko 2019) and particularly in related network

transmission problems (Fügenschuh et al. 2014, López-Ramos et al. 2019).
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Contextually, this section proposes a solution approach that relies on the efficient computation of lower

and upper bounds to (10), supporting the selection of well-fitted pivots for the PWL approximation (6). As

discussed in Subsection 3.2, let us consider the Taylor expansion of La(xa) around x̂a,1 . . . x̂a,T . The following

proposition quantifies the approximation error for uniformly distributed pivots.

Proposition 1 (Goodness of piece-wise linear approximation). Consider two lists of pivots represented by the

sequence {x̂a,0 + τt}Tt=0, for some τ ∈ [0, 1], being x̂a,0 a starting pivot. For any x ∈ [x̂a,1, x̂a,T ], we have

La(xa)−max
t∈T

{
εa
γ2a

(x̂a,t)
2 + 2

εa
γ2a

(x̂a,t)(xa − x̂a,t)
}
≤ 4

εa
γ2a
x̂a,0 (11)

Proposition 1 points out that the maximum error within the approximation range [x̂a,1, x̂a,T ] is driven by

the location of the starting pivot, which is unknown prior to the resolution of (10).

Coherently, to avoid the arbitrary selection of x̂a,0, the procedural steps below describes a solution method

that avoids the uninformed selection, by using the information from a relaxed problem, where an ideal power

flow in the absence of losses is estimated. Hence, we set up the case of fully recovered losses at zero cost (i.e.,

ρ̌ = ρ̂ = 1 and Cr = 0), so that variables ` can be eliminated from (10), resulting in the following linear

programming computable recourse function:

Q̂ξ(λ; [Cg 0], [1 1]) =



max
x,θ

−Cg
∑

h∈H(m)

Dh

(
1− φ>hwh + ξhs

)

s.t. (x+
h )>1 = Dh

(
1− φ>hwh + ξhs

)
, for h ∈ H(m)

(x+
i )>1 = (x−i )>1, for i ∈ HI

(x−i )>1 ≤ ŝi + ui, for i ∈ Ĥ

xa = γa(θi(a) − θj(a)), for a ∈ AE

xa ≤ γa(θi(a) − θj(a)) +M(1− za), for a ∈ AN

xa ≥ γa(θi(a) − θj(a))−M(1− za), for a ∈ AN

(π/4) ≥ θi(a) − θj(a) ≥ −(π/4), for a ∈ AE

(π/4)za ≥ θi(a) − θj(a) ≥ −(π/4)za, for a ∈ AN

(12)

Note that Q̂ξ(λ; [Cg 0], [1 1]) is piecewise constant with respect to w withing the set of λ for which there exist

a feasible power flow in (12). We have the following relation:

Ĝ(C,ρ) ≤ Ĝ([Cg 0], [1 1])

While the computation of Ĝ([Cg 0], [1 1]) does not require the selection of La(xa) around x̂a,1 . . . x̂a,T (as losses

are equal to recoveries at zero cost), its optimal flow can be used as an initial guess for the actual flow in the

resolution of (10) to select x̂a,0. Contextually, we define the resolution procedure below:

(i) Solve (12) to obtain Ĝ([Cg 0], [1 1]) and an initial guess of the flow variables and the operator decisions,

that we denote as xUB and λUB , respectively.

(ii) Using the solution in (i), build the sequence {xUBa + τt}Tt=0, with τ = (min{si(a), sj(a)} − xUBa )/T .

(iii) Using the linearization knots in (ii), compute Q̂ξ(λ
UB ;C,ρ), obtaining a lower bound ĜLB to the profit.

(iv) Using Ĝ([Cg 0], [1 1]) and ĜLB to generate valid inequalities of the operator profit and the previously

defined knots {xUB′a + τt}Tt=0, solve the final two-stage stochastic problem (10).

15



As described in the next two sections, this solution approach is applied on a comprehensive power system

data set from the Saudi Electricity Company, uncovering the value of the proposed integrated planning.

6 Integrated data on a centralized power system

The modeling design presented in section 3.2 has been tailored to fit the empirical setting presented in

this section. We interact with SEC, a leading electricity company active in Saudi Arabia, obtaining a data

set including |H| = 383 stations that are divided into |H(1)| = 15 genstats, |H(2)| = 44 transmission stations

(transtat), |H(3)| = 163 distribution stations (diststat) and 1,156,648 active consumers grouped into |H(4)| =
163 concent. These stations can be interconnected using |A| = 3480 transmission linkages, where |AE | = 402

(working lines) and |AN | = 34401 (candidate new lines).

Most of the shares of the sole electrical utility responsible for the generation, transmission, distribution and

pricing of the electricity are government owned. SEC manages the supply of electric power via four operating

regions (which are ruled by separated entities within SEC) namely, Eastern, Western, Central and Southern.

Focusing on the latter region, Table 1 provides a summary information about the main characteristics of each

station.

Genstat Transtat Diststat Concent

Current capacity
Mean 1803.33 767.05 184.76 144.82

Variance across nodes 1409809 106505 4112 2945

Maximum capacity
Mean 2147.20 1107.95 220.86 158.82

Variance across nodes 2215280 129063 3698 3605

Observed electricity flow
Mean - 39.21 3.55 0.89

Variance across nodes - 16476 606 146

number of units 15 44 163 163

Table 1: Mean and variance of the station capacities (in Megawatt) and observed power flow in SEC.

At the consumption level, the observed flows are averaged on an annual basis, consistently with time horizon

of infrastructural changes in SEC. This simplification may circumvent the hourly fluctuations of the power

demand, while allowing capturing a stable behavior for the purpose of price setting and capacity expansion.

From Table 1, one can observe that the station capacities are underused. Moreover, the network connectivity

is particularly low (i.e. only 1.2 % of the possibly feasible lines connecting substations are constructed).

(a) Generation map in the Southern Region. (b) Consumption map in the Southern Region.

Figure 1: Saudi generation and consumption areas
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Fig. 1 shows the geographical distribution of the generation stations (left side) and the consumption centers

(right side). On the figure, we can see that the power demand and its generation are not equally distributed

throughout the Southern region of Saudi Arabia. This feature entails an additional layout difficulty for the

electricity distribution and capacity expansion, where lines have different production costs and associated con-

ductance and susceptance levels.

As described in Subsection 3.1, in most electricity markets prices vary for residential, commercial and

industrial customers, and depend on the actual consumption level. Table 2 summarizes prices distribution

among these categories.

Consumption level Residential Commercial Agricultural Governmental Industrial

1 – 2000 Kwh 5 16 10 32 18

2001 – 4000 Kwh 10 16 10 32 18

4001 – 6000 Kwh 20 24 12 32 18

6001 – 8000 Kwh 30 24 12 32 18

> 8000 Kwh 30 30 16 32 18

Table 2: Power prices and levels for all categories of services (Council of Minister Decree n. 95 dated 28/01/2015).

In our model we consider a representative price level for each consumption center. Extensions to user

types would entail enlarging the number of consumption centers by considering the cross combinations between

locations and user types. In fact, the 1, 156, 648 consumers are grouped in 163 locations, which have been

aggregated in accordance with the consumer meters architecture. A graphical illustration of the dynamic

consumption level in each of the 163 locations from in 2012 to 2016 is presented in Fig. 2.16

(a) Consumption levels. (b) Relative consumption variations.

Figure 2: Consumption level (right panel) and relative consumption variation (left panel) in each of the 163 locations.

7 Computational tests and empirical analysis

As already discussed in sections 1 and 2, studies have shown theoretical and empirical evidence suggesting

strong trade-offs between pricing and expansion in network management problems (Basar & Srikant 2002,

Altman et al. 2006, López-Ramos et al. 2019). In line with these analysis, Section 4 explored the need and

opportunity of capacity expansions and price variation in four stylized cases of centralized power systems.

16By fitting an auto-regressive model of order one with location effects and time trend, we observed an almost deterministic

annual demand process with a coefficient of determination of 0.9495.

17



Using the power system data set described in the previous section and the linearized formulation (10), three

types of analysis are conducted hereafter under different cost configurations and parameter settings to uncover

the value of the proposed integrated planning:

- In Subsection 7.1, a profit sensitivity analysis is conducted to assess the impact of marginal costs and

demand elasticity on the opportunity of price variation and capacity expansion, comparing the expected

profit solution with the observed SEC profit. To emphasize the benefit of integrated decisions, the same

analysis is replicated by fixing prices at the current level.

- In Subsection 7.2, the role of the demand uncertainty is studied in line with the analysis in Section 4 to

relate the pricing and expansion decisions to the consumption knowledge and its indirect effect on profit.

- In Subsection 7.3, we go deeper into the computational aspects of the solving procedure to assess the

goodness of the PWL approximation and the optimality bounds, as defined in Section 5.

The first two numerical tests involve a battery of 26 = 64 problem instances created out of a 6–factor

experiment fixed at two levels. In these tests, we consider three demand scenarios parameterized as D̂h−SDπd,
where πd is a fluctuation from the expected demand and SD = 33.14 is the standard deviation estimated from

the data set.17 The six factors are listed below:

β: proportionality constant to the line distances, fixed at values {0.1, 0.5};
Cr: proportionality constant to the recovery cost, fixed at values {0.0001, 0.0005} ;

Cg: proportionality constant to the generation cost, fixed at values {0.00001, 0.00005};
π: vector of scenario probabilities, fixed at values {(1− π0)/2, π0, (1− π0)/2}, with π0 = {0.175, 0.5};
φ: vector of demand variations, fixed at values {0.05, 0.1};
S: demand scenarios, fixed at levels πd = {0.05, 0.1}.

The rest of parameters are set as follows. The number of approximation lines for the power losses term

is set to |T | = 12 (consistently with the analysis in Subsection 7.3); a 10% price variation is proposed, i.e.

µ+ = µ− = 0.1; the maximum number of lines has been set to B = 50 and the maximum price variation across

location at Θ = 20 Saudi Riyals (the equivalent of 4.84 Euros or 5.33 US Dollars).

All optimization procedures involved in the solving mechanism are performed using the IBM ILOG CPLEX

12.7 implementation of the branch-and-cut algorithm on a R5500 work-station with processor Intel(R) Xeon(R)

CPU E5645 2.40 GHz, and 48 Gbytes of RAM, under a Windows Server 2012 operative system.

7.1 Optimal energy production and distribution within the existing grid

Tables 3 and 4 compares the expected profit given by (10) with SEC profit, for the two respective cases of

network expansion only and network expansion with pricing (i.e. integrated planning).18 Each cell is obtained

by averaging out four instances made of two combinations of π and S, as described above. The profits are

decomposed into their expected and observed revenues and cost components. The columns contain, from left

to right, the expected revenue, the expected recovery cost, the expected generation cost and the investment

cost. The last two columns of each table contain the expected profit and the observed SEC profit. The six rows

17We also tested higher number of scenarios with no sensible changes in the operator decisions, as the flows are averaged at the

annual basis. However, the use of higher number of scenarios increased substantially the running time.
18For confidentiality reasons this profit has been estimated without a direct access to the company balance sheet. Building on the

available data on the power flow across each line, SEC profit has been computed by fixing price variations and capacity expansion

at zero and plugging the observed power flow (xa variables) into problem (10).
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of each table list the different combinations of construction costs weight β and the ratio between recovery and

generation costs Cr/Cg.

The figures in all tables show an homogeneous expected revenue within levels of φ for the MILP and SEC

solutions, suggesting that demand sensitivity is the main driving factor of the revenue term. This constant

revenue is driven by the fact that the optimal prices are common in all the instances. Conversely the cost

structure strongly fluctuates across the cost parameters. When the demand sensitivity to prices is low (i.e.

φ = 0.05) the optimized solution increases SEC profit by 39%, in the worse case, and by 140%, in the best

case. When average demand sensitivity to prices is high (i.e. φ = 0.1), the optimized solution increases SEC

profit by 24%, in the worse case, and by 497%, in the best case. As a result, the current price level, distribution

structure and recovery pattern give rise to substantial losses, which could have been avoided by proper integrated

decisions.

β
Cr
Cg

Exp. Revenue Exp. Recovery cost Exp. Generation cost Invest. cost Exp. Profit

(10) SEC (10) SEC (10) SEC (10) SEC (10) SEC

2 1511633 1511633 138154 201756 9976 10692 288 0 469245 341614

0.1 10 1511633 1511633 402798 591759 5989 6415 334 0 -56103 -434116

50 1511633 1511633 682219 1004238 2284 2138 403 0 -611310 -1254798

2 1511633 1511633 138230 201756 9977 10692 1095 0 468284 341614

0.5 10 1511633 1511633 412502 604813 5992 6415 1425 0 -76605 -460224

50 1511633 1511633 683644 1004238 2278 2138 1800 0 -615549 -1254798

Table 3: Solution comparison between (10) and SEC company for the case of no price variation (φ+ = φ− = 0). Figures are

expressed in Saudi Riyals.

φ β
Cr
Cg

Exp. Revenue Exp. Recovery cost Exp. Generation cost Invest. cost Exp. Profit

(10) SEC (10) SEC (10) SEC (10) SEC (10) SEC

0.05

2 1511697 1511633 138736 218551 9472 10692 225 0 502659 308024

0.1 10 1511697 1511633 404539 638623 5693 6415 300 0 -25242 -527845

50 1511697 1511633 706324 1092745 2121 2138 370 0 -625311 -1431812

2 1511697 1511633 139449 218551 9471 10692 916 0 500544 308024

0.5 10 1511697 1511633 416712 655651 5698 6415 1299 0 -50593 -561900

50 1511697 1511633 691713 1092745 2117 2138 1531 0 -597245 -1431812

0.1

2 1511760 1511633 98028 166132 8969 10692 168 0 543064 412861

0.1 10 1511760 1511633 269761 489320 5383 6415 276 0 203077 -229239

50 1511760 1511633 446216 817296 1956 2138 403 0 -146534 -880914

2 1511760 1511633 97859 166132 8969 10692 790 0 542780 412861

0.5 10 1511760 1511633 273781 497060 5386 6415 1098 0 194212 -244718

50 1511760 1511633 446089 817296 1958 2138 1568 0 -147446 -880914

Table 4: Solution comparison between our MILP(10) and SEC company for the case of no pricing (φ+ = φ− = 0), low elastic

demands (φ+ = φ− = 0.05) and high elastic demands (φ+ = φ− = 0.1). Figures are expressed in Saudi Riyals

Comparing tables 3 and 4, we observe an increase in profit of approximately 10% in all the analysed instances,

when pricing decisions are included along with the network expansion.

To emphasize the interdependency of operator decisions on power losses and recovery, tables 5 and 6 shows

the divergences occurring congestion-like type of costs are ignored. The first four columns report the differences

in the expected profit and expansion when looses are not considered (columns 3-6), while subsequent four

columns report differences when losses are not recovered (columns 7-10).
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β
Cr
Cg

Without losses Without recovery

Abs GAP Rel GAP ∆z ∆u Abs GAP Rel GAP ∆z ∆u

2 -1032447 - 220 % -28 0 755347 161 % 19606 247

0.1 10 -1561772 - 2784 % -33 0 755873 1347 % 24983 8387

50 -2120955 - 347 % -40 0 756428 124 % 33022 16754

2 -1033408 - 221 % -21 0 52569 11 % 11636 175

0.5 10 -1582273 - 2066 % -29 0 404402 528 % 15307 885

50 -2125193 - 345 % -40 0 756432 123 % 19138 1254

Table 5: Impacts of power losses and their recovery on the solution of the MILP(10) for the case of no price variation (φ+ =

φ− = 0). Figures are expressed in millions of Saudi Riyals

φ β
Cr
Cg

Without losses Without recovery

Abs GAP Rel GAP ∆z ∆u Abs GAP Rel GAP ∆z ∆u

0.05

2 -999593 - 199 % -24 0 721366 144 % 19493 168

0.1 10 -1531273 - 6066 % -32 0 721894 2860 % 24445 9338

50 -2135119 - 341 % -35 0 722494 116 % 33776 18053

2 -1001709 - 200 % -21 0 675087 135 % 19045 100

0.5 10 -1556623 - 3077 % -30 0 406309 803 % 15267 282

50 -2107053 - 353 % -36 0 722466 121 % 19508 653

0.1

2 -959188 - 177 % -18 0 753352 139 % 14358 278

0.1 10 -1302953 - 642 % -28 0 757535 373 % 20646 2958

50 -1656342 - 1130 % -40 0 763649 521 % 28249 5407

2 -959472 - 177 % -17 0 668885 123 % 18251 131

0.5 10 -1311818 - 675 % -26 0 399932 206 % 12200 199

50 -1657254 - 1124 % -40 0 763650 518 % 13879 788

Table 6: Impacts of power losses and their recovery on the solution of the MILP(10) for the case of no pricing (φ+ = φ− = 0), low

elastic demands (φ+ = φ− = 0.05) and high elastic demands (φ+ = φ− = 0.1). Figures are expressed in millions of Saudi Riyals

The results of tables 3 and 4 show significant differences in both situations for low and high elastic demands.

When losses are not considered, less lines are constructed (i.e., ∆z values are negative), while the opposite

happens when losses are considered without recovery. Next, comparing tables 3 and 4, we observe that neglecting

price variations when the power network is expanded induces a larger expansion level in all the analyzed

instances.

To cast a closer look into the leading effects behind these discrepancies, Table 7 reports elasticities of the

tested parameters (assuming linear relationships with order-two interaction factors) with respect to the SEC

profit, the expected profit under the integrated planning and their gap.

The main impact on the profit values hinges on the ratio between the recovery and the generation costs.

This supports the aforementioned indirect spillover of prices and expansion to the scaling costs induced by

power losses. In fact, as discussed in Section 1, when the recovery cost is much larger than the generation cost,

pricing and expansion can act as substitutes. In fact, while prices have a direct impact on the total company

revenue, they affect indirectly the scaling distribution costs, through their relations with power demands. This

indirect effect acts on the company cost structure by causing variations on the power flow at each transmission

line, similar to the outcome of building (or dismantling) parallel lines. Clearly, which of these substitutable

strategies are the most profitable depends on the infrastructure costs weight β and demand elasticity φ.
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Factor
Exp. profit

SEC MILP(10) Gap
cr
cg

-0.606 -0.585 0.062

β -0.008 -0.006 0.009

π0 0.017 0.031 0.004

πd -0.009 -0.031 -0.027

φ 0.199 0.291 -0.049
cr
cg

: β 0.003 0.010 0.007
cr
cg

: π0 0.018 0.024 -0.008
cr
cg

: πd 0.004 -0.010 -0.024
cr
cg

: φ 0.093 0.142 -0.013

β : π0 0.008 0.005 -0.013

β : πd 0.008 0.011 -0.002

β : φ 0.003 0.001 -0.006

π0 : πd 0.009 -0.010 -0.037

π0 : φ 0.006 0.010 0.001

πd : φ 0.002 -0.010 -0.020

Table 7: Elasticities of the tested parameters with respect to the SEC profit (left column), the MILP(10) profit (center column)

and their gap (right column). The coefficients are estimated using ordinary least square on standardized data.

7.2 Cost sensitivity of line creation and station expansion

This subsection digs into the effect of the demand uncertainty on prices and expansion, to empirically

support the theoretical results studied in Section 4. As a matter of fact, while our focus on average demands

over the annual period allows for an almost deterministic characterization at each location level, the effect of

any departure of this deterministic characterization should be computationally assessed. To do so, we rely on

the 6–factor experiment presented at the beginning of this section, where three scenarios are considered: an

average scenario (which coincides with the expected demands) and two tail scenarios (giving rise to departures

from this central point). These scenarios are parameterized as D̂h − SDπd, where the average scenario occurs

with probability π0 and the two tail scenarios with probability (1− π0)/2.

Subnetwork πd = 0.01 πd = 0.1

π0 0.175 0.5 0.175 0.5

φ = 0.05

Built Lines

Gen-Tran 0.00 0.00 0.00 0.00

Tran-Dist 10.63 6.50 10.50 13.38

Dist-Concent 19.25 19.63 19.88 19.88

Built Cost

Gen-Tran 0.00 0.00 0.00 0.00

Tran-Dist 203.34 132.30 194.40 225.67

Dist-Concent 558.80 598.58 588.37 618.40

Price variation Destinations 7.83 7.83 7.83 7.83

φ = 0.1

Built Lines

Gen-Tran 0.00 0.00 0.13 0.00

Tran-Dist 9.88 8.75 10.00 9.13

Dist-Concent 17.63 19.38 18.38 18.88

Built Cost

Gen-Tran 0.00 0.00 3.64 0.00

Tran-Dist 206.60 153.32 199.34 164.45

Dist-Concent 519.56 552.53 531.52 507.74

Price variation Destinations 7.83 7.83 7.83 7.83

Table 8: Summary on Line construction and price decisions depending on demand variation and scenario probabilities
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Table 8 shows the effect of the values and probabilities of tail scenarios (capturing the departure from a

deterministic case) on the optimal prices and expansion (given by solving (10)). As in the previous subsection,

the results are reported for each level of φ, β and Cr/Cg. The rows provide, from up to down, the total number

of constructed lines and its construction costs for each layer connecting consecutive stations. The last row

indicates the average price variation for the consumption centers (destinations).

Independently of the degree of uncertainty, prices are optimally increased by 10%, while small variations are

observed in the expansion pattern. Without regard to the degree of uncertainty, the optimized decisions tend

to construct and invest more in new lines at the second and third subnetworks (i.e., between the transmission

stations and the distribution stations, and between the latter and the consumption centers), due to the longer

distances (and corresponding losses) in these subnetworks.

7.3 Computational performance

Table 9 shows the efficiency and correctness of the resolution procedure described in Section 5. The tables

include (from left to right) the optimized profit and computing times for the upper and lower bounds (UB and

LB, respectively), as well as the complete MILP incorporating the two bounds as valid inequalities. Additionally,

the middle column indicates the relative gap in percentage between these bounds. The 9 rows of each table list

the different combinations of β and Cr/Cg.

φ β
Cr
Cg

Profits in millions of Saudi Riyals
GAP

CPU times in seconds

UB LB MILP(10) UB LB MILP(10)

2 780384 357942 502659 54% 29 188 1728

0.1 10 784162 -452728 -25242 158% 32 171 4299

0.05 50 787939 -1325323 -625311 268% 30 230 7200

2 780384 357942 500544 54% 29 192 885

0.5 10 784162 -483237 -50593 162% 32 212 4112

50 787939 -1325323 -597245 268% 30 234 7200

2 752440 443555 543064 41% 33 192 3301

0.1 10 756814 -130492 203077 117% 35 155 4138

0.1 50 761188 -724108 -146534 195% 38 231 7200

2 752440 443555 542780 41% 31 183 568

0.5 10 756814 -143527 194212 119% 31 169 4142

50 761188 -724108 -147446 195% 32 190 7200

Table 9: Performance results averaged on probability combinations for the case of low elastic demands φ+ = φ− = 0.05 and high

elastic demands φ+ = φ− = 0.1.

In all the 64 analyzed instances, the solver returned a feasible solution within a low mipgap. In four cases,

corresponding to the parameter configuration Cr/Cg = 50, the CPLEX solver stopped having reached the time

limit (7200 seconds). However even in those cases, the mipgap was below 0.1 and the computing times of the

bounds remain always low (i.e., between one and two orders of magnitude compared to the computing times of

the complete MILP). It is worth mentioning that some tests were carried out solving (10) without the bounds,

resulting in a poor performance. Just in a few cases, the resolution with a MIPGAP of 0.1 has been achieved

within the time limit, when bounds have not been included.

To complete the analysis of the computational performance, we cast a closer look into accuracy of the PWL

approximation (7) for different values of T . On the left panel of Fig. 3, the evolution of the running time (in

seconds) is depicted, while the right panel illustrates the evolution of the expected profit in millions of Saudi
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Riyals. Both plots are built averaging out 8 instances (at each of the 5 depicted points), obtained by the

cross-combinations of Cr, Cg and β at two levels and reporting the traces of the mean + standard deviation/2

(gray line), mean (blue line) and mean - standard deviation/2 (orange line). For this stylized test, we assume a

unique scenario for the electricity demand (deterministic case) fixed at its expected level and no price variation.

On the one hand, we observe that the profit value stabilizes at |T | > 3. On the other hand, only a tiny

increase in running time is observed when |T | > 3, being below of 2 hours.19

(a) Running time. (b) Objective function.

Figure 3: Average performance as a function of |T |, where the 5 points correspond to |T | = 0, 3, 6, 9, 12. Panel (a) reports the

running time (in seconds), while panel (b) reports the profit (in millions of Saudi Riyals).

Overall, the proposed linearization procedure described in subsection 3.3 provides a good estimation of the

power losses, needing a low number of PWL terms for approaching the quadratic constraints associated with

the power flows.

8 Conclusions and further research

This work presents an integrated planning model for power pricing and network expansion, endogenizing

the scaling costs from power losses. Aiming at uncovering the value of integrated decisions, the modeling

contribution of this work pivots on the relationship between electricity pricing and network expansion, which

is magnified by the scaling costs from power losses. In fact, while the substitutability pattern between pricing

and expansion has been largely overlooked in the power flow optimization literature, this becomes particularly

relevant in centralized electricity markets (where the headquarters are enabled to take decisions over a wide

range of operational factors).

We provide a computationally treatable resolution mechanism, where the non-linear terms in the model

are linearized based on regularity conditions of the power flow (as described in Subsection 3.3). Allowing for

stochastic demands, the two-stage stochastic program is then approximated by a mixed-integer linear program-

ming problem, using a standard multi-scenario formulation. Upper and lower bounds to the resulting model

are computed in a manner that allows the generation of PWL pivots for the linearization of the losses function

(as described in Section 5).

A case study representing the actual integrated power flow network of the Southern Region of Saudi Arabia

is proposed. Currently, the Saudi Electricity Company manages a network containing 383 stations and 402

19It is worth saying that the values of mean, mean + standard deviation/2 and mean - standard deviation/2 for the objective

function and computational time are rather similar for |T | = 0.
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transmission lines. However, the station capacities are only working at their 46 % on average, and the network

connectivity is significantly low (only 1.2 % of the possible feasible lines are constructed). Our methodology

allows SEC to optimally evaluate the balance between recovery and generation, as well as the one between

pricing and expansion. The results on a battery of 64 problem instances show improvements on the expected

company profit between 39% -140% for low demand sensitivity, and between 24% -497% for high demand

sensitivity, when taking integrated decisions. Next to it, we explored the differences in the optimal expansion

when looses are not considered and when losses are not recovered. The results reveal substantial expansion

variations, induced by the lack of integration, as well as an underestimation/overestimation of the expected

profit.

In conclusion, the proposed integrated approach for centralized power systems allows dealing with a class

of operational research problems that has been overlooked or only partially addressed in the recent literature.

Our modeling framework can be extended to cope with further features arising in other economic and national

contexts, such as: 1) storage systems for renewable energies (Olave-Rojas et al. 2017, Lara et al. 2018), 2)

multi-period decisions on network expansion (Lara et al. 2018), 3) designing a resilient networks to failures

and destruction (Benavides et al. 2013, Wang et al. 2016), 4) integration of microgrids (Ackooij et al. 2018),

5) decentralized electricity markets (Le Cadre et al. 2015, Lohmann & Rebennack 2016). When incorporating

some of these features several algorithmic enhancements should be considered (i.e., specialized decomposition

approaches (Castro et al. 2017, Lohmann & Rebennack 2016, Steeger & Rebennack 2017, Lara et al. 2018),

bi-level reformulations (Ackooij et al. 2018)), resulting in a potential stream of future research.
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