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Abstract

This paper proposes a Multicriteria Approach for the Incremental Periodic Prediction

(MAI2P). This approach is periodically applied while considering the sequential evo-

lution of the dynamic information system under the variation of the set of actions in

an ever-evolving learning sample. It is based on the Dominance-based Rough Set Ap-

proach (DRSA) and consists of three phases. The first aims at constructing a decision

table and is based on three steps: (1) constructing a representative learning sample of

“Actions of reference”, (2) constructing a coherent criteria family for the actions’ char-

acterization and (3) building a decision table. The second consists in an incremental

updating of the DRSA approximations in order to infer a preference model resulting in

a set of decision rules. The third consists of classifying the potential actions in one of

the predefined decision classes. The first two phases run at the end of the current period

and the third phase runs at the beginning of the next period. The approach MAI2P has

been applied in the context of Massive Open Online Courses (MOOCs). It has been

validated on a French MOOC proposed by a Business School in France. Experiments

showed that the pessimistic cumulative approach gives the most efficient preference

model with an F-measure and an accuracy values reaching 0.66 and 0.89 respectively.
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1. Introduction

The amount of data collected and stored into databases has significantly increased.

Consequently, the traditional data analysis techniques have become unsuitable for the

processing of such huge volumes and new techniques have emerged [16]. In this work,

we focus on the techniques used for the prediction issue. Prediction is the reasoning

from the current events to the future events they will cause [42]. Recently, it was given

a special importance in the temporal reasoning literature and was involved into several

areas such as those of medicine [16, 50], finance [56, 44] and biology [33, 49].

The prediction process is frequently based on the conventional machine learning

techniques such as the Markov chains [41, 54], the neural network [43, 53], the support

vector machine [35, 47]. However, these techniques are rather based on the size of the

learning sample without considering the quality of the assignment examples it contains

that are usually chosen randomly. According to [22], the identification of a learning

sample for the prediction model construction represents the central problem in machine

learning. In this paper, we use the DRSA (Dominance-based Rough Set Approach)

[20] as a technique of supervised learning that is based on the preferences and the

expertise of human decision makers in order to define a representative and a quality

learning sample. Moreover, we propose a DRSA-Incremental algorithm that allows the

incremental update of the DRSA decision rules following the insertion of new examples

into the learning set. This algorithm permits to minimize the computation time made by

the conventional machine learning techniques that resume the calculation from scratch

in this case of incremental learning.

Generally, the DRSA approach applies for a purpose of multicriteria classification

[24, 28, 40, 46] or prediction [44, 56] in a static information system . The multicrite-

ria classification is an ordinal classification that assigns a set of actions described by a

set of criteria to some preference ordered decision classes. Each action is assigned to

exactly one class such that the decision classes are defined in an ordinal way [8]. The

objective of the multicriteria classification is to guide the decision by a sorting that re-

sults from an assignment of each action to a decision class. Indeed, this work presents a
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Multicriteria Approach for the Incremental Periodic Prediction (MAI2P) based on our

DRSA-incremental algorithm to deal with the prediction issue in the case of a perma-

nently evolving learning set. This approach is based on the multicriteria classification

of the learning actions in order to periodically predict the decision classe to which each

potential action will belong.

In this work, we focus on the incremental learning that occurs during the sequential

enrichment of the learning set. Incremental learning refers to the situation of contin-

uous adaptation of the model based on a constant arrival of learning examples [45].

This type of learning occurs when the training examples are provided sequentially as a

series of observations or measurements. This sequential arrival leads to the sequential

enrichment of the learning set which necessarily requires the updating of the previously

taken decisions [21]. Thus, we must learn the model after each new observation that

may modify the previous prediction. The principle of the DRSA approach requires,

in this case, the updating of the decision rules or that of the DRSA approximations in

order to guarantee an updated decisions considering the evolution over time of a real

world case (e.g. chess games, weather forecasts). In the remainder of this paper we use

the term classification to say multicriteria classification.

The approach MAI2P considers the preferences of human decision makers in the

decision-making process and consists of three phases. The first aims to build a deci-

sion table and is based on three steps: first, the identification of a representative learn-

ing sample for the N predefined decision classes; then, the construction of a coherent

family of criteria for the characterization of actions; and finally, the classification of

each action in one of these decision classes. The second phase concerns the inference

of a preference model that results in a set of decision rules. It is based on the incre-

mental update of the upper and lower approximations of the decision classes unions in

the DRSA approach. The third phase consists of the early classification (prediction) of

the “Potential Actions” using the previously inferred preference model. The first two

phases run at the end of the current period and the third phase runs at the beginning of

the next period. The approach MAI2P has been implemented in the context of MOOCs

and has been validated on a French MOOC proposed by a Business School in France.

The paper is organized as follows: Section 2 presents the background. Section 3
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discusses the related work. Section 4 introduces the approach MAI2P proposed for the

periodic prediction. Section 5 deals with the algorithm DRSA-Incremental proposed

for the incremental update of the DRSA approximations at the second phase of the ap-

proach MAI2P. Section 6 presents a case study and discusses the corresponding results.

Section 7 concludes the paper and advances some prospects.

2. Dominance-based Rough Set Approach (DRSA)

The DRSA approach was proposed by Greco et al. [20] and was inspired from the

Rough Sets Theory [38]. It allows to compare actions through a dominance relation and

takes into account the preferences of a decision maker to extract a preference model

resulting in a set of decision rules. According to DRSA, a data table is a 4-tuple S =

〈A,F,V, f〉, where:

• A is a finite set of reference actions,

• F is a finite set of criteria,

• V = ∪g∈FVg is the set of the possible values of criteria, and

• f denotes an information function f : A×F −→ V such that f (x, g) ∈ Vg,∀x ∈

A,∀g ∈ F .

F is often divided into a subset C 6= ∅ of condition attributes and a subset D 6= ∅ of

decision attributes such that C∪D = F and C∩D = ∅. In this case, S∪D is called a

decision table. In multicriteria decision making, the scale of condition attributes should

be ordered according to a decreasing or an increasing preference of a decision maker.

Such attributes are called criteria. We also assume that the decision attribute set D={d}

is a singleton that partitions A into a finite number of decision classes Cl= {Cln,n ∈

{1, ...,N}}, such that each x ∈ A belongs to one and only one class. Furthermore,

we suppose that the classes are preference-ordered, i.e., for all r, s ∈ {1, ...,N} such

that r > s, actions from Clr are preferred to actions from Cls. The approach DRSA

introduces a set of parameters that will be defined and explained using the decision

table described below (Table 1):
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Table 1: Decision table

g1 g2 g3 g4 D

A1 2 2 3 3 3

A2 1 2 2 3 3

A3 2 1 1 2 1

A4 1 2 3 1 2

A5 2 1 3 3 2

A6 1 2 1 1 1

A7 2 2 2 3 3

A8 1 1 1 2 1

A9 2 1 2 3 3

A10 1 2 2 2 2

A11 1 2 3 3 2

Example 1: Table 1 gives the decision table used in this paper. The actions

set A = {Ai : i = 1,2, . . . ,11} contains eleven actions. Each action is described us-

ing four condition criteria P = {g1,g2,g3,g4} and a decision criterion D. Through-

out this paper, we consider that the decision table initially contains only the ac-

tions {A1,A2,A3,A4,A5,A6}. Thus, we will not consider for the moment the actions

{A7,A8,A9,A10,A11}.

In DRSA, the represented knowledge is a collection of downward unions Cl≤n and

upward unions Cl≥n of decision classes such that: Cl≤n = ∪s≤nCls, Cl≥n = ∪s≥nCls;

n ∈ {1..N}. The assertion “x ∈ Cl≤n ” means that “x belongs to at most the decision

class Cln”, while “x ∈Cl≥n ” means that “x belongs at least to the decision class Cln”.

Example 2: Consider Table 1, the downward unions are: Cl≤1 = Cl1 =

{A3,A6}, Cl≤2 = Cl1 ∪ Cl2 = {A3,A4,A5,A6} and Cl≤3 = Cl1 ∪ Cl2 ∪ Cl3 =

{A1,A2,A3,A4,A5,A6}. The upward unions of decision classes are: Cl≥1 =Cl1∪Cl2∪

Cl3 = {A1,A2,A3,A4,A5,A6}, Cl≥2 = Cl2 ∪Cl3 = {A1,A2,A4,A5} and Cl≥3 = Cl3 =

{A1,A2}.
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Dominance relation. Let P ⊆ C be a subset of condition criteria. The dominance

relation Dp associated with P is defined for each pair of actions x and y thus:

∀(x,y) ∈ A2, x Dpy⇔ f(x,g j)3 f(y,g j) ∀g j ∈ P

To each action x ∈ A, two sets are associated:

• P-dominating set D+
P (x) = {y ∈ A : yDpx} containing actions that dominate x.

• P-dominated set D−P (x) = {y ∈ A : xDpy} containing actions dominated by x.

Example 3: Consider Table 1 and suppose that all condition criteria are ordered

according to increasing preferences. Based on this information, it is easy to estab-

lish that A1 dominates all actions because f(A1,g j) < f(Ai,g j) ∀g j ∈ P and Ai ∈ A.

However, there is no dominance relationship between actions A2 and A3, because

the evaluation of A2 is preferred than A3 on criteria g2, g3 and g4 but the evalua-

tion of A3 is better than A2 on criterion g1. Consequently, the P-dominating sets are

as follows: D+
P (A1) = {A1}, D+

P (A2) = {A1,A2}, D+
P (A3) = {A1,A3,A5}, D+

P (A4) =

{A1,A4}, D+
P (A5)= {A1,A5} and D+

P (A6)= {A1,A2,A4,A6}. The P-dominated sets are

as follows: D−P (A1) = {A1,A2,A3,A4,A5,A6}, D−P (A2) = {A2,A6}, D−P (A3) = {A3},

D−P (A4) = {A4,A6}, D−P (A5) = {A3,A5} and D−P (A6) = {A6}.

Lower approximation. The P-lower approximations of (Cl≤n ) and (Cl≥n ) with respect

to P⊆C, respectively denoted P(Cl≤n ) and P(Cl≥n ), are defined as follows:

• P(Cl≤n )= {x ∈ A : D−P (x)⊆Cl≤n , ∀n ∈ {1..N}}

• P(Cl≥n )= {x ∈ A : D+
P (x)⊆Cl≥n , ∀n ∈ {1..N}}

The P-lower approximation of Cl≤n (resp. Cl≥n ) contains all actions whose P-dominated

(resp. P-dominating) set is assigned with certainty to classes that are at most (resp. at

least) as good as Cln.

Upper approximation. The P-upper approximations of (Cl≤n ) and (Cl≥n ) with respect

to P⊆C, respectively denoted P(Cl≤n ) and P(Cl≥n ), are defined as follows :

• P(Cl≤n ) = {x ∈ A : D+
P (x)

⋂
Cl≤n 6=�, ∀n ∈ {1..N}}
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• P(Cl≥n ) = {x ∈ A : D−P (x)
⋂

Cl≥n 6=�, ∀n ∈ {1..N}}

The P-upper approximation of Cl≤n (resp. Cl≥n ) that contains all actions with P-dominating

(resp. P-dominated) set is assigned to a class at most (resp. least) as good as Cln.

Example 4: Using the results of Example 2 and Example 3; the lower approxima-

tion is calculated as follows: P(Cl≤1 ) = {A3,A6}, P(Cl≤2 ) = {A3,A4,A5,A6}, P(Cl≤3 ) =

{A1,A2,A3,A4,A5,A6}, P(Cl≥1 ) = {A1,A2,A3,A4,A5,A6}, P(Cl≥2 ) = {A1,A2,A4,A5},

P(Cl≥3 ) = {A1,A2}. For example, D−P (A3) = {A3}⊆Cl≤1 = {A3,A6} then A3 ∈P(Cl≤1 ).

In this example, all actions were classified with certainty and so the upper approxima-

tions still the same that the lowr ones. Hence, we have P(Cl≤1 ) = {A3,A6}, P(Cl≤2 ) =

{A3,A4,A5,A6}, P(Cl≤3 ) = {A1,A2,A3,A4,A5,A6}, P(Cl≥1 ) = {A1,A2,A3,A4,A5,A6},

P(Cl≥2 ) = {A1,A2,A4,A5}, P(Cl≥3 ) = {A1,A2}.

P-doubtful region. The P-boundaries (or P-doubtful region) of Cl≤n and Cl≥n are de-

fined as follows:

• Bnp (Cl≤n )= P(Cl≤n )- P(Cl≤n )

• Bnp (Cl≥n )= P(Cl≥n )- P(Cl≥n )

The P-boundaries group actions that can be ruled neither inside nor outside as members

of class Cln.

Decision rule. A decision table may be considered as a set of “if...then...” decision

rules, where the condition part specifies values assumed by one or more condition

criteria and the decision part specifies an assignment to one or more decision classes.

An action x ∈ A supports a decision rule if its description matches both the condition

and the decision parts of the rule. A decision rule covers an action x if the description

of x matches at least the condition part of the rule. Decision rules used in this paper are

represented as follows:

• if f(x,g1)≥ r1∧ ...∧ f (x,gm)≥ rm then x ∈Cl≥n ; such that (r1...rm)∈ (vg1 ...vgm ).

• if f(x,g1)≤ r1∧ ...∧ f (x,gm)≤ rm then x ∈Cl≤n ; such that (r1...rm)∈ (vg1 ...vgm ).
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3. Related work

In this section, we present some works using DRSA for a prediction purpose within

a static information system. Then, we discuss two methods proposed for the incremen-

tal update of the decision rules when changing the actions set.

3.1. Static prediction models based DRSA

The DRSA approach was used in several areas such as the medicine field [39], the

marketing [27] and the finance field [56, 44] for a prediction purpose. The objective

was to provide the decision makers with a visibility on a future situation so that they

could make a proper decision and avoid undesirable consequences.

Author in [56] used the approach DRSA for a hybrid prediction of a proba-

ble company bankruptcy. The classification is based on the discriminator formula

Z = 1.2∗X1+1.4∗X2+3.3∗X3+0.6∗X4+0.99∗X5 proposed by Altman [1] such

that X1 is the Capital Fund
Total assets ; X2 is the Retained earnings

Total assets ; X3 is the earnings be f ore interestand taxes
Total assets ;

X4 is the equity market value
Total liabilities and X5 is the Sales

Total assets . Three decision classes are thus iden-

tified: The decision class P was assigned to prosperous companies if Z > 2.67, the

decision class B was dedicated to bankrupt companies if Z < 0 and the decision class

M was reserved to companies about to bankrupt if 0 < Z < 2.67. The evaluation crite-

ria were defined in [18] and cover the mecanisms allowing a business to succeed. For

each criterion, a scale of seven levels ordered in an ascending order of preference from

1 to 7 was fixed (1: Fort, 6: very low, 7: no idea). The method was tested on data from

seven Quebecois companies. The Z value was calculated over a period of 5 years. The

preference model obtained was built by five decision rules and is characterized by a

quality of approximation of 0.57.

Shen and Tzeng [44] proposed a method based on DRSA for the prediction of the

financial performance of commercial banks. The method is based on two phases. The

first aims at reducing the complexity of the involved attributes and then at inferring a

set of decision rules. It consists of two steps: a discretization step of both the condition

and the decision attributes and an inference step of a set of decision rules of the type if-

then. The second phase targets to refine the decision rules via the neuro fuzzy inference
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technique which would identify the fuzzy intervals of each attribute. It also permits to

know wether the criterion is considered as a cause or an effect of performance. The

report selected to measure performance is the roundly on assets (ROA) which indicates

the development or the deterioration of the financial performance. The authors iden-

tified a set of twenty five criteria such that to each criterion is assigned a three- level-

scale that varies from low to medium to high. This method is validated through data

relative to five banks in Taiwan. Data collected during the period 2008 to 2011 are used

for the model training and those which are specific to the year 2012 are applied to the

model validation. Based on a descending ranking of the banks’ ROA, three decision

classes are defined: “Good” for the interval of the first third of banks, “Medium” for

the second third interval and “Bad” for the last third interval. The application of this

method generated four decision rules refined by the fuzzy technique.

In both methods, the information system is kept stable over several years without

updating neither the set of criteria nor that of actions. In this case, the decision taken

may be obsolete since it does not consider the factors that may emerge between the

learning and the validation periods.

3.2. Models for the incremental update of the approach DRSA under the variation of

the set of actions

The DRSA information system comprises the criteria [57], the actions [21, 26]

and the criteria values [12]. Sometimes, one or all of these elements can change over

time in order to keep a dynamic view of the knowledge to deal with. In such dynamic

situation, the traditional rough set methods recalculate the approximations by scratch

which makes the computation time too high, a thing that is discouraged especially in the

case of real time decisions. In literature, some approaches proposed for the incremental

update of the information system under the variation of the set of actions [21, 26], the

set of criteria [57] or the criteria values [12].

Authors in [21] propose an algorithm, called Glance, to update the rules base in the

case of an incremental learning. This algorithm considers the actions as negative ones.

In fact, it establishes decision rules that do not cover the action x in all the unions of the

decision classes to which x does not belong. Hence, each rule in a given union does not
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need to absolutely satisfy x, if x does not belong to the union, but it cannot also satisfy

the action x and remains without any support. Thus, the unsupported decision rules

induced by the Glance algorithm are said “non-robust” and so is said the algorithm. The

Glance algorithm stores in the computer memory only the decision rules and not the

training examples. This makes it economical compared to the use of the memory space.

Its complexity is linear considering the number of actions and exponential considering

the number of criteria.

The authors in [26] propose an incremental update algorithm of the DRSA approx-

imations when adding or deleting an action in or from the information system. This

method is based on the P-generalized decision [25] for calculating the P-upper and P-

lower approximations of each decision class union. This incremental update requires:

first, the update of the upward and the downward of the unions of the decision classes;

second, the update of the P-dominated and the P-dominating of each action in the in-

formation system and finally, the update of the upper and the lower approximations

of the unions of the decision classes. This method minimizes the computational time

when an action enters in or exits from the information system. It is also sensitive to the

number of actions and to that of attributes. However, the algorithm does not affect the

quality of the decision rules since it just updates the approximation and does not make

any requirement about the induction algorithm.

In this work, we generalize the algorithm presented in [26] in order to obtain robust

decision rules that consider the simultanious entry of many actions instead of only one.

4. Multicriteria Approach for the Incremental Periodic Prediction

In this section, we propose a multicriteria approach for the incremental and periodic

prediction of the decision class Cln to which an action x is likely to belong, such that

n ∈ {1..N} and N is the number of decision classes. This method consists of three

phases: The first concerns the construction of the decision table. The second aims to

infer a preference model based on the incremental update of the DRSA approximations.

The third is the classification of each “Potential action” into one of the N predefined

decision classes using the previously inferred preference model (cf. Figure 1).
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Figure 1: Incremental method for the periodic multicriteria classification

4.1. Phase 1: Construction of the decision table

This phase comprises three steps: (1) the construction of a learning set of actions,

called “actions of reference”, (2) the construction of a coherent family of criteria to

actions characterization and (3) the construction of the decision table.

Step 1.1: The identification of a set of “Actions of reference”. Given the growing mass

of data, it is difficult to analyse all of them. Therefore, it is necessary to define a learn-

ing sample containing a sufficient number of representative examples for each of the

predefined decision classes Cln such that n ∈ {1..N}. In order to respect the terminol-

ogy used in the DRSA approach, we call the learning examples “Actions of reference”.

This set is identified by decision makers who must be expert in the application field.

However, since the human dimension is strongly involved in the construction phase

of the decision table (selection and classification of the “Actions of reference”), the

sample size to be proposed must be taken into account. In effect, from a psycholog-

ical viewpoint [30], a human decision maker is characterized by a cognitive capacity

representing the upper limit to which he can associate his responses to the stimuli that
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are granted to him. Thus, to construct a learning set, it is sufficient to respect the qual-

ity of the selected actions, regardless of their size. Otherwise, a large learning sample

may degrade the quality of the assignment decisions made by the decision maker, and

consequently that of the decision rules. Thus, this step aims to build a set of “Actions

of reference” of both high quality and reasonable size, in harmony with the cognitive

capacity of the human decision maker.

Since the approach MAI2P is intended to be used in a context of dynamic infor-

mation systems, it must deal with the non-stable “Actions of reference” that vary pe-

riodically throughout the prediction process. Thus, each period Pi, the decision maker

identifies a new set A′i of “Actions of reference” which is added to all of the “Actions

of reference”, Ai−1, of all the previous periods. The set of “Actions of reference” of the

period Pi is therefore Ai = A′i + Ai−1; ∀i ∈ {2..T} such that T is the number of periods

constituting the prediction process.

The number of “Actions of reference” is to be fixed by the experts decision makers

according to their cognitive capacities, preferences and expertises. It can change from

one period to another (i.e. A′i 6= A′i−1), depending on the context characteristics and the

application objectives.

In the case of real-time decision where the saving-time becomes important, it is

possible to use one of the clustering techniques to constitute the sets of “reference

action”. These techniques allow to automate this step in order to prevent the human

intervention which is time consuming.

Step 1.2: The construction of a coherent family of criteria. A criteria family is built

by the decision makers and must provide the judgment tools for them. It must check

the coherence between their expectations and the needs of the concerned actors [4].

Compared to an attribute, a criterion must be used to measure the preferences of a

decision maker from a personal viewpoint [34].

Mousseau and his co-authors [34] defined two approaches to construct a criteria

family: the top-down approach and the bottom-up approach. The top-down approach

consists in declining one or more strategic objectives according to viewpoints and di-

mensions [15]. Whereas, the bottom-up approach consists in building a family of crite-
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ria from a list of indicators that can influence the opinion of decision makers regarding

the characterization of actions. In multicriteria decision making these indicators are

called “Consequences” [34]. This approach is also based on information gathered dur-

ing interviews with experts in the field. In this work, we adopt the mixed approach that

combines both bottom-up and top-down approaches. Once the list of consequences is

established, direct meetings must be held with the decision makers to obtain their pref-

erential information on each criterion. To be coherent, a criteria family must satisfy

completeness, cohesion and non-redundancy [13]. In this context, we consider that the

criteria family is stable during the prediction process.

Step 1.3: The construction of the decision table. This step is made of two sub-steps:

(i) the construction of the information table, and (ii) the construction of the decision

table. The information table Si built at the end of a period Pi is a matrix whose rows

form the set of the “m” “Actions of reference” identified in step 1.1 and contained in

A′i and whose columns represent the “p” evaluation criteria constructed in step 1.2 and

contained in F1. This matrix contains the evaluation function fi(A j,i,gk) of each action

A j,i ∈ A′i on each criterion gk ∈ F1 such that i ∈ {1..T} , j ∈ {1..m} and k ∈ {1..p}.

Variables T, m and p are respectively the number of considered periods, the size |A′i| of

the “Actions of reference” set defined in the ith period and the size |F1| of the criteria

family.

Analogously, variables A j,i and gk constitute respectively the jth “Action of refer-

ence” in the set A′i and the kth criterion. We remind that A′i and F1 represent respectively

the set of “Actions of reference” constructed in the ith period and the family of criteria

identified at the beginning of the decision process. Once the information table Si is

complete at the end of the ith period, we have to build the decision table with the expert

decision makers during some meetings. Thus, we only have to add a column to the end

of the information table. The last column concerns the affectation of each action of

reference in one of the predefined decision classes (cf. Table 2).

The decision table is thus composed of “m” rows and “p+1” columns. The assign-

ment decisions made by the decision maker are based on both his expertise and the

assessment vectors. We call D j = {d1, j,d2, j, ..,dm, j} the decision vector of the assign-
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Table 2: Example of a decision table built at the Period j

g1 ... gk ... gp D j

A1, j f (A1, j,g1) ... f (A1, j,gk) ... f (A1, j,gp) d1, j

A2, j f (A2, j,g1) ... f (A2, j,gk) ... f (A2, j,gp) d2, j

... ... ... ... ... ... ...

Am, j f (Am, j,g1) ... f (Am, j,gk) ... f (Am, j,gp) dm, j

ment of each “Action of reference” in one of the decision classes.

4.2. Phase 2: Inference of a preference model based on the incremental update of the

DRSA approximations

The preference model is a set of decision rules permitting to classify each action

in one of the defined decision classes. It is inferred by applying an induction algo-

rithm that takes as input the lower and the upper approximations of the upward and

the downward unions of the decision classes. In this work, we used the rules induction

algorithm DOMLEM proposed by the approach DRSA [20]. This algorithm generates

a minimal set of dominance-based rules covering all the examples in the decision table.

This phase runs at the end of each period Pi during the prediction process and takes as

input the decision table build in “Phase 1”. This phase is made of two steps: The first

consists in updating the upper and the lower approximations of the DRSA by applying

our algorithm DRSA-Incremental on the decision table (cf. Section 5). The second

step infers a preference model by applying the algorithm DOMLEM on the updated

approximations.

As quoted above, this approach deals with the case of dynamic information sys-

tem under the variation of the set of “Reference actions”. Thus, the decision maker,

receiving information in portions, should learn how to deal with this situation before

all information about it is available. If we consider the traditional application of the

DRSA approach, during each period, the new set of the decision rules is inferred by

recalculating the approximations from scratch based on the new decision table. This
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method is correct but consumes much computational time. According to [29], this sit-

uation of sequential flow of information is a primordial reason to incrementally update

the DRSA approximations. Hence, instead of recalculating from scratch, we have to

update the approximations using our DRSA-Incremental algorithm.

The DRSA-Incremental algorithm updates the DRSA approximations that will be

provided as an input to the algorithm DOMLEM in order to generate a preference model

resulting in a set of decision rules. The preference model of the period Pi will be given

as input to phase 3 in order to classify the “Potential actions” at the beginning of the

next period Pi+1.

4.3. Phase 3: Classification of the “Potential actions”

The third phase uses the previously inferred decision rules to assign each of the

“Potential actions” to one of the N predefined decision classes.

A “potential action” is defined as a generic term used to describe an action or a

referent of a decision. An action is considered potential, if it can be implemented or

simply if it is considered “fertile” in a decision making context. The notion of potential

action clarifies the nature of what constitutes the decision problem and formalizes the

decision purpose.

This approach runs periodically: the first and the second phases run at the end of

each period Pi such that i ∈ {1..T − 1} while the third phase runs at the beginning of

each period Pi such that i ∈ {2..T}. The three phases are chained in a way that each

phase inputs the output of the previous one (cf. Figure 1).

4.4. Reduction of the assignment intervals

The DRSA decision rules assign each action to approximate sets of decision classes

called downward and upward unions (cf. Section 2). However, x cannot belong to more

than one decision class. Thus, the objective of this step is to reduce the assignment in-

terval to a single decision class either by the method proposed in [9] based on the “min”,

“max” and “mediane”, or the method proposed in [5] based on a score classification.

Let I(x) = {m(x),M(x)} the assignment interval of an action x ∈ A where m(x) =

min{N1(x)∪N2(x)} and M(x) = max{N1(x)∪N2(x)} such that N1(x) = {Clt ;x ∈

Cl>t } and N2(x) = {Clt ;x ∈Cl6t }. This notation distinguishes two cases:
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• Case 1: if m(x) = M(x) then x ∈ m(x) or x ∈M(x).

• Case 2: if m(x)< M(x) then x can be assigned to more than one class. Thus, to

reduce the interval I(x) to a single class, we apply one of these three rules:

– Case 2.1: Use the pessimistic approach by applying the “min” operator

that assigns the action to the minimal decision class so as f (x,d) = m(x).

– Case 2.2: Use the optimistic approach by applying the “max” operator that

assigns the action to the maximal decision class so as f (x,d) = M(x).

– Case 2.3: Use the median approach. In the case of odd number of decision

classes, we find a single class that represents the median . In the case of

even number of decision classes, the median is represented in two decision

classes, denoted {m′,M′}. In this case, we apply either the “floor” of the

median which represents the “min” (i.e. f (x,d) = m′), or the “ceil” which

represents the max (i.e. f (x,d) = M′).

– Case 2.4: Use the score classification method. For each decision class Cln

in which an action is likely to belong, a classification score is calculated.

The score represents the quotient between (1) the cardinalities of the set of

actions verifying the condition part of the rule that classified the concerned

action and the set of actions belonging to class Cln, and (2) the cardinality

of the set of actions simultaniously verifying this condition part and be-

longing to class Cln. The action is finally assigned to the decision class

with the highest score. This method is detailed in [5].

The choice of the reduction method strongly depends on the context characteristics

and the classification purpose. The decision makers must study the advantages of each

method compared to their expectations for deciding which one is most appropriate.

Example 5: we consider the downward unions of decision classes Cl63 =

{Cl1,Cl2,Cl3} and x an action such that x ∈Cl63 . We plan to reduce the assignment in-

terval I(x) = {m(x),M(x)}= {Cl1,Cl3} to affect the action x to a single decision class.

If we apply the pessimistic approach we obtain f (x,d) = m(x) =Cl1. If we apply the
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optimistic approach we obtain f (x,d) = M(x) =Cl3. If we apply the median approach

we obtain f (x,d) = middle(x) =Cl2 since the number of decision classes is even.

Compared to the conventional machine learning techniques that are already used

for a prediction purpose, the approach MAI2P based-DRSA strongly depends on the

experts’ preferences to strictly identify both sets of “reference actions” and criteria in

order to rigorously caracterize the potential actions. Moreover, this approach permits

to avoid the unbalanced data problem that occurs because of the presence of a majority

class in a prediction context [6].

5. DRSA-Incremental: algorithm for the incremental update of the DRSA ap-

proximations following the addition of a set of actions

In this section, we present the “P-generalized Decision” defined in [25] and on

which the incremental update algorithm is based. Then, we present the approach pro-

posed for the incremental update of the DRSA approximations.

5.1. The “P-generalized Decision”

The “P-generalized Decision” defines an interval of decision classes to which an

action may belong. It is presented as follows:

∀ action x ∈ A, δp(x) = 〈l p(x),up(x)〉 is called the P-generalized decision of the

action x, where:

• l p(x) = min{n ∈ N : D+
P (x)∩Cln 6=∅}

• up(x) = max{n ∈ N : D−P (x)∩Cln 6=∅}

Based on this definition, the DRSA approximations can be presented as follows:

• P(Cl≥n ) = {x ∈ A : l p(x)≥ n}

• P(Cl≥n ) = {x ∈ A : up(x)≥ n}

• P(Cl≤n ) = {x ∈ A : up(x)≤ n}

• P(Cl≤n ) = {x ∈ A : l p(x)≤ n}

These definitions will be used in parallel with the definitions proposed by Greco et

al. [20], in order to incrementally update the DRSA approximations.
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5.2. Incremental update of the DRSA approximations following the addition of a set of

actions

The entry of an action x+ in an information system causes the variation of the “P-

dominating” as well as the “P-dominated” sets and so it is the case for the lower and

the upper approximations of the DRSA approach. Thus, Li et al. [26] proposed an

algorithm for the incremental update of these approximations following the entry of

only a new action. However, in our context, it is more interesting to consider the simul-

taneous entry of a set of actions in the information system. To this end, we generalize

the algorithm proposed in [26].

We start by defining some notations we will use throughout the approach process.

We note that an action x+ belongs to one and only one decision class Cln′ . Let:

• ∆+ : be the set of k actions to enter in the information system;

∆+ = {x+} and |∆+|= k

• ∆
+
n< : be the sub-set of actions in ∆+ belonging to a decision class Cln′ that is

inferior than Cln:

∆
+
n< = x+ ∈ (∆+∩Cln′) such that n′ < n

• ∆
+
n> : be the sub-set of actions in ∆+ belonging to a decision class Cln′ that is

superior than Cln:

∆
+
n> = x+ ∈ (∆+∩Cln′) such that n′ > n

• ∆
+
n= : be the sub-set of actions in ∆+ belonging to a decision class Cln′ that is

equal to Cln:

∆
+
n= = x+ ∈ (∆+∩Cln′) such that n′ = n

We note that
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Ai+1 = Ai +∆

+

∆
+
n< ∪∆

+
n> ∪∆

+
n= = ∆

+

∆
+
n< ∩∆

+
n> ∩∆

+
n= =∅

To consider the evolution of the information system over many periods, we adopt

the notation presented in Table 5.2.

Table 3: Symbolic representations of notations in DRSA in the Periodi and the Periodi+1

Periodi Periodi+1

Information table 〈Ai,Fi,Vi, fi〉 〈Ai+1,Fi+1,Vi+1, fi+1〉

P-dominating set of the action x D+
i p(x) D+

i+1 p(x)

P-dominated set of the action x D−i p(x) D−i+1 p(x)

The decision class number n Cli,n Cli+1,n

Upward union of Cln Cl≥i,n Cl≥i+1,n

Downward union of Cln Cl≤i,n Cl≤i+1,n

Lower approximation of Cl≥n P(Cl≥i,n) P(Cl≥i+1,n)

Upper approximation of Cl≥n P(Cl≥i,n) P(Cl≥i+1,n)

Lower approximation of Cl≤n P(Cl≤i,n) P(Cl≤i+1,n)

Upper approximation of Cl≤n P(Cl≤i,n) P(Cl≤i+1,n)

Example 6: We consider that in the week i+1, the actions set ∆+ =

{A7,A8,A9,A10,A11} is inserted to the decision table Di as described in Table 1. Thus,

the sub-sets that we can construct from ∆+ are as follows: ∆
+
1< = {�}, ∆

+
2< = {A8},

∆
+
3< = {A8,A10,A11}, ∆

+
1> = {A7,A8,A9,A10,A11}, ∆

+
2> = {A7,A9}, ∆

+
3> = {�}, ∆

+
1= =

{A8}, ∆
+
2= = {A10,A11}, ∆

+
3= = {A7,A9}.

Example 7: First, we have to calculate the P-dominated and the P-

dominating sets of each inserted action as described in section 2. We ob-

tain then: D+
i+1 p(A7) = {A1,A7}, D+

i+1 p(A8) = {A1,A2,A3,A5,A7,A8,A9,A10,A11},

D+
i+1 p(A9) = {A1,A5,A7,A9}, D+

i+1 p(A10) = {A1,A2,A7,A10,A11} and D+
i+1 p(A11) =

{A1,A11}. Similarly, we calculate D−i+1 p(A7) = {A3,A6,A7,A8,A9,A10}, D−i+1 p(A8) =

{A8}, D−i+1 p(A9) = {A3,A8,A9}, D−i+1 p(A10) = {A6,A8,A10} and D−i+1 p(A11) =
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{A2,A4,A6,A8,A10,A11}. As well, we need to calculate the P-generalized decision

of each inserted action. The obtained results are as follows: li+1 p(A7) = min{3,3} = 3,

li+1 p(A8) = min{3,3,1,2,3,1,3,2,2} = 1, li+1 p(A9) = min{3,2,3,3} = 2, li+1 p(A10)

= min{3,3,3,2,2} = 2, li+1 p(A11) = min{3,2} = 2, ui+1 p(A7) = max{1,1,3,1,3,2} =

3, ui+1 p(A8) = max{1} = 1, ui+1 p(A9) = max{1,1,3} = 3, ui+1 p(A10) = max{1,1,2}

= 2, ui+1 p(A11) = max{3,2,1,1,2,2} = 3. The information about the inserted actions

will be used to update those of the initial actions.

The update of the DRSA approximations is based on three steps (cf. Algorithm

1): first, the update of the upward and the downward sets of decision classes. Second,

the update of the P-dominated and the P-dominating sets. Third, the update of the

approximation sets. The proofs of different propositions defined below are detailed in

Appendix C.

5.2.1. Incremental update of the upward and the downward decision classes

Each action x+i ∈ ∆+ belongs to one and only one decision class. We suppose that

x+i ∈ ∆
+
n< or x+i ∈ ∆

+
n> or x+i ∈ ∆

+
n= . The upward and the downward of the unions of the

decision classes are updated according to the lemma 1:

Lemma 1. Let ∆
+
n< ∪∆

+
n> ∪∆

+
n= = ∆+ the set of entering actions.

Cl≥i+1,n =

Cl≥i,n, i f ∆
+
n> =∅ and ∆

+
n= =∅

Cl≥i,n∪∆
+
n> ∪∆

+
n= otherwise

(1)

Cl≤i+1,n =

Cl≤i,n, i f ∆
+
n< =∅ and ∆

+
n= =∅

Cl≤i,n∪∆
+
n< ∪∆

+
n= otherwise

(2)

Example 8: According to lemma 1, the updated downward and upward of

the unions of decision classes are as follows: Cl≤i+1,1 = {A3,A6,A8}, Cl≤i+1,2 =

{A3,A4,A5,A6,A8,A10,A11}, Cl≤i+1,3 = {A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11} =

Cl≥i+1,1, Cl≥i+1,2= {A1,A2,A4,A5,A7,A9,A10,K11}, Cl≥i+1,3 = {A1,A2,A7,A9}.
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5.2.2. Incremental update of the P-dominating and the P-Dominated sets

When a set of actions enters into the information system, the dominance relation

Dp according to the set of criteria may be also updated. The relation Di+1 p can

be presented as follows: Di+1 p = Di p ∪A ∪B, such that A = {(x+i ,y) ∈ ∆+ ×

Ai+1 : fi+1(x
+
i ,g) ≥ fi+1(y,g),∀g ∈ P} and B = {(y,x+i ) ∈ Ai+1 × ∆+ : fi+1(y,g) ≥

fi+1(x
+
i ,g),∀g ∈ P}.

It is evident that Di p ⊆ Di+1 p. So, D+
i+1 p(x+i ) and D−i+1 p(x+i ) can be calculated

using the sets A and B respectively. For each x ∈ Ai, it may exists (x+i ,x) ∈ A or

(x,x+i ) ∈ B. Thus D+
i p(x) ⊆ D+

i+1 p(x) and D−i p(x) ⊆ D−i+1 p(x). Thus the sets P-

dominating and P-dominated may be updated incrementally by the lemma 2. First

∀x+i ∈ ∆+ we calculate the sets D+
i+1 p(x+i ) and D−i+1 p(x+i ).

Lemma 2. Let x+i ∈ ∆+ an action in ∆+ such that i ∈ {1..k}.

D+
i+1 p(x) =

 D+
i p i f x /∈ ∪k

i=1D−i+1 p(x+i )

D+
i p(x)∪∪k′

i=1{x+i }, ∀x
+
i ∈ ∆

+ such that x ∈ D−i+1 p(x+i )
(3)

k’ is the number of x+i in ∆+ such that x ∈ D−i+1 p(x+i )

D−i+1 p(x) =

 D−i p i f x /∈ ∪k
i=1D+

i+1 p(x+i )

D−i p(x)∪∪k′
i=1{x+i }, ∀x

+
i ∈ ∆

+ such that x ∈ D+
i+1 p(x+i )

(4)

k’ is the number of x+i in ∆+ such that x ∈ D+
i+1 p(x+i )

Example 9: According to lemma 2, the P-dominated and the P-dominating sets

are calculated as follows: D−i+1 p(A1) = {A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11},

D−i+1 p(A2) = {A2,A6,A8,A10}, D−i+1 p(A3) = {A3,A8}, D−i+1 p(A4) = {A4,A6},

D−i+1 p(A5) = {A3,A5,A8,A9}, D−i+1 p(A6) = {A6}, D+
i+1 p(A1) = {A1}, D+

i+1 p(A2) =

{A1,A2,A11}, D+
i+1 p(A3) = {A1,A3,A5,A7,A9}, D+

i+1 p(A4) = {A1,A4,A11}, D+
i+1 p(A5)

= {A1,A5}, D+
i+1 p(A6) = {A1,A2,A4,A6,A7,A10,A11},

5.2.3. Incremental update of the upper and the lower approximations of DRSA

In this section we present four propositions for the incremental update of the ap-

proximations DRSA.
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Proposition 1. Let x+i ∈Cli+1,n′ ; n, n′ ∈ N. We have:

P(Cl≥i+1,n) =


P(Cl≥i,n), i f ∀ x+i ∈ ∆

+, li+1 p(x+i ) < n ≤ n′

P(Cl≥i,n)∪∪
k′
i=1{x+i }, ∀ x+i ∈ (∆+

n> ∪∆
+
n=), li+1 p(x+i )≥ n

P(Cl≥i,n)−∆Xn, ∀ x+i ∈ ∆
+
n<

(5)

Where

1. k’ is the number of x+i ∈ (∆+
n> ∪∆

+
n=) such that li+1 p(x+i )≥ n

2. ∆Xn = {x ∈ P(Cl≥i,n) ∩ ∪k′
i=1 D−i+1 p(x+i ); li+1 p(x) < n, ∀ i ∈ {1..k}}

Example 10: According to the proposition 1 and using the results of Example 6, the

lower approximation of the Cl≥i+1,n is as follows: P(Cl≥i+1,1) = {A1,A2,A3,A4,A5,A6}∪

{A8}, P(Cl≥i+1,2) = {A1,A2,A4,A5}∪{A10,A11} , P(Cl≥i+1,3) = {A1,A2}∪{A7}.

Proposition 2. Let x+i ∈Cli+1,n′ ; n, n′ ∈ N. We have:

P(Cl≤i+1,n) =


P(Cl≤i,n), i f ∀ x+i ∈ ∆

+, ui+1 p(x+i ) > n ≥ n′

P(Cl≤i,n)∪∪
k′
i=1{x+i }, ∀ x+i ∈ (∆+

n< ∪∆
+
n=), ui+1 p(x+i )≤ n

P(Cl≤i,n)−∆Mn, ∀ x+i ∈ ∆
+
n>

(6)

Where

1. k’ is the number of x+i ∈ (∆+
n< ∪∆

+
n=) such that ui+1 p(x+i )≥ n

2. ∆Mn = {x ∈ P(Cl≤i,n)∩∪k′
i=1D+

i+1 p(x+i ) : ui+1 p(x)> n, ∀ i ∈ {1..k}}

Example 11: According to the proposition 2 and using the results of Example

6, the lower approximation of the Cl≥i+1,n is as follows: P(Cl≤i+1,1) = {A3,A6}∪{A8},

P(Cl≤i+1,2) = {A3,A4,A5,A6}∪{A8,A10}−{A5} , P(Cl≤i+1,3) = {A1,A2,A3,A4,A5,A6}∪

{A7,A8,A9,A10,A11}. Here, we note that the action A5 is no longer classified with

certainty in Cl≤i+1,1 because it dominates the action A9 while A9 ∈ Cl3 and A5 ∈ Cl2.

However, A5 still belonging to P(Cl≤i+1,2).
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Algorithm 1: Incremental algorithm for the update of the approximations of
DRSA when adding a set of actions in the information system

Data:
∀x ∈ K,D+

i p(x) and D−i p(x) of the weeki

∀n ∈ T , P(Cl≥i,n), P(Cl≤i,n), P(Cli,n,≤ ) and P(Cl≥i,n) of the weeki

A set ∆+ containing new actions
Result:
P(Cl≥i+1,n), P(Cl≤i+1,n), P(Cl≤i+1,n) and P(Cl≥i+1,n) of the weeki+1

Begin
for i from 1 to | ∆+ | do

Calculate D+
i+1 p(x+i ) and D−i+1 p(x+i );

end
for n from 1 to N do

Calculate ∆
+
n< , ∆

+
n> and ∆

+
n= ;

end
for i from 1 to | K | do

for j from 1 to | ∆+ | do
Update D−i+1 p(xi) and D+

i+1 p(xi)
end

end
for i from 1 to | ∆+ | do

Calculate li+1 p(x+i ) and ui+1 p(x+i )
end
for n from 1 to N do

for i from 1 to |∆+
n> | do

Calculate ∆Mn;
Update P(Cl≥i+1,n), P(Cl≥i+1,n), P(Cl≤i+1,n) and P(Cl≤i+1,n);

end
for i from 1 to | ∆+

n= | do
Update P(Cl≥i+1,n), P(Cl≥i+1,n), P(Cl≤i+1,n) and P(Cl≤i+1,n);

end
for i from 1 to | ∆+

n< | do
Calculate ∆Xn;
Update P(Cl≥i+1,n), P(Cl≥i+1,n), P(Cl≤i+1,n) and P(Cl≤i+1,n);

end
end
Return P(Cl≥i+1,n), P(Cl≤i+1,n), P(Cl≤i+1,n) and P(Cl≥i+1,n)

Proposition 3. Let x+i ∈Cli+1,n′ ; n, n′ ∈ N. We have:

P(Cl≤i+1,n) =


P(Cl≤i,n), i f ∀ x+i ∈ ∆

+, li+1 p(x+i ) > n

P(Cl≤i,n)∪∪
k′
i=1{x+i }, ∀ x+i ∈ ∆

+
n> : li+1 p(x+i )≤ n < n′

P(Cl≤i,n)∪∪
k′′
i=1D−i+1 p(x+i ), ∀ x+i ∈ (∆+

n< ∪∆
+
n=),

(7)

Where

1. k’ is the number of x+i ∈ ∆
+
n> such that li+1 p(x+i )≤ n

2. k” is the number of x+i such that n′ ≤ n; i.e. k′′ = |∆+
n< ∪∆

+
n= |

Example 12: According to the proposition 3 and using the results of Ex-

ample 6, the upper approximation of the Cl≤i+1,n is as follows: P(Cl≤i+1,1) =

{A3,A6}∪{A8}, P(Cl≤i+1,2) = {A3,A4,A5,A6}∪{A8}∪{A10}∪{A2,A11} , P(Cl≤i+1,3)

= {A1,A2,A3,A4,A5,A6}∪{A7,A8,A9,A10,A11}.
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Proposition 4. Let x+i ∈Cli+1,n′ ; n, n′ ∈ N. We have:

P(Cl≥i+1,n) =


P(Cl≥i,n), i f ∀ x+i ∈ ∆

+, ui+1 p(x+i ) < n

P(Cl≥i,n)∪∪
k′
i=1{x+i }, ∀ x+i ∈ ∆

+
n< : ui+1 p(x+i )≥ n > n′

P(Cl≥i,n)∪∪
k′′
i=1D+

i+1 p(x+i ), ∀ x+i ∈ (∆+
n> ∪∆

+
n=),

(8)

Where

1. k’ is the number of x+i ∈ (∆+
n<) such that ui+1 p(x+i )≥ n > n′

2. k” is the number of x+i such that n′ ≥ n; i.e. k′′ = |∆+
n> ∪∆

+
n= |

Example 13: According to the proposition 4 and using the results of Example 6, the

upper approximation of the Cl≥i+1,n is as follows: P(Cl≥i+1,1) = {A1,A2,A3,A4,A5,A6}∪

{A7,A8,A9,A10,A11}, P(Cl≥i+1,2) = {A1,A2,A4,A5}∪ {A7,A9,A10,A11} , P(Cl≥i+1,3) =

{A1,A2}∪{A7,A9,A11}.

The algorithm of the incremental update of the DRSA approximations following

the entry of a set of actions in the information system is detailed in Appendix A.

6. Case study

This section presents the application and the validation of the proposed approach

using real-world data.

6.1. Decision problem

The problem considered here concerns the droupout rate in the context of MOOC.

A MOOC is a model of educational delivery that is massive, with theoretically no limit

to enrolment; open, allowing anyone to participate; online, with learning activities

taking place over the web; and a course structured around a defined set of learning

goals [17]. The MOOC is characterized by a dynamic information system since it is

open, so the learners can enter and leave it at any time during its broadcasting. Since

2008, the number of MOOCs has rapidly grown around the world [37]. However,

despite their proliferation, the MOOCs still suffer from a high dropout rate that usually
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reaches 90% [55]. According to [36], the excessive dropout rate is one of the major

recurring issues in the MOOCs.

To this end, several prediction models were proposed to early identify the learners

who intend to leave the course using the conventional machine learning techniques

such as the Hidden Markov Model [2, 11], the neural network [10], the decision tree

[52], the Support Vector Machine [31] and the General Bayesian Network [52].

However, these models suffer from three major limitations: First, the intuitive se-

lection of the indicators used to caracterize the MOOC participants. Second, the ran-

dom identification of the learning set. Third, the strong presence of the unbalanced

data problem because of the majority class of learners who intend to leave the course.

The objective of this case study is to apply the proposed incremental approach

based DRSA in the context of MOOC and to demonstrate how it could avoid the above-

mentioned limitations. This approach targets the weekly and early classification of the

MOOC learners in these three decision classes:

• Cl1. The decision class of the “At-risk learners” corresponding to learners who

are likely to dropout the course in the next week of the MOOC.

• Cl2. The decision class of the “Struggling learners” corresponding to learners

who have some difficulties but are still active on the MOOC environment and

don’t have the intention to leave it at least in the next week of the MOOC.

• Cl3. The decision class of the “Leader learners” corresponding to learners who

are able to lead a team of learners by providing them with an accurate and an

immediate response.

6.2. Data set

The data set used in this application concerns a French-speaking MOOC about

the“Design Thinking” proposed by a Business School in France and lasted “T= 5”

weeks. It started with 2565 learners where only 1535 are considerd in these exper-

iments. The neglected learners are those who didn’t complete the registration form.

Data was saved in CSV (Comma-Separated Values) files. Each week, the recovered

file was carefully processed and cleaned to save only the data we need. However, for
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the time experiments we defined in addition an articficial data set containing data about

10000 actions that are generated randomly by a computer program. This data set per-

mits to demonstrate how our approach permits to reduce the computational comlexity

especially in a bigdata context.

6.3. Application

In what follows, we explain how the approach MAI2P was applied to weekly predict

the decision class to which belongs each learner participating in the MOOC “Design

Thinking”. In this work, the actions are the learners and the decision makers are the

members of the pedagogical team.

Let W= {W1,... Wi,... WT} be the set of weeks making up a MOOC such that T = 5

is the number of weeks a MOOC holds and Wi is the ith week of the MOOC.

6.3.1. Phase 1: Construction of the decision table

As presented, this phase comprises three steps.

• Step 1.1: The identification of sets of “Learners of reference”. At the end of

each week Wi, the pedagogical team defined a new set A′i of 30 “Learners of

reference” that was directly appended to the sets of “Learners of reference”,

Ai−1, of the previous weeks. Thus, the set of “Learners of reference” of the week

Wi becomes Ai = A′i +Ai−1,∀i ∈ {1..4}. The pedagogical team saw that 30 is

a sufficient number to constitute the learning set in this context especially, by

applying the cumulative approach that gives 30 actions for the first week, 60 for

the second week, 90 for the third and 120 for the fourth week.

• Step 1.2: The construction of a coherent family of criteria. First, we identified a

list of indicators that would permit to characterize a MOOC learner. These indi-

cators would give sign about the learner’s skills, profile and motivation. Among

the indicators mentioned in literature, we quote the study level of a learner [32],

the MOOC language mastery and the motivation to participate in the MOOC

[3], the cultural background [48], the level of technical skills and the lack of

time [19]. In the e-learning field, Wolff et al. [51] distinguished three types
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of activities that enable to predict the learner dropout which are the access to

a course material; the publishing of a message on the forum and the access to

the evaluation space. Second, to validate a final family of criteria we conducted

some meetings with the pedagogical team that retained 11 criteria and applied a

preference order on each of them. For example, for the criterion “Study level”,

four increasing ordered scales are defined: 1: Scholar student; 2: High school

student; 3: PhD Student; 4: Doctor. This step is detailed in [7]. The criteria

family is described in Table 4 and remains stable over weeks.

• Step 1.3: The construction of the decision table. At the end of each week Wi of

the MOOC, a matrix, whose rows form the set of the 30 “Learners of reference”

and whose columns represent the 11 evaluation criteria, is built. This matrix

contains the evaluation function fi(L j,i,gk) of each learner L j,i ∈ A′i on each cri-

terion gk ∈ F1 such that i ∈ {1..4} , j ∈ {1..30} and k ∈ {1..11}. Then, based on

its expertise and the information table, the pedagogical team assign each of the

“Learners of reference” in one of the three decision classes. Four extracts from

the decision tables built each week of the MOOC are presented in Table 5.

6.3.2. Phase 2: The inference of a preference model based on the incremental update

of the DRSA approximations

At the end of each week Wi during the MOOC broadcast such that i ∈ {1..4}, we

applied the algorithm DRSA-Incremental on the decision table built at the same week

Wi in order to update the approximations of the upward and the downward of the unions

of all the decision classes. Then, the updated approximations were provided as an input

to the algorithm DOMLEM [20] in order to infer the decision rules. The output of this

phase is a preference model representing the input to phase 3. Four extracts from the

preference models inferred each week of the MOOC are presented in Table 6.

6.3.3. Phase 3: The classification of the “Potential learners”

At the beginning of each week Wi of the MOOC; such that i ∈ {2..5} we used the

inferred decision rules in order to assign the “Potential learners” in one of the three
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Table 4: List of the constructed criteria family

Code Label Description Scale Type Pref

g1 The study level Indicates the actual study level of the learner

or the last diploma he obtained

1: Scholar student; 2: High school student;

3: PhD Student; 4: Doctor

Ordinal Gain

g2 Level of technical

skills

Indicates the extent to which the learner mas-

ters the use of computer tools

1: Basic; 2: Average; 3: Expert Ordinal Gain

g3 Level of proficiency in

MOOC language

Indicates the extent to which the learner mas-

ters the MOOC language

1: Basic; 2: Average; 3: Good Ordinal Gain

g4 Motivation for MOOC

registration

Indicates the motivation behind the participa-

tion of the learner in the MOOC

1: Just to discover the MOOCs; 2: To ex-

change ideas with the other learners or to

have a certificate ; 3: To exchange ideas

with the other learners and to have a cer-

tificate

Ordinal Gain

g5 Previous experience

with MOOCs

Indicates whether the learner has a previous

experience on learning via MOOCs or not

0: No experience at all; 1: At least one ex-

perience

Ordinal Gain

g6 Mastery level of the

subject of a MOOC

Indicates to which extent the learner masters

both the topic and the theme of the MOOC

0 : No knowledge at all; 1: Average knowl-

edge; 2: Deepened knowledge

Ordinal Gain

g7 Probability to finish

the MOOC

Indicates the probability for a learner to fol-

low the MOOC until the end

1: Very weak; 2: Weak; 3: Average;4:

Strong; 5: Very strong

Ordinal Gain

g8 Weekly availability Indicates the estimative weekly availability of

the learner to follow the MOOC

1: Less than one hour ; 2: Fromone to two

hours; 3: From two to three hours; 4: Four

hours or more

Ordinal Gain

g9 Weekly number of fo-

rum posts

Indicates the number of posts published on the

forum per week

1 : n = 0; 2 : n ∈ {1,2}; 3 : n ∈ {3,4}; 4 :

n≥ 5

Ordinal Gain

g10 Weekly number

of viewed or

downloaded resources

Indicates the weekly number of the viewed

and / or downloaded resources and material

courses

1 : n < 10; 2 : 10 ≤ n < 20; 3 : 20 ≤ n <

30; 4 : 30≤ n < 40; 5 : n≥ 40

Ordinal Gain

g11 Weekly score Indicates the weekly score the learner got on

the set of activities he made

1 : 0 ≤ Score < 6; 2 : 6 ≤ Score < 7; 3 :

7≤ Score < 8; 4 : 8≤ Score≤ 10

Ordinal Gain
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Table 5: Extracts from the periodic decision tables

Extract of the decision table of the Week1,2

Reference actions g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 Decision1

3486 2 2 3 3 1 2 4 3 1 2 1 1

18182 2 1 3 1 1 0 5 3 1 1 2 2

37526 2 1 3 3 0 2 5 3 4 5 4 3

Extract of the decision table of the Week2,3

Reference actions g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 Decision2

37193 2 3 3 2 0 2 4 2 1 2 4 1

3486 2 2 3 3 1 2 4 3 3 4 4 2

37105 2 3 2 3 1 0 5 3 2 5 3 3

Extract of the decision table of the Week3,4

Reference actions g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 Decision3

1631 2 2 1 2 1 0 3 2 1 5 1 1

28912 4 3 1 1 1 0 4 3 2 4 4 2

36056 2 2 3 3 1 0 5 3 2 3 2 3

Extract of the decision table of the Week4,5

Reference actions g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 Decision4

1346 2 2 2 3 1 0 4 2 1 3 4 1

15748 2 3 2 1 1 2 2 2 1 2 4 2

39175 2 3 3 2 1 2 3 3 2 3 4 3
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Table 6: Extracts from the periodic preference models

Preference model PM1,2

Decision class Decision rule Strength

At most Cl1 (Cl≤1 ) If f (Ai,2,g7)≤ 2 Then Ai,2 ∈Cl≤1 42%

At most Cl2 (Cl≤2 ) If f (Ai,2,g9)≤ 1 Then Ai,2 ∈Cl≤2 85%

At least Cl2 (Cl≥2 ) If f (Ai,2,g3)≥ 3∧ f (Ai,2,g10)≥ 3∧ f (Ai,2,g11)≥ 2 Then Ai,2 ∈Cl≥2 52%

At least Cl3 (Cl≥3 ) If f (Ai,2,g9)≥ 3 Then Ai,2 ∈Cl≥3 40%

Preference model PM2,3

Decision class Decision rule Strength

At most Cl1 (Cl≤1 ) If f (Ai,3,g10)≤ 1∧ f (Ai,3,g7)≤ 2 Then Ai,3 ∈Cl≤1 20%

At most Cl2 (Cl≤2 ) If f (Ai,3,g9)≤ 1 Then Ai,3 ∈Cl≤2 80%

At least Cl2 (Cl≥2 ) If f (Ai,3,g3) ≥ 2∧ f (Ai,3,g7) ≥ 3∧ f (Ai,3,g8) ≥ 2∧ f (Ai,3,g10) ≥ 3∧ f (Ai,3,g11) ≥ 2∧

f (Ai,3,g1)≥ 2 Then Ai,3 ∈Cl≥2

70%

At least Cl3 (Cl≥3 ) If f (Ai,3,g2)≥ 3∧ f (Ai,3,g9)≥ 2∧ f (Ai,3,g10)≥ 4 Then Ai,3 ∈Cl≥3 30%

Preference model PM3,4

Decision class Decision rule Strength

At most Cl1 (Cl≤1 ) If f (Ai,4,g4)≤ 2∧ f (Ai,4,g7)≤ 2∧ f (Ai,4,g8)≤ 2∧ f (Ai,4,g11)≤ 2 Then Ai,4 ∈Cl≤1 23%

At most Cl2 (Cl≤2 ) If f (Ai,4,g9)≤ 1 Then Ai,4 ∈Cl≤2 71%

At least Cl2 (Cl≥2 ) If f (Ai,4,g11) ≥ 3∧ f (Ai,4,g10) ≥ 3∧ f (Ai,4,g4) ≥ 2∧ f (Ai,4,g6) ≥ 1∧ f (Ai,4,g7) ≥ 3∧

f (Ai,4,g8)≥ 2 Then Ai,4 ∈Cl≥2

28%

At least Cl3 (Cl≥3 ) If f (Ai,4,g9)≥ 4 Then Ai,4 ∈Cl≥3 16%

Preference model PM4,5

Decision class Decision rule Strength

At most Cl1 (Cl≤1 ) If f (Ai,5,g2) ≤ 2∧ f (Ai,5,g7) ≤ 3∧ f (Ai,5,g8) ≤ 2∧ f (Ai,5,g9) ≤ 1∧ f (Ai,5,g10) ≤ 2∧

f (Ai,5,g11)≤ 2 Then Ai,5 ∈Cl≤1

10%

At most Cl2 (Cl≤2 ) If f (Ai,5,g9)≤ 1 Then Ai,5 ∈Cl≤2 75%

At least Cl2 (Cl≥2 ) If f (Ai,5,g3) ≥ 3∧ f (Ai,5,g6) ≥ 1∧ f (Ai,5,g7) ≥ 3∧ f (Ai,5,g8) ≥ 2∧ f (Ai,5,g10) ≥ 3∧

f (Ai,5,g11)≥ 3 Then Ai,5 ∈Cl≥2

27%

At least Cl3 (Cl≥3 ) If f (Ai,5,g9)≥ 4 Then Ai,5 ∈Cl≥3 20%
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decision classes: Cl1 of the “At-risk learners”, Cl2 of the “Struggling learners” or Cl3

of the “Leader learners”. The “Potential learners” are those who filled their registration

form and, therefore, they were likely to be classified in one of the three decision classes.

A summury of the classification results is presented in table 7.

Table 7: Summury table of the periodic classifications

Periodi Number of

“Actions of

reference”

Number

of

criteria

Number of

decision

rules

Number

of actions

assigned

to Cl1

Number

of actions

assigned

to Cl2

Number

of actions

assigned

to Cl3

Week1,2 30 11 12 430 855 249

Week2,3 60 11 9 899 527 108

Week3,4 90 11 9 1256 262 16

Week4,5 120 11 7 1361 130 43

6.4. Results and discussion

In this section we compare, at first, the computational time made by the non incre-

mental algorithm and the DRSA-Incremental one when updating the DRSA approxi-

mations. Then, we discuss the quality of the weekly inferred preference model.

All the algorithms in this paper are coded by Java and run on a personal computer

with Windows 7, Intel (R) CoreT M i3-3110M CPU @ 2.4 GHz and 4.0 GB memory.

6.4.1. Incremental vs non-incremental algorithm: Comparative study

This section shows a comparative study of computational time between the incre-

mental and the non-incremental algorithms. Two types of experiments are considered:

real data experiments coming from the MOOC “Design Thinking” and artificial data

experiments generated by a computer program to create the criteria values. The real

dataset contains 1535 actions representing the MOOC learners and the artificial dataset
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contains 10000 actions. Both datasets are assesed on eleven criteria. The incremental

and the non-incremental algorithms are running on each of the datasets.

The experiments shown below aim at demonstrating the time efficiency of our

DRSA-Incremental algorithm for the update of DRSA approximations when (1) in-

creasing the dataset size, (2) changing the inserted actions ratios and (3) increasing

both criteria and decision classes numbers. In all figures, the y-coordinate concerns the

computational time in seconds and the x-coordinate concerns the changing variable.

Comparison of running time on increasing data size. Figure 2 shows a comparison

of running time when increasing the data size. In the case of real data, we have four

sets that represent the “actions of reference” of each week that are identified by the

pedagogical team of the MOOC “Design Thinking”. The pedagogical team fixed the

number of actions of reference to 30 so that they can decide later their assignment in

the decision classes. Since we used a cumulative approach, the “actions of reference”

of each week were merged with those of previous weeks which gives the sets of 30, 60,

90 and 120 “actions of reference”. In the case of artificial data, we divided the original

set to five subsets containing 2000, 4000, 6000, 8000 and 10000 actions respectively.

Each time, we insert in the considered subset 2% of actions, compared to its size, that

are generated by randomly assigning criteria values in the current criteria domains.

Figure 2: Comparison of computation time between the incremental and the non-incremental algorithms on

increasing data sets

In two cases, we note that running time of both non-incremental and incremental al-

gorithms grows up with the continuous increasing in data size. However, the incremen-

tal algorithm is always faster than the non-incremental one. Moreover, the differences
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between two algorithms, called enhancing ratios, become more and more distinct with

the increasing scale of these data sets. Thus, updating the DRSA-approximations per-

mits to reduce the computational complexity compared to calculating them by scratch

especially in big data contexts.

Comparison of running time when changing inserted actions ratios. Figure 3 shows a

comparison of the computational time when changing the ratio of inserted actions in the

original data set. The first set concerns the 1535 real actions and the second is a subset

of 4000 actions selected randomly from the original artificial dataset. In both two sets

we insert from 10% to 100% of data compared to their size in order to compare the

incremental and the non-incremental algorithms with these different changing ratios.

We recall that the inserted actions are generated randomly and must satisfy the domain

criteria values.

Figure 3: Comparison of computation time between the incremental and the non-incremental algorithms on

increasing inserted actions ratios

We note that the incremental algorithm significantly reduces the computational

time compared to the non-incremental algorithm. Moreover, the enhancing ratio is

increasingly important when the changing ratio increases. Finally, we note that the

rate of change of the incremental algorithm is much more stable than that of the non-

incremental one.

Comparison of running time of the incremental algorithm when increasing the deci-

sion classes and the criteria numbers. Figure 4 shows a comparison of running time

of the incremental algorithm when increasing the number of decision classes and that
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of criteria. The curves (a) and (c) concern the real dataset containing the 120 actions of

reference. The curves (b) and (d) concern a subset of 4000 actions selected randomly

from the original artificial dataset. Both two sets are divided into 4 subsets containing

30, 60, 90, and 120 for real data, and 1000, 2000, 3000, 4000 for artificial data. The

incremental algorithm is applied on each of these eight datasets to compare its compu-

tational time by increasing either the number of decision classes (curves (a) and (b)) or

that of criteria (curves (c) and (d)). In curves (a) and (b) the number of criteria is fixed

to eleven and for the curves (c) and (d) the number of decision classes is fixed to three.

Figure 4: Comparison of computation time of the incremental algorithm on increasing decision classes

number (Curves (a) and (b)) and the criteria number (Curves (c) and (d))

Results show that the computational time increases proportionally with both the

number of decision classes and the number of criteria. The higher the number of de-

cision classes or criteria, the greater the time required to update the approximations.

Moreover, the enhancing ratios become more and more large with the increasing scale

of changing variables. Thus, the incremental algorithm is sensitive, not only to the

number of actions, but also to the number of decision classes and that of criteria.

The lessons drawn from these experiments show that the incremental algorithm is

significantly faster than the non-incremental one considering the computational com-
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plexity. This contribution is very interesting in the case of large databases or real-time

decision making where the saving-time would be very important such as the crisis

management and the healthcare domains.

In this context of MOOCs, the gain in time is obviously worthwhile but not neces-

sary since the decision makers intervention for the assessment and the assignment of

actions is time consuming. However, the human experts opinions still also significant

to obtain stronger and more meaningful decision rules. Despite this, some works in

literature as [14] proposed methods to minimize the human intervention and so to au-

tomatize the decision process in order to permit a real-time decision in such contexts

based on DRSA which makes the incremental approach increasingly important.

6.4.2. Evaluation metrics

In this subsection we define some evaluation metrics (F-measure, accuracy, MAE,

RMSE) that will be used in order to assess the affeciveness of the proposed model.

The F-measure is the summary indicator commonly used to evaluate classification

algorithms. It is calculated as follows:

F−measure = 2∗recall∗precision
(recall+precision)

The F-measure is the harmonic value between recall and precision. The recall is

the number of relevant answers predicted in relation to the total number of relevant

answers. The precision is the number of the relevant answers predicted among all

predicted answers. These two measures are calculated as follows:

Recall = T P
(T P+FN) ; precision = T P

(T P+FP) such that as

• True positive (TP): element of the positive class correctly predicted.

• True negative (TN): element of the negative class correctly predicted.

• False positive (FP): element of the positive class poorly predicted.

• False negative (FN): element of the negative class poorly predicted.

However, both recall and precision measures can not, together, give an indication

about the classification model performance since, generally, when one is high the other
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is low. Therefore, the F-measure is proposed to harmonize these two measures. The

F-measure has a quality which is to drop sharply when one of its parameters is low and

to be increased when the two parameters are close to each other.

The accuracy is the proportion of correct results obtained by a classifier. It is cal-

culated as follows:

Accuracy =
T P+T N

T P+T N +FP+FN

Accuracy usually gives values that are better than the F-measure. Indeed, compared

to an accuracy measure, the F-measure allows the distribution of errors in the prediction

sets. However, accuracy only allows to know if the prediction or the classification is

acceptable in general or not. It remains much more superficial than the F-measure.

Accuracy is more efficient in the case of symmetric datasets where values of false

positive and false negatives are almost same.

The root mean square error (RMSE) and the mean absolute error (MAE) are another

useful measures widely used in prediction model evaluations.

RMSE is a quadratic scoring rule that measures the average magnitude of the error.

It’s the square root of the average of squared differences between prediction and real

observation. It is calculated as follows:

RMSE =
√

1
N ∗∑

N
j=1(y j− y′j)2

MAE is the average of the difference between the real and the predicted values

without specifying whether we are under or over predicting the real data. MAE is

represented as follows:

MAE = 1
N ∗∑

N
j=1 | y j− y′j |

6.4.3. Quality of predictions made by the inferred preference model

This section presents the results given when applying the preference model on real

MOOC dataset. To asses the predictive quality, we have to weekly compare between

the predicted and the real classifications. Experiments are based on two approaches:

• The pessimistic, optimistic and score classification approaches: as already stated

in section 4, a decision rule can classify an action in different unions such that
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Cl≤1 that means “at-most Cl1”, Cl≤2 that means “at-most Cl2”, Cl≥2 that means “at-

least Cl2” and Cl≥3 that means “at-least Cl3”. An action classified in the union

“at-most Cl2” can belong either to the class Cl1 or to the class Cl2. Similarly,

an action classified in the union “at-least Cl2” may belong either to the class

Cl2 or to the class Cl3. However, an action has to be classified in one and only

one decision class. In this case, the pessimistic approach assigns the actions of

the union “at-most Cl2” to the class Cl1 and those of the union “at-least Cl2”

to the class Cl2. Likewise, the optimistic approach assigns them respectively to

the decision classes Cl2 and Cl3. The score classification proposes an harmonic

assignment between the “min” and the “max” according to an affectation score.

• The cumulative/ non-cumulative approach: the model learning phase can be non-

cumulative, so based only on the “actions of reference’) defined in the current

week of the MOOC in order to make predictions concerning the following week

during this same MOOC. Otherwise, this sample can be cumulative if we add to

the learning sample of the current week, samples of all the previous weeks.

Based on these approaches, five cases were considered: the non-cumulative pes-

simistic approach, the cumulative pessimistic approach, the non-cumulative optimistic

approach, the cumulative optimistic approach and the cumulative approach based on

the score classification. The prediction model effectiveness is assessed using the F-

measure evaluation throughout the five weeks of the MOOC broadcast. The results are

summarized in Figure 5.

Consequently, we note that the pessimistic cumulative approach gives the highest

prediction effectiveness. Indeed, to meet the cognitive capacity of the decision maker

when using DRSA, we generally select learning samples of a limited size. Yet, since

the sample size is so important for the diversification of the examples in the learn-

ing set, the cumulative approach has addressed this limitation and has eventually led

to better results compared to the non-cumulative one. Moreover, in our case the pes-

simistic approach gives the more efficient results and the classification score method

is always more effective than the optimistic approach and less effective than the pes-

simistic approach. Therefore, if we consider certain external factors leading to the
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Figure 5: The global F-measure calculated for the four approaches during the MOOC broadcast

MOOCs dropout such as the lack of time and the absence of a concrete commitment,

the “Struggling learners” are more likely to abandon the MOOC than to be “Leader

learners”. Hence, it seems obvious that the pessimistic approach is more efficient com-

pared to the optimistic and the score classification ones in this context.

Figure 6: The effectiveness measures of the prediction model for each decision class over weeks

In Figure 6 we focus on the pessimistic cumulative approach and we present the

precision, the recall and the F-measure measures relative to each decision class Cl1,

Cl2 and Cl3 for each week during the MOOC broadcast. The predictive performance
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results from the application of the preference model on all of the 1535 learners.

• The F-measure corresponding to the decision class Cl1 of the “At-risk learners”

increases over time. Thus, the effectiveness of the Cl1 class prediction increases

from a week to another. In effect, a MOOC is known by the presence of what

we call “lurkers”. These are the participants who register just to discover the

MOOC concept and who leave it at the first evaluation. And in spite of their

activity during the first week of the MOOC, they keep having the prior intention

to abandon it. This type of learners degrades the quality of the prediction model

which is based on the profile and the behaviour of the learner and not on his

intention. Consequently, the fewer the number of lurkers gets, the higher the

prediction quality becomes.

• The F-measure relative to the Cl3 decision class of the “Leader learners” in-

creases over time too. In fact, from one week to another, these learners en-

hance their participation in the forum, a thing which gives us more information

concerning their profile. In addition, the assessment activities provided by the

MOOC are increasingly complex over the weeks. Obviously, if compared to a

simple Quiz , a complex assessment such as the peer-to-peer activity permits

more to better assess a learner. This is justified by the deterioration of the F-

measure of the Cl3 class in the week 2-3. In fact, our MOOC proposed a quiz

at the end of week 2 and a peer to peer activity at the end of week 3. However,

students who pass a quiz may hang at a peer-to-peer activity or even abandon the

MOOC because of its complexity. This may also affect the prediction quality.

Finally, Figure 7 shows a comparison between the overall F-measure, accuracy,

MAE and RMSE of the weekly prediction model. We recall that the F-measure and the

accuracy are better when they are close to 1 whereas the MAE and the RMSE are better

when they are close to 0. We notice that all of the measures gave the best result in week

4 and the worst in week 1. For the F-measure and the accuracy we obtained 0.66 and

0.89 what are satisfactory results. Corcerning the MAE and the RMSE we obtained

0.16 and 0.42 respectively. These results are not very close to 0 because MAE and
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Figure 7: Comparison between the average F-measure and the overall accuracy of the decision classes during

the four weeks of the MOOC

RMSE are rather used in the case of quantities prediction and therefore of continuous

values. Whereas for our case the prediction values are not continuous since they belong

to the finite set Cl = {1,2,3}. Thus, in our case, we consider that the F-measure is the

most adequate since it analyzes the difference between the real data and the predicted

data based on of the false-positive and the false-negative values.

To sum up, our multicriteria approach for the incremental periodic prediction proved

many advantages in the context of MOOC. First, it permitted to rigorously character-

ize the learners’ profiles based on a bibliographic study and direct meetings with the

experts to elicit their preferences. Second, the incremental approach allowed saving

more time especially in a bigdata domain or real-time decision making. The incre-

mentation helped also the pedagogical team capitalize on their previous preferences in

order to revise their previous decisions. Indeed, this approach considered the evolu-

tion of the learner profiles and the characteristics of the MOOC in order to update the

classification rules from one week to the next. For example, the learner 3486 in the

second week has no longer belong to the decision class of “At-risk learners” since it

becomes just in difficulty (cf. Table 5). Third, the human intervention for the learning

sets identification permitted to avoid the unbalanced data problem that strongly occurs

in the MOOC context because of the presence of the majority class of “At-risk learn-

ers” [6]. Finally, the DRSA approach has achieved very satisfactory results (overall

F-measure reached 0.66 for the week 4-5 and 0.61 for the week 1-2; and the accuracy

reached 0.89). Moreover, the cumulative approach allowed to obtain a more diverse
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sample and the pessimistic approach permitted to take into account the external factors

of a MOOC that can incite active learners to abandon the course. All these avantages

concerning the predictive quality and the time saving, will help us provide the “AT-risk

learners” by an accurate assistance in the right moment to encourage them not leaving

the course.

7. Conclusion

In this paper, a new multicriteria classification approach based DRSA, called

MAI2P, and a DRSA-Incremental algorithm are proposed for the incremental periodic

prediction. The MAI2P approach consists of three phases: The first is the construction

of a decision table. The second infers a preference model by applying our DRSA-

Incremental algorithm for the update of the upper and the lower approximations of

the DRSA. The third phase uses the inferred preference model to predict the decision

class to which each action will belong. The first phase is based on three steps: (i)

the construction of a representative learning sample for each of the N decision classes

called “Actions of reference”, (ii) the construction of a coherent family of criteria for

the characterization of the actions, and (iii) the classification of all the “Reference Ac-

tions” in the N predefined decision classes. The decision-making process is based on

the preferences of the human decision makers.

The approach MAI2P addresses the problem of dynamic learning samples that

evolve over time. It is based on the incremental learning algorithm DRSA-Incremental

that we defined for the incremental update of the upper and lower approximations fol-

lowing the sequential enrichment of the learning sample. It is periodically applied at

the end of each period to predict classifications for the next period.

The approach MAI2P is generic and can be carried out in several areas for incre-

mental and periodic prediction in a time-varying information system. However, the

intervention of human decision makers to select and to classify the “Actions of refer-

ence” may lead to temporal constraints, which prevents the application of the MAI2P

approach in a context of prediction where the decision must be made in real time.

Validated in a MOOC context, experiments showed that the pessimistic cumulative
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approach gives the most efficient preference model with an F-measure that reaches 0.66

and an accuracy that reaches 0.89. Our perspectives aim to conduct a strict comparative

study between our predictive method based-DRSA and the other conventional machine

learning techniques, especially the neural network. Indeed, the neural network is the

most frequently used technique in the context of MOOC and it proved many limits

compared to our proposed approach. A such comparative study will allow to more

promote the effectiveness of our approach and, especially, the importance of the experts

intervention in the decision process.
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Appendix A. Incremental algorithm for the update of the approximations of DRSA

when adding a set of actions in the information system
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Data:
∀x ∈ K,D+

i p(x) and D−i p(x) of the weeki

∀n ∈ T , P(Cl≥i,n), P(Cl≤i,n), P(Cli,n,≤ ) and P(Cl≥i,n) of the weeki

A set ∆+ containing new actions
Result:
P(Cl≥i+1,n), P(Cl≤i+1,n), P(Cl≤i+1,n) and P(Cl≥i+1,n) of the weeki+1

Begin
for i from 1 to | ∆+ | do

Calculate D+
i+1 p(x+i ) and D−i+1 p(x+i );

end
for n from 1 to N do

Calculate ∆
+
n< , ∆

+
n> and ∆

+
n= ;

end
for i from 1 to | K | do

for j from 1 to | ∆+ | do
if xi ∈ D+

i+1 p(x+j ) then
D−i+1 p(xi)←− D−i+1 p(xi)∪{x+j };

end
if xi ∈ D−i+1 p(x+j ) then

D+
i+1 p(xi)←− D+

i+1 p(xi)∪{x+j };
end

end
end
for i from 1 to | ∆+ | do

Calculate li+1 p(x+i ) and ui+1 p(x+i )
end
for n from 1 to N do

for i from 1 to |∆+
n> | do

Calculate ∆Mn;
P(Cl≤i+1,n)←− P(Cl≤i,n)−Mn;
P(Cl≥i+1,n)←− P(Cl≥i,n)∪D+

i+1 p(x+i );
if n < li+1 p(x+i ) then

P(Cl≥i+1,n)←− P(Cl≥i,n)∪{x+i };
end
if n = li+1 p(x+i ) then

P(Cl≥i+1,n)←− P(Cl≥i,n)∪{x+i };
P(Cl≤i+1,n)←− P(Cl≤i,n)∪{x+i };

end
if n > li+1 p(x+i ) then

P(Cl≤i+1,n)←− P(Cl≤i,n)∪{x+i };
end

end
for i from 1 to | ∆+

n= | do
if n < li+1 p(x+i ) then

P(Cl≥i+1,n)←− P(Cl≥i,n)∪{x+i };
end
if n = li+1 p(x+i ) then

P(Cl≥i+1,n)←− P(Cl≥i,n)∪{x+i };
end
if n > ui+1 p(x+i ) then

P(Cl≤i+1,n)←− P(Cl≤i,n)∪ x+i ;
end
if n = ui+1 p(x+i ) then

P(Cl≤i+1,n)←− P(Cl≤i,n)∪ x+i ;
end
P(Cl≥i+1,n)←− P(Cl≥i,n)∪D+

i+1(x
+
i )

P(Cl≤i+1,n)←− P(Cl≤i,n)∪D−i+1(x
+
i )

end
for i from 1 to | ∆+

n< | do
Calculate ∆Xn;
P(Cl≥i+1,n)←− P(Cl≥i,n)−∆Xn ;
P(Cl≤i+1,n)←− P(Cl≤i,n)∪D−i+1 p(x+i );
if n < ui+1 p(x+i ) then

P(Cl≥i+1,n)←− P(Cl≥i,n)∪{x+i };
end
if n = ui+1 p(x+i ) then

P(Cl≥i+1,n)←− P(Cl≥i,n)∪ x+i ;
P(Cl≤i+1,n)←− P(Cl≤i,n)∪ x+i ;

end
if n > ui+1 p(x+i ) then

P(Cl≤i+1,n)←− P(Cl≤i,n)∪ x+i ;
end

end
end
Return P(Cl≥i+1,n), P(Cl≤i+1,n), P(Cl≤i+1,n) and P(Cl≥i+1,n)
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Appendix B. Proofs of the incremental update of the DRSA approximations
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Lemma 1: Proof

We suppose that (∆+
n> ∪∆

+
n=) =∅, thus we have ∀x+i ∈ ∆+, n′ < n, then Cli+1,n′ *Cl>i,n.

Thus, Cl>i+1,n = Cl>i,n. Otherwise, we have ∀x+ ∈ (∆+
n> ∪∆

+
n=) such that x+i ∈ ∆

+
n> or

x+i ∈ ∆
+
n= , Cli+1,n′ ⊆ Cl>i,n. Thus Cl>i+1,n = Cl>i,n ∪∆

+
n> ∪∆

+
n= . Similarly, equation (6)

holds.

Lemma 2: Proof

At the weeki+1, ∀x ∈ Ai, we have D+
i+1 p(x) = {y ∈ Ai ∪ ∆+ : y Di+1 p x} = {y ∈

Ai : y Di+1 p x} ∪ {y ∈ ∆+ : y Di+1 p x} = D+
i p(x) ∪ {y ∈ ∆+ : y Di+1 p x} =

D+
i p(x) ∪ {x+i : x+i Di+1 p x}. Thus, ∀x+i ∈ ∆+ such that i ∈ {1..k}, we have

{x+i : x+i Di+1 p x} = {x+i : x ∈D−i+1 p (x+i )} = ∪k′
i=1{x

+
i } such that x ∈D−i+1 p(x+i ). Oth-

erwise, if x /∈D−i+1 p (x+i ), then {x+i : x∈D−i+1 p (x+i )}=∅. Thus, ∀x∈ Ai,∀x+i ∈ ∆+, if

x ∈D−i+1 p(x+i ) then D+
i+1 p(x) = D+

i p(x)∪∪k′
i=1{x

+
i }. Otherwise, D+

i+1 p(x) = D+
i p(x).

Similarly, equation (8) holds.

Proposition 1: Proof

We have P(Cl≥i+1,n) = {x ∈ Ai+1 : D+
i+1 p(x) ⊆ Cl≥i+1,n} = {x ∈ Ai ∪∆+ : D+

i+1 p(x) ⊆

Cl≥i+1,n} = {x ∈ Ai : D+
i+1 p(x) ⊆ Cl≥i+1,n} ∪ {x ∈ ∆+ : D+

i+1 p(x) ⊆ Cl≥i+1,n} = {x ∈

Ai : D+
i+1 p(x) ⊆ Cl≥i+1,n}∪{x

+
i ∈ ∆+ : D+

i+1 p(x+i ) ⊆ Cl≥i+1,n} = {x ∈ Ai : D+
i+1 p(x) ⊆

Cl≥i+1,n}∪{ x+i ∈ ∆+ : li+1 p(x+i ) ≥ n} = P(Cl≥i,n)∪{ x+i ∈ ∆+ : li+1 p(x+i ) ≥ n}. Ac-

cording to the equation (5), we have Cl≥i+1,n =Clin≥, i f (∆+
n> ∪∆

+
n=) =∅ and Cl≥i+1,n =

Cl≥i,n∪∆
+
n> ∪∆

+
n= i f ∆

+
n> ∪∆

+
n= 6=∅.

1. If ∆
+
n> 6= ∅ or ∆

+
n= 6= ∅, thus ∃ x+i ∈ (∆+

n> ∪ ∆
+
n=) such that n ≤ n′. Thus,

if ∀x+i ∈ (∆+
n> ∪ ∆

+
n=), li+1 p(x+i ) < n ≤ n′, thus @ x+i ∈ (∆+

n> ∪ ∆
+
n=) such

that li+1 p(x+i ) ≥ n thus P(Cl≥i+1,n) = P(Cl≥i,n). As well, if li+1 p(x+i ) ≥ n then

{x ∈ ∆
+
n> ∪∆

+
n= : li+1 p(x+i )≥ n}= {∪k′

i=1{x
+
i } ⊆ (∆+

n> ∪∆
+
n=) : li+1 p(x+i )≥ n}.

Thus P(Cl≥i+1,n) = P(Cl≥i,n)∪{∪k′
i=1{x

+
i } : li+1 p(x+i )≥ n}.

2. If ∃ {x+i } ∈ ∆
+
n< , i.e. {x+i } ∈ ∆+ such that n′ < n, then {x ∈ ∆+ : li+1 p(x+i ) ≥

n} = ∅ and {x ∈ Ai : D+
i+1 p(x) ⊆ Cl≥i+1,n} = {x ∈ Ai : D+

i+1 p(x) ⊆ Cl≥i,n} =

{x ∈ Ai : li+1 p(x) ≥ n} = {x ∈ Ai : li p(x) ≥ n} − {x ∈ P(Cl≥i,n) : li+1 p(x) <
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n} = P(Cl≥i,n)−{x ∈ P(Cl≥i,n) : li p(x) < n}. As noted, D+
i p(x) ⊂ D+

i+1 p(x) and

li+1 p(x)≤ li p(x). Thus {x∈P(Cl≥i,n) : li+1 p(x)< n}= {x∈P(Cl≥i,n)∩D−i p(x+i ) :

li+1 p(x)< n}.

Let ∆Xn = {x ∈ P(Cl≤i )∩∪k′
i=1D−i p(x+i ) : li+1 p(x) < n,∀i ∈ {1..k}}. Thus, if n > n′,

then P(Cl≥i+1,n) = P(Cl≥i,n)−∆Xn.

The same reasoning holds for the proposition 2.

Proposition 3: Proof

We have P(Cl≤i+1,n) = {x ∈ Ai+1 : D+
i+1 p(x)∩Cl≤i+1,n 6= ∅} = {x ∈ Ai : D+

i+1 p(x)∩

Cl≤i+1,n = Cl≤i,n 6= ∅}∪ {x+i ∈ ∆+ : D+
i+1 p(x)∩Cl≤i+1,n 6= ∅} = {x ∈ Ai : D+

i+1 p(x)∩

Cl≤i+1,n 6= ∅}∪ {x+i ∈ ∆+ : li+1 p(x+i ) ≤ n}. According to the equation (6), we have

Cl≤i+1,n =Cl≤i,n if ∆
+
n< = ∅ and ∆

+
n= = ∅ (i.e. n′ > n, ∀x+i ∈ ∆+); and Cl≤i+1,n =Cl≤i,n∪

∆
+
n< ∪∆

+
n= else. Thus {x ∈ Ki : D+

i+1 p(x)∩Cl≤i+1,n 6= ∅}∪ {x+i ∈ ∆+ : li+1 p(x+i ) ≤

n}= (Cl≤i,n)∪{x
+
i ∈ ∆+ : li+1 p(x+i )≤ n}

1. If n < n′: If ∃ x+i ∈ ∆
+
n> such that li+1 p(x+i ) ≤ n < n′, then {x+i ∈

∆
+
n> : li+1 p(x+i ) ≤ n} = {∪k′

i=1x+i : x+i ∈ ∆
+
n> and li+1 p(x+i ) ≤ n}. Else, if

∀ x+i ∈ ∆
+
n> we have li+1 p(x+i ) > n then {x ∈ ∆

+
n> : li+1 p(x+i ) ≤ n} = ∅, thus

P(Cl≤i+1,n) = P(Cl≤i,n).

2. If n≥ n′, then {x+i ∈ (∆
+
n< ∪∆

+
n=) : li+1 p(x+i )≤ n}= {∪k′

i=1x+i : x+i ∈ (∆
+
n< ∪∆

+
n=)

and li+1 p(x+i ) ≤ n} and {x ∈ Ai : D+
i+1 p(x)∩Cl≤i+1,n 6= ∅} = P(Cli,n)∪ {x ∈

Ai∩D−i+1 p(x+i ) : D+
i+1 p(x)∩Cl≤i+1,n 6=∅}. Thus, we have {x ∈ Ai∩D−i+1 p(x+i ) :

D+
i+1 p(x)∩Cl≤i+1,n 6=∅}∪{∪k′′

i=1x+i : x+i ∈ ∆
+
n< ∪∆

+
n=}= {∪k′′

i=1D−i+1 p(x+i )}, thus

P(Cl≤i+1,n) = P(Cl≤i,n)∪∪k′
i=1D−i+1 p(x+i ),∀x

+
i ∈ (∆+

n< ∪∆
+
n=).

The same reasoning holds for the proposition 4.
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