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Finite Difference preconditioning for compact scheme1

discretizations of the Poisson equation with variable coefficients2

Stéphane Abide3

Université de Perpignan Via Domitia, LAMPS EA 4217, Perpignan, France.4

Abstract5

The finite difference preconditioning for higher-order compact scheme discretizations of non

separable Poisson’s equation is investigated. An eigenvalue analysis of a one-dimensional

problem is detailed for compact schemes up to the tenth-order. The analysis concludes that

the spectrum is bounded irrespective of the mesh size and the continuous variable coefficient.

Hence, combined to a multigrid method, the preconditioned Richardson method shows a

convergence rate which is independent from the mesh size and the variable coefficient. Several

numerical experiments, including the simulation of a flow with large density variations,

confirm that the spectrum of the preconditioned operator remains bounded.

Keywords: Compact schemes, Poisson’s equation, preconditioned Richardson method6

1. Introduction7

The accurate numerical solution of the Poisson’s equation is often required in the mod-8

elling of heat and mass transfer, in the presence of chemical reactions, in several scientific9

and engineering applications. The Poisson’s equation may have constant or variable coeffi-10

cients depending on the complexity of the problem. Accuracy and computational speed of11

the numerical solver can be improved by employing higher-order discretization within the12

framework of parallel methods. The development of such discretization and parallel methods13

for variable-coefficient Poisson’s equation remains a challenge. In this work, a second-order14
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finite-difference preconditioning method for higher-order compact schemes to solve the Pois-15

son’s equation is developed and assessed for accuracy and computational performance.16

One of the straightforward and popular methods to write a discretization of the vari-17

able coefficient Poisson equation is the common finite differences, elements or volumes. The18

resulting discrete Poisson operator is built on a local computational stencil and thus can19

benefit from efficient direct or iterative linear solvers at the cutting edge of the high perfor-20

mance computing [1–3] which permits to compute accurate solutions on fine grids. A recent21

comparative study of several Poisson solvers in an unit cube has been released by Gholami22

et al. [4] .23

Another way to get accurate solution while limiting the number of degrees of freedom is24

to use higher-order discretizations. Spectral methods are these higher-order discretizations25

which exhibit an exponential decrease of the numerical error for sufficient regular solutions26

[5]. This strong property naturally leads authors to consider this discretization when com-27

puting accurate solution of benchmark problems [6]. Unlike lower-order discretizations, the28

global approximation of spectral methods introduces some specific difficulties: spurious oscil-29

lations due to a loss of local regularity conditions [7], large parallel communications inherent30

to FFT [8], and bad conditioning of discrete operators [5]. Orszag [9] proposed to use31

Finite- Difference preconditioning to achieve spectral accuracy with the Fourier spectral dis-32

cretization. Haldenwang et al. [10] discussed this approach regarding the Chebyshev spectral33

approximation. In both works, the theoretical analysis relies on the evaluation of the lowest34

and highest eigenvalues of the preconditioned discrete operator in the one-dimensional Pois-35

son equation. In addition to the derivation of the convergence rate bound ⇡2/4, Haldenwang36

et al. [10] has shown that the convergence rate is not sensitive to the boundary conditions and37

to the dimensionality of the problem. Always based on one-dimensional analysis Labrosse38

and Redondo [11] has presented a way to design an optimal lower-order preconditioner for39

the Chebyshev discretization of the Poisson 1d problem with a constant coefficient.40

Other popular higher-order discretizations exist, such as the Higher-Order Compact41

Schemes.These Schemes are a set of higher-order finite differences achieving higher-order42
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accuracy on a small computational stencil [12–14]. One way to write such schemes is based43

on the substitution of the higher derivatives occurring in the central finite difference trun-44

cation error with the second-order finite difference approximation. This approach has led to45

the definition of the Mehrstellen scheme [12]. A large amount of works follows this approach46

as illustrated by the non-exhaustive selected papers [15–17]. One of the advantages of pro-47

ceeding in this way is that the resulting schemes lead to a sparse linear system irrespective48

to the problem of dimensionality, or to more general equations like convection/diffusion [18].49

Moreover, efficient iterative linear solvers like multigrid methods can benefit from the local50

computational stencil [17]. However, some limits may be outlined. First, the derivation of51

such schemes can be a tricky problem when non-uniform meshes or staggered grids have to52

be considered. Then, the derivation of such Mehrstellen-like schemes for the conservative53

formulation of a non-separable Poisson equation seems to remain an open issue. This con-54

servative formulation is still widely used to achieve conservation properties as for instance55

in computational fluid dynamics in order to enforce the divergence of the velocity.56

Another way to derive HOCS discretization for Poisson’s equation is to write the problem57

in a tensorial form and then to write down the discretization in each direction [13]. This58

approach allows to consider the Poisson’s equation on staggered grids [19], or to involve59

variable coefficients [20]. One of the advantages of the one-dimensional HOCS is that the60

higher-order accuracy is achieved by solving tridiagonal or pentadiagonal linear systems.61

This former operation is performed with a linear algorithm complexity, even in parallel ar-62

chitecture [19]. The drawback is, however, that the resulting discrete Poisson operator is63

no longer sparse. The diagonalization method can be considered to compute solutions for64

this dense linear system [10]. Alternatively, iterative methods using a matrix free implemen-65

tation can be examined as long as the evaluation of the residual for the Poisson equation66

is performed with a linear complexity algorithm. But, the bad condition number inherent67

to the scheme accuracy needs to be reduced by using a specific preconditioner [21]. Abide68

and Zeghmati [19] showed that a common second-order finite difference preconditioning for69

the fourth-order compact scheme discretization of the two-dimensional constant coefficient70
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Poisson’s equation allows to bound the spectral radius independently to the mesh size.71

The case of the non-separable Poisson’s equation is approached by several authors with72

methods similar to the defect correction [22]. The defect correction method introduces a73

simplified discrete operator, like lower-order discretization and/or constant coefficient, to74

determine successive corrections of the residual computed with the variable coefficient and75

eventually using high-order discretizations. This approach is investigated within the frame-76

work of the HOCS discretization of the constant coefficient Poisson equation on a staggered77

grid [19]. Nicoud [23] introduced a FD preconditioning based on a constant averaged co-78

efficient in the periodic directions to use a FFT-based Fast Poisson Solver. Within the79

framework of two-phase flows, Dodd and Ferrante [24] investigated a splitting, similar to80

the first step of the defect correction with a time-extrapolated initial guess for the pressure81

variable. This procedure is discussed and extended to HOCS discrerizations in the context82

of the simulation of reactive flows based on the low Mach number approximation [25]. The83

deferred correction is also the strategy considered by Knikker [20] to tackle solutions of the84

HOCS discretization of Poisson’s equation. It is worth mentioning that regardless the dis-85

cretization scheme, the defect correction using a preconditioner based on an approximate86

coefficient constant Poisson’s equation has a convergence rate independent of the mesh-size,87

but dependent on the bound of the variable coefficients [26].88

The present review outlines that the lower-order preconditioning of the spectral dis-89

cretization allows us to design iterative solvers that have a convergence rate independent of90

the mesh size [10]. A similar analysis for HOCS discretization established a similar result [19]91

in the case of constant coefficient Poisson’s equation. For the variable coefficient Poisson’s92

equation, the literature misses the analysis and the discussion of a such finite-difference pre-93

conditioning for HOCS discretizations. This is addressed by carrying out the computation of94

the condition number for the preconditioned Richardson iterative solver. The findings of this95

analysis are verified against several manufactured problems. The simulation flows involving96

large density gradients are also performed to verify and demonstrate the reliability of the97

lower-order finite difference preconditioning.98
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99

The next section presents the HOCS discretization of a non-separable Poisson’s equation100

written in a conservative form and defined on a staggered grid. The exact derivation of the101

convergence rate for the Richardson method is established in the one-dimensional case for102

the constant coefficient Poisson’s equation. In the case of the variable coefficient, the spectral103

radius is numerically computed and discussed. In the section 3, numerical experiments are104

carried out to show that the conclusions of the eigenvalue analysis hold for multidimensional105

problems. The conclusions are also verified against a test case of practical interest: the106

simulation of the natural convection of air due to a large temperature gradient.107

108

2. Analysis of the finite difference preconditioning109

2.1. HOCS discretization of variable coefficient Poisson’s equation110

Let us consider the following non-separable Poisson’s equation:111

�r · (r�) = f (1)

where  is a smooth variable coefficient and f the right hand side. Without loose of generality112

the problem is defined on a cubical domain ⌦ = [0, 1]3 for which Neumann or periodic bound-113

ary conditions can be prescribed on the boundary � = @⌦. This equation is the archetype114

problem occurring in computational fluid dynamics, specifically with incompressible-like115

models [20, 23] for which the divergence of the velocity have to be exactly enforced. The116

present analysis focuses on this singular problem which it is known to be among the most117

tricky part of incompressible-like solvers. So, as commonly encountered with the pressure-118

like variable, the unknown � is cell-centered and the coefficient  is face-centered. Regardless119

the discretization, the finite difference approximation of Eq. (1) is formulated in a Cartesian120

coordinates system as:121

�
�
�fc
x

x�cf
x

+ �fc
y

y�cf
y

+ �fc
z

z�cf
z

�
� = f (2)
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where �
⇠

denotes the derivative operator in the ⇠-direction, the superscript fc and cf refers122

to face-to-cell and cell-to-face respectively. The notation ⇠ refers to the variable coefficient123

evaluated at the faces in the ⇠-direction. Let us define the uniform step size h
⇠

= `
⇠

/n
⇠

, so124

the cell and face centres are located at ⇠
i

= (i�1/2)h
⇠

, 0  i  n
⇠

+1 and ⇠
i+1/2

= i h
⇠

, 0 125

i  n
⇠

, respectively.126

The discrete approximation of the non-separable Poisson equation Eq. (2) is based on127

HOCS [13]. According to the mesh staggering, the HOCS derivatives from cell-to-face �cf
⇠

128

are given by:129

��0
i�2

+↵�0
i�1

+�0
i

+↵�0
i+1

+��0
i+2

= a
�
i+1/2

� �
i�1/2

h
⇠

+b
�
i+3/2

� �
i�3/2

3h
⇠

+c
�
i+5/2

� �
i�5/2

5h
⇠

(3)

whereas the face-to-cell derivative �cf
⇠

is given by the space-shift of the former relation:130

��0
i�3/2

+↵�0
i�1/2

+�0
i+1/2

+↵�0
i+3/2

+��0
i+5/2

= a
�
i+1

� �
i

h
⇠

+b
�
i+2

� �
i�1

3h
⇠

+c
�
i+3

� �
i�2

5h
⇠

(4)

The coefficients ↵, �, a, b and c are computed to ensure the constraints on the accuracy [13].131

The HOCS discretizations used in this work are tabulated in the Tab. 1.132

[Table 1 about here.]133

For the periodic boundary conditions, these relations uniquely define the discretization of134

the Poisson’s equation Eq. (1). For the Neumann boundary conditions, lower-order up-135

wind boundary relations are derived [13]. For instance, the following third-order boundary136

conditions are considered [19]:137

�0
1/2

+ 23�0
3/2

= �25�
0

+ 26�
1

� �
2

(5)

138

�0
1/2

� �0
3/2

= ��
0

+ 2�
1

� �
2

(6)

Because of the implicit formulation of the compact schemes and the staggered grid, the linear139

system arising from the HOCS discretization of Eq. (2) is no longer sparse. Solutions can140

be computed by the successive diagonalization solver [10, 19, 27]. The non-separable feature141
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of the Poisson’s equation Eq. (1) precludes this direct solver, and iterative ones remain a142

natural way to consider. The present study focuses on the second-order finite differences143

preconditioning of the non-separable Poisson’s equation discretized with HOCS. According144

to Haldenwang et al. [10], an eigenvalue analysis of the preconditioned Richardson iterations145

method is investigated in the following.146

147

2.2. Preconditioned Richardson iterations148

The analysis of the second-order finite difference preconditioning for the HOCS discretiza-149

tion of the Poisson equation relies on an eigenvalue analysis of the iteration matrix of the150

Richardson method. This is motivated by the existence of several results for the convergence151

rate estimates [10, 26]. The preconditioned Richardson iteration is defined by the sequence:152

�(k+1)

= �(k) � !H�1r(k), 0 � k (7)

where ! is a relaxation factor, rk = L�(k) � f denotes the residual at the iteration k and L153

stands for an HOCS discretization of Eq. (2). The notation H�1 refers to the preconditioning154

method which is designed to ensure a good convergence of the sequence Eq. (7), and also155

to be easily computed. Hence, a classical result is the derivation of the optimal relaxation156

factor !
opt

and convergence rate r
opt

:157

!
opt

= 2/(�
max

+ �
min

) r
opt

= (�
max

� �
min

)/(�
max

+ �
min

) (8)

where �
min

and �
max

stand for the lowest and largest eigenvalues of the preconditioned prob-158

lem H�1L.159

For the Poisson equation with a constant coefficient  defined on a one-dimensional peri-160

odic domain, a theoretical framework exists to derive the convergence rate from the precondi-161

tioned Richardson method. Indeed, the eigenvectors of the second-order and the HOCS finite162

differences Eq. (2) are similar. The eigenvectors are expressed as v
k

= exp(ik2⇡/n), 1  k 163

n, and therefore the eigenvalues are derived from the Fourier analysis of the finite difference164
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schemes. H and L being respectively associated to the second-order finite difference and the165

HOCS discretization of the one-dimensional version of Eq. (2), the discrete eigenvalues are166

given by [13]:167

�
k

(H) =

sin

2

(w
k

/2)

4h2

, (9)
168

�
k

(L) =
1

4h2

✓
a sin(w

k

/2) + b/3 sin(3w
k

/2) + c/5 sin(5w
k

/2)

1 + 2↵ cos(w
k

) + 2� cos(2w
k

)

◆
2

(10)

with w
k

= 2k⇡/n. Since H and L share the same eigenvectors, the eigenvalues of the169

preconditioned Poisson problem are determined by �
k

(H�1L) = �
k

(L)/�
k

(H). The Fig. 1170

presents the eigenvalues �
k

(H�1L) with respect to the HOCS listed in Tab. 1.171

[Figure 1 about here.]172

The curves in Fig. 1 show that the set of eigenvalues remains bounded by the values at the173

limit of vanishing w = 0 and at w = ⇡:174

�
min

=

✓
a+ b+ c

1 + 2↵ + 2�

◆
2

, �
max

=

✓
a+ b/3 + c/5

1 + 2↵ + 2�

◆
2

(11)

It should be noted that �
min

= 1 because the accuracy requirement in the derivation of the175

compact scheme needs to satisfy to 1+2↵+2� = a+ b+ c [13]. Thus, the condition number176

of the preconditioned iteration matrix is determined by the maximal eigenvalue �
max

. In this177

specific case, the estimation of the preconditioned Richardson’s convergence rate is cleared-178

up. Tab. (2) details the spectral radius, and the underlying optimal relaxation factor and179

the convergence rate for the six schemes. (2).180

[Table 2 about here.]181

The eigenvalues of the preconditioned operator H�1L are not dependent on the space size182

h. This result means that if the preconditioner H�1 scales like a multigrid method then the183

higher-order accuracy is achieved with a linear complexity algorithmic because the HOCS184

residual is itself computed with a linear algorithm complexity. The best convergence rate185

holds for the fourth-order compact scheme H4tri, the worst holds for H10pen. The following186
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conclusion can be drawn: the more accurate is the scheme, the worse is the convergence.187

Thus, with the scheme H10pen, the convergence rate falls down to 0.29 which is less than188

two times more than the scheme H4tri. As indicated in the textbook of Canuto et al. [5] and189

observed by Abide et al. [28], the present analysis remains valid for multidimensional Pois-190

son’s equation. In the case of general Poisson equation, which involves a variable coefficient191

for instance, there is no exact derivation of the eigenvalues. Nevertheless, the eigenvalues of192

the preconditioned operator can be computed numerically. In the following, this procedure193

is considered as an alternative to the exact derivation.194

The brute-force approach consists in assembling the matrices arising from the second-195

order and the HOCS discretizations H and L, and then to compute the eigenvalues. Clearly,196

this procedure depends on the mesh size N , excepted for the periodic case and the constant197

coefficient for which this approach is exact. For the other cases, a second-order conver-198

gence of the numerical error with respect to the mesh size N of the couple of eigenvalues199

(�
min

,�
max

) is observed (Fig. 2).200

[Figure 2 about here.]201

It is worth mentioning that the numerical error is computed from the reference eigenvalue202

computed with the finest mesh N = 256. The Fig. 2 presents the numerical errors in the203

three schemes H4tri, H6tri and H6pen with Neumann boundary conditions. A �2 slope is204

noted, thus the Richardson extrapolation is considered to estimate the couple of extreme205

eigenvalues. The resulting data are presented in Tab. 3.206

[Table 3 about here.]207

It should be noted that the results are identical up to two digits. This procedure is considered208

hereinafter to assess the preconditioning for the variable coefficient case.209

2.3. Preconditioning with variable coefficients210

The second-order finite differences preconditioning is assessed for a variable coefficient 211

and both periodic and Neumann boundary conditions. Specifically, the two following variable212
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coefficients  in Eq. (1) are considered:213


1

(x) = 1 +

9

10

sin (4⇡x) (12)


2

(x) =

2

1 + ✏+ (1� ✏) sin (4⇡x)
(13)

where ✏ is a parameter which defines the stiffness of the coefficient (✏ = 10

�3). The coefficients214


1

, and 
2

exhibit variations of O(1) and O(10

3

) while being continuous. The Richardson215

extrapolation of the extreme eigenvalues for the preconditioned operator H�1L is detailed216

in the Tab. 4.217

[Table 4 about here.]218

The eigenvalues are close to those derived with the constant coefficient assumption and dis-219

cussed in the section 2.2. Small discrepancies are observed especially with the stiff coefficient220


2

. This can be attributed to an under-resolved mesh unable to describe the stiff variations221

of 
2

. A similar conclusion to the exact derivation of the convergence rate (Sec. 2.2) can be222

drawn: the spectral radius does not depend on the mesh size N . In addition no noticeable223

dependency on the coefficients  is noted.224

A similar analysis is carried out with the Neumann boundary conditions. Thus, the ex-225

treme eigenvalues are computed for the schemes H4tri, H6tri and H6pen. The results are226

presented in Tab. 5.227

[Table 5 about here.]228

The bounds of the eigenvalues are similar to those derived in the section (2.2) Eq. (11). The229

slight observed deviations can be explained by a coarse mesh which seems to be insufficient230

to describe the stiff variations of the coefficients .231

To summarise the findings, the eigenvalues bound of the preconditioned operator H�1L is232

not sensitive to the mesh size N [19]. Moreover, a finite difference preconditioning based on233

a variable coefficient Poisson equation leads also to an eigenvalue bound independent from234

the variable coefficient. This feature has two main consequences. First, this shows a way to235

10



design a HOCS Poisson solver for non-separable problems which could not depend on the236

variable coefficient. Secondly, if the preconditioning step is efficiently performed, the method237

could benefit from High Performance Computing. It’s because the HOCS residual can be also238

calculated with a linear algorithmic complexity while involving only halo exchange parallel239

communications [19].240

2.4. Implementation241

The preconditionned Richardson sequence Eq. (7) relies on the evaluation of the HOCS242

residual Eq. (2) and on the solution of the second-order discretization of Eq. (1) H�1. The243

evaluation of the preconditioning H�1 has to be performed efficiently to ensure correct overall244

performance. A review on the fast Poisson solver is proposed in the reference [4]. According245

to this review, FFT based solvers are among the most efficient for problems involving a246

constant coefficient. Otherwise, multigrid methods are shown to be suitable. Although,247

geometric multigrid methods are usually more efficient than algebraic multigrids for Poisson’s248

equation on cubical domains [4], in this work, the AGMG library developed by Notay [1]249

is used. This choice is motivated by the user friendly interface, the black-box mode and250

its parallel implementation. It is worth mentioning that in each Richardson iteration of251

the sequence Eq. (7) only two or three iterations of the algebraic multigrid are performed.252

It has been experienced that only an approximate solving H�1 is sufficient to achieve the253

global convergence of the Richardson sequence. The method has been implemented using a254

previous parallel code dedicated to compact scheme discretizations [19].255

3. Numerical results256

This section is devoted to the assessment of the second-order finite difference precondi-257

tioning for a HOCS discretization of the non-seperable Poisson equation. First the effective258

accuracy of the present solver implementation is demonstrated. Then, the extreme eigen-259

values are estimated from numerical experiments including numerical solution of Poisson’s260

equation and the simulation of the unsteady natural convection in a tall cavity. This for-261

mer numerical experiment aims to illustrate the finite differences preconditioning in a more262

11



general context.263

3.1. HOCS accuracy verification264

The accuracy of the HOCS discretizations for the problem Eq. (1) is verified. The method265

consists in computing the numerical error for several grid sizes in order to estimate the266

effective order of accuracy. A cubical domain is considered ⌦ = [0, 2⇡]3, with either periodic267

boundary or Neumann boundary conditions. The right-hand side of the Poisson equation is268

derived from the exact solution:269

� = cos(2⇡x) cos(2⇡y) cos(2⇡z) (14)

and the following three-dimensional extensions of the coefficients Eq. (12) is considered:270


1

= 1 +

9

10

sin (4⇡x) sin (4⇡y) sin (4⇡z) (15)


2

=

2

1 + ✏+ (1� ✏) sin (4⇡x) sin (4⇡y) sin (4⇡z)
(16)

The solutions are computed with the preconditioned Richardson sequence Eq. (7). In the271

case of Neumann boundary conditions the mesh is refined at the boundary according to272

a tangent hyperbolic mesh transformation [27]. Fig. 3 presents the numerical error with273

respect to the mesh size N for the coefficient 
2

.274

[Figure 3 about here.]275

Fig. 3-a shows that the numerical errors decrease linearly with the expected slopes. It is276

also noted that the numerical error for the scheme H10pen saturates beyond N = 64 nodes277

because the machine accuracy is reached. Fig. 3-b corresponds to the Neumann boundary278

conditions. The slopes also agree with the expected HOCS’s accuracy. These numerical279

experiments confirm that the present implementation of the preconditioned Richardson it-280

erations fulfils the accuracy requirements.281
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3.2. Assessment of the preconditioning282

The validity of the spectral radius predictions established in the section 2 is verified283

from the residual history of the Richardson iterations method. Indeed, the knowledge of the284

convergence rate r
opt

and the optimal relaxation factor !
opt

allows us to estimate the couple285

of extreme eigenvalues (�
min

,�
max

) from the relations Eq. (8). The convergence rate r
opt

is286

computed from the residual slope [22]:287

r = (m2�m1)

r
r
m1

r
m2

(17)

where m
1

, m
2

denote two iteration numbers, and r
m1 , rm2 the associated residual respectively.288

The residual history is obtained from the zero solution of Poisson’s equation and using a289

random field as initial guess [22]. Fig. 4 presents the residuals for the scheme H8tri, the290

variable coefficient 
2

with periodic boundary conditions.291

[Figure 4 about here.]292

First, it is observed that the convergence rate is slightly dependent on the mesh size N ,293

but the slope reaches a limit as the mesh is refined. From the residual history observed294

on the finest grid and using the relation Eq. (17), the convergence rate is estimated at295

r
opt

= 0.29. It is worth mentioning that the relaxation factor of the Richardson sequences296

Eq. (17) is initialized to the optimal value detailed in Tab. 2. In this case, the estimate of the297

spectral bound for the preconditioned Richardson iterations is (�
min

,�
max

) = (1.01, 1.82).298

This result agrees with the eigenvalue analysis of the section 2. It should be noted that this299

result validates the value of the optimal factor !
opt

.300

The sensitivity of the convergence rate evaluation to the mesh size is investigated. Fig. 5301

presents the convergence rate r
opt

with respect to the mesh size for the HOCS discretizations302

and for the variable coefficient 
2

.303

[Figure 5 about here.]304

These curves show a small dependency on the convergence rate to the mesh size above grids305

of size 128

3. This result holds for both periodic and Neumann boundary conditions. This306
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confirms the main result of the section 2 which highlights that the convergence rate is not307

dependent on the mesh size, and thus, even if a stiff variable coefficient is used. In the308

following the convergence rate will be estimated from the finest grid 256

3.309

The spectral bounds of the iteration matrix is measured for each HOCS scheme. Tab. 6310

and Tab. 7 present the extreme eigenvalues (�
min

,�
max

) computed from the residual curves on311

the finest grid 256

3. First, for experiments involving periodic boundary conditions (Tab. 6),312

one can observed that for each discretization the couple of extreme eigenvalues are close to313

those predicted in the section 2.314

[Table 6 about here.]315

Thus, the minimal eigenvalue �
min

ranges between 1.00 and 1.02 while the expected value is316

1. Next, it is observed that the maximal eigenvalue �
max

is also close to the one predicted317

by the one-dimensional analysis developed in the section 2 (Tab. 2). This holds for the318

constant and both variable coefficients 
1

and 
2

. These numerical experiments corroborate319

the conclusion drawn in the section 2 on the properties of the second-order preconditioning:320

the independence of the convergence rate with respect to the mesh size and the coefficient321

. The table 7 presents the two extreme eigenvalues in the case of prescribed Neumann322

boundary conditions.323

[Table 7 about here.]324

The computed eigenvalues are also similar to the prediction of the Tab. 2. This shows that325

despite the Neumann boundary conditions the eigenvalues spectra remains bounded.326

327

To illustrate the implications of this preconditioning on the wall time, the former is328

reported for several mesh sizes in table 8. Thus, the wall time is defined as the time necessary329

to decrease the residual to 10

�9 in case of a periodic domain, for the coefficient 
2

and with330

the scheme H6tri. In addition, the wall time of the multigrid AGMG preconditioner, and331

the wall time of the Conjugated Gradient to get the same level of residual are also reported.332

333
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[Table 8 about here.]334

First, one can note that the wall time of the multigrid preconditioning is almost the wall335

time of the preconditioned Richardson. This means that a higher accuracy is obtained at the336

cost of a second order discretization solved by a multigrid method. Since multigrid meth-337

ods are known to scale linearly with the number of unknowns, it is expected that compact338

scheme discretizations of elliptic problems inherit of this scaling. Then, it is observed that339

the Conjugated Gradient perform well than preconditioned Richardson for coarser meshes340

than 32

3. In other hand for finer meshes than 32

3, it is the preconditioned Richardson which341

performs well. Indeed, in the absence of a preconditioning the number of iterations increases342

significantly with the problem size and the underlying ill-conditioning.343

The present test confirms that the preconditioning is not sensitive to the Neumann/periodic344

boundary, to the mesh size and to the coefficient , at least for continuous one. However,345

these conclusions concern the model coefficients 
1

and 
2

. To extend the conclusions to more346

general coefficients, the simulation of a variable density flow is considered in the following.347

3.3. Unsteady natural convection in a tall cavity348

Let us consider the flow in a closed cavity with large temperature gradients. The low349

Mach number formulation of the Navier-Stokes equations may be considered as an alternative350

to the Boussinesq approximation for accounting buoyancy forces and density variations. A351

common way to address the simulations of such flow consists in solving a non-separable352

Poisson equation to enforce the final divergence of the velocity [20, 23]. This equation reads:353

r · 1
⇢
r� = r · (u? � S) (18)

where � denotes the pressure-like variable, u? the provisional velocity, ⇢ the variable density354

and S the divergence to enforce. Knikker [20] proposed a detailed review of these approaches.355

In what follows, the denoted P1-A1 in [20] has been implemented with an in-house code356

devoted to the simulation of turbulent flows [28–30]. The velocity, pressure and temperature357

are located on a staggered grid, the time advancement is based on the semi-implicit Adams358
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Bashforth/Runge Kutta scheme and HOCS H4tri, H6tri and H6pen are considered. First,359

the space accuracy of the present low Mach solver is demonstrated using the Method of360

Manufactured Solutions [31]. According to the validation procedure of Bouloumou et al.361

[32], the following two-dimensional analytical solution is considered:362

u(x, y) = + cosx sin y +
1

Pr

p
Ra

cos x sin y

v(x, y) = � sin x cos y +
1

Pr

p
Ra

sin x cos y

p(x, y) = cos x cos y

T (x, y) = 1 + ✏ sin x sin y

⇢(x, y) = P
th

/T (x, y)

P
th

= 1

(19)

with Ra = 10

3, Pr = 0.71 and ✏ = 0.5. Both periodic and Dirichlet boundary conditions363

(non-periodic) in a square computational domain ⌦ = [0, 2⇡] ⇥ [0, 2⇡] are considered. It364

is worth mentioning that the analytical solution is a the non-solenoidal velocity field which365

is specific to the low Mach model. The numerical error is computed with the L2-norm of366

the difference between the exact and the numerical solution. The numerical error of the367

pressure p is reported in the figure 6 for each discretization H4, H6tri and H6pen. For the368

sake of clarity, the analysis based on the velocity and on the temperature are not reported369

because of the numerical error slopes are similar to the pressure one.370

[Figure 6 about here.]371

The slopes of the numerical error show the fourth and the sixth-order accuracy of the imple-372

mented code for periodic boundary conditions (Fig. 6). The same conclusion holds for the373

non-periodic conditions with a slightly above slope that the expected one. For instance, the374

slopes of 5.7 and 5.6 are noted for the tridiagonal and pentadiagonal sixth-order compact375

schemes.376

In addition, the present low Mach solver is validated against the steady natural convection377
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flow in a differentially heated cavity with a large temperature gradient. The configuration378

flow is detailed in the Benchmark [6]. The control flow parameters are the Rayleigh num-379

ber, the deviation to the Boussinesq approximation set to ✏ = 0.6 and the Prandlt number380

Pr = 0.71. The thermophysical properties are constant. A grid sensitivity analysis is381

performed to assess the accuracy of the present low Mach solver at the Rayleigh number382

Ra = 10

5. First, a fine grid solution has been computed on a mesh of size 120 ⇥ 120 and383

with the small CFL number 0.05. This simulation leads to a Nusselt number Nu = 4.5516384

and a thermodynamic pressure P
th

/P
0

= 0.8518, which agrees the values computed in [32]385

and [33]. Fig. 7 presents, for the grid sizes N = 32, 48 and 64, the absolute difference with386

the fine grid solution of the Nusselt number and thermodynamic pressure.387

[Figure 7 about here.]388

The slopes confirm the expected accuracy, and even show a saturation due to the low level389

error for the two sixth-order schemes. A further validation is performed with a higher390

Rayleigh number Ra = 10

6. For a mesh of size 128 ⇥ 128, the computed Nusselt number391

is Nu = 8.8598 and the final thermodynamic pressure P
th

/P
0

= 0.856338, which agree well392

with the reference solution [6]. Fig. 8 presents the streamlines and the isolines of the393

temperature.394

[Figure 8 about here.]395

Both plots are in agreement with the results of Heuveline [34]. The present low Mach396

solver implementation being validated, one can focus on the spectrum of the finite difference397

preconditioning.398

To this end, the unsteady natural convection in a tall cavity is considered [35, 36]. The399

aspect ratio of the cavity is 1:8, the Rayleigh number is Ra = 10

6 and the normalized400

temperature difference is ✏ = 0.8. This former parameter is sufficiently high to lead to a401

strongly unsteady flow with large density variations: the order of magnitude is one. The402

simulations of the flow are carried out up to a dimensionless time t = 1000 with a CFL403

number of 0.8 and using a fine mesh 128⇥512. Fig. 9 presents a temporal snapshot sequence404

of the isolines of temperature.405
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[Figure 9 about here.]406

The contours plots agree qualitatively with those recently published [35, 36]. The convergence407

rate of the Richardson iterations sequence is measured for the three discretizations H4tri,408

H6tri and H6pen using the procedure detailed in the section 3.2. Thus, the maximum of the409

residual Eq. (7) with respect to the Richardson iteration number it is plotted in Fig. 10 for410

one temporal iteration of the Navier-Stokes solver. It should be mentioned that the iterative411

procedure Eq. (7) has been initialized with � = 0 and was stopped when the residual is412

below ||r|| < 10

�10.413

[Figure 10 about here.]414

Also, it has been observed that whatever the time step the slopes of Fig. (8), the curves415

remain of similar slope. This observation confirms that a such low-order preconditioning is416

not sensitive to the variable coefficient ⇢. For this mesh size, the solution of time of the417

pressure equation is about 1.1 s with 24 processors. The measured convergence rates on418

Fig. (8) and the associated extrem eigenvalues are summarized in Tab. 9.419

[Table 9 about here.]420

The assessed extrem eigenvalues agree the theoretical estimates of the section 2. It should421

be noticed that the spectrum of the preconditioned operator is slightly smaller. This can422

be explained by the cancellation of the high-frequency fluctuations due to the fine mesh or423

the compact schemes cut-off [13]. This test confirms that the second-order finite difference424

preconditioning of HOCS compact schemes for non-separable Poisson’s equation possess a425

bounded spectrum independent to the variable coefficient.426

4. Conclusion427

An analysis of the second-order finite-difference preconditioning of the higher-order428

compact scheme discretization regarding the variable coefficient Poisson equation is pre-429

sented in this work. In particular, it is demonstrated that the preconditioner built from the430
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second-order finite-difference discretization leads to an iterative Richardson method that the431

convergence rate is not sensitive to the mesh size and the variable coefficient. The finding432

is even more valuable that this preconditioning can be applied on the conservative form of433

the Poisson’s equation, the one involved in some discretizations of variable density flows for434

instance.435

Several numerical experiments based on manufactured solutions demonstrate the accu-436

racy of the discretization up to the tenth-order. The convergence rate of the present lower-437

order preconditioned Richardson method has been found not sensitive to the mesh-size and438

the variable coefficient. This former finding is verified with a more general variable-coefficient439

test case: variable density flow occurring in a strongly heated cavity. This demonstrates the440

relevance of the lower-order preconditioning for the compact scheme discretizations even the441

more that the present solver involves numerical methods with linear computational complex-442

ity.443

Further investigations would to put forward a such low-order preconditioning as a simple444

way to achieve simultaneously scalable algorithm and higher-order accuracy, and thus to445

take full advantage of the High Performance Computing.446
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name order ↵ � a b c

H4tri h4 1/22 0 12/11 0 0
H6tri h6 9/62 0 63/62 17/62 0
H6pen h6 154/1289 �17/5178 960/863 0 0
H8tri h8 25/118 0 2675/2832 925/1888 �61/5664
H8pen h8 6114/25669 183/51338 23400/25669 14680/25669 0
H10pen h10 96850/288529 9675/577058 683425/865587 505175/577058 69049/1731174

Table 1: Compact scheme coefficients for the first derivative defined on a staggered grid.
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scheme H4tri H6tri H6pen H8tri H8pen H10pen
�
min

1.00 1.00 1.00 1.00 1.00 1.00
�
max

1.44 1.70 1.62 1.83 1.84 1.95
r
opt

0.18 0.26 0.24 0.29 0.30 0.32
!
opt

0.82 0.74 0.76 0.71 0.70 0.68

Table 2: The lowest and largest eigenvalues of the preconditioned operator H�1L and the underlying optimal
parameters for the preconditioned Richarson iterations.
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scheme H4tri H6tri H6pen
�
min

1.00 1.00 1.00
�
max

1.44 1.70 1.62

Table 3: The lowest and largest eigenvalues of the preconditioned Richardson method: Neumann boundary
conditions and constant coefficient.
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case scheme H4tri H6tri H6pen H8tri H8pen H10pen

2

�
min

1.00 1.00 1.00 1.00 1.00 1.00

2

�
max

1.44 1.70 1.62 1.83 1.85 1.95

3

�
min

0.99 0.99 0.99 0.99 0.99 0.99

3

�
max

1.45 1.70 1.62 1.83 1.85 1.95

Table 4: The lowest and largest eigenvalues of the preconditioned Richardson method: periodic boundary
conditions and variable coefficient.
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case scheme H4tri H6tri H6pen


1

�
min

1.00 0.98 1.00
�
max

1.44 1.70 1.62


2

�
min

1.00 0.99 0.99
�
max

1.45 1.72 1.64

Table 5: The lowest and largest eigenvalues of the preconditioned Richardson method: Neumann boundary
conditions and variable coefficient.
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case scheme H4tri H6tri H6pen H8tri H8pen H10pen

constant �
min

1.01 1.02 1.02 1.02 1.02 1.02
�
max

1.43 1.68 1.60 1.81 1.82 1.93


1

�
min

1.00 1.02 1.01 1.01 1.02 1.02
�
max

1.44 1.68 1.61 1.81 1.82 1.93


2

�
min

1.01 1.01 1.01 1.01 1.01 1.01
�
max

1.43 1.69 1.61 1.82 1.84 1.94

Table 6: Estimates of the lowest and largest eigenvalues of the preconditioned Richardson method: periodic
boundary conditions and variable coefficient.
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case scheme H4tri H6tri H6pen

constant �
min

1.01 1.01 1.02
�
max

1.43 1.68 1.60


1

�
min

1.01 1.02 1.01
�
max

1.43 1.68 1.61


2

�
min

0.98 1.01 0.99
�
max

1.46 1.69 1.63

Table 7: Lowest and largest eigenvalues estimates of the preconditioning : Neumann boundary conditions
and variable coefficient.
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N CG AGMG PR
16

3 0.02 0.43 0.47
32

3 0.42 1.69 1.96
48

3 4.64 3.54 3.80
64

3 17.42 8.33 8.99
96

3 247.80 23.00 25.61

Table 8: Wall time in second to solve the Poisson equation with the variable coefficient 2. Notations:
Conjugate Gradient (CG), Richardson preconditioned (PR) by the algebraic multigrid AGMG.
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scheme H4tri H6tri H6pen
r 0.17 0.24 0.23

�
min

1.01 1.02 1.01
�
max

1.43 1.68 1.61

Table 9: Estimates of the textcolorblueextrem eigenvalues evaluated from the simulation of the tall cavity
flow.
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