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The finite difference preconditioning for higher-order compact scheme discretizations of non separable Poisson's equation is investigated. An eigenvalue analysis of a one-dimensional problem is detailed for compact schemes up to the tenth-order. The analysis concludes that the spectrum is bounded irrespective of the mesh size and the continuous variable coefficient.

Hence, combined to a multigrid method, the preconditioned Richardson method shows a convergence rate which is independent from the mesh size and the variable coefficient. Several numerical experiments, including the simulation of a flow with large density variations, confirm that the spectrum of the preconditioned operator remains bounded.

Introduction

The accurate numerical solution of the Poisson's equation is often required in the mod-8 elling of heat and mass transfer, in the presence of chemical reactions, in several scientific 9 and engineering applications. The Poisson's equation may have constant or variable coeffi-10 cients depending on the complexity of the problem. Accuracy and computational speed of 11 the numerical solver can be improved by employing higher-order discretization within the 12 framework of parallel methods. The development of such discretization and parallel methods 13 for variable-coefficient Poisson's equation remains a challenge. In this work, a second-order 14 Email address: stephane.abide@univ-perp.fr (Stéphane Abide) finite-difference preconditioning method for higher-order compact schemes to solve the Poisson's equation is developed and assessed for accuracy and computational performance.

One of the straightforward and popular methods to write a discretization of the variable coefficient Poisson equation is the common finite differences, elements or volumes. The resulting discrete Poisson operator is built on a local computational stencil and thus can benefit from efficient direct or iterative linear solvers at the cutting edge of the high performance computing [START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF][START_REF] Baker | Scaling hypre's multigrid solvers to 100,000 cores[END_REF][START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] which permits to compute accurate solutions on fine grids. A recent comparative study of several Poisson solvers in an unit cube has been released by Gholami et al. [START_REF] Gholami | Multigrid? a comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube[END_REF] .

Another way to get accurate solution while limiting the number of degrees of freedom is to use higher-order discretizations. Spectral methods are these higher-order discretizations which exhibit an exponential decrease of the numerical error for sufficient regular solutions [START_REF] Canuto | Spectral method in fluid mechanics[END_REF]. This strong property naturally leads authors to consider this discretization when computing accurate solution of benchmark problems [START_REF] Le Quéré | Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. part 1. reference solutions[END_REF]. Unlike lower-order discretizations, the global approximation of spectral methods introduces some specific difficulties: spurious oscillations due to a loss of local regularity conditions [START_REF] Botella | Benchmark spectral results on the lid-driven cavity flow[END_REF], large parallel communications inherent to FFT [START_REF] Pekurovsky | P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions[END_REF], and bad conditioning of discrete operators [START_REF] Canuto | Spectral method in fluid mechanics[END_REF]. Orszag [START_REF] Orszag | Spectral methods for problems in complex geometrics[END_REF] proposed to use Finite-Difference preconditioning to achieve spectral accuracy with the Fourier spectral discretization. Haldenwang et al. [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equation[END_REF] discussed this approach regarding the Chebyshev spectral approximation. In both works, the theoretical analysis relies on the evaluation of the lowest and highest eigenvalues of the preconditioned discrete operator in the one-dimensional Poisson equation. In addition to the derivation of the convergence rate bound ⇡ 2 /4, Haldenwang et al. [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equation[END_REF] has shown that the convergence rate is not sensitive to the boundary conditions and to the dimensionality of the problem. Always based on one-dimensional analysis Labrosse and Redondo [START_REF] Labrosse | The optimal 3-node preconditioner of the d2dx2 Fourier and Chebyshev spectral operators[END_REF] has presented a way to design an optimal lower-order preconditioner for the Chebyshev discretization of the Poisson 1d problem with a constant coefficient.

Other popular higher-order discretizations exist, such as the Higher-Order Compact Schemes.These Schemes are a set of higher-order finite differences achieving higher-order accuracy on a small computational stencil [START_REF] Collatz | The numerical treatment of differential equations[END_REF][START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF][START_REF] Chu | A three-point combined compact difference scheme[END_REF]. One way to write such schemes is based on the substitution of the higher derivatives occurring in the central finite difference truncation error with the second-order finite difference approximation. This approach has led to the definition of the Mehrstellen scheme [START_REF] Collatz | The numerical treatment of differential equations[END_REF]. A large amount of works follows this approach as illustrated by the non-exhaustive selected papers [START_REF] Spotz | A high-order compact formulation for the 3d Poisson equation, Numerical Methods for Partial Differential Equations[END_REF][START_REF] Gupta | High accuracy multigrid solution of the 3d convection-diffusion equation[END_REF][START_REF] Medina | Solution of high order compact discretized 3d elliptic partial differential equations by an accelerated multigrid method[END_REF]. One of the advantages of proceeding in this way is that the resulting schemes lead to a sparse linear system irrespective to the problem of dimensionality, or to more general equations like convection/diffusion [START_REF] Abide | Compact mixed methods for convection/diffusion type problems[END_REF].

Moreover, efficient iterative linear solvers like multigrid methods can benefit from the local computational stencil [START_REF] Medina | Solution of high order compact discretized 3d elliptic partial differential equations by an accelerated multigrid method[END_REF]. However, some limits may be outlined. First, the derivation of such schemes can be a tricky problem when non-uniform meshes or staggered grids have to be considered. Then, the derivation of such Mehrstellen-like schemes for the conservative formulation of a non-separable Poisson equation seems to remain an open issue. This conservative formulation is still widely used to achieve conservation properties as for instance in computational fluid dynamics in order to enforce the divergence of the velocity.

Another way to derive HOCS discretization for Poisson's equation is to write the problem in a tensorial form and then to write down the discretization in each direction [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. This approach allows to consider the Poisson's equation on staggered grids [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF], or to involve variable coefficients [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF]. One of the advantages of the one-dimensional HOCS is that the higher-order accuracy is achieved by solving tridiagonal or pentadiagonal linear systems. This former operation is performed with a linear algorithm complexity, even in parallel architecture [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF]. The drawback is, however, that the resulting discrete Poisson operator is no longer sparse. The diagonalization method can be considered to compute solutions for this dense linear system [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equation[END_REF]. Alternatively, iterative methods using a matrix free implementation can be examined as long as the evaluation of the residual for the Poisson equation is performed with a linear complexity algorithm. But, the bad condition number inherent to the scheme accuracy needs to be reduced by using a specific preconditioner [START_REF] Brüger | High order accurate solution of the incompressible Navier-Stokes equations[END_REF]. Abide and Zeghmati [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF] showed that a common second-order finite difference preconditioning for the fourth-order compact scheme discretization of the two-dimensional constant coefficient Poisson's equation allows to bound the spectral radius independently to the mesh size.

The case of the non-separable Poisson's equation is approached by several authors with methods similar to the defect correction [START_REF] Trottenberg | Multigrid[END_REF]. The defect correction method introduces a simplified discrete operator, like lower-order discretization and/or constant coefficient, to determine successive corrections of the residual computed with the variable coefficient and eventually using high-order discretizations. This approach is investigated within the framework of the HOCS discretization of the constant coefficient Poisson equation on a staggered grid [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF]. Nicoud [START_REF] Nicoud | Conservative high-order finite-difference schemes for low-Mach number flows[END_REF] introduced a FD preconditioning based on a constant averaged coefficient in the periodic directions to use a FFT-based Fast Poisson Solver. Within the framework of two-phase flows, Dodd and Ferrante [START_REF] Dodd | A fast pressure-correction method for incompressible two-fluid flows[END_REF] investigated a splitting, similar to the first step of the defect correction with a time-extrapolated initial guess for the pressure variable. This procedure is discussed and extended to HOCS discrerizations in the context of the simulation of reactive flows based on the low Mach number approximation [START_REF] Motheau | A high-order numerical algorithm for dns of low-Machnumber reactive flows with detailed chemistry and quasi-spectral accuracy[END_REF]. The deferred correction is also the strategy considered by Knikker [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF] to tackle solutions of the HOCS discretization of Poisson's equation. It is worth mentioning that regardless the discretization scheme, the defect correction using a preconditioner based on an approximate coefficient constant Poisson's equation has a convergence rate independent of the mesh-size, but dependent on the bound of the variable coefficients [START_REF] Concus | Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations[END_REF].

The present review outlines that the lower-order preconditioning of the spectral discretization allows us to design iterative solvers that have a convergence rate independent of the mesh size [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equation[END_REF]. A similar analysis for HOCS discretization established a similar result [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF] in the case of constant coefficient Poisson's equation. For the variable coefficient Poisson's equation, the literature misses the analysis and the discussion of a such finite-difference preconditioning for HOCS discretizations. This is addressed by carrying out the computation of the condition number for the preconditioned Richardson iterative solver. The findings of this analysis are verified against several manufactured problems. The simulation flows involving large density gradients are also performed to verify and demonstrate the reliability of the lower-order finite difference preconditioning.

The next section presents the HOCS discretization of a non-separable Poisson's equation written in a conservative form and defined on a staggered grid. The exact derivation of the convergence rate for the Richardson method is established in the one-dimensional case for the constant coefficient Poisson's equation. In the case of the variable coefficient, the spectral radius is numerically computed and discussed. In the section 3, numerical experiments are carried out to show that the conclusions of the eigenvalue analysis hold for multidimensional problems. The conclusions are also verified against a test case of practical interest: the simulation of the natural convection of air due to a large temperature gradient.

Analysis of the finite difference preconditioning

HOCS discretization of variable coefficient Poisson's equation

Let us consider the following non-separable Poisson's equation:

r • (r ) = f (1)
where  is a smooth variable coefficient and f the right hand side. Without loose of generality the problem is defined on a cubical domain ⌦ = [0, 1] 3 for which Neumann or periodic boundary conditions can be prescribed on the boundary = @⌦. This equation is the archetype problem occurring in computational fluid dynamics, specifically with incompressible-like models [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF][START_REF] Nicoud | Conservative high-order finite-difference schemes for low-Mach number flows[END_REF] for which the divergence of the velocity have to be exactly enforced. The present analysis focuses on this singular problem which it is known to be among the most tricky part of incompressible-like solvers. So, as commonly encountered with the pressurelike variable, the unknown is cell-centered and the coefficient  is face-centered. Regardless the discretization, the finite difference approximation of Eq. ( 1) is formulated in a Cartesian coordinates system as:

fc x  x cf x + fc y  y cf y + fc z  z cf z = f (2) 
where ⇠ denotes the derivative operator in the ⇠-direction, the superscript fc and cf refers to face-to-cell and cell-to-face respectively. The notation  ⇠ refers to the variable coefficient evaluated at the faces in the ⇠-direction. Let us define the uniform step size h ⇠ = `⇠/n ⇠ , so the cell and face centres are located at

⇠ i = (i 1/2)h ⇠ , 0  i  n ⇠ + 1 and ⇠ i+1/2 = i h ⇠ , 0  i  n ⇠ , respectively.
The discrete approximation of the non-separable Poisson equation Eq. ( 2) is based on HOCS [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. According to the mesh staggering, the HOCS derivatives from cell-to-face cf ⇠ are given by:

0 i 2 +↵ 0 i 1 + 0 i +↵ 0 i+1 + 0 i+2 = a i+1/2 i 1/2 h ⇠ +b i+3/2 i 3/2 3h ⇠ +c i+5/2 i 5/2 5h ⇠ (3) 
whereas the face-to-cell derivative cf ⇠ is given by the space-shift of the former relation:

0 i 3/2 +↵ 0 i 1/2 + 0 i+1/2 +↵ 0 i+3/2 + 0 i+5/2 = a i+1 i h ⇠ +b i+2 i 1 3h ⇠ +c i+3 i 2 5h ⇠ (4) 
The coefficients ↵, , a, b and c are computed to ensure the constraints on the accuracy [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF].

The HOCS discretizations used in this work are tabulated in the Tab. 1.

[Table 1 about here.]

For the periodic boundary conditions, these relations uniquely define the discretization of the Poisson's equation Eq. [START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF]. For the Neumann boundary conditions, lower-order upwind boundary relations are derived [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. For instance, the following third-order boundary conditions are considered [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF]:

0 1/2 + 23 0 3/2 = 25 0 + 26 1 2 
(5)

0 1/2 0 3/2 = 0 + 2 1 2 (6) 
Because of the implicit formulation of the compact schemes and the staggered grid, the linear system arising from the HOCS discretization of Eq. ( 2) is no longer sparse. Solutions can be computed by the successive diagonalization solver [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equation[END_REF][START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF][START_REF] Abide | A 2d compact fourth-order projection decomposition method[END_REF]. The non-separable feature of the Poisson's equation Eq. ( 1) precludes this direct solver, and iterative ones remain a natural way to consider. The present study focuses on the second-order finite differences preconditioning of the non-separable Poisson's equation discretized with HOCS. According to Haldenwang et al. [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equation[END_REF], an eigenvalue analysis of the preconditioned Richardson iterations method is investigated in the following.

Preconditioned Richardson iterations

The analysis of the second-order finite difference preconditioning for the HOCS discretization of the Poisson equation relies on an eigenvalue analysis of the iteration matrix of the Richardson method. This is motivated by the existence of several results for the convergence rate estimates [START_REF] Haldenwang | Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equation[END_REF][START_REF] Concus | Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations[END_REF]. The preconditioned Richardson iteration is defined by the sequence:

(k+1) = (k) !H 1 r (k) , 0 k (7) 
where ! is a relaxation factor, r k = L (k) f denotes the residual at the iteration k and L stands for an HOCS discretization of Eq. ( 2). The notation H 1 refers to the preconditioning method which is designed to ensure a good convergence of the sequence Eq. ( 7), and also to be easily computed. Hence, a classical result is the derivation of the optimal relaxation factor ! opt and convergence rate r opt :

! opt = 2/( max + min ) r opt = ( max min )/( max + min ) (8) 
where min and max stand for the lowest and largest eigenvalues of the preconditioned problem H 1 L.

For the Poisson equation with a constant coefficient  defined on a one-dimensional periodic domain, a theoretical framework exists to derive the convergence rate from the preconditioned Richardson method. Indeed, the eigenvectors of the second-order and the HOCS finite differences Eq. ( 2) are similar. The eigenvectors are expressed as v k = exp(ik2⇡/n), 1  k  n, and therefore the eigenvalues are derived from the Fourier analysis of the finite difference schemes. H and L being respectively associated to the second-order finite difference and the HOCS discretization of the one-dimensional version of Eq. ( 2), the discrete eigenvalues are

given by [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]:

k (H) = sin 2 (w k /2) 4h 2 , (9) 
k (L) = 1 4h 2 ✓ a sin(w k /2) + b/3 sin(3w k /2) + c/5 sin(5w k /2) 1 + 2↵ cos(w k ) + 2 cos(2w k ) ◆ 2 (10) 
with w k = 2k⇡/n. Since H and L share the same eigenvectors, the eigenvalues of the preconditioned Poisson problem are determined by

k (H 1 L) = k (L)/ k (H).
The Fig. 1 presents the eigenvalues k (H 1 L) with respect to the HOCS listed in Tab. 1.

[Figure 1 about here.]

The curves in Fig. 1 show that the set of eigenvalues remains bounded by the values at the limit of vanishing w = 0 and at w = ⇡:

min = ✓ a + b + c 1 + 2↵ + 2 ◆ 2 , max = ✓ a + b/3 + c/5 1 + 2↵ + 2 ◆ 2 (11) 
It should be noted that min = 1 because the accuracy requirement in the derivation of the compact scheme needs to satisfy to 1 + 2↵ + 2 = a + b + c [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. Thus, the condition number of the preconditioned iteration matrix is determined by the maximal eigenvalue max . In this specific case, the estimation of the preconditioned Richardson's convergence rate is clearedup. Tab. (2) details the spectral radius, and the underlying optimal relaxation factor and the convergence rate for the six schemes. [START_REF] Baker | Scaling hypre's multigrid solvers to 100,000 cores[END_REF].

[Table 2 about here.]

The eigenvalues of the preconditioned operator H 1 L are not dependent on the space size h. This result means that if the preconditioner H 1 scales like a multigrid method then the higher-order accuracy is achieved with a linear complexity algorithmic because the HOCS residual is itself computed with a linear algorithm complexity. The best convergence rate holds for the fourth-order compact scheme H4tri, the worst holds for H10pen. The following conclusion can be drawn: the more accurate is the scheme, the worse is the convergence.

Thus, with the scheme H10pen, the convergence rate falls down to 0.29 which is less than two times more than the scheme H4tri. As indicated in the textbook of Canuto et al. [START_REF] Canuto | Spectral method in fluid mechanics[END_REF] and observed by Abide et al. [START_REF] Abide | An efficient parallel high-order compact scheme for the 3d incompressible Navier-Stokes equations[END_REF], the present analysis remains valid for multidimensional Poisson's equation. In the case of general Poisson equation, which involves a variable coefficient for instance, there is no exact derivation of the eigenvalues. Nevertheless, the eigenvalues of the preconditioned operator can be computed numerically. In the following, this procedure is considered as an alternative to the exact derivation.

The brute-force approach consists in assembling the matrices arising from the secondorder and the HOCS discretizations H and L, and then to compute the eigenvalues. Clearly, this procedure depends on the mesh size N , excepted for the periodic case and the constant coefficient for which this approach is exact. For the other cases, a second-order convergence of the numerical error with respect to the mesh size N of the couple of eigenvalues ( min , max ) is observed (Fig. 2).

[Figure 2 [Table 3 about here.]

It should be noted that the results are identical up to two digits. This procedure is considered hereinafter to assess the preconditioning for the variable coefficient case.

Preconditioning with variable coefficients

The second-order finite differences preconditioning is assessed for a variable coefficient  and both periodic and Neumann boundary conditions. Specifically, the two following variable coefficients  in Eq. ( 1) are considered:

 1 (x) = 1 + 9 10 sin (4⇡x) (12) 
 2 (x) = 2 1 + ✏ + (1 ✏) sin (4⇡x) (13)
where ✏ is a parameter which defines the stiffness of the coefficient (✏ = 10 3 ). The coefficients [Table 4 about here.]

The eigenvalues are close to those derived with the constant coefficient assumption and discussed in the section 2.2. Small discrepancies are observed especially with the stiff coefficient

 2 .
This can be attributed to an under-resolved mesh unable to describe the stiff variations of  2 . A similar conclusion to the exact derivation of the convergence rate (Sec. 2.2) can be drawn: the spectral radius does not depend on the mesh size N . In addition no noticeable dependency on the coefficients  is noted.

A similar analysis is carried out with the Neumann boundary conditions. Thus, the extreme eigenvalues are computed for the schemes H4tri, H6tri and H6pen. The results are presented in Tab. 5.

[Table 5 about here.]

The bounds of the eigenvalues are similar to those derived in the section (2.2) Eq. ( 11). The slight observed deviations can be explained by a coarse mesh which seems to be insufficient to describe the stiff variations of the coefficients .

To summarise the findings, the eigenvalues bound of the preconditioned operator H 1 L is not sensitive to the mesh size N [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF]. Moreover, a finite difference preconditioning based on a variable coefficient Poisson equation leads also to an eigenvalue bound independent from the variable coefficient. This feature has two main consequences. First, this shows a way to design a HOCS Poisson solver for non-separable problems which could not depend on the variable coefficient. Secondly, if the preconditioning step is efficiently performed, the method could benefit from High Performance Computing. It's because the HOCS residual can be also calculated with a linear algorithmic complexity while involving only halo exchange parallel communications [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF].

Implementation

The preconditionned Richardson sequence Eq. ( 7) relies on the evaluation of the HOCS residual Eq. ( 2) and on the solution of the second-order discretization of Eq. ( 1) H 1 . The evaluation of the preconditioning H 1 has to be performed efficiently to ensure correct overall performance. A review on the fast Poisson solver is proposed in the reference [START_REF] Gholami | Multigrid? a comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube[END_REF]. According to this review, FFT based solvers are among the most efficient for problems involving a constant coefficient. Otherwise, multigrid methods are shown to be suitable. Although, geometric multigrid methods are usually more efficient than algebraic multigrids for Poisson's equation on cubical domains [START_REF] Gholami | Multigrid? a comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube[END_REF], in this work, the AGMG library developed by Notay [START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF] is used. This choice is motivated by the user friendly interface, the black-box mode and its parallel implementation. It is worth mentioning that in each Richardson iteration of the sequence Eq. ( 7) only two or three iterations of the algebraic multigrid are performed.

It has been experienced that only an approximate solving H 1 is sufficient to achieve the global convergence of the Richardson sequence. The method has been implemented using a previous parallel code dedicated to compact scheme discretizations [START_REF] Abide | Multigrid defect correction and fourth-order compact scheme for Poisson's equation[END_REF].

Numerical results

This section is devoted to the assessment of the second-order finite difference preconditioning for a HOCS discretization of the non-seperable Poisson equation. First the effective accuracy of the present solver implementation is demonstrated. Then, the extreme eigenvalues are estimated from numerical experiments including numerical solution of Poisson's equation and the simulation of the unsteady natural convection in a tall cavity. This former numerical experiment aims to illustrate the finite differences preconditioning in a more general context.

HOCS accuracy verification

The accuracy of the HOCS discretizations for the problem Eq. ( 1) is verified. The method consists in computing the numerical error for several grid sizes in order to estimate the = cos(2⇡x) cos(2⇡y) cos(2⇡z)

and the following three-dimensional extensions of the coefficients Eq. ( 12) is considered:

 1 = 1 + 9 10 sin (4⇡x) sin (4⇡y) sin (4⇡z) (15) 
 2 = 2 1 + ✏ + (1 ✏) sin (4⇡x) sin (4⇡y) sin (4⇡z) (16) 
The solutions are computed with the preconditioned Richardson sequence Eq. ( 7). In the case of Neumann boundary conditions the mesh is refined at the boundary according to a tangent hyperbolic mesh transformation [START_REF] Abide | A 2d compact fourth-order projection decomposition method[END_REF]. Fig. 3 presents the numerical error with respect to the mesh size N for the coefficient  2 .

[Figure 3 about here.] Fig. 3-a shows that the numerical errors decrease linearly with the expected slopes. It is also noted that the numerical error for the scheme H10pen saturates beyond N = 64 nodes because the machine accuracy is reached. Fig. 3-b corresponds to the Neumann boundary conditions. The slopes also agree with the expected HOCS's accuracy. These numerical experiments confirm that the present implementation of the preconditioned Richardson iterations fulfils the accuracy requirements.

Assessment of the preconditioning

The validity of the spectral radius predictions established in the section 2 is verified from the residual history of the Richardson iterations method. Indeed, the knowledge of the convergence rate r opt and the optimal relaxation factor ! opt allows us to estimate the couple of extreme eigenvalues ( min , max ) from the relations Eq. ( 8). The convergence rate r opt is computed from the residual slope [START_REF] Trottenberg | Multigrid[END_REF]:

r = (m 2 m 1 ) r r m 1 r m 2 (17) 
where m 1 , m 2 denote two iteration numbers, and r m 1 , r m 2 the associated residual respectively.

The residual history is obtained from the zero solution of Poisson's equation and using a random field as initial guess [START_REF] Trottenberg | Multigrid[END_REF]. Fig. 4 presents the residuals for the scheme H8tri, the variable coefficient  2 with periodic boundary conditions.

[Figure 4 about here.] First, it is observed that the convergence rate is slightly dependent on the mesh size N , but the slope reaches a limit as the mesh is refined. From the residual history observed on the finest grid and using the relation Eq. ( 17), the convergence rate is estimated at r opt = 0.29. It is worth mentioning that the relaxation factor of the Richardson sequences Eq. ( 17) is initialized to the optimal value detailed in Tab. 2. In this case, the estimate of the spectral bound for the preconditioned Richardson iterations is ( min , max ) = (1.01, 1.82).

This result agrees with the eigenvalue analysis of the section 2. It should be noted that this result validates the value of the optimal factor ! opt .

The sensitivity of the convergence rate evaluation to the mesh size is investigated. Fig. 5 presents the convergence rate r opt with respect to the mesh size for the HOCS discretizations and for the variable coefficient  2 .

[Figure 5 about here.]

These curves show a small dependency on the convergence rate to the mesh size above grids of size 128 3 . This result holds for both periodic and Neumann boundary conditions. This confirms the main result of the section 2 which highlights that the convergence rate is not dependent on the mesh size, and thus, even if a stiff variable coefficient is used. In the following the convergence rate will be estimated from the finest grid 256 3 .

The spectral bounds of the iteration matrix is measured for each HOCS scheme. Tab. 6

and Tab. 7 present the extreme eigenvalues ( min , max ) computed from the residual curves on the finest grid 256 3 . First, for experiments involving periodic boundary conditions (Tab. 6), one can observed that for each discretization the couple of extreme eigenvalues are close to those predicted in the section 2.

[Table 6 about here.] Thus, the minimal eigenvalue min ranges between 1.00 and 1.02 while the expected value is 1. Next, it is observed that the maximal eigenvalue max is also close to the one predicted by the one-dimensional analysis developed in the section 2 (Tab. 2). This holds for the constant and both variable coefficients  1 and  2 . These numerical experiments corroborate the conclusion drawn in the section 2 on the properties of the second-order preconditioning:

the independence of the convergence rate with respect to the mesh size and the coefficient . The table 7 presents the two extreme eigenvalues in the case of prescribed Neumann boundary conditions.

[Table 7 about here.]

The computed eigenvalues are also similar to the prediction of the Tab. 2. This shows that despite the Neumann boundary conditions the eigenvalues spectra remains bounded.

To illustrate the implications of this preconditioning on the wall time, the former is reported for several mesh sizes in table 8. Thus, the wall time is defined as the time necessary to decrease the residual to 10 9 in case of a periodic domain, for the coefficient  2 and with the scheme H6tri. In addition, the wall time of the multigrid AGMG preconditioner, and the wall time of the Conjugated Gradient to get the same level of residual are also reported.

[Table 8 about here.]

First, one can note that the wall time of the multigrid preconditioning is almost the wall time of the preconditioned Richardson. This means that a higher accuracy is obtained at the cost of a second order discretization solved by a multigrid method. Since multigrid methods are known to scale linearly with the number of unknowns, it is expected that compact scheme discretizations of elliptic problems inherit of this scaling. Then, it is observed that the Conjugated Gradient perform well than preconditioned Richardson for coarser meshes than 32 3 . In other hand for finer meshes than 32 3 , it is the preconditioned Richardson which performs well. Indeed, in the absence of a preconditioning the number of iterations increases significantly with the problem size and the underlying ill-conditioning.

The present test confirms that the preconditioning is not sensitive to the Neumann/periodic boundary, to the mesh size and to the coefficient , at least for continuous one. However, these conclusions concern the model coefficients  1 and  2 . To extend the conclusions to more general coefficients, the simulation of a variable density flow is considered in the following.

Unsteady natural convection in a tall cavity

Let us consider the flow in a closed cavity with large temperature gradients. The low Mach number formulation of the Navier-Stokes equations may be considered as an alternative to the Boussinesq approximation for accounting buoyancy forces and density variations. A common way to address the simulations of such flow consists in solving a non-separable

Poisson equation to enforce the final divergence of the velocity [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF][START_REF] Nicoud | Conservative high-order finite-difference schemes for low-Mach number flows[END_REF]. This equation reads:

r • 1 ⇢ r = r • (u ? S) (18) 
where denotes the pressure-like variable, u ? the provisional velocity, ⇢ the variable density and S the divergence to enforce. Knikker [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF] proposed a detailed review of these approaches.

In what follows, the denoted P1-A1 in [START_REF] Knikker | A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows[END_REF] has been implemented with an in-house code devoted to the simulation of turbulent flows [START_REF] Abide | An efficient parallel high-order compact scheme for the 3d incompressible Navier-Stokes equations[END_REF][START_REF] Doukkali | Large eddy simulation of turbulent natural convection in an inclined tall cavity[END_REF][START_REF] Abide | Higher-order compact scheme for high-performance computing of stratified rotating flows[END_REF]. The velocity, pressure and temperature are located on a staggered grid, the time advancement is based on the semi-implicit Adams Bashforth/Runge Kutta scheme and HOCS H4tri, H6tri and H6pen are considered. First, the space accuracy of the present low Mach solver is demonstrated using the Method of Manufactured Solutions [START_REF] Roache | Code verification by the method of manufactured solutions[END_REF]. According to the validation procedure of Bouloumou et al.

[32], the following two-dimensional analytical solution is considered:

u(x, y) = + cos x sin y + 1 Pr p Ra cos x sin y v(x, y) = sin x cos y + 1 Pr p Ra sin x cos y p(x, y) = cos x cos y T (x, y) = 1 + ✏ sin x sin y ⇢(x, y) = P th /T (x, y) P th = 1 (19) 
with Ra = 10 3 , Pr = 0.71 and ✏ = 0.5. Both periodic and Dirichlet boundary conditions

(non-periodic) in a square computational domain ⌦ = [0, 2⇡] ⇥ [0, 2⇡] are considered. It
is worth mentioning that the analytical solution is a the non-solenoidal velocity field which is specific to the low Mach model. The numerical error is computed with the L2-norm of the difference between the exact and the numerical solution. The numerical error of the pressure p is reported in the figure 6 for each discretization H4, H6tri and H6pen. For the sake of clarity, the analysis based on the velocity and on the temperature are not reported because of the numerical error slopes are similar to the pressure one.

[Figure 6 about here.] The slopes of the numerical error show the fourth and the sixth-order accuracy of the implemented code for periodic boundary conditions (Fig. 6). The same conclusion holds for the non-periodic conditions with a slightly above slope that the expected one. For instance, the slopes of 5.7 and 5.6 are noted for the tridiagonal and pentadiagonal sixth-order compact schemes.

In addition, the present low Mach solver is validated against the steady natural convection flow in a differentially heated cavity with a large temperature gradient. The configuration flow is detailed in the Benchmark [START_REF] Le Quéré | Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. part 1. reference solutions[END_REF]. The control flow parameters are the Rayleigh number, the deviation to the Boussinesq approximation set to ✏ = 0.6 and the Prandlt number P r = 0.71. The thermophysical properties are constant.

A grid sensitivity analysis is performed to assess the accuracy of the present low Mach solver at the Rayleigh number Ra = 10 5 . First, a fine grid solution has been computed on a mesh of size 120 ⇥ 120 and with the small CFL number 0.05. This simulation leads to a Nusselt number Nu = 4.5516

and a thermodynamic pressure P th /P 0 = 0.8518, which agrees the values computed in [START_REF] Bouloumou | A 3d pseudo-spectral low machnumber solver for buoyancy driven flows with large temperature differences[END_REF] and [START_REF] Accary | A 3d finite volume method for the prediction of a supercritical fluid buoyant flow in a differentially heated cavity[END_REF]. Fig. 7 presents, for the grid sizes N = 32, 48 and 64, the absolute difference with the fine grid solution of the Nusselt number and thermodynamic pressure.

[Figure 7 about here.]

The slopes confirm the expected accuracy, and even show a saturation due to the low level error for the two sixth-order schemes. A further validation is performed with a higher

Rayleigh number Ra = 10 6 . For a mesh of size 128 ⇥ 128, the computed Nusselt number is Nu = 8.8598 and the final thermodynamic pressure P th /P 0 = 0.856338, which agree well with the reference solution [START_REF] Le Quéré | Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. part 1. reference solutions[END_REF]. Fig. 8 presents the streamlines and the isolines of the temperature.

[Figure 8 about here.]

Both plots are in agreement with the results of Heuveline [START_REF] Heuveline | On higher-order mixed fem for low Mach number flows: application to a natural convection benchmark problem[END_REF]. The present low Mach solver implementation being validated, one can focus on the spectrum of the finite difference preconditioning.

To this end, the unsteady natural convection in a tall cavity is considered [START_REF] Tyliszczak | High-order compact difference algorithm on half-staggered meshes for low Mach number flows[END_REF][START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF]. The aspect ratio of the cavity is 1:8, the Rayleigh number is Ra = 10 6 and the normalized temperature difference is ✏ = 0.8. This former parameter is sufficiently high to lead to a strongly unsteady flow with large density variations: the order of magnitude is one. The simulations of the flow are carried out up to a dimensionless time t = 1000 with a CFL number of 0.8 and using a fine mesh 128 ⇥ 512. Fig. 9 presents a temporal snapshot sequence of the isolines of temperature.

[Figure 9 about here.]

The contours plots agree qualitatively with those recently published [START_REF] Tyliszczak | High-order compact difference algorithm on half-staggered meshes for low Mach number flows[END_REF][START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF]. The convergence rate of the Richardson iterations sequence is measured for the three discretizations H4tri, H6tri and H6pen using the procedure detailed in the section 3.2. Thus, the maximum of the residual Eq. ( 7) with respect to the Richardson iteration number it is plotted in Fig. 10 for one temporal iteration of the Navier-Stokes solver. It should be mentioned that the iterative procedure Eq. ( 7) has been initialized with = 0 and was stopped when the residual is below ||r|| < 10 10 .

[Figure 10 about here.] Also, it has been observed that whatever the time step the slopes of Fig. [START_REF] Pekurovsky | P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions[END_REF], the curves remain of similar slope. This observation confirms that a such low-order preconditioning is not sensitive to the variable coefficient ⇢. For this mesh size, the solution of time of the pressure equation is about 1.1 s with 24 processors. The measured convergence rates on Fig. [START_REF] Pekurovsky | P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions[END_REF] and the associated extrem eigenvalues are summarized in Tab. 9.

[Table 9 about here.]

The assessed extrem eigenvalues agree the theoretical estimates of the section 2. It should be noticed that the spectrum of the preconditioned operator is slightly smaller. This can be explained by the cancellation of the high-frequency fluctuations due to the fine mesh or the compact schemes cut-off [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. This test confirms that the second-order finite difference preconditioning of HOCS compact schemes for non-separable Poisson's equation possess a bounded spectrum independent to the variable coefficient.

Conclusion

An analysis of the second-order finite-difference preconditioning of the higher-order compact scheme discretization regarding the variable coefficient Poisson equation is presented in this work. In particular, it is demonstrated that the preconditioner built from the second-order finite-difference discretization leads to an iterative Richardson method that the convergence rate is not sensitive to the mesh size and the variable coefficient. The finding is even more valuable that this preconditioning can be applied on the conservative form of the Poisson's equation, the one involved in some discretizations of variable density flows for instance.

Several numerical experiments based on manufactured solutions demonstrate the accuracy of the discretization up to the tenth-order. The convergence rate of the present lowerorder preconditioned Richardson method has been found not sensitive to the mesh-size and the variable coefficient. This former finding is verified with a more general variable-coefficient test case: variable density flow occurring in a strongly heated cavity. This demonstrates the relevance of the lower-order preconditioning for the compact scheme discretizations even the more that the present solver involves numerical methods with linear computational complexity.

Further investigations would to put forward a such low-order preconditioning as a simple way to achieve simultaneously scalable algorithm and higher-order accuracy, and thus to take full advantage of the High Performance Computing. 

  about here.] It is worth mentioning that the numerical error is computed from the reference eigenvalue computed with the finest mesh N = 256. The Fig. 2 presents the numerical errors in the three schemes H4tri, H6tri and H6pen with Neumann boundary conditions. A 2 slope is noted, thus the Richardson extrapolation is considered to estimate the couple of extreme eigenvalues. The resulting data are presented in Tab. 3.

 1 ,

 1 and  2 exhibit variations of O(1) and O(10 3) while being continuous. The Richardson extrapolation of the extreme eigenvalues for the preconditioned operator H 1 L is detailed in the Tab. 4.

  effective order of accuracy. A cubical domain is considered ⌦ = [0, 2⇡] 3 , with either periodic boundary or Neumann boundary conditions. The right-hand side of the Poisson equation is derived from the exact solution:
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 123 Figure 1: Eigenvalues of the preconditioned problem H 1 L for several HOCS discretizations.
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 45 Figure 4: Mesh sensitivity of the residual history: periodic domain and coefficient  2 .
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 8 Figure 8: Natural convection in a square cavity: (Ra, ✏, P r) = (10 6 , 0.6, 0.71) and constant properties.
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 69 Figure 9: Snapshots of 15 isolines of temperature ranging in 0.3 and 1.7: (Ra, ✏, P r) = (10 6 , 0.8, 0.71).
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 1 6 , 0.8, 0.71). Figure 10: Natural convection in the tall cavity: residual history of the preconditioned Richardson iteration. Compact scheme coefficients for the first derivative defined on a staggered grid.
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Table 2 :

 2 The lowest and largest eigenvalues of the preconditioned operator H 1 L and the underlying optimal parameters for the preconditioned Richarson iterations.

	case scheme H4tri H6tri H6pen H8tri H8pen H10pen
		2	min	1.00	1.00	1.00	1.00	1.00	1.00
		2	max	1.44	1.70	1.62	1.83	1.85	1.95
		3	min	0.99	0.99	0.99	0.99	0.99	0.99
		3	max	1.45	1.70	1.62	1.83	1.85	1.95

Table 4 :

 4 The lowest and largest eigenvalues of the preconditioned Richardson method: periodic boundary conditions and variable coefficient.

	case scheme H4tri H6tri H6pen
		1	min max	1.00 1.44	0.98 1.70	1.00 1.62
		2	min max	1.00 1.45	0.99 1.72	0.99 1.64

Table 5 :

 5 The lowest and largest eigenvalues of the preconditioned Richardson method: Neumann boundary conditions and variable coefficient.

	case	scheme H4tri H6tri H6pen H8tri H8pen H10pen
	constant	min max	1.01 1.43	1.02 1.68	1.02 1.60	1.02 1.81	1.02 1.82	1.02 1.93
		1	min max	1.00 1.44	1.02 1.68	1.01 1.61	1.01 1.81	1.02 1.82	1.02 1.93
		2	min max	1.01 1.43	1.01 1.69	1.01 1.61	1.01 1.82	1.01 1.84	1.01 1.94

Table 6 :

 6 Estimates of the lowest and largest eigenvalues of the preconditioned Richardson method: periodic boundary conditions and variable coefficient.

	case	scheme H4tri H6tri H6pen
	constant	min max	1.01 1.43	1.01 1.68	1.02 1.60
		1	min max	1.01 1.43	1.02 1.68	1.01 1.61
		2	min max	0.98 1.46	1.01 1.69	0.99 1.63

Table 7 :

 7 Lowest and largest eigenvalues estimates of the preconditioning : Neumann boundary conditions and variable coefficient.

	scheme H4tri H6tri H6pen
	r	0.17	0.24	0.23
	min	1.01	1.02	1.01
	max	1.43	1.68	1.61

Table 9 :

 9 Estimates of the textcolorblueextrem eigenvalues evaluated from the simulation of the tall cavity flow.
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