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Flow curves characterize plastic flow in materials and their accurate description is necessary to reproduce any forming process in simulations. For flow curve determination, laboratory uniaxial compression or tensile tests are conducted to record force-displacement during deformation. Flow stress is then calculated as the ratio of force to cross-sectional area. However, this assumption is invalid when the stress state during testing changes to non-uniaxial stress states, e.g. necking in tensile or bulging in compression tests. Alternatively, inverse methods deploy simulation models replicating experiments along with flow curves represented as an analytical equation. The parameters in this equation are then optimized by minimizing the error in simulation and experiments. An a priori guess of the analytical equation is difficult especially when the material behavior is complex e.g. Lüder or DRX flow curves, though. In this paper, a piecewise inverse method without using an analytical equation is therefore introduced and validated with flow curves for aluminum and copper under compression tests. The method determines flow curves points as tabular data at different displacement steps and hence it is easier to represent complex flow curves. Two different methods, a heuristic and an iterative one, are discussed. To minimize the error between simulated and experimental forces, the heuristic method uses an adaptive equation estimating flow stress using predetermined points and experimental force, whereas in the iterative approach the flow curve is adjusted iteratively to minimize the error. The results show that the heuristic method has a limited applicability e.g. for low friction tests, whereas the iterative method can estimate flow curves for generalized deformation conditions. Overall, the flow curves determined with the new method yield an error of less than 2% in the force estimation with simulated compression tests. The presented method hence determines accurate flow curves for forming simulations under multiaxial stress states without the necessity of analytical equations.

Introduction

Today FE-based process simulations are a crucial tool to predict and optimize material flow and the final workpiece shape in metal forming. The correlation between stresses and strains during forming is conventionally described by flow curves. Flow curves are mostly determined in laboratory scale experiments e.g. compression [START_REF] Altan | Flow stress of metals and its application in metal forming analyses[END_REF], tensile [START_REF]Handbook of Workability and Process Design[END_REF] or torsion tests [START_REF] Poehlandt | Materials Testing for the Metal Forming Industry[END_REF]. As long as the stress state in the sample is uniaxial, nominal flow stress can be determined analytically by the ratio of the experimental force to the current cross-sectional area of a specimen [START_REF]Handbook of Workability and Process Design[END_REF]. If the stress state in the sample turns multiaxial at higher strains e.g., due to necking in tensile tests, or bulging in compression tests a yield criterion is required for evaluation. As this criterion is often of limited accuracy and at the same time some metal forming processes like hot rolling yield high strains [START_REF] Kopp | Determination of curves at high strain rates by the use of compression tests[END_REF] alternative approaches are sought.

State of Art

An approach often used in literature to determine flow curves up to large strains is the inverse modeling. This approach is based on simulation models like FEA (Finite Element Analysis) that considers all relevant boundary conditions. An inverse problem to obtain flow curves (given as an equation or data points) is often formulated, by minimizing the deviation between the simulated and measured forces.

Based on the representation of the flow curve (equation or data points), the available literature for inverse determination can be divided into two categories. In the first category, the flow curve is an empirical equation representing the flow behavior. By iteratively performing simulations, the parameters in the equation are determined such that the overall deviation between measured and simulated force is minimal. A few examples in literature demonstrating this inverse flow curve determination for different material tests are presented. Hochholdinger et al. [START_REF] Hochholdinger | Determination of Flow Curves by Stack Compression Tests and Inverse Analysis for the Simulation of Hot Forming[END_REF] determine the flow curves from compression tests for a boron alloyed sheet metal through inverse determination and observe a 15% lower flow stress compared to flow curves determined by the analytical method. Pottier et al. [START_REF] Pottier | An inverse method for material parameters determination of titanium samples under tensile loading[END_REF] inversely fit parameters in Hollomon's law [START_REF] Hollomon | Tensile deformation[END_REF] using tensile tests and observed better agreement with experimentally measured strains in the necking zone. Zhang et al. [START_REF] Zhang | Dedicated linear-Voce model and its application in investigating temperature and strain rate effects on sheet formability of aluminum alloys[END_REF] inversely determine flow curves via tensile tests beyond uniform strain and apply the flow curve to validate the numerical model of the Marciniak Test. Flow curves at different temperatures and strain rates are determined through inverse modeling of torsion tests by Marie et al. [START_REF] Marie | Inverse Analysis of Forming Processes Based on FORGE Environment[END_REF].

In the other category, the flow curve data is represented by tabular data points of true stress and true strain. In contrast to the first category, each of these data points is determined individually by minimizing the deviation between simulated and measured force at specific points (strains/displacements). Thus, the entire flow curve is provided in tabular form at the end of the simulation. Kamaya et al. [START_REF] Kamaya | True stress-strain curves of cold worked stainless steel over a large range of strains[END_REF][START_REF] Kamaya | True stress-strain curve acquisition for irradiated stainless steel including the range exceeding necking strain[END_REF] and Zhao et al. [START_REF] Zhao | Identification of post-necking stressstrain curve for sheet metals by inverse method[END_REF] employ this technique in tensile tests including an evaluation beyond necking. However, this method requires knowing the current maximum true strain since the FEA requires knowledge of the flow curve up to the maximum true strain at the current displacement. Therefore, the tabular data point currently being determined always corresponds to the true flow stress at the current maximum true strain. Thus, in order to determine the current maximum true strain, located at the minimum cross-sectional area of the sample, Digital Image Correlation (DIC) is used, which is able to measure the local strain distribution in the sample during the experiment.

The authors in the first category could determine flow curves up to high strains reliably. But this inverse method requires the flow curve to be represented by an empirical equation, but complex material behavior cannot be captured by this method. In the second category, the authors eliminate the necessity for an empirical equation as flow curves are represented as tabular data points. Although this approach can predict complex flow curve shapes (e.g. Lüder or oscillating DRX flow curves), an additional strain measuring system is necessary to measure the strains in the necking zone during experiments. Additionally, in bulk metal forming tests, like compression tests, the maximum strain depends on factors like friction and hence a direct correlation between strain and crosssectional area is much more complicated to obtain. Moreover, strains inside the bulk specimen are merely impossible to measure experimentally.

In the current paper a novel approach for flow curve determination named "Flow curve determination through Explicit Piecewise Inverse Modelling (FepiM)" is introduced. FepiM determines flow curves up to large strains without the need for an empirical equation or DIC. The flow curve is identified using FEA in a piecewise manner from consecutive displacement steps of the tool. The methodology is demonstrated by re-identifying analytical flow curves from compression tests with friction between the tool and workpiece.

The paper is structured as follows. First the required FE model is introduced. Then different concepts for the displacement-based consecutive flow curve points determination are introduced and compared. To demonstrate the FepiM capabilities, flow curves of different materials are evaluated and the results are shown. Finally, the quality of the FepiM flow curves is quantified by an error analysis and the new approach is assessed.

Methods and procedure

To determine flow curves, FepiM requires a Force Displacement (FD) curve as an input. To test the methodology virtual FD curves are used here. To obtain virtual FD curves, the FD curve of a given experiment is converted to a flow curve using a standard analytical method [START_REF] Altan | Flow stress of metals and its application in metal forming analyses[END_REF]. The analytical flow curve is then used in an FE model of the test to generate the virtual FD data.

This paper focuses on exploring the suitability of FepiM to inversely determine flow curves from compression tests at room and elevated temperature.

Inverse modelling of the isothermal compression test

In this paper, the commercial FE-software Abaqus/Standard [START_REF] Smith | ABAQUS/Standard User's Manual, Version 6.9[END_REF] is used. The compression of a cylindrical specimen of height 18 mm and diameter 12 mm is modelled. For increased computation efficiency a reduced 2D -axisymmetric problem is considered where only one-quarter of the specimen is modeled with displacement boundary conditions on the planes of symmetry. The specimen is meshed with a structured grid of 375 linear hexahedral elements and each element has an approximate element size of 0.39 mm. To simulate compression, a displacement is applied through a rigid tool placed on top of the specimen. A coulomb friction of 0.02 is defined between the tool and workpiece and iso-thermal conditions are assumed.

As the pursuit approach requires access to the routines calculating the flow stress during simulation, a suitable FEsoftware is required. In Abaqus this is possible by using the restart function to begin every new displacement step in the simulation manually. For modification of the flow curve in between iterations, the user subroutine UHARD available in the Abaqus framework can be used. This subroutine needs to be interlinked with FepiM to automatically modify the flow curve and to assign the flow stress values to elements during the simulation. Consequently, the same level of control is required in other FE-software to reproduce results presented in this paper.

The procedure to determine consecutive flow curve points through FepiM using the FEA model is described in the sections below.

Consecutive flow curve determination

FepiM is a displacement-based optimization approach, where flow curve points in an FEA simulation are consecutively determined at different displacements of the tool. The yield strength and experimental (virtual) Force-Displacement (FD) curve are the two inputs to FepiM. The total displacement of the tool is divided into displacement steps and a flow curve point, comprising flow stress and plastic strain is determined at each of these steps.

Fig 1 illustrates the FepiM procedure integrated into the FEA for three consecutive displacement steps (A, B, C) as an example. A flow curve point is assumed for the first displacement step A, such that the deviation between the simulated and experimental force is as small as possible. For the next displacement step B as shown in Fig 1, the previous flow curve is extrapolated to a new point, so that the deviation between the simulated and experimental force at the new displacement is again as small as possible. Similarly, as the simulation progresses, an entire flow curve is obtained, with each point on the curve stemming from one displacement step.

The different concepts for obtaining the optimal flow curve point that corresponds to the minimum error in force will be discussed in section 3.3. 

Determination of flow stress at each displacement step

FepiM requires a concept to determine the optimal flow stress at each displacement step. This paper trials two different strategies often found in material modeling. A heuristic concept can predict the flow stress directly through an adaptive equation and hence is expected to be fast. As no additional measure to minimize the error between simulated and measured force is established, this concept is prone to error propagation if the predicted flow stress is not accurate enough. The second concept, an iterative one, iteratively minimizes the error between experimental and simulated forces for each displacement step. This concept is computationally slower, due to the optimization procedure, but less prone to error propagation. The determination concepts are expected to be mostly independent of material and testing conditions (temperatures and strain rates).

Heuristic FepiM

The goal of Heuristic FepiM is to predict the flow stress using an adaptive strategy utilizing known data. Thus, to approximate the current flow stress, the already determined bit of the flow curve, the already simulated FD curve and the known experimental FD curve are used. The flow stress in the current displacement step (kf,i) can be approximated from the previous data point (Fsim,i-1, kf,i-1) and the experimental force (Fexp,i) using the equation ( 1):
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For very small changes in flow stress and force, the unknown in the above equation can be approximated from the two previous displacement steps using the following equation:
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Here kf,i-1, kf,i-2 and Fsim,i-1, Fsim,i-2 are the flow stress and forces determined in the previous two increments, respectively. For the initial plastic displacement steps, the quantities kf,i-1, kf,i-2 can be approximated by the maximum equivalent stress in the previous elastic displacements.

The FEA model requires assignment of flow stress to every element in the simulation. Hence if the flow stress obtained from equation ( 1) is assigned to the element with maximum plastic strain (ϕmax), interpolation of flow stress to other elements based on their respective plastic strains on the flow curve is possible. The assignment process based on interpolation is not covered here but detailed in Appendix A. In compression tests, the element with ϕmax is most likely at the core of the workpiece. Generally, it's position depends on factors like friction, heat transfer, and hence can change during the course of the simulation. Similarly, determining the element with the maximum plastic strain in simulations of tensile and torsion tests is difficult due to strain inhomogeneities. This concept thus suffers from additional errors made by falsely estimating ϕmax or requires additional techniques to determine the element with ϕmax.

Iterative FepiM

At each displacement step, the flow stress is optimized in the iterative FepiM by minimizing the error between the simulated and experimental force. The maximum allowed error tolerance is user-defined and can be material dependent. A schematic diagram of the proposed procedure is shown in Fig 2, and the approach for one displacement step can be summarized as follows:

Assuming the flow stresses (ϕk, kf,k) (k = 1 to i-1) are already known and the flow stress for the new displacement step must be determined.

Step 1: FE simulation with initial guess

The already known flow curve (ϕk, kf,k) (k =1 to i-1) is extrapolated linearly (up to a strain that cannot be encountered in the displacement step), as shown in Fig 2 . The next displacement step is performed using this flow curve. Again, the assignment procedure of the flow stress to the individual elements via interpolation is not discussed but detailed in Appendix A. At the end of the step, the force in simulation (Fsim,i) and from experiment (Fexp,i) is compared. If the error is below the limits, the slope of the extrapolated line is accepted, otherwise step 2 is performed.

Step 2: FE simulation with modified guess

In case the error is too high and the slope of the extrapolated line is rejected, it is iteratively adjusted. If the error (Fexp,i -Fsim,i) from the initial guess is negative, the slope is decreased, if the error is positive the slope is increased according to equation (3).
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Where kf m ∆ is the change in slope and H is a user-defined factor that influences convergence. If H is too small, the convergence is slower than necessary, whereas if H is too big, the predicted slope can overshoot and cause instabilities in the simulations. Simulations with a modified slope are carried out until the error is within the tolerance limits.

Step 3: Determination of the flow curve point When the error is within the tolerance, the extrapolation is accepted. The element with the maximum plastic strain is identified. Its plastic strain value and equivalent stress is the new flow curve point for the displacement. In contrast to the heuristic FepiM, in the iterative FepiM the flow curve points are determined at the end of the displacement step. And hence, knowledge of ϕmax at the beginning is not necessary. Therefore, flow curve evaluation is independent of boundary conditions and also straightforward for other material tests. Nevertheless, performing iterations at all the points in the dense FD curve can be computationally expensive. Instead, identifying significant displacements for evaluating the flow curve points reduces the computational costs.

Resampling of the FD curve

By considering the severity of the changes in the slope of the FD curve, significant points for the evaluation of flow curve on the FD curve can be identified. A procedure proposed in this paper to resample the FD curve by identifying such significant points is discussed. The procedure is illustrated in The choice of dEP should be such that all the characteristics of the FD curve are conserved and the curve between these EPs can be approximated by a straight line. If dEP is too large, the EPs cannot reproduce the original FD curve, and if it is too small, the number of EPs is large and the advantage of resampling is lost.

Results

The FepiM method established in the previous section is trialed for two different materials having monotonically and non-monotonically increasing flow curves and for varying testing conditions. Initially flow curves of aluminum 1050 and copper ETP are determined from compression tests at room temperature and quasi-static strain rate. To verify that the method can be applied for tests carried out at elevated temperatures and higher strain rates, a different of flow curves for aluminum is determined. Since, in this section flow curves with friction and at elevated temperatures and higher strain rates are determined, the position of ϕmax during the simulation is unclear. Hence only iterative FepiM is suitable to evaluate flow curves given these conditions and the heuristic FepiM is not considered.

Firstly, the results of the flow curve determined for aluminum 1050 at room temperature and a quasi-static strain rate of 0.01 s -1 are shown. To obtain the EPs, dEP is chosen as 2000 MPa. A tolerance limit of ±2 N is set as the convergence criterion at each EP. Next, iterative FepiM was tested using a virtual compression test of copper ETU at room temperature and low strain rate of 0.01 s -1 , that shows a complex non-monotonically increasing material behavior. To determine this flow curve, dEP is chosen as 1300 MPa and a tolerance limit of ±2 N is used at each EP. Finally, iterative FepiM was used to determine flow curves at elevated temperatures and higher strain rates. Flow curves for aluminum 1050 are determined at temperatures of 400 °C and 500 °C and strain rates of 1 s -1 and 10 s -1 . Each flow curve is determined individually but a tolerance limit of ±2 N is used collectively. The FepiM predicted flow curves in comparison to the corresponding analytically determined flow curves are shown in Fig 6 . The input FD curves used to evaluate these flow curves are not shown.

Overall, iterative FepiM is able to accurately determine flow curves at various temperatures and strain rates without requiring a flow curve equation or additional measurement tools like DIC. 

Discussion

Visually the iterative FepiM was able to re-identify the analytical flow curves used to generate the virtual data successfully. However, only a quantitative analysis of the accuracy of the FepiM results can reveal minor differences.

To achieve this, FE compression test simulations are performed using the flow curves identified by FepiM. The FD curve of the simulation is extracted at the same displacement steps as the original (un-sampled) virtual FD curve. The absolute error in the force (Fiterative -Fvirtual) at each displacement step is determined. The error analysis for the The graph proves that the tolerance limit of ±2 N was achieved at the EPs. Since the flow stress was only evaluated at the EPs, there is a higher deviation in force visible for other displacements. This error ranges between ±18 N for aluminum and ±16 for copper and thus corresponds to less than 0.8% and 1% of the forces experienced in aluminum and copper compression tests, respectively. 

Conclusion and Outlook

In this paper, an inverse explicit consecutive flow curve determination method (FepiM) is introduced. The method doesn't require an empirical flow curve equation but rather determines flow curves as tabular data of flow stress and strain. Each of the data points is obtained at a discrete displacement of the tool such that the deviation between the simulated and experimental force is minimum. Hence, experimental forcedisplacement is the only necessary input to FepiM, thereby eliminating the requirement to measure strain distribution in the specimen using techniques like DIC.

Heuristic FepiM describes flow stress through an adaptive equation whereas the iterative FepiM determines flow curves by optimizing the deviation between the measured and simulated force at prescribed displacement steps. Only the iterative FepiM can be implemented independently of testing conditions (friction/heat transfer) or testing methods (compression/tensile/torsion). The results can be summarized as follows:

• flow curves were successfully determined from compression tests for two materials having distinctly different flow curve shapes.

• Flow curves at different temperatures and strain rates were successfully determined.

• Flow curves determined are compared with the virtual data.

The flow curves yielded a maximum error of 0.8% and 1% in the force estimation for aluminum and copper respectively.

Using virtual data, flow curves are well reproduced by FepiM, and hence in the future, experimental FD curves will be used to evaluate actual flow curves. Additionally, the methodology will be transferred to determine flow curves via additional commonly used material tests e.g. tensile or torsion tests, the latter potentially allowing the determination of flow curves up to very large strains. Finally, it might be possible to determine flow curves under inhomogeneous temperature and strain rate conditions using FepiM.

for using their experimental flow curve data for aluminium and copper respectively.

Fig 1 .

 1 Fig 1. Illustration of consecutive flow curve determination with FepiM

Fig 2 .

 2 Fig 2. A schematic diagram for the procedure of determining the consecutive flow curve through iterative FepiM

  Fig 3 and explained in the following steps: Step 1: Determination of smooth FD curve Similar to analytical flow curve determination, noise from experimental FD needs to be eliminated. This step is necessary for FepiM to properly evaluate the slope of the FD curve. An illustration of an FD curve after smoothing is shown in Fig 3(a). Step 2: Determination Force evolution-Displacement curve To get an insight into how the slope of the FD curve changes, at each point the derivative of the curve is determined. An example force evolution vs displacement curve is shown in Fig 3(b). The curve is intersected by equidistant lines parallel to the displacement axis. The distance between the lines (dEP) is a user-defined value. Step 3: Determination of displacement steps The displacements (green points) at the corresponding intersection points, called evaluation points (EP), are the points at which iterations of FepiM are performed. Fig 3(c) illustrates the displacement points on the Force evolution vs displacement graph, and Fig 3(d) illustrates the EPs on the FD curve.

Fig 3 .

 3 Fig 3. Schematic procedure to determine the Evaluation Points (EP) on the force-displacement curve

  Fig 4(a) shows the resampled FD curve in comparison to the curve obtained from the virtual experiments. The original data set of 600 data points is reduced to just 26 EPs, and the EPs are capable of representing the original curve. Fig 4(b) shows the predicted iterative FepiM flow curve in comparison to the analytical flow curve.

Fig 4 .

 4 Fig 4. (a) Comparison between virtual FD curve and resampled FD curve for aluminum, (b) Comparison of iterative FepiM flow curve with analytical flow curve

Fig 5 (

 5 a) shows the resampled FD curve in comparison to the original FD curve. 21 EPs on the FD curve represent the original curve. Fig 5(b) shows the iterative FepiM flow curve determined at the EPs in comparison to the original analytical flow curve.

Fig 5 .

 5 Fig 5. (a) Comparison between virtual FD curve and resampled FD curve for copper, (b) Comparison of iterative FepiM flow curve with analytical flow curve

Fig 6 .

 6 Fig 6. (a) Flow curve for aluminum at 400 °C, strain rates 1 s -1 and 10 s -1 , (b) Flow curve for aluminum at 500 °C, strain rates 1 s -1 and 10 s -1

  room temperature flow curves of aluminum (Fig 4(b)) and copper (Fig 5(b)) is shown in Fig 7.

Fig 7 .

 7 Fig 7. (a) Error in force determined from FepiM and analytical flow curve for aluminum (b) Error in force determined from FepiM and analytical flow curve for copper
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Appendix A. Flow stress assignment to elements in the simulation model

At each displacement step, it is required to assign flow stress to every element in the Finite Element model. This assignment is based on the plastic strain of the elements. In the case of FepiM, the input tabular flow curve data is used to assign the flow stress based on elemental plastic strain. As an example, the assignment is illustrated for three elements in Fig 8(b). The red segment in the flow curve corresponds to the extrapolation for a new displacement step. For the element with the maximum plastic strain, the flow stress corresponds to the new segment in the flow curve. Similarly, for element B, the plastic strain belongs to the new flow curve segment, whereas for element C the plastic strain is in the flow curve already determined and hence the flow stress is interpolated from the flow curve determined from previous displacement steps. In some FEA software additionally require a gradient of flow stress each element. The gradient of flow stress with respect to the plastic strain can be calculated by determining the slope of the segment on which the element's plastic strain falls.