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In this paper, we propose a new non-linear technique for accelerating the solution of the discrete ordinates transport equation. The new method, called Response Matrix Acceleration (RMA), has been designed to complement the Coarse-Mesh Finite Difference method (CMFD) by offering better stability and improved performance in cases where CMFD fails. To accomplish this, RMA uses knowledge of the transport operator along with nonlinear coefficients and solves for the interface partial currents to maintain consistency with the transport operator. Two distinct variants of RMA are derived. The convergence properties of both variants of RMA applied the source iteration schemes are investigated for the one-group transport operator. Analysis of the results indicates that both variants of RMA have improved effectiveness and stability relative to CMFD, for optically diffusive materials. To achieve optimal numerical performance, a combination of RMA and CMFD is suggested. Improvements in the performance of RMA are expected with ongoing development and optimization. Further investigation into the use of RMA for accelerating outer iterations, parallel problems, and different transport operators is proposed. The results of a spectral radius analysis are presented, along with a strong scaling benchmark using the 3D C5G7 MOX problems. Furthermore, two real-scale problems, the wholecore EOLE reactor simulation and a PWR assembly simulation, are studied to assess the performances of the new method in a parallel computing framework using the constant and linear short characteristics of the IDT solver in APOLLO3 R .

Introduction

In this article, we propose a new nonlinear method based on the DP0 formalism, called the Response Matrix Acceleration method (RMA), which has been designed to address some of the per-formance issues that are currently holding back the development of high-fidelity neutron transport simulations. At present day, production calculations are done using a two-step scheme where an infinite lattice, 2D transport calculation feeds few-group cross sections to a 3D diffusion simulation of the core. Using the two step scheme, many full fuel cycle simulations of a reactor core can be performed on a single CPU core within one working day. However, in order to significantly improve the accuracy of the results, the research community is moving towards high-fidelity simulations.

The Method Of Characteristics (MOC), [START_REF] Askew | A characteristics formulation of the neutron transport equation in complicated geometries[END_REF], is a popular spatial discretization techniques for high fidelity simulations. Due to its ability to treat unstructured meshes, MOC guarantees accurate results in highly heterogeneous geometries. When MOC is applied to a 3D geometry, up to 10 8 chords can be required to sweep a single direction of a single energy group in a reactor-sized geometry, leading to prohibitive computational expense. As a result, MOC has typically been limited to studying 3D lattice cells, when only a single computing node is available. Several attempts have been made to apply MOC solvers to HPC machines so that sufficient computational resources are available to model full-3D core geometries. However, this approach has lead to several roadblocks including reduced rates of convergence resulting from domain decomposition and poor parallel scalability, [START_REF] Siegel | UNIC Code: Algorithmic Specification of the Method of Long Characteristics[END_REF].

Instead of using a full transport simulation, a common approach is to use the approximated 2D/1D fusion method, [START_REF] Joo | Methods and Performance of a Three-Dimensional Whole-Core Transport Code DeCART[END_REF]. This method works by coupling a 2D MOC solver, a 1D SPN or SN solver and a 3D Coarse Mesh Finite Difference method (CMFD) solver, [START_REF] Kim | Convergence Studies on Nonlinear Coarse-Mesh Finite Difference Accelerations for Neutron Transport Analysis[END_REF], together. Multiple extensions of the fusion method for multiphysics reactor simulations have since been implemented in MPACT, [START_REF] Collins | Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT[END_REF]. Tests have shown that high-fidelity PWR core cycle simulations with multiphysics feedback can be performed in ∼1/2-1 day on ∼1000 cores. However, the CMFD operator, which is needed to effectively combine the results of the two transport solvers, can become unstable and must be correctly tuned to allow the simulation to converge.

The goal of rebalancing accelerations such as CMFD is the rapid suppression of slow to converge errors that arise from the global contribution of the scattering and fission sources. From the perspective of a Fourier analysis, these slow converging errors present themselves as the low spatial frequencies of the transport solution. CMFD is able to achieve this goal by using a coarse mesh and the diffusion approximation to allow it to effectively isolate and solve for the low spatial frequencies of the flux. However, CMFD can lead to unstable or divergent iteration behavior for some critical spatial configurations. Cho and Park have shown that CMFD is effective when the coarse cell optical thickness does not exceed 1 mean free path (mfp) but becomes rapidly unstable for cells with large optical thicknesses, [START_REF] Cho | A Comparison of Coarse Mesh Rebalance and Coarse Mesh Finite Difference Accelerations for the Neutron Transport Calculations[END_REF]. While CMFD can effectively isolate errors resulting from the global contributions of the source, it has much greater difficulty isolating localized errors, or from the perspective of a Fourier analysis, high frequency spatial modes of the solution, as demonstrated here [START_REF] Ford | The Advancement of Stable, Efficient and Parallel Acceleration Methods for the Neutron Transport Equation[END_REF]. The interface between very heterogeneous cells is a common source of localized error. Such heterogeneities are most prominent when a fine energy and spatial discretization is used. The interface between subdomains, when the global geometry has been decomposed for parallel simulation, is another source of localized error. As a result, CMFD's ability to accelerate convergence suffers greatly when the domain is highly decomposed for parallel computation, as has been demonstrated here [START_REF] Fitzgerald | Spatial decomposition of structured grids for nuclear reactor simulations[END_REF]. Thus, CMFD can be unstable or ineffective for high fidelity simulations since they typically require both very refined meshes as well as a high degree of domain decomposition for parallel computation.

In order to correct CMFD's stability problems, a version of CMFD, that considers the spectral radius of each cell in order to ensure stability, has been proposed by Masiello, [START_REF] Masiello | Analytical stability analysis of Coarse-Mesh Finite Difference method[END_REF]. Although CMFD is no longer unstable with this approach, it is still ineffective in the regimes that it would normally be unstable. In an attempt to improve upon the effectiveness of CMFD for heterogeneous geometries, the Spatially Variant Rebalancing Method (SVRM) was created and designed to capture zeroth and first order spatial variations of the solution, [START_REF] Ford | A spatially variant rebalancing method for discrete-ordinates transport equation[END_REF]. While some improvements in stability and effectiveness were found compared to traditional CMFD, SVRM still suffered from instability due to a lack of consistency with the transport equation. The findings made during the testing of SVRM lead to the creation of RMA. Like SVRM, RMA has been designed to complement CMFD by offering better stability and improved performance in cases where CMFD is ineffective. However, to achieve this RMA uses knowledge of the transport operator along with nonlinear coefficients to maintain consistency with the transport solution. As well, RMA solves for the interface partial currents, to increase its degrees of freedom relative to CMFD, while being able to scale for multidimensional and, especially for unstructured meshes. RMA has been integrated into a non-linear acceleration library so that it can be linked to 1-3D discrete-ordinates transport solvers for rapid implementation.

In order to compare the performance of RMA to that of CMFD, we chose to implement it in IDT due to its ability to perform high fidelity simulations, its use of hybrid parallelism (MPI and OpenMP), and its availability, [START_REF] Masiello | Domain-Decomposition Method in the IDT solver of the APOLLO3 code: synergy of the CMFD and multigroup transport iterations for 3D Full-Core simulations[END_REF]. IDT is one of the transport solvers in APOLLO3 R , the multipurpose code developed at the Laboratoire de Transport Stochastique et Deterministe (LTSD) at CEA Saclay. IDT is a compromise: an exact transport solver, in the sense that if you increase the spatial mesh in both surface and volume, the method has been proven to converge to the exact solution but using approximated coefficients. IDT can exactly model fuel pin-cells while sweeping a Cartesian mesh, by allowing for Heterogeneous Cartesian Cells (HCC), [START_REF] Masiello | 3D heterogeneous Cartesian cells for transport-based core simulations[END_REF], making it a strong candidate for high-fidelity calculations.

During the study of RMA within IDT, we chose to focus on best estimate calculations with a minimum of 281 energy groups and a P3 representation of the scattering kernel. Since best estimate calculations can have 10 9 to 10 12 degrees of freedom, they are particularly suited to the HPC environment for which RMA has been created. Moreover, the large number of energy groups gives rise to large heterogeneities between spatial cells. Such heterogeneities can cause acceleration methods such as CMFD to become unstable or ineffective and therefore ideal for testing the stability and effectiveness of RMA. In summary, the goal of this paper is to use IDT to perform best estimate calculations of reference core benchmarks in a HPC environment so that the effect of RMA on the parallel performance can be assessed and compared to that of CMFD. This article has been organized as follows. In Section 2 we will derive RMA and state the transport iteration schemes that we will be analyzing in later sections. As well, we will discuss the extension of RMA for coarse meshes in space. The RMA formalism will be extended to the high-order spatial schemes, to homogeneous coarse mesh and to multigroup power iterations. We will also propose a hybrid method that combines the CMFD and the RMA acceleration. In Section 3 the results of Fourier and spectral radius analysis of RMA and the MCNH variant of CMFD for a numerical benchmark will be outlined, [START_REF] Sanchez | On the spectral analysis of iterative solutions of the discretized one-group transport equation[END_REF]. In Section 4 numerical benchmark results for tri-dimensional benchmarks when RMA and CMFD are applied will be analyzed. First, the performance of RMA and CMFD will be compared when the number of directions in the S N quadrature are varied. Next, the parallel efficiency of the acceleration methods will be tested by a strong scaling benchmark using up to 1000 cores. Finally, two real-scale problems using the reference 281-group P3 cross section library of APOLLO3 R : the whole-core EOLE reactor simulation and a detailed 3D PWR assembly model, when RMA and CMFD are applied will be analyzed. Section 5 is dedicated to conclusions and further ideas for the development of the method.

Response Matrix Acceleration (RMA)

For simplicity, during this derivation, RMA is applied to the one-group source iterations. Furthermore, the transport and RMA operators share the same spatial mesh. We begin our derivation with a general matrix form describing the numerical discrete-ordinates transport equation for region i and angle Ω m such that,

ψ +,(n+1/2) m,i,s = s ∈S - m,i,s T m,i,s,s ψ -,(n+1/2) m,i,s + E m,i,s Q (n) m,i , (1) 
φ (n+1/2) k,l,i = M m=1 w m Y k,l (Ω m )    s∈S - m,i I m,i,s ψ -,(n+1/2) m,i,s + C m,i Q (n) m,i    , (2) 
Q (n+1/2) m,i = K k=0 k l=-k Y k,l (Ω m ) Σ k,i φ (n+1/2) k,l,i + Q ext k,l,i . (3) 
Eqs. 1 to 3 represent the spatial sweeping across a region for a problem with a fixed external source, [START_REF] Askew | A characteristics formulation of the neutron transport equation in complicated geometries[END_REF]. The notation used is the following:

• (n + 1/2)
is the index for the transport iterations, whereas (n) and (n + 1) are the indices for the previous and the current accelerated iteration, respectively.

• m, i and s are the angular direction index, spatial cell index, and cell surface index, respectively.

• S - m,i,s , is the set of incoming surfaces of cell i that contribute to surface s along direction m. • S - m,i , is the set of incoming surfaces of cell i along direction m. • ψ - m,i,s and ψ + m,i,s , are the incoming and outgoing angular flux respectively. • T m,i,s,s , E m,i,s , I m,i,s and C m,i , are the transport coefficients that, respectively, define the transmission of the uncollided flux from surface s to surface s, the particles generated by the source escaping the volume from surface s, the contribution of the incident uncollided flux to the volume flux, and the contribution of the collided flux to the volume flux, respectively.

• w m and Ω m , are the weight of the angular quadrature and the angular direction, respectively.

• φ k,l,i and Q m,i , are the angular moment of the cell averaged flux for degree l and order k, and the fixed source in direction m, respectively.

• Y k,l (Ω m ) and Σ k,i , are the real spherical harmonic function [START_REF] Hobson | The Theory of Spherical and Ellipsoidal Harmonics[END_REF] and the angular moment of the scattering cross section, respectively.

• Σ k,i is the angular moment of order k of the self-scattering cross section of region i.

The first assumption of RMA is that the interface angular fluxes, i.e. ψ ± m,i,s , are proportional to the partial currents J ± i,s thanks to an angular shape-form function h± m,i,s . This statement is expressed as,

ψ ±,(n+1) m,i,s = h± m,i,s J ±,(n+1) i,s , (4) 
where the (n + 1) indicates the RMA solution. The angular distribution h± m,i,s is the nonlinear term computed iteratively such that Eq. ( 4) holds at the convergence, i.e.

h± m,i,s = ψ ±,(n+1/2) m,i,s J ±,(n+1/2) i,s , (5) 
where the transport partial current is

J ±,(n+1/2) i,s = m∈2π ± s w m |Ω m • n s | ψ ±,(n+1/2) m,i,s
with 2π ± s as the set of outgoing/incoming directions with respect to surface s and n s the outgoing normal of the surface s. It is also easy to show that distributions h± m,i,s are normalized to 1, i.e.

m∈2π ± s w m |Ω m • n s | h± m,i,s = 1 (6) 
The second assumption of RMA is that the angular moments of the source are proportional to the zero-order as

Q (n+1) k,l,i = Hk,l,i Q (n+1) 0,0,i , (7) 
where Hk,l,i coefficients are non-linear quantities computed with transport quantities as the ratio

Hk,l,i = Q (n+1/2) k,l,i Q (n+1/2) 0,0,i .
For clarity, all notation referring to nonlinear terms are accented with tildes, throughout the text.

We start from the transmission equation (1), and then expand Q

(n+1/2) m,i
in terms of Y k,l (Ω m ) thanks to Eq. (3). Next, we substitute assumption (4) and ( 7) into (1) and integrate over m ∈ 2π + s with the discrete integration m∈2π

+ s w m |Ω m • n s |, to get J +,(n+1) i,s = m∈2π + s w m |Ω m • n s | s ∈S m,i,s T m,i,s,s h- m,i,s J -,(n+1) i,s + (8) 
+ K k=0 k l=-k m∈2π + s Y k,l (Ω m )w m |Ω m • n s | E m,i,s Hk,l,i Q (n+1) 0,0,i .
We simplify the notation by introducing the nonlinear RMA transmission and escape coefficients, Ti,s,s and Ẽk,l,i,s , respectively as Ti,s,s =

m∈2π + s ∩2π - s w m |Ω m • n s | T m,i,s,s h- m,i,s (9) 
= m∈2π + s ∩2π - s w m |Ω m • n s | T m,i,s,s ψ -,(n+1/2) m,i,s J -,(n+1/2) i,s Ẽi,s = K k=0 k l=-k m∈M + s w m |Ω m • n s | Y k,l (Ω m )E m,i,s Hk,l,i (10) 
= K k=0 k l=-k m∈M + s w m |Ω m • n s | Y k,l (Ω m )E m,i,s Q (n+1/2) k,l,i Q (n+1/2) 0,0,i
, such that Eq. ( 8) can now be written as

J +,(n+1) i,s = s ∈S i,s Ti,s,s J -,(n+1) i,s + Ẽi,s Q (n+1) 0,0,i , (11) 
where S i,s is the set of surfaces of cell i whose incoming angular flux contributes to the outgoing angular flux of surface s. It is important to note that the transmission coefficient, Eq. ( 9), takes into account the angular distribution of the interface flux, while Eq. ( 10) counts for the contributions of all the angular moments of the source to the zero-order moment. The transmission equation of RMA is then obtained by substituting the zero-order definition of the source, Eq. ( 2), into Eq. ( 11),

J +,(n+1) i,s = s ∈S i,s
Ti,s,s J -,(n+1) i,s

+ Ẽi,s Σ 0,i φ (n+1) 0,0,i + Q ext 0,0,i . (12) 
The next step is to define the relationship between the partial currents J +,(n+1) i,s and φ (n+1) 0,0,i . There are two distinct approaches for accomplishing this task that will lead us to two variants, the explicit RMA (E-RMA) and balance RMA (B-RMA) methods.

Closure relation for explicit RMA (E-RMA)

We start from the relation for the zero-order angular moment of the flux, φ 0,0,i , as defined by Eq. ( 2), but now written for the accelerated flux,

φ (n+1) 0,0,i = M m=1 w m    s∈S - i,m I m,i,s ψ -,(n+1) m,i,s + C m,i Q (n+1) m,i    . ( 13 
)
For a conservative numerical scheme, Eq. (13) represents the particle balance equation. Again, expanding Q m,i in terms of Y k,l (Ω m ), and substituting Eqs. ( 4) and [START_REF] Ford | The Advancement of Stable, Efficient and Parallel Acceleration Methods for the Neutron Transport Equation[END_REF] into Eq. ( 13), one obtains the Explicit-RMA (E-RMA) equation for the zero-order angular moment

φ (n+1) 0,0,i = s∈S i Ĩi,s J -,(n+1) i,s + Ci Q (n+1) 0,0,i , (14) 
where S i is the set of all the surfaces of cell i and coefficients Ĩi,s and Ci are the non-linear incoming and collision coefficients, respectively, i.e.

Ĩi,s =

m∈M - s w m I m,i,s h- m,i,s = m∈2π - s w m I m,i,s ψ -,(n+1/2) m,i,s J -,(n+1/2) i,s , (15) 
Ci = K k=0 k l=-k M m=1 w m C m,i Hk,l,i = K k=0 k l=-k M - m=1 w m Y k,l (Ω m )C m,i Q (n+1/2) k,l,i Q (n+1/2) 0,0,i . (16) 
Next, we substitute the definition of the source from Eq. (2) into Eq. ( 14) to get,

φ (n+1) 0,0,i = s ∈S i Ĩi,s J -,(n+1) i,s + Ci Σ 0,i φ (n+1) 0,0,i + Q ext 0,0,i . (17) 
Finally, solving for φ 0,0,i , one obtains

φ (n+1) 0,0,i = s∈S i Ĩi,s 1 -Σ 0,i Ci J -,(n+1) i,s + Ci 1 -Σ 0,i Ci Q ext 0,0,i . (18) 
Equation ( 18) specifies the E-RMA closure relation.

Eliminating the scalar flux from Eq. ( 12) by using Eq. ( 18), ones obtains the final form of the E-RMA transmission equation

J +,(n+1) i,s = s ∈S i,s Ti,s,s J -(n+1) i,s + Ẽi,s Σ 0,i 1 -Σ 0,i Ci s ∈S i Ĩi,s J -, (n+1) i,s + Ẽi,s 1 
-Σ 0,i Ci Q ext 0,0,i . (19) 
The above equation takes into account all physical contribution to the outgoing partial current: the first RHS term represents the transmission of particles from surface to surface, the second term is the most important since it represents incoming particles that collide and escape from the region while the third is the contribution for escaping particle generated from the external source.

Closure relation for balance RMA (B-RMA)

The second approach is based on the balance equation in terms of the scalar flux. Since the scalar flux φ i = 4πφ 0,0,i , the neutron balance equation is

s∈S i A i,s (J -,(n+1) i,s -J +,(n+1) i,s ) + Σ i V i φ (n+1) i = 4πQ ext i,0,0 V i .
Substituting the expression from the source and solving for the zero-order angular moment of the flux, one obtains the characteristic equation for the B-RMA,

φ (n+1) 0,0,i = s∈S i A i,s (J -,(n+1) i,s -J +,(n+1) i,s ) + Q ext 0,0,i V i (Σ i -Σ 0,i )V i . ( 20 
)
Where Σ i , V i and A i,s are the total cross section, the volume of cell i, and the area of surface s of cell i, respectively. This approach is attractive since it requires the computation of less nonlinear Reflective Periodic Vacuum coefficients, and it is simpler to implement than the E-RMA approach. However, the scalar flux is now dependent on both the incoming and outgoing partial currents, which would result in a matrix with twice the coupling of that produced by the E-RMA. In fact, using Eq. ( 20) into [START_REF] Masiello | 3D heterogeneous Cartesian cells for transport-based core simulations[END_REF] for the elimination of the zero-order angular moment, one obtains

v s←s = 1 0 0 v s←s = 0 1 0
J +,(n+1) i,s = s ∈S i,s Ti,s,s J -,(n+1) i,s + Ẽi,s Σ 0,i (Σ i -Σ 0,i )V i s ∈S i A i,s (J -,(n+1) i,s -J +,(n+1) i,s ) (21) 
+ Ẽi,s Σ i (Σ i -Σ 0,i ) Q ext 0,0,i .
The B-RMA transmission equation, i.e. Eq. ( 21), differs substantially from that of E-RMA, Eq. ( 19); first, because of the coupling involving also the local outgoing currents J + i,s , second, because it demands the computation of the two nonlinear coefficients, i.e. Ti,s,s and Ẽi,s , instead of the four necessary for the B-RMA. The E-RMA is particularly adapted to those transport methods that directly employ the balance equation, for example MOC.

Boundary conditions

Since the unknowns of RMA are the outgoing partial currents, it is straightforward to implement the physical boundary conditions. The boundary conditions of RMA are as follows: the reflective boundary condition J - i,s = J + i,s , the translation boundary condition J - i,s = J + i ,s , for a surface (i, s) such that r i,s = r i ,s + r shif t with r shif t being the vector characterizing the translation and the vacuum boundary condition

J - i,s = 0.
The boundary conditions of RMA can be expressed in a general form as,

J - i,s = v s←s J + i,s + v s←s J + i ,s ,
The albedo coefficients v s←s and v s←s are defined by Table (I).

Solving RMA

By enforcing in either of the transmission equations, i.e. Eq. ( 19) or ( 21), the continuity of the current at the interfaces,

J -,(n+1) i,s = J +,(n+1) i ,s
, with the couples of indexes (i, s) and (i , s ) indicating the same physical interface, and applying the transport boundary conditions, we get a system of equations for the region-wise outgoing partial currents,

J +,(n+1) = ÃJ +,(n+1) + Q Ac . (22) 
In Eq. ( 22), J +,(n+1) = {J +,(n+1) i,s

} i∈[1,I],s∈S i is the RMA solution vector that contains the regionwise outgoing partial currents, à is the nonlinear matrix whose elements are either from Eq. ( 19), for E-RMA, or from Eq. ( 21), for B-RMA. Moreover, the global matrix à is composed of the combination of the global transmission matrix T , representing the contribution of the interior surfaces, and the homogeneous boundary condition matrix B, representing the contributions of the boundary surfaces, such that

à = T + B.
Finally, Q Ac is the acceleration source that takes into account the contribution from the external source, of Eq. ( 19) or ( 21), and from the incoming boundary sources, such that

Q Ac = ẼQ Ext + J in . (23) 
with Ẽ as the global escape matrix for the external source contribution and J in as the incoming boundary source.

The RMA system ( 22) is implicitly solved as

(1 -Ã)J +,(n+1) = Q Ac , (24) 
using the Bi-Conjugate Gradient-Stabilized method (BiCGStab), [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF] of the PETSc library, [START_REF] Balay | PETSc Users Manual[END_REF], where 1 is the identity matrix. Once the (1 -Ã) matrix has been solved, the interface flux, ψ ±,(n+1) m,i,s

, are updated according to Eq. ( 4),

ψ ±,(n+1) m,i,s = h±,(n+1/2) m,i,s J ±, (n+1) i,s 
.

As well, the moments φ k,l,i are updated by the rebalancing relation,

φ (n+1) k,l,i = φ (n+1/2) k,l,i φ (n+1) 0,0,i φ (n+1/2) 0,0,i , once φ (n+1)
0,0,i is reconstructed thanks to Eq. ( 18), for the E-RMA, or to Eq. ( 20), for the B-RMA.

Positivity of RMA

RMA guarantees a positive solution if the transport scheme ensures positive results. It is indeed evident that the coefficients of E-RMA and B-RMA, T , Ĩ, Ẽ and C, are defined by the ratio and the linear combination of positive quantities. Thus, the resulting RMA coefficients are positive. Moreover, if the transport scheme respects the theoretical limit in a vacuum and in an optically thick region, as is the case for step MOC and short characteristics methods, the global matrix of RMA (1 -Ã) is diagonally dominant because the elements of à are bounded by 1. In particular,

(1 -Ã(i,s)(i,s) ) ≥ (i ,s ) =(i,s) Ã(i,s)(i ,s ) ,
where Ã(i,s)(i ,s ) is an element of Ã. If the transport spatial discretization scheme guarantees positive solutions when the external sources are positive, then RMA is also expected to be positive. This expectation is justified by the fact that the trace of (1 -Ã) is guaranteed to be positive for physical cross section values suggesting that most of the eigenvalues are positive. Moreover, if one were to consider a symmetric polyhedron with isotropic scattering, the non-linear transmission matrix become a cyclic matrix while the incoming and escape matrices are equal for each of the polyhedron faces. We take advantage of this property by choosing to use the Bi-Stabilized Conjugate Gradient method (BiCGStab), [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF], to solve Eq. ( 24), which is typically an efficient technique for solving the M-matrices and especially for positive definite matrices.

RMA applied to a vacuum region

Inside a region approaching a vacuum, the contributions of the collided flux to the outgoing angular flux and to the scalar flux also go to zero. This scenario is often difficult to approach using methods built off the diffusion coefficient 1 3Σtr , for example CMFD, since as the cross section goes to zero, a singularity is created. If the external source within the vacuum region is set to zero, then the E-RMA equations ( 11) and ( 18) becomes,

J +,(n+1) i,s = s ∈S i,s Ti,s,s J -,(n+1) i,s , φ (n+1) 0,0,i = s∈S i Ĩi,s J -,(n+1) i,s .
Thus, E-RMA does not require any modifications in order to handle a vacuum region. If the coefficients Ti,s,s and Ĩi,s come from an explicit integral transport method, they are always defined even when Σ → 0. Furthermore, the coefficients Ti,s,s and Ĩi,s are automatically set to zero if the incoming J - i,s current is zero.

However, B-RMA does not have the same robustness as E-RMA. According to Eq. ( 20), a singularity maybe created as result of numerical precision as the medium approaches a vacuum. Therefore, when the optical thickness of a region approaches the numerical precision limit of the program, E-RMA should be used. However, it is important to note that analytically Eq. ( 20) does not become a singularity as the medium approaches a vacuum.

Comments about the non-linearity

The RMA coefficients have two different sources of nonlinearity, even when RMA shares the same spatial discretization as transport. The transmission coefficient of RMA, Eq. ( 9), and the incident coefficient of E-RMA, Eq. ( 15), are non-linear because they are computed with an interfaceangular-flux weighting. This reduction takes into account the anisotropy of the angular flux among the region.

The second source of non-linearity is contained in the escape coefficient, Eq. ( 10), of RMA and the collision coefficient of E-RMA, Eq. ( 16). This nonlinearity accounts for the anisotropy of the scattering source and the fixed source. With regards to the escape coefficient, RMA is projecting the contributions of the anisotropic source to the outgoing angular flux on to Q 0,0,i using Eq. [START_REF] Ford | A spatially variant rebalancing method for discrete-ordinates transport equation[END_REF].

Moreover, E-RMA projects the contributions of the anisotropic source to the scalar flux onto Q 0,0,i using Eq. ( 16). In this way, RMA accounts for the contributions of the anisotropic components of the source without incurring the computational cost necessary to solve them separately. This is an important quality of RMA, since methods such as CMFD do not account for these contributions.

As will be seen later in Section 4, this attribute allows RMA to better maintain its effectiveness than CMFD for problems with highly anisotropic scattering.

In the following sections, two other sources of non-linearity for RMA will be introduced. The first is associated to the spatial homogenization of the transport mesh. When RMA is applied on a coarse mesh, its coefficients are obtained by a non-linear spatial weighting of the contribution of the fine regions to the coarse regions. The second source of nonlinearity comes from the application of RMA to high-order spatial discretization schemes. In particular, when the source and the flux are expanded on local basis functions, the RMA coefficients collapse the high order spatial moments onto the zero-order spatial moment.

Extension of RMA to heterogeneous cells: homogenization effect

In this context, the index i represents the RMA homogeneous node, whereas the indices α, β, .. ∈ i are the indices of the transport fine regions contained in the node i. Typical transport equations for a matrix based sweeping algorithm are written as

ψ +,(n+1/2) m,i,s = s ∈S - m,i,s T m,i,s,s ψ -,(n+1/2) m,i,s + β∈i E m,i,s,β Q (n) m,i,β , (25) 
φ (n+1/2) k,l,i,α = M m=1 w m Y k,l (Ω m )    s∈S - m,i,α I m,i,α,s ψ -,(n+1/2) m,i,s + β∈i C m,i,α,β Q (n) m,i,β    , (26) 
Q (n+1/2) m,i,α = K k=0 k l=-k Y k,l (Ω m ) Σ k,i,α φ (n+1/2) k,l,i,α + Q ext k,l,i,α . (27) 
By applying assumptions ( 4) and ( 7) adapted to heterogeneous cells, such that

Q (n+1) k,l,i,α = Hk,l,i,α Q (n+1) 0,0,i , (28) 
with

Hk,l,i,α = V α Q (n+1/2) k,l,i,α β∈i V β Q (n+1/2) 0,0,i,β
, to the transmission transport equation, Eq. ( 25), one obtains the transmission over the coarse node i,

J + i,s = s ∈S - i,s Ti,s,s J - i,s + Ẽi,s Σ sc,0,i φ0,0,i + Q Ext,0,0,i , (29) 
which is formally identical to Eq. ( 11), but with a new definition for the non-linear escape coefficient,

Ẽi,s = m∈M + s w m |Ω m • n i,s | K k=0 k l=-k Y k,l (Ω m ) α∈i V α E m,i,α,s Q (n+1/2) k,l,i,α α∈i V α Q (n+1/2) 0,0,i,α , (30) 
where V α is the volume of subregion α. In Eq. ( 29), the cross section Σ sc,0,i is the flux-weighted homogenized cross section of the node i. Moreover, Q Ext,0,0,i and φ0,0,i are the homogeneous volume-weighted external source and flux, respectively.

For E-RMA, the closure equation for the scalar flux, Eq. ( 18) remains formally the same except for the new collision coefficient, which becomes

Ci = M - m=1 w m K k=0 k l=-k Y k,l (Ω m ) α∈i V α C m,i,α Q (n+1/2) k,l,i,α α∈i V α Q (n+1/2) 0,0,i,α . (31) 
The coefficients (30) and (31) take into account the heterogeneous and the non-uniform distribution of neutron collisions among the heterogeneous region i.

Extension of RMA to high-order spatial moments of the transport operator

For simplicity, we will consider the transport and RMA operators to be sharing the same spatial mesh in this section. However, the transport sources and interface angular fluxes will be expanded on a local polynomial base. The transport interface angular flux and source are represented by the spatial moments ψ ±,(n+1/2) m,i,s and Q

(n+1/2) k,l,i
, respectively, that characterize the expansions

ψ ±,(n+1/2) m,i,s (r s ) = P s (r s ) • ψ ±,(n+1/2) m,i,s , (32) 
Q (n+1/2) k,l,i (r) = P (r) • Q (n+1/2) k,l,i . ( 33 
)
The definition for the spatial moments are the projections

ψ ±,(n+1/2) m,i,s = 1 A i,s Γ i,s d 2 r s P s (r s )ψ ±,(n+1/2) m,i,s (r s ), and (34) 
Q (n+1/2) k,l,i = 1 V i D i d 3 r P (r)Q (n+1/2) k,l,i (r), (35) 
where the basis vectors P (r) and P s (r s ) contain the trial functions of the volume source and of the interface angular flux, respectively.

The transport matrix-based equations are then represented by

ψ +,(n+1/2) m,i,s = s ∈S - m,i,s T m,i,s,s ψ -,(n+1/2) m,i,s + E m,i,s Q (n) m,i , (36) 
φ (n+1/2) k,l,i = M m=1 w m Y k,l (Ω m )    s∈S - m,i I m,i,s ψ -,(n+1/2) m,i,s + C m,i Q (n) m,i    , (37) 
Q (n+1/2) m,i = K k=0 k l=-k Y k,l (Ω m ) Σ k,i φ (n+1/2) k,l,i,α + Q ext k,l,i . ( 38 
)
When RMA is applied to a transport operator with high-order spatial moments, the assumptions ( 4) and ( 7) become, respectively,

ψ ±,(n+1) m,i,s = h± m,i,s J ±,(n+1) i,s , (39) 
Q (n+1) k,l,i = Hk,l,i Q (n+1) 0,0,i , (40) 
where the vectors h± m,i,s and Hk,l,i are the spatial moments of h± m,i,s (r s ) and Hk,l,i (r), respectively. The definition of the shape angular-spatial shape vectors h± m,i,s and Hk,l,i are based on the ratios

h± m,i,s = ψ ±,(n+1/2) m,i,s J ±,(n+1/2) i,s
, and (41)

Hk,l,i = Q (n+1/2) k,l,i Q (n+1/2) 0,0,i . (42) 
By applying the discrete integration m∈2π ± i,s w m |Ω m • n i,s | and m∈M w m respectively to (41) and (42) and computing the zero-order spatial and angular moment, it follows that the normalization condition for h± m,i,s and for the sum

K k=0 k l=-k Y k,l (Ω m ) Hk,l,i are 1 A i,s Γ i,s d 2 r s P s (r s ) • m∈2π ± i,s w m |Ω m • n i,s | h± m,i,s = 1, (43) 
1 V i D i d 3 r P (r) • m∈M w m K k=0 k l=-k Hk,l,i Y k,l (Ω m ) = 1. (44) 
Introducing assumptions (32) and (33) in the transmission equation, (36), and by applying the projector

1 A i,s Γ i,s d 2 r s P s (r s ) m∈2π + i,s w m |Ω m • n i,s |•
to Eq. ( 36), one obtains the non-linear transmission of RMA,

J +,(n+1) i,s = s ∈S - i,s T i,s,s J -,(n+1) i,s + E i,s Σ sc,0,i φ (n+1) 0,0,i + Q Ext,0,0,i , (45) 
which again is formally identical to Eq. ( 17), but with the new definition for the non-linear coefficients,

T i,s,s = 1 A i,s J -,(n+1/2) i,s Γ i,s d 2 r s P s (r s ) • m∈2π + i,s ∩2π - i,s w m |Ω m • n i,s | T m,i,s,s ψ - m,i,s , (46a) 
E i,s = 1 A i,s Q (n+1/2) 0,0,i Γ i,s d 2 r s P s (r s ) • m∈2π + i,s w m |Ω m • n i,s | E m,i,s Q (n+1/2) m,i , (46b) 
Using the same assumptions for Eq. ( 37) and applying the projection operator defined by

1 V i D i d 3 r P (r) m∈M w m •
to the high-order collision equation (37), one obtains the collision non-linear equation for E-RMA, φ0,0,i =

s∈S - i I i,s 1 -Σ sc,0,i C i J - i,s + C i 1 -Σ sc,0,i C i Q Ext,0,0,i , (47) 
which has the same form as Eq. ( 18), but with the new definition for the non-linear coefficients,

I i,s = 1 V i J - i,s D i d 3 r P (r) • m∈2π - i,s w m I m,i,s ψ - m,i,s , (48a) 
C i = 1 V i Q 0,0,i D i d 3 r P (r) • m∈M w m C m,i Q m,i . (48b) 
For B-RMA, no modifications are required for computing the scalar flux since the balance equation used by B-RMA does not depend on the spatial basis functions of the transport operator.

Note that Eqs. (46a), (46b), (48a) and (48b) work for non-orthogonal basis. In the case that the basis functions P s (r s ) and P (r) are orthogonal on the surfaces and in the volume, respectively, then the spatial integrals inside Eqs. (46a),(46b),(48a) and (48b) become

1 A i,s Γ i,s d 2 r s P s (r s ) =     1 0 . . . 0     , (49) 
1 V i D i d 3 r P (r) =     1 0 . . . 0     , (50) 
and the RMA coefficients are obtained by collapsing the transport matrices on the zero-order spatial moment using the incoming fluxes and the sources.

For clarity, the explanation of how RMA is expanded for heterogeneous cells and for the high order moments of the transport operator was separated in the previous two sections. However, it is important to note that both expansions can be used together. In fact, many of the test cases that will be investigated in this paper are composed of heterogeneous cells and are solved with the linear short characteristic transport operator.

Comparison with the DP0 method

RMA has a lot in common with the Double-P 0 (DP0) method, which was investigated by Sanchez and Chetaine, [START_REF] Sanchez | A Synthetic Acceleration for a Two-Dimensional Characteristic Method in Unstructured Meshes[END_REF], and later expanded to DPN by Santandrea and Sanchez, [START_REF] Santandrea | Acceleration techniques for the characteristic method in unstructured meshes[END_REF]. Both methods build their coefficients from the transport coefficients and solve for the outgoing partial current. As a result, the equations of RMA and DP0 have very similar forms, however there are some important differences. The fundamental assumption of the DP0 is

ψ ± m,i,s ≈ χ ± m,i,s J ± i,s , (51) 
where χ ± m,i,s is the characteristic function

χ ± m,i,s = 1 if Ω m ∈ 2π + i,s , 0 otherwise, (52) 
approximates the angular flux from the partial current. In contrast, the fundamental assumption of RMA, ψ ± m,i,s = h± m,i,s J ± i,s , does not approximate the angular distribution of the angular flux. Moreover, χ ± m,i,s is a constant characteristic function while h± m,i,s is a transport computed shape function that considers the angular distribution of the interface flux.

Moreover, the DP0 shares the same spatial and energy mesh as the transport equation, as is required for a linear synthetic acceleration method. Instead, RMA can make use of spatial homogenization and energy condensation to form a separate coarser mesh. Thus, RMA can reduce its memory imprint relative to DP0. This is especially important when RMA is applied to 3D, full core simulations. However, RMA does have the drawback that its coefficients have to be recomputed with each iteration of the transport operator.

Extension to multigroup problem

RMA is easily applicable to multigroup problems. The RMA accelerated outer iteration starts with the multigroup transport sweep that we represent in the form

(L g -H g,g )ψ (l+1/2) g = g <g H g,g ψ (l+1/2) g + g >g H g,g ψ (l)
g +Q f is,(l) g for g = 1, . . . , G (53) where • (l + 1/2) is the outer iteration index of the transport multigroup sweep, whereas (l) is the index of the accelerated flux,

• ψ

(l+1/2) g
represents the transport angular moments for the energy group g,

• L g represents discrete operator of the streaming and removal in group g, Ω • ∇ + Σ g ,

• H g,g is the collision operator in from group g to group g,

• Q f is,(l) g
is the fission source within the group g of iteration (l).

Because of the up-scattering part of the collision source, i.e. g >g H g,g ψ

g , Eq. ( 53) is solved by Gauss-Seidel iteration to stabilize the flux in the thermal groups. During the transport sweep within the group, the RMA coefficients are computed.

Considering for simplicity vacuum boundary conditions, the RMA multigroup iteration solves the equations (I -Ãg )J +,(l+1) g = Ẽg g =g H0,g,g φ

(l+1) g + g F g,g φ (l+1) g k (l+1) for g = 1, . . . , G (54) 
and the current-to-flux equation given by

φ (l+1) g = Ĩg J +,(l+1) g + Cg g =g H0,g,g φ (l+1) g + g F g,g φ (l+1) g k (l+1) for g = 1, . . . , G. (55) 
In this context, the matrices Ẽg , Cg , Ĩg represent the global escape, collision and incoming matrices, respectively. whereas the matrices H0,g,g and F g,g contains the flux-weighted scattering and fission cross sections. The equation ( 54) is the multigroup version of Eq. (24) whereas Eq. ( 55) is the global representation of Eq. ( 18), for the E-RMA, or of Eq. ( 20) for the B-RMA.

On the RHS and the LHS of equations ( 54) and (55) we have explicitly used the same iteration index, i.e. (l + 1), because Eqs. ( 54) and (55) represent an independent multigroup problem that is fully converged by power iterations to compute the smallest eigenvalue, i.e. 1/k (l+1) , and the associated eigenvector φ (l+1) = {φ (l+1) g } g=1,G . Equations ( 54) and ( 55) are solved at each multigroup transport sweep.

Once the RMA multigroup eigenvalue problem is solved, the transport flux is updated as usual by the rebalancing relation

φ (l+1) g = φ (l+1/2) g φ (l+1/2) g,0,0 φ (l+1)
g,0,0 , while the new fission source for the transport can be compute

Q f is,(l+1) g = g F g,g φ (l+1) g ,0,0 k (l+1)
where 1/k (l+1) is the eigenvalue of the RMA problem and F g,g is the detailed fission emission from g to g.

Calculation of nonlinear coefficients

One of the notable attributes of RMA is that its nonlinear coefficients are formulated using the transport coefficients. This results in RMA requiring the calculation of data not typically provided by the transport operator. For instance, both RMA variants require the transport operator to cumulate the numerators of Ti,s,s and Ẽi,s on top of the more commonly required cumulation of the partial current. Moreover, E-RMA requires the transport operator to cumulate the numerators of Ĩi,s and Ci as well. While coefficients Ti,s,s and Ĩi,s can be computed during the transport sweep, coefficients Ẽi,s and Ci has to be computed once the source is updated. This means that in order to use RMA, the transport solver has to perform an additional sweeping to add the angular contributions to Ẽi,s and Ci . This additional cost results in a larger computational overhead for generating the RMA method compared to CMFD, as will be seen in Section 4.

Convergence analysis on one-dimensional slab geometries

This section shows the results of the spectral analysis performed on the one-group homogeneous slab source problem. The iteration schemes analyzed are the SI (free iterations) and SI accelerated by E-RMA, B-RMA and the MCNH variant of CMFD. The spatial variable is discretized by step Method Of Characteristics (MOC) and the angular quadrature used is an S 8 Gauss-Legendre quadrature.

It is important to note that due to the similarity of E-RMA and B-RMA, they often share the same spectral radius, causing the results of E-RMA to be hidden behind those of B-RMA. However, if the reader looks closely, they will notice that the star marker of E-RMA can still be observed behind the B-RMA results.

Homogeneous geometry

For both non-linear acceleration methods, RMA and CMFD, we have performed a linearization of the iterative schemes in the vicinity of the converged solution, i.e. the flat flux solution. The linearized schemes have been Fourier-analyzed following the classical Fourier ansatz. For the sake of conciseness, we will omit the related algebra while concentrating our attentions on the results.

Figure 1 shows the spectral radius of the above-mentioned iterative schemes for two values of the scattering ratio, i.e. c = 0.1 and c = 0.99, versus the optical thickness. As the results show, the E-RMA and B-RMA spectral radius is almost zero. This result is expected, since the only assumption made by RMA is that the angular distribution of the interface flux is fixed within each hemisphere.

This assumption is true when the distribution of the angular flux of the current iteration is the same as the final solution. Since the solution is the flat flux and the scattering source is isotropic, only the contribution from the previous iteration of the incoming angular flux can cause the outgoing angular flux to have a non flat distribution. However, for the standard SI scheme, only the boundary angular flux is from the previous iteration, the contribution of which goes to zero for an infinite domain. Thus, for the infinite slab test, RMA is essentially solving the transport operator.

Since the scattering source is isotropic, RMA's representation of the transport source is exact, ie Eq. ( 7) is no longer an approximation. This property of RMA makes it insensitive to the variation of the scattering ratio. In contrast, CMFD without a stability parameter diverges in optically thick regimes with high scattering ratio, as has already been proved in literature, [START_REF] Masiello | Analytical stability analysis of Coarse-Mesh Finite Difference method[END_REF]. The divergence of CMFD is mainly caused by the high-frequency modes which signify the high-order spatial modes, as can be seen from Figs. 2 and3, where ζ is used to represent the spatial frequency. The pictures show the eigenvalues associated to different frequencies for all the iterative schemes analyzed in this section. The largest improvement in the spectral radius of RMA compared to MCNH occurs for diffusive, optically thick cells, for example when the scattering ratio is set to 0.99 and the optical thickness is greater than 0.8 mfp as is shown in Figs. 2 and3. This rapid divergence in the spectral radius occurs as the result of CMFD stimulating the high spatial frequencies of the transport solution. In particular, CMFD's use of a step constant approximation for the spatial distribution of the flux stimulates these eigenmodes. In contrast, RMA does not stimulate these eigenmodes since the contributions of the higher order spatial moments are accounted for by its formulation. The spectral radius of B-RMA lies directly on top of that of E-RMA. As explained before this is due to the similarity of E-RMA and B-RMA. This trend occurs for all the results presented in this section. 

Heterogeneous geometry

The accuracy of the closure equations relating the surface current to the scalar flux significantly affects the performance and stability of the method. The most dramatic changes in the flux and current profile occur at boundaries with large material discontinuities. Consequently, the accuracy of the scalar flux and surface current relationship is of greatest significance at these highly discontinuous boundaries. Thus, in order to assess the accuracy of the scalar flux and surface current relationship used by RMA, we will study the behavior of RMA at boundaries with large material discontinuities. This meant that it was necessary to conduct a spectral radius analysis of RMA for heterogeneous geometries. The geometry was chosen to be composed of two distinct, repeating mediums. In order to study a wide range of discontinuities, a parameterization of the optical thickness and the scattering ratio was chosen, as was first done by Masiello for analyzing the stability of CMFD, [START_REF] Masiello | Analytical stability analysis of Coarse-Mesh Finite Difference method[END_REF]. The optical thickness and the scattering cross-section were fixed for one medium and varied for the other according to the following 1-parameter equations,

τ 2 (P ) = (1 -c 1 )τ 1 P + P c 1 τ 1 , (56a) 
c 2 (P ) = P c 1 (1-c 1 ) P + P c 1 , (56b) 
P > 0,
where τ 1 and τ 2 are the optical thickness of the fixed and parameterized mediums, respectively, and P is the parameter to be varied. The relation between P and τ 2 and c 2 is shown by Figs. 4 and5, respectively. As dictated by Eq. (56a), when c 1 < 1, material 2 becomes infinitely absorbing, relative to material 1, as P goes to zero. In contrast, material 2 becomes an infinitely diffusive material, relative to medium 1, as P increases to the infinite. For the extreme cases ofc 1 we have,

τ 2 (P ) = τ 1 P , when c 1 = 0 c 2 (P ) = 0, and 
τ 2 (P ) = P c 1 τ 1 , when c 1 = 1 c 2 (P ) = 1.
The spectral radius of the parameterized problem was investigated for the case that the optical thickness of the first cell was set to 0.1, 1.0 and 10 mfp. The results of the analysis for MOC SI, accelerated by CMFD, E-RMA, and B-RMA are shown by Figs. 6, 7 and8. For all the analyzed cases, the spectral radius of RMA is equal to or less than that of CMFD. When the optical thickness of the first cell is fixed to a value of 0.1, the spectral radius of RMA separates from that of CMFD when p is sufficiently small or large. The maximum value of the spectral radius of RMA remains relatively constant as the scattering ratio is varied. However, the position and width of the peak can be seen to change.

When τ 1 = 1, the spectral radius of RMA is less than that of CMFD for all investigated scattering ratios. Moreover, the spectral radius of CMFD, increases rapidly when p reaches a threshold value. The value of p at which this divergence occurs, is dependent on the scattering ratio of the fixed medium. The maximum spectral radius of RMA occurs when the scattering ratio and p are set to 0.99 and 0.1 respectively. Finally, when τ 1 = 10, the spectral radius of RMA is very close to zero for all cases. Significant gap in the spectral radius of RMA and CMFD occurs when the scattering ratio is set to 0.8 or 0.99. Moreover, CMFD becomes unstable when the scattering ratio of the fixed medium is set to 0.99 and P exceeds a value of ∼ 0.2.

3.3.

The multigroup hybrid method: combining CMFD with RMA RMA was shown in the previous section to be more effective than CMFD for all the cases analyzed. However, RMA is also more computationally expensive to compute than CMFD due to its increased degrees of freedom and its need for additional data cumulation. Thus, we concluded that we could optimize the ratio between the computational cost of applying the acceleration and its effectiveness, by using RMA when max i∈I (τ g,i ) > 1 and CMFD otherwise. The limit max i∈I (τ g,i ) > 1 was specifically chosen based off the results of Figs. 12345678. We will refer to the resulting combination of the two methods as the hybrid method.

Numerical benchmarks

This section is dedicated to the results obtained by testing the RMA method implemented in the IDT solver of APOLLO3. RMA has been extended to Homogeneous and Heterogeneous Cartesian Cells, that allow for accurate flux computation within pin cells by using constant and linear short characteristics.

Speed-up vs. S n

The rodded-B configuration of the 3D C5G7MOX benchmark has been studied to asses the performance of RMA with respect to the S N quadrature order. For this test suite, the RMA, CMFD and the hybrid method were combined to accelerate the outer and inner iterations. We will refer to the resulting combinations as

• MCNH&MCNH when outers and inners are accelerated by the CMFD,

• MCNH&E-RMA and MCNH&B-RMA when outers are accelerated by CMFD whereas the inners by E-RMA and B-RMA, respectively,

• E-RMA&E-RMA and B-RMA&B-RMA when outers and inners are accelerated by E-RMA and B-RMA, respectively, and by

• hybrid&hybrid when CMFD and RMA are applied to groups with τ < 1 and τ > 1, respectively, to both inner and outer iterations.

Figures 9, 10, 11 and 12 show the speed-up of the computational time with respect to free iterations, the reduction of transport sweeps, the total elapsed time on a single core and the total number of transport sweeps, respectively. The calculations are performed by varying the number of directions for all the above-mentioned accelerations scheme. At first glance, the Hybrid&Hybrid schemes outperforms the others acceleration schemes for the constant approximation (step MOSC), whereas the MCNH&Hybrid shows better performances for the linear approximation (linear MOSC). The hybrid method profits from the synergy of the different performance advantages of CMFD and RMA. In this case, RMA is applied on the inner iterations of the seventh group, i.e. the most optically thick energy group. Both variants of RMA efficiently reduce the number of inner transport sweeps, Fig. 9 depicts this behaviour. However, the application of RMA on outer iterations is less effective than CMFD, this can likely be solved with further optimization of the multigroup RMA equation and the development of a more effective preconditioner. Also, note that none of the calculations with linear MOSC have been run with CMFD accelerating the inner iterations. In fact, MCNH, and other variants of CMFD variants such as pCMFD, do not converge when applied to the thermal groups without the application of a stability parameter, the use of which is not investigated in this section.

Figure 9: Speed-up vs. the number of directions: the relative speed-up is computed as the ratio of the elapsed time for free iterations and elapsed time for the accelerated scheme, applied to both constant and linear short characteristics transport.

Finally, we have analyzed the accuracy of the benchmark configurations obtained with linear MOSC on a mesh composed of 56258 regions, with a z-step of 3.57cm (except for the top water reflector, where the z-step is of 1.19cm) and 80 directions (modified S 8 Level-Symmetric) to verify the capabilities of RMA to preserve transport accuracy. Table II contains the obtained results by running both E-RMA and B-RMA on inner and outers iterations. The RMA mesh consists of homogenized pin cell preserving the original mesh along the Z axis. Calculations have been run in parallel framework using MPI library and a domain decomposition consisting in 3 × 3 × 4 subdomains. The total memory footprint is 21 GB. IDT decomposes the spatial domain into subdomains so that each subdomain can be solved on a separate nodes using MPI parallelism. As well, IDT simultaneously solves several angular directions using OpenMP parallelism. However, PETSc has not been written with OpenMP parallelism so only MPI parallelism was explored during these tests. Both acceleration methods, RMA and CMFD, have been programmed and adapted to the parallel structure of IDT. The transport and the acceleration operator share the same domain splitting configuration to take advantage of the locality of data. The subdomains exchange boundary interface data by the MPI directives. A particularity of IDT implementation is that both transport and accelerations solve a full local multigroup problem within each subdomain. This allows for a coarse-grained parallelism that minimizes MPI communications.

In order to spatially decompose the global geometry for parallel simulation, IDT divides the geometry along the Cartesian axes. An example of how IDT decomposes the geometry is illustrated by Fig. 13. For the remainder of the article the notation (# of divisions along the x axis)-(# of divisions along the y axis)-(# of divisions along the z axis) will be used to specify the spatial decomposition of the geometry.

One of the interests of RMA is its ability to scale for parallel computing. When the number of subdomains increases, the parallel multigroup block-Jacobi iterations are particularly slow to converge because of the slow convergence of the subdomain boundary flux, i.e. the exchanged quan- tities among the subdomains, as noted by Anistratov and Azmy, [START_REF] Anistratov | Iterative stability analysis of spatial domain decomposition based on block Jacobi algorithm for the diamond-difference scheme[END_REF]. In this context, RMA could outperform CMFD because of its ability to accelerate high-frequency non-symmetric modes, explained by Sanchez here [START_REF] Sanchez | On the spectral analysis of iterative solutions of the discretized one-group transport equation[END_REF], generated by the boundary incoming flux of the subdomains. These high-frequency non-symmetric modes are particularly dominant when some of the subdomains are optically thin and asymmetrically heterogeneous. We have performed a strong scaling test on the same configuration presented in the previous subsection, i.e. the rodded-B configuration of the C5G7 MOX benchmark. The studied domain decomposition configurations are those presented in Table III. Starting from a 2 × 2 × 2 decomposition of the global domain, the global domain is further divided up to a maximum of 9 × 9 × 9. Each subdomain is associated to a unique core.

The calculations are solved by linear MOSC with a S 12 quadrature formula for a total of 288 directions. To increase the grind time, the spatial mesh has also been increased to 168474 regions. Figures 14, 15 and 16, show the parallel efficiency, the speed-up and the elapsed time for 4 acceleration schemes. Despite a larger runtime, RMA methods follow the ideal line of the scalability, whereas CMFD has a departure from the ideal scalability around the 500 th subdomain mark. In fact, as is shown by 16, RMA shows almost the same runtime as CMFD at 729 cores. The material specification and the description of the configuration of the reactor are contained in [START_REF] Palau | 3D Analysis of the UH1.2 Mock-up Experiment Using the APOLLO3 IDT Method and Comparisons Against Tripoli4 Monte Carlo Reference Calculations[END_REF]. The geometrical model of the reactor uses 648434 regions in order to approach an exact representation of the core geometry. An S 8 angular quadrature is used to approximate the angular variable. For the spatial discretization, the constant and linear MOSC are tested. The cross section library is the reference 281-group P3 library of APOLLO3 with self-shielded microscopic cross sections pre-computed on three 2D geometrical patterns of the fuel lattice. The amount of materials having different cross sections is 158647 generating a memory load for cross sections of 365GB. The angular moments of the flux comprise 2.9 billion unknowns for the constant MOSC and about 12 billion unknowns for the linear. To handle the memory imprint of the calculations, we have chosen to use CMFD with the MCNH closure on the outer iterations by coarsening the energy mesh from 281 groups to 22 groups: this choice was mandatory since, at the present stage of development, RMA uses the same energy mesh as the transport when applied to outer iterations, causing the memory occupation to exceed the 4GB per MPI process available on the Irene cluster, [START_REF]Description of The Cobalt Computing Cluster[END_REF]. E-RMA was chosen to accelerate the inner iterations for its robustness and for the reduced number of Krylov iterations it requires to solve the global matrix. The coarse spatial mesh of RMA and CMFD is comprised of homogenized pin cells on the XY plane but preserves the same discretization as the transport mesh along the axial direction. For each outer iteration of the transport equation, the thermal and inner iterations accelerated by RMA are solved and then a fully converged CMFD 26-group eigenvalue problem is applied to accelerate the outer iterations. The exact iteration strategy used to converge multilevel scheme is specified in Table IV. This iteration strategy was chosen since it had been found to be effective for previously investigated simulations of a similar nature. However, due to the limited number of core hours available on the Irene cluster, it was not possible to test other iteration schemes in order to find a more optimized result. The transport and the acceleration methods share the same domain-splitting configurations. Due to our limited allocation of available hours on the Irene cluster, we performed a strong scaling test for homogenizing the cross sections, and the Acceleration Solution (AS) time, which includes the time spent solving RMA for accelerating the inner iterations and CMFD for accelerating the outer iterations. The tolerance used to stop the calculation is 5pcm for the eigenvalue, 50 pcm for the region-wise fission source and 1 pcm for the angular moments of the flux. An important observation made during these tests was that the number of outer iterations decreased when the number of subdomains was increased. This result encourages the application of RMA for highly decomposed partitions of the spatial domain. We have explicitly performed more inner iterations and few thermal iterations in each transport domain to stabilize the local scattering source. This strategy seems to alleviate the problem of slow convergence of the scattering and fission sources as well. A second aspect is related to the time spent in the construction of the operators. As discussed, RMA is penalized for a non-negligible overhead due to the computation of its coefficients but in this case most of the time is spent condensating the cross-sections for CMFD. In fact, the reference 281-group P3 library is condensed and flux-weighted to produce a 26 group P0 library for each coarse cell of CMFD, occupying about 50% of the total execution time.

Next, we perform a linear MOSC calculation with the new CMFD-RMA acceleration scheme and compare the results with those of a stabilized CMFD already built into IDT. The latter acceleration scheme consists only in applying the global multigroup CMFD operator on the outer acceleration, no inner acceleration is used to speed-up the convergence of the scattering source. This scheme was used in a previous work, [START_REF] Masiello | Domain-Decomposition Method in the IDT solver of the APOLLO3 code: synergy of the CMFD and multigroup transport iterations for 3D Full-Core simulations[END_REF]. For these simulations, the number of inner iterations per outer iteration and per group is fixed to 4. The accuracy of the solution is preserved, i.e. 24 pcm on the k-effective and less than 2% for the fission distribution. The runtime of the two simulations is displayed in Table VI. The spatial domain is decomposed into 900 subdomains and the angular quadrature is an S 8 Chebyshev-Legendre for both simulations, [START_REF] Walters | Use of the Chebyshev-Legendre quadrature set in discrete-ordinate codes[END_REF]. The application of RMA is important for the rate of convergence: the outer iterations are reduced by a factor 3 and the runtime is reduced by a factor 5. This reduction of the execution time is essentially due to the reduced number of outer iterations used in the CMFD solver to converge the non-linear eigenvalue problem.

The last test case is a 3D PWR assembly simulation that consists of 134385 regions and 77804 materials, [START_REF] Godfrey | Vera Core Physics Benchmark Progression Problem Specifications[END_REF]. As well, the cross sections are computed using the reference 281-group P3 library, for a total number of degrees of freedom of 0.6 billion. As before, Table VII contains the comparison between the CMFD-RMA acceleration scheme and the built-in CMFD of IDT. The domain is split into 25 subdomains and computed in parallel on 25 cores. The results again show a reduction in the number inner iterations by a factor of about 6 and a 60% reduction of the computational time. 

Conclusions

In this article, we propose a new acceleration method called the Response Matrix Acceleration method (RMA). RMA improves upon the effectiveness and the stability of CMFD for optically diffusive geometries. In fact, RMA has been shown to be stable for all the cases studied. This result has been verified by means of spectral radius analysis and numerical benchmarks. For optically thin medium, RMA and CMFD are equivalently effective, making CMFD the better choice in this regime due to its lower computational cost. Which leads us to conclude that a combination of CMFD with RMA leads to the best numerical performance.

Among the test cases presented in this paper, RMA has demonstrated its capability to scale for highly decomposed subdomains. The acceleration does not suffer from slow convergence for the parallel block Jacobi iteration, which is typical of DDM implementations. To this end, we will continue to study the Gauss-Jacobi transport iteration scheme accelerated by RMA in order to further confirm this attribute of RMA.

Further development of the RMA implementation to allow for the energy condensation of RMA coefficients is paramount. For all the cases studied, the same energy mesh was used for the transport and the RMA operator. This restriction has limited the application of RMA to inner iterations for real-scale problems using a 281-group cross section library.

The investigation of a coarse RMA energy mesh will be important to find the compromise between the numerical efficiency and the effectiveness of the acceleration. This future development will hopefully allow RMA to effectively accelerate the multigroup outer iterations.

Figure 1 :

 1 Figure 1: Spectral radius vs. optical thickness for SI, E-RMA, B-RMA and the MCNH (CMFD) for the homogeneous 1D infinite slab problem solved by the S 8 MOC.

Figure 2 :

 2 Figure 2: Spectral radius vs. optical thickness for different frequencies (ζ) for SI, and MCNH (CMFD) for the homogeneous 1D infinite slab problem solved by the S 8 MOC.
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 3 Figure 3: Spectral radius vs. optical thickness for different frequencies (ζ) for E-RMA and B-RMA for the homogeneous 1D infinite slab problem solved by the S 8 MOC.
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 455 Figure 4: The variation of τ 2 with P , according to Eq. (56a), when τ 1 = 1 and c 1 = 0.5

Figure 6 :

 6 Figure 6: Heterogeneous slab problem for τ 1 = 0.1: spectral radius of the SI, B-RMA, E-RMA and CMFD (MCNH) versus the stretching parameter p and for different values of the scattering ratio of region 1, c 1 = 0.2, 0.5, 0.8, 0.99.

Figure 7 :

 7 Figure 7: Heterogeneous slab problem for τ 1 = 1: spectral radius of the SI, B-RMA, E-RMA and CMFD (MCNH) versus the stretching parameter p and for different values of the scattering ratio of region 1, c 1 = 0.2, 0.5, 0.8, 0.99.

Figure 8 :

 8 Figure 8: Heterogeneous slab problem for τ 1 = 10: spectral radius of the SI, B-RMA, E-RMA and CMFD (MCNH) versus the stretching parameter p and for different values of the scattering ratio of region 1, c 1 = 0.2, 0.5, 0.8, 0.99.

Figure 10 :

 10 Figure10: Reduction of the transport sweeps vs. the number of directions: the reduction of the transport sweeps is measured in terms of iteration speed-up expressed as the ratio of the number of transport sweeps for the free iterations and the number of transport sweeps for the accelerated scheme, applied to both constant and linear short characteristics transport.

Figure 11 :

 11 Figure 11: Runtime vs. the number of directions when the acceleration schemes are applied to both constant and linear short characteristics transport.
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 12 Figure 12: Number of inner transport sweep vs. the number of directions when the acceleration schemes are applied to both constant and linear short characteristics transport.

Figure 13 :

 13 Figure 13: A visualization of the spatial decomposition strategy employed by IDT.
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 141516 Figure 14: Parallel efficiency vs. number of cores (number of subdomains)
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 43 Real scale problemsThis section summarizes the results obtained with the simulations of two real-scale 3D problems. The first is the EOLE reactor, an experimental reactor facility of the CEA in Cadarache. Graphical illustrations of the EOLE reactor are shown by Figs. 17 and 18.

Figure 17 :

 17 Figure 17: EOLE reactor, radial view of the computational mesh.

  

Table I :

 I Values of the albedo coefficients at the domain boundaries.

  Table II contains the results obtained for the

Table II :

 II Reactivity and pin power error analysis of the 3D C5G7 MOX benchmark.

			Unrodded Rodded A Rodded B
	K-effective		1.14336	1.12827	1.07753
	Reactivity error (pcm)		24	-19	-22
	Max pin power error (%)		1.5	1.2	1.3
	Min pin error (%)		-0.9	-0.4	-0.8
	RMS (%)		0.3	0.4	0.45
		Bottom	-0.13	-0.04	-0.18
	central UOX (%)	Middle	-0.13	-0.24	-0.53
		Top	0.06	-0.44	0.06
		Bottom	0.06	0.14	0.21
	flat UOX (%)	Middle	0.03	0.12	0.03
		Top	0.12	0.10	0.12
		Bottom	0.04	-0.19	-0.73
	MOX (%)	Middle	0.04	0.08	0.03
		Top	0.27	0.03	0.31
	# of power iterations		12	12	14
	# of inner iterations		347	334	361
	Elapsed Time (sec.)		364	355	404
	4.2. Parallel efficiency				

Table III :

 III Specification of the subdivision of the global domain into subdomains and the resource allocation for the strong scalability test.

	# of Subdomains cores
	2 × 2 × 2	8
	3 × 3 × 3	27
	4 × 4 × 4	64
	5 × 5 × 5	125
	6 × 6 × 6	216
	8 × 8 × 8	512
	9 × 9 × 9	729

Table V :

 V Strong scaling test of the EOLE reactor using the constant MOSC transport operator, the S 8 Chebyshev-Legendre quadrature formula and a 281-group P3 cross-section library. MOSC on three domain-decomposition configurations. Table V contains the results of the strong scaling test when the simulation is run with 200, 900 and 6250 subdomains with one core per subdomain. The table contains the total elapsed time as well as the time spent in the transport and the acceleration. The acceleration time is divided in two parts: the Acceleration Construction (AC) time, that includes time for CMFD and RMA coefficients and the time spent

			# of cores	
		200	900	6250
	# of outers	30	14	12
	# of inners	54083	25781	18430
	Elapsed. Time (min)	178	22	2.5
	Time in Transport (min) (%)	71 (40%) 12 (54%) 1.2 (50%)
	Time in Acceleration (min) (%) 107 (60%) 10 (46%) 1.2 (50%)
		AC AS AC AS AC AS
		58% 2% 44% 2% 47% 3%
	using the constant			

Table VI :

 VI Comparison between the new CMFD-RMA and the built-in CMFD of IDT for the EOLE reactor simulation using the linear MOSC operator.

		CMFD-RMA	CMFD
	# of Outers	9		30
	# of Inners	17903	52301
	Elapsed. Time (min)	46		227
	Time in Transport (min)	17 (36%)	31 (14%)
	Time in Acceleration (min)	29 (64%)	196 (86%)
		AC	AS	AC AS
		63%	1%	85% 1%

Table VII :

 VII Comparison between the new CMFD-RMA scheme and the built-in CMFD of IDT for the 3D assembly simulation using the constant MOSC transport operator.

		CMFD-RMA	CMFD
	# of Outers	9		40
	# of Inners	12925	63196
	Elapsed. Time (min)	30		50
	Time in Transport (min)	24 (78%)	35 (71%)
	Time in Acceleration (min)	6 (22%)	14 (29%)
		AC	AS	AC AS
		20%	2%	27% 2%
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