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Abstract

In the field of structural health monitoring, the use of Digital Image Correlation (DIC)
on relevant surfaces offers remarkable advantages. Such a method is presented herein.
The statistically stationary nature of usual loads makes it possible to determine, by training
with DIC, a reduced kinematic basis (composed of “modes”) and a statistical amplitude
distribution for each mode. Further, a specific DIC technique is proposed to deal with such
particular kinematics by introducing an extractor per mode that operates on images after
a filtering step. This per-mode DIC measurement is reduced to a simple scalar product
between the image and the corresponding extractor, which allows for very fast and non-
iterative processing. As an illustration, this methodology is deployed on a test case of
fatigue crack propagation.

1 Introduction
Over the course of its life, a structure is often subjected to repetitive loading that may lead
to the occurrence of damage [1]. The latter can take the form of local yielding areas, open
cracking or diffuse microcracking. Being able to detect these defects is essential to ensure
structural integrity over time. However, when the considered structure has a very large surface
area, such as a bridge, it is complicated to monitor it exhaustively. To reduce costs, methods for
continuous monitoring of structures and automatic detection of defects have been developed
over time. These techniques are often based on continuous recording of data from sensors
that are assumed to reflect the health state of a structure as a whole. A drift of the measured
quantities is expected in the event of a defect appearing within a structure [2].

The main type of sensor used for structural health monitoring (SHM) applications is the ac-
celerometer, which allows for a modal characterization of a structure (i.e., eigenfrequency
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variation over time [3]). Other frequently used sensors include strain gauges and optical fibers,
which give access to local strains [4, 5]. They detect an increase in the measured strains over
time, which then allows for damage detection. The main disadvantage of these techniques
is that they extrapolate local data to obtain an estimate of the overall health state. A lack
of sensitivity is to be feared for defects that remain latent for macroscopic characteristics of
the structure until their growth becomes catastrophic. To alleviate that risk, turning to optical
methods that allow for exhaustive views has been proposed [6–8]. The objective is then to au-
tomatically detect the presence of defects on the structure surfaces. Such a principle is usually
limited to thin structures.

At first glance, visible damage and more particularly cracks implies a local intensity variation
on the structure surface. Algorithms exist to detect the contours of objects on images at pixel
resolutions [9, 10], and sub-pixel scales [11–13]. These algorithms have inspired the develop-
ment of methods for automatic recognition of surface defects on concrete samples [14, 15] or
on bridges [16] for instance. They can be coupled with the use of specific robots equipped with
cameras connected to an image processing device for fast and yet exhaustive inspections [17].

The disadvantage of these techniques is that they lack robustness because they are based on a
gradient threshold. Its choice will greatly influence the type of detected discontinuity. To make
these approaches more robust, couplings with deep-learning algorithms have been proposed.
The algorithm is trained on a large number of images to recognize a particular defect [18–
20]. The automatic detection then becomes more “customized” to a specific structure and/or
material, but these techniques do not ensure damage detection. In addition, their training
requires a large set of data to be available. To increase their reliability, it has been suggested
to train neural networks on several types of materials (assuming that they all share comparable
defects) [21].

Despite the use of deep-learning algorithms, the important drawback that remains with meth-
ods based on contour detection is that damage must be clearly visible on the surface with ap-
parent crack opening. If it is faintly visible or underlying, it may not be detected and such risk
is not acceptable for SHM purposes. When damage is present, be it apparent or not, it will nec-
essarily have a local signature on the way the surface will deform when subjected to in-service
loading. Digital Image Correlation (DIC) is a well known technique in the experimental field
to measure surface displacement fields between reference and deformed states [22–24]. Such
a tool has been largely used to study damage phenomena [25–28]. More precisely, methods
using DIC have been developed to automatically detect damage within a structure, especially
cracks. The simplest methods seek to detect large strains due to crack-induced displacement
jumps. They have been extended to several fields such as masonry [29], composite mate-
rials [30] or renewable energies [31]. However, such methods may exhibit poor robustness
because, as for contour detection, threshold levels are difficult to estimate, especially if the
structure is subjected to multiaxial loadings.

The precise quantification of cracks by DIC in mechanical tests has been subject of numerous
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developments in order to determine the precise position of the crack tip [32, 33], to calculate
stress intensity factors in post-processing steps [34, 35] and via integrated DIC [32, 36], or to
study the entire crack path [37, 38]. Many of these techniques were not intended to automati-
cally detect the presence of cracks on a surface, as they require non-obvious initial calibration.
However, they could be diverted to automate the detection. For example, in Ref. [39], the
displacement was initially sought on the basis of simple kinematic bases (e.g., accounting for
rigid body motions and uniform strains). Damaged areas then are synonymous for higher cor-
relation residuals, which are obtained from image differences after registration. Based on the
knowledge of the displacement field around a crack, it was then possible to iteratively ad-
just the position, orientation and length of several cracks within the area of interest. For this
method, it is therefore necessary that the cracks be open, and that the deformations undergone
by the structure be not too complex.

In order to gain robustness, methods have emerged based on the knowledge of the displace-
ment field when the structure is sound. If, during the experiment or over time, a defect induces
a variation in terms of displacement fields with respect to the healthy specimen, it will be
detected using specific indicators. In Ref. [40], a concrete sample was subjected to 4-point
bending under increasing load over time. At each step, the displacement field measured via
DIC was decomposed using wavelets. The comparison between the first load level and the
following ones allows an indicator of energy drift to be established over all the decomposition
stages. The occurrence of damage induced a variation in the decomposition form, which re-
sulted in an increase in the error indicator. With such a method, it is difficult to evaluate the
sensitivity to the defect, especially since the example dealt with concrete that easily damages
under bending. Moreover, the method seems complicated to calibrate because of the many
possible variations for the wavelet decomposition.

In Ref. [41], a method for estimating the residual life of a drilled composite specimen in a
tensile fatigue test was presented. Strains of the material were estimated by DIC at several
instances of time during the test, always at maximum load level. Through multiple tests, a
life estimation model was calibrated using a learning algorithm. Over time, damage indicators
were calculated to predict the remaining service life. This type of method using DIC is robust
to identify structural damage when the test conditions are well known, and when several sam-
ples are available to calibrate the model. Its use in real conditions seems delicate given that
model calibration involves complex algorithms.

The objective of this work is to introduce a new autonomous structural health monitoring
method based on DIC for structures that undergo statistically stationary loading during their
lifetime, which is the case of many industrial structures. Only the algorithm and a proof of
concept are presented. Its practical implementation is beyond the scope of the present paper.
The idea consists in using very simple model order reduction methods to describe the dis-
placement field viewed by a single or multiple camera(s). Such techniques have already been
conducted using DIC data. First, in Ref. [42] from 350 random time shots of a vibrating plate,
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8 main modes of the structure were found by principal component analysis. These modes
were orthogonalized with respect to the mass matrix of the finite element model in order to
coincide with actual vibration modes. The comparison between these modes and the numer-
ical predictions was conclusive. In Ref. [43], the 3D displacement fields measured during a
thermomechanical test, which were initially very noisy, were decomposed on a reduced modal
basis in order to reduce unphysical temporal fluctuations. In the case of that test, a unique
mode was used to describe almost all the kinematics of the experiment. The idea of restrict-
ing the kinematic space has also been pursued for modal analysis [44]. A unique sinusoidal
temporal mode, which was related to the vibration mode, was used.

The proposed method is decomposed into two steps. First, during the learning stage, a kine-
matic modal basis is determined from a set of pictures taken on the undamaged structure with
a variety of (natural) loadings. In the second stage, namely that of health monitoring, new pic-
tures are acquired, and the measured displacement fields are projected onto the initial modal
basis. This second step consists, in fact, in performing a large number of times “integrated
DIC.” It utilizes finite element shape functions extracted from a model or inspired by physics.
If a defect initiates, differences appear in global error indicators that will highlight it either
from displacements or correlation residuals. In order to simplify image processing of this sec-
ond step, a new “one-step DIC” strategy is introduced, which reduces DIC processing to a
mere scalar product of the difference between current and reference images with one extractor
field per mode. This DIC scheme is performed on filtered images, where the filter is tailored
to the observed displacement field. The method is illustrated on a fatigue crack propagation
experiment.

2 Damage detection via DIC

2.1 DIC principle
Digital Image Correlation (DIC) is a displacement field measurement technique that allows the
image of a surface in its reference state to be registered with that of the deformed configuration.
These two images are respectively described by matrices f and g representing the gray levels
associated with the pixel at position x. By noting u the displacement field between the two
images, the following equation

f(x) = g(x+ u(x)) (1)

accounts for gray level conservation. The objective is to find the displacement field that mini-
mizes the cost function defined as the sum of quadratic gray level differences. It is convenient
to discretize the displacement field via, say, finite element shape functions ni(x) with un-
known nodal displacements ai

u(x) =
∑
i

aini(x) (2)

Based on the minimization of the cost function over the considered region of interest (ROI),
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displacements are determined via modified Gauss-Newton scheme where incremental correc-
tions to the nodal displacements are obtained from the linear problem

[M ]{δa} = {b} (3)

with
Mij =

∑
x

(ni(x) ·∇f(x))(nj(x) ·∇f(x)) (4)

and
bi =

∑
x

(ni(x) ·∇f(x))(f(x)− g̃{a}(x)) (5)

where [M ] is the DIC matrix, and {b} the second-member. In the above equation, g̃{a} is the
deformed image g corrected by the current determination {a} of the nodal displacements

g̃{a}(x) = g

(
x+

∑
i

aini(x)

)
(6)

When convergence is reached, the difference η(x) = g̃{a}(x) − f(x) is called correlation
residual.

In some cases, gray level conservation may be violated due to small illumination variations of
the experimental scene. The optical flow is then enriched thanks to gray level corrections.

2.2 Gray level correction
A commonly adopted way to account for gray level corrections is provided by affine transfor-
mation of the gray level scale [23, 45–50]

c(x) + (1 + d(x))f(x) = g(x+ u(x)) (7)

where c and d are spatially varying fields. As the displacement field, they are discretized over
the whole ROI thanks to scalar shape functions mi(x)

c(x) =
∑
i

cimi(x) (8)

d(x) =
∑
i

dimi(x) (9)

The determination of the nodal amplitudes ci and di relies on linear problem solving. They
can be calculated either in the same loop as the displacements [23], or alternatively after it if
their contribution is small [51].
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2.3 Model order reduction
2.3.1 Principle

Model order reduction techniques are used to lower the number of degrees of freedom grouping
a set of fields. The Principal Component Analysis (PCA) [52], which is similar to the Proper
Orthogonal Decomposition (POD) [53], is used to bring out the most important information
in data sets. Let us consider a problem with n spatial degrees of freedom whose solutions are
available at nt time steps. The matrix [A] is the concatenation of solutions in time, then its
dimension is n× nt. PCA gives a factorization of rectangular matrix [A]

[A] = [V][Σ][U]> (10)

where [V] is the n × n matrix of the orthonormal spatial modes that form a canonical basis
ψi(x), [Σ] the n×nt diagonal matrix where the non-zero terms are considered as the singular
values of the matrix, and [U] the nt × nt matrix of orthonormal temporal modes denoted by
φi(t) in the sequel. From this decomposition, the singular values account for the importance
of the modes in the decomposition. The higher the value, the more important the mode for the
global field description. Such a method is applied to a set of displacements field measured via
DIC

u(x, t) =
n∑
i

αiφi(t)ψi(x) (11)

with αi the i-th singular value, φi the i-th temporal mode andψi the corresponding i-th spatial
mode, where both φi and ψj are normalized.

This set of modes can be truncated and it results in efficient data reduction. The selection of
the appropriate number na of modes is based on αi values. If they reach levels close to mea-
surement uncertainty, the mode is no longer relevant to adequately describe the displacement
fields. The approximate displacement field ua is then defined as

ua(x, t) =
na∑
i

αiφi(t)ψi(x) (12)

2.3.2 Uncertainty consideration

It is noteworthy that, implicitly, the metric used for model reduction is the (Euclidean) L2

norm. A relevant metric in the case of model reduction is that related to measurement uncer-
tainty [54]. For DIC, this information is contained in the DIC matrix [M ]. Its consideration in
model order reduction is completed by weighting the mesh nodes displacement values by the
square root of the DIC matrix. PCA then yields

[M ]
1
2 [u] = [Ψ∗][Σ∗[Φ]∗> (13)
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where [Ψ∗] is the matrix related to the spatial modes, [Σ∗] the diagonal matrix, [u] the matrix
gathering in columns the measured spatiotemporal nodal displacements, and [Φ∗] the matrix
associated with the temporal modes. It is worth noting that the columns of [Ψ∗] are no longer
displacements and admittedly their interpretation is not straightforward. However, they can be
transformed into displacement modes ψi

{Ψi} = [M ]−
1
2{Ψ∗

i } (14)

with {Ψ∗
i } the i-th column of [Ψ∗]. In the following, examples of both matrices [Ψi] and [Ψ∗

i ]

will be shown and commented. The PCA technique is performed based on a truncation of the
diagonal matrix [Σ∗], thereby leading to a consistent model reduction based on the statistical
properties of random uncertainties affecting the processed data (i.e., images).

2.4 Damage detection
The modal displacement basis is set up from a large number of images when the structure
is subjected to statistically repeated loading. This step is the learning stage of the proposed
method, and the structure is assumed to be sound (i.e., undamaged). These images can be pre-
processed by “subtracting” rigid body translations by FFT-DIC for instance [55]. To account
for illumination variations that may occur, brightness and contrast corrections are applied after
seeking for the displacement, as these variations remain small. From this data gathering, the
statistics about the modal amplitudes and residuals are deduced. A drift in those levels is
synonymous with damage occurrence.

During the monitoring phase, new pictures are acquired multiple times and displacements are
measured. These fields are projected onto the sound (i.e., undamaged) modal basis, and a
projection gap is deduced. This error is calculated as the difference between the displacement
initially measured by DIC and that resulting from its projection onto the considered modal
basis. For damaged states, the error will increase because damage was not integrated into the
modal basis. Thus, based on displacement and also DIC projection residuals, error indicators
can be set to detect damage onset.

3 Case study: Fatigue crack propagation
The main features of the proposed method are illustrated in this section, which is based upon
an experimental case study dealing with crack propagation.

3.1 Mechanical test
The selected experiment consisted in testing a Center Cracked Tension (CCT) specimen made
of 2024 aluminium alloy. This material is classically used in aeronautics and aerospace indus-
tries. The sample size was 150×50×2 mm with an 8 mm pre-notch machined via EDM from
a 3 mm in diameter hole. One side of the sample was speckled with black and white paints for
DIC purposes. The same specimen geometry was used in Ref. [56], and it was shown that the
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temperature variations close to the crack tip remained very small during the whole test (i.e.,
less than 1 K). Such small fluctuations will not induce any alterations of the speckle pattern.
The setup is shown in Figure 1.

(a) (b)

Figure 1: (a) Experimental setup. (b) Specimen surface monitored by the camera

The hardware parameters of the optical setup are reported in Table 1.

Table 1: DIC hardware parameters

Camera Allied Vision Manta G-145B
Definition 2048× 2048 px
Gray Levels amplitude 16 bits
Telecentric lens Edmund Optics ×0.125
Field of view 100× 100 mm2

Image scale 50 µm/px
Stand-off distance 25 cm
Image acquisition rate 1 fps
Patterning technique sprayed paints
Pattern size 7 px

First, the specimen was subjected to cyclic loading at 10 Hz with a tensile force of 8 kN for
7,500 cycles in order to initiate two cracks. Then the specimen was sinusoidally loaded at a
frequency of 0.1 Hz with strains up to 5 × 10−4, which corresponded to 3 kN approximately.
150 images were acquired twice. The frequency of image acquisition was 1 Hz. Thus 10
pictures per period of loading were available. In the following, the initial step will refer to
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these first 150 images. It corresponds to the learning stage, and the modal basis is set up at this
step. In this stage, the specimen is in its reference (i.e., undamaged) state. The second set of
150 images will be referred to as step 1. It is part of the monitoring stage, where the mechanical
condition of the specimen is assessed over time. It will serve as reference to compare to the
results obtained at the initial step, because both sets of pictures were acquired for the same
damage state. Then, series of 10,000 cycles at a maximum force of 7 kN were conducted at a
frequency of 10 Hz and the crack continued to propagate. Between each propagation phase,
150 images were acquired under the same loading condition as for the initial step. 3 new sets
of images are available. They are referred to steps 2 to 4. The flowchart shown in Figure 2
summarises the whole experiment and the different stages. Error indicators are introduced to
show that the specimen was damaged over time, using the results obtained during the learning
stage as reference.

Figure 2: Flowchart summarising the whole damage detection analysis

Figure 3 shows the mesh used for this work. It is made of 3-noded triangular (T3) elements. On
the right side of the ROI, a (red) box is selected to pre-calculate the rigid body translations of
the specimen, thanks to FFT-DIC. The displacements obtained in both directions were stored
and removed from the total displacement fields for PCA purposes.
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(a) (b)

Figure 3: (a) Mesh used in T3-DIC analyses. The red rectangle is the region used to pre-
calculate the rigid body translations. (b) Zoom of the mesh showing the refinement close to
the crack tip

The DIC analysis parameters are gathered in Table 2.

Table 2: DIC analysis parameters

DIC software Correli 3.0 [57]
Image filtering none
Element length 10/20 px
Shape functions linear (T3)
Mesh see Figure 3
Matching criterion see text
Interpolant cubic
Displacement noise-floor 0.024 px

3.2 Damage detection by DIC
This subsection first presents the results obtained with model order reduction techniques ap-
plied to DIC data from the learning stage. Then, the results on defect identification based on
several error indicators are illustrated.

3.2.1 Model order reduction

As explained in Section 2.3, the mode relevance is related to its singular value. The set of sin-
gular values is plotted in Figure 4(a) for the analyzed sequence. The singular value associated
with the first mode is one order of magnitude higher than the others. This observation means
that it contains most of the kinematic information. The loading being unidirectional, the first
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mode is associated with tension. It will be confirmed in the sequel by displaying the spatial
modes.

(a) (b)

Figure 4: (a) Eigen values associated with the first 15 modes. (b) Temporal modes φi(t)

The eigenvalues related to the other modes stabilize from the fourth mode on. Thus, it is
concluded that three modes are sufficient to describe the whole kinematics. The first three
spatial modes are displayed in Figures 5, 6, and 7 respectively. As earlier mentioned, the direct
Ψ∗
i modes are difficult to "read" because of the [M ]

1
2 weighting. However, their translations

into displacement modes Ψi have a more intuitive meaning. This is illustrated for the first
mode, where both raw and corresponding displacement modes are displayed in Figure 5. The
raw modes are more difficult to “read” to due to the [M ]

1
2 weighting. As expected, the first

temporal mode φi(t) is sinusoidal (Figure 4(b)), and its spatial representation is relative to
uniaxial tension the sample was subjected to. The second temporal mode is also sinusoidal.
The third temporal mode is more difficult to interpret as it is to be orthogonal to both previous
temporal modes (i.e., orthogonal to an affine function of sine loading).
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(a) (b)

(c) (d)

Figure 5: (a,c) First spatial mode Ψ∗1 respectively along x and y directions. (b,d) Correspond-
ing displacement modes Ψ1

Only the second and third associated displacement modes are displayed. In contrast to the first
displacement mode, the second mode is more difficult to interpret. Presumably, low eigenvec-
tors of the DIC Hessian are present and give rise to high frequency "noise", but one notes that
at long wavelengths a vertical motion in the center of the ROI is observed. The third mode
contains additional rotation.
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(a) (b)

Figure 6: Second spatial mode Ψ2 along x (a) and y (b) directions

(a) (b)

Figure 7: Third spatial mode Ψ3 along x (a) and y (b) directions

3.2.2 Error indicators related to displacements

In order to automatically detect the presence of damage, error indicators are introduced. The
measured displacement field is projected onto the modal basis determined during the learning
phase. Displacement error vectors are obtained by subtracting the projected displacement
fields to those initially measured by DIC at mesh nodes. From these error vectors, indicators
are constructed, namely, the standard deviation and the maximum level. The indicators are
plotted for the initial step and steps 1 to 4 in Figure 8. It was found that 3 modes were
sufficient to describe the whole kinematics. However, the influence of the number of modes
on the error levels is also studied hereafter. The indicators are plotted for 3 and 6 projection
modes. For each step, the mean values of the error indicators are reported.
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(a) (b)

(c) (d)

Figure 8: Projection displacement error indicators for all five steps. (a,b) Standard deviation
for 3 and 6 modes respectively. (c,d) Corresponding maximum levels

First, the more the specimen is damaged (i.e., the crack has propagated), the higher the mean
values of the error indicators. The latter ones fluctuated significantly, which stresses the im-
portance of considering mean values over a certain period of time. This observation is even
more relevant when the loading is random. The comparison of the results obtained with 3 and
6 modes suggests that the average value and the fluctuation decrease with basis enrichment for
the standard deviation. For the maximum error, this trend is less obvious. Thus, a good way to
evaluate indicator drift is to normalize the difference between the mean values over the initial
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step and the other steps by the fluctuations (i.e., the standard deviation) of the initial step, as
shown in Figure 9. The higher the number of modes, the more discriminating the presence of
a crack for the normalized standard error. It is not the case for the normalized maximum error.

(a) (b)

Figure 9: Normalized standard deviation (a) and maximum (b) displacement errors as func-
tions of the number of modes

For step 1, where the specimen state is the same as at the initial step, the damage indicators
are really close to those obtained at the initial step. This observation confirms the ability of the
method to apply when the specimen is not damaged.

3.2.3 Displacement error fields

In order to ensure that the projection error is localized near the crack tip, the corresponding
fields are displayed in Figure 10. As the crack propagates, the displacement error around its
tip increases. In addition, a residual displacement is observed due to the presence of the crack.
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(a) (b)

(c) (d)

Figure 10: Displacements fields (expressed in px) along the x-direction for steps 1 (a) and 3
(c), and corresponding projection errors (b,d)

This phenomenon results in repetitive location of the error maximum (Figure 11). The two
nodes where the maximum errors occurred at step 3 are in the vicinity of the crack tip.
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(a) (b)

Figure 11: Locations of maximum error for the steps 1 (a) and 3 (b)

3.2.4 DIC residuals

An additional information is available thanks to DIC residuals. When DIC computations are
performed and the solution is close to the actual displacement field, the residuals reduce to
intrinsic camera noise. This is true under the condition that brightness conservation (1) be
fulfilled. To be satisfied, no illumination variations should occur. Otherwise, brightness and
contrast (BC) corrections should be performed. If the displacement field is not rich enough
to completely account for gray level variations, its root mean square (RMS) will be higher. It
may be due to mesh coarseness with regard to the displacement complexity, or discontinuity
in the displacement field.

The experiment studied herein lasted 5 hours. Major illumination variations were prevented
using artificial lighting but smaller ones unavoidably occurred. Brightness and contrast cor-
rections were applied after the DIC computation was performed. They were performed with
one Q8 element over the whole ROI. The RMS residuals before and after BC correction are
plotted in Figure 12. The correction has little impact on the levels (i.e., about few gray levels
for a 16-bit dynamic range), which confirms the very small illumination variations. Along the
experimental steps, the RMS residual increases even after BC corrections. This means that the
measured displacement field does not fully describe the actual kinematics of the test (i.e., the
presence of the crack). The refinement with linear T3 elements in this area is not sufficient
for fully describing the local complexity of the displacement field. Thus an increase in the
residual norm is also an indicator of damage.
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Figure 12: Comparison of mean RMS residuals before and after BC corrections for the five
steps

Figure 13 confirms that the increase of residuals is located where the crack initiated, thus due
to damage.

(a) (b)

Figure 13: Zoom around the crack tip of gray level residual maps at steps 1 (a) and 3 (b) when
16-bit images were registered

The DIC residual fields were also computed after displacement projection onto the modal ba-
sis. The mean and standard deviation of the displacement error indicators decreased as the
selected number of modes increased. This is not the case for the RMS residuals. The RMS
level is bounded by intrinsic camera noise and by interpolation errors. To evaluate the impact
of the projection onto the modal basis, the residual difference before projection and after pro-
jection was calculated for the different steps of the experiment and is plotted in Figure 14. It is
observed that damage influenced more the residuals after projection. The higher the damage
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level, the higher the projection error. For step 2, the influence is really small, the difference
with the values obtained at the initial step are largely due to interpolation errors. For step 4,
the error due to modal projection is equivalent to that due to interpolation error. Thus, it is
concluded that residuals are also a damage indicator, and displacement modal projection high-
lights it.

(a) (b)

Figure 14: (a) Comparison of RMS residuals with direct DIC and after projection onto the
modal basis. (b) Error induced by projection onto the modal displacement basis

4 New DIC approach based on optimal extractors
In the following, the concept of optimal extractors and “one-step” DIC will be presented.

4.1 Optimal extractors
Integrated DIC consists in using as kinematic basis a space generated by a reduced set of
fields motivated by the problem of interest [32]. For instance, the displacement field of Euler-
Bernoulli beams subjected to flexural loading is measured with only six degrees of freedom
per beam [58]. This technique reduces the number of unknowns in the DIC problem, and thus
the associated measurement uncertainties. In the first (i.e., learning) phase, an appropriate dis-
placement (modal) basis has to be set. This modal basis could be used directly as generalized
shape functions. Thus, it is noted that the same reference image and kinematic basis can be
used repeatedly. Hence it is worth precomputing all these repetitive aspects with what is called
optimal extractors to accelerate the calculations. The underlying principle is presented in the
sequel.

For each spatial mode Ψi, which was determined in the learning phase, it is possible to deter-
mine its sensitivity field si

si(x) = Ψi(x) ·∇f̂(x) (15)
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Introducing matrix [N ]

Nij =
∑
x

si(x)sj(x) (16)

it is possible to define an extractor field ζi(x), for each mode i, such that

ζi(x) =
∑
j

N−1ij sj(x) (17)

where N−1ij is the ij component of the inverse of matrix [N ].

The amplitude χi(t) associated with the modal field Ψi(x) is determined by the scalar product
of the extractor field with the field ρ(x, t) = g(x, t) − f(x), which is again the difference in
gray levels between the deformed image g and the reference image f

χi(t) =
∑
x

ζi(x)ρ(x, t) (18)

The correlation residual η is calculated as the difference between the initial residual ρ and the
gray level variations induced by modal displacement updates

η(x, t) = ρ(x, t)−
∑
i

χi(t)si(x) (19)

Thus, the main interest lies in the fact that for any number of deformed images, the extractors
are computed once for all. One new image only requires a subtraction and a scalar product.
These simple operations can be processed very fast (e.g., using GPU).

4.2 “One-step” DIC
From the learning stage, the statistics about the displacement amplitudes is also available. With
such information, the goal is to further speed up DIC analyses yielding a good solution in one
single step. DIC deals with nonlinear minimizations, based on iterative schemes [22, 23].
For each iteration, the summand of the cost function is linearized to compute incremental
corrections to the sought degrees of freedom. This operation can be rephrased as computing
the variation of local gray levels of the image is equal to the scalar product of the displacement
by the gradient of the image. When the displacement is too large, the linear gray level variation
approximation with the displacement is no longer valid, which implies that several iterations
are necessary to converge to a satisfactory result.

One way to reach the right solution in a unique iteration is to perform appropriate image
filtering. The filtering of an image consists in erasing details below a certain λ scale, often
considered as constant over the whole ROI. This filtering operation is performed by convolving
the initial image with a kernel (e.g., Gaussian), which tends toward zero for a distance to
the origin greater than λ. The information is spread over an area covered by the filtering
length. The gradient variations of the filtered image are thus attenuated. Such type of approach
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was already used in multiscale DIC [55]. DIC computations were iteratively performed with
progressively unblurred images. It enables for rapid convergence toward coarse solutions.
Consequently, the following computations are initialized with previous displacement fields
and then global convergence is faster as more details are restored in the image and in the
displacement field.

Filtering is a way to restore DIC linearity. Estimating the correct displacement field in one sin-
gle iteration is accessible provided appropriate image filters are used. The needed filtering is
directly related to the displacement amplitude. When displacement amplitudes are small (i.e.,
less than 1 px), it is assumed that homogeneous filtering is sufficient due to small gray level
variations. A simple test case to validate this assumption consists in calculating the best opti-
mal filtering length to estimate rigid body translations with “one-step” DIC. A smooth Gaus-
sian kernel was used, from the matlab function imgaussfilt [59]. In 2D, an isotropic
Gaussian filter G reads

G(x, y) =
1

2πλ2
exp

(
−x

2 + y2

2λ2

)
(20)

where x and y are the pixel coordinates, λ the “filtering length” as called in this work. The
same image and ROI were selected as in the previous section. The “deformed” images were
artificially created with bi-cubic gray level interpolation. For each translation amplitude, the
optimal filtering length is the one that minimizes the displacement error. Figure 15 shows
that for subpixel displacement amplitudes, the filtering length is independent of the applied
amplitude.

Figure 15: Optimal filtering length for subpixel rigid body translations

In the following, the application of one-step DIC is developed for sub-pixel displacements. In
Appendix 7, a virtual application case is set for displacement amplitudes greater than 1 px. In
particular, homogeneous filtering is no longer optimal, and another filtering strategy must be
adopted.
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5 Application of one-step DIC
In this section, first the calibration of the optimal filter length is carried out. Then, the appli-
cation of “one-step” DIC is performed on the test case.

5.1 “One-step” DIC calibration
The method quality is evaluated by measuring the difference between the displacement mea-
sured via T3-DIC projected onto the modal basis and that obtained by “one-step” DIC. The
objective is to find the optimal filter length that minimizes the displacement error over the
whole set of pictures of the learning step. Several filtering lengths were tested ranging from
1 to 3 px. Three displacement modes were chosen. The results are plotted in Figure 16. It is
found that the optimal filtering length is about 2.4 px. It is close to the previous (1.9) value
found for rigid body translations. It is worth noting that the results presented in this subsection
are only valid for the present test case. For any new sample, it is necessary to perform this
step again. Moreover, the error fluctuation over the whole set of images tends to decrease with
filter length increase. The error magnitude is correlated with the displacement amplitude. It
is seen that excessive filtering with regard to local displacement magnitude may induce a loss
of information. Being more accurate with high displacement amplitudes induces to be less
accurate with lower amplitudes.

(a) (b)

Figure 16: (a) Mean “One-step” DIC absolute error and its standard deviation over the whole
set of images from the learning step. (b) Results detailed along each direction

Regarding the error along both directions, it is higher in the x-direction, along which the ten-
sile load was applied. The error increases with filtering length along the y-direction. The
overall absolute error is about 4 × 10−3 px, and 7 × 10−3 px in the x-direction. These levels
are comparable with those of DIC uncertainties [22, 23]. Such observation validates the im-
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plementation of this new technique. The fluctuations represented by the standard deviation are
about 2× 10−3 px for the displacement amplitude, and 5× 10−3 px along the x-direction.

5.2 Example of extractor
The extractor defined in Equation (17) associated with the first mode and an original image
optimally filtered are displayed in Figure 17. The extractor is directly linked to its correspond-
ing mode shape. For example, for mode 1, the highest values of the extractor are on the left
part where the displacement mode amplitudes are the highest.

(a)

(b)

Figure 17: Filtered image (a) and extractor (b) for the first mode

5.3 “One-step” DIC application
The one-step DIC calculation was performed over the full sets of homogeneously filtered im-
ages. The filtering length was equal to 2.4 px as explained in the previous section. The mean
values of RMS residuals are shown in Figure 18. The difference between the residual levels
obtained in the initial step and the other steps are compared for both T-3 DIC and “one-step”
DIC are also reported. First, the mean RMS level is approximately six times lower and its stan-
dard deviation is two times lower after filtering. It is due to local averaging of the information.
However, the residual difference between the initial step and the others is nearly the same with
T3-DIC and one-step DIC. Thus, by weighting the residual difference by their mean values,
the jump induced by damage would be easier to spot.
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(a) (b)

Figure 18: Mean RMS residuals after one-step DIC (a). RMS residuals differences between
the initial step and the other steps for both T3-DIC and “one-step” DIC (b)

6 Conclusion
In this work, a new method for structural health monitoring via DIC was proposed. This
technique applies to structures that undergo the same loads repeatedly or statistically over
time. Thus the deformations undergone by the surface of the structure depend on a limited
number of parameters. All the measured displacement fields were condensed in a reduced
kinematic basis. The method consisted of two steps:

• First, the kinematic basis was constructed. It corresponded to the learning stage. The
selection criterion for the number of modes was based on the eigenvalues extracted from
singular value decomposition of the measured spatiotemporal displacement field.

• Then, over time, the displacement fields measured by DIC were projected onto the kine-
matic basis. This part is the monitoring stage. Global error indicators made it possible
to determine, over a large number of images, whether an error was present in the dis-
placement field, and thus a defect that would be the source of this error.

The application case of this method also led to the establishment of the development of fast
(i.e., “one-step”) DIC. The idea is to perform DIC analyses in one single iteration. Starting
from the calibration step of the kinematic basis, global modes and a map of maximum dis-
placements were available. The use of an adapted filter allows the validity of the linear tangent
operator of DIC to be extended. Hence, convergence is expected in a single iteration. This
method was improved by pre-calculating image extractors based on kinematic modes. Then
the error indicator coincided with the correlation residuals.
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Perspectives about the presented algorithm and its validation are drawn. It may be interesting
to use such SHM technique in more complex situations. For instance, multi-directional tests
would be interesting to carry out because the modal basis would be of higher dimension. It may
also be interesting to study the accuracy of one-step DIC on more complex deformations. In
terms of error indicators, global values (standard deviation) and local estimates (maximum) for
displacements were reported, but only global (RMS) values for the residuals. The ROI may be
divided into squares or rectangles, and the RMS residuals may be evaluated over these smaller
zones. Damage may be detectable earlier than with global indicators. Further, the algorithm
must be coupled with a fixed imaging system that would acquire images continuously. For
instance, in Ref. [60], arrays of 8 Mpx low cost cameras were used to capture images for
DIC analyses of geotechnical specimen. This solution is economically feasible and may be
applicable to large scale structures.
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7 Appendix: One step DIC with large displacements
In the previously presented work, the displacement amplitudes were less than 1 px. Thus a
simple uniforms filtering was sufficient. In this appendix, the problem of using “one-step” DIC
is addressed for larger amplitudes. More precisely, optimal inhomogeneous image filtering is
proposed to better estimate displacement fields. It is assumed that the local filtering length λ is
linked with the local displacement statistics. It can be the maximum, or the average weighted
by a multiple of its standard deviation. In this case, it is related to the maximum recorded
displacement, ξ(x). The principle about this particular filtering is first described. Then, an
artificial application case is set to illustrate the method.

7.1 Inhomogeneous filtering
This section describes inhomogenous filtering of an image. From a λ(x) filter length field
defined at each point of the ROI, N filter lengths λ̂i, i = 1, .., N , are chosen to cover the range
of λ values. The distribution of lengths can be equally distributed between the two extreme
values, or follow a power law for instance.

For each of these lengths λ̂i, a homogeneous filtering of image f(x) denoted f̃i(x) is carried
out by convolution with a Gaussian kernel of standard deviation λ̂i. These different filtering
lengths will be used to create N homogeneously filtered images. It is proposed to approach
image filtering at any scale λ by linear combination of images f̂i(x) and f̂i+1(x)

f̂λ(x) ≈ αf̂i(x) + (1− α)f̂i+1(x) (21)
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where α is a weighting coefficient to be determined. The minimization of the quadratic dif-
ference between the two members of this equation, on a small scale, provides the curvatures
at the origin of the two convolution operators, Gaussian of standard deviation λ on the one
hand, and weighted sum of the two filters of lengths λ̂i and λ̂i+1. This observation leads to the
weighting coefficient

α =
λ̂2i+1 − λ2

λ̂2i+1 − λ̂2i
(22)

The advantage of this approximation is that it is performed in the real space. For each pixel
position, it is easy to identify the weights αi(x) to be assigned to the N filtered images, and to
calculate the inhomogeneously filtered image by mere linear combination.

7.2 Filter calibration
In this part, the appropriate filtering coefficients are set depending on the locally encountered
displacement. To achieve such goal, it is chosen to select the best homogeneous filtering length
that minimizes displacement errors with artificial rigid body translations. Then, the function
that associates the filtering length to the displacement amplitude is set. The same specimen
and ROI as previously considered were selected. The results are plotted in Figure 19. First, it
is observed that for translation amplitudes less than 1 px, the filtering length is independent of
the translation amplitude. Above 1 px, the ratio between the optimal filtering length and the
translation amplitude is about 4. No explanation is proposed to explain this sudden gap.

(a) (b)

Figure 19: Absolute (a) and relative (b) optimal filtering lengths

7.3 Application to heterogeneous displacement fields
In this subsection, the interest of inhomogeneous filtering is shown when large displacement
amplitudes (i.e., greater than 1 px) are encountered. Displacement fields related to tensile tests
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were tested:

• One relative to uniform strain over the whole ROI. It is referred to as Case 1 in the
following.

• One related to the first displacement mode found in Section 2.3. It is referred to as
Case 2.

The performance of the filtering strategy is tested for maximum amplitudes ranging from 0.4
to 4 px, by steps of 0.4 px. The displacement map used as reference for filtering is based on a
maximum amplitude of 4 px. Inhomogeneous filtering is carried out based on the results ob-
served in Section 7.2. Depending on the local maximum amplitude, different filtering lengths
are selected. For pixels where the maximum encountered displacement is less than one pixel,
the filtering length is equal to 1.9 px. For pixels where the maximum amplitude is greater than
1 px, the filtering length is equal to 4 times the displacement amplitude. As explained above,
an approximation based on few homogeneously filtered images is performed. Four filtering
lengths are chosen, namely, 1.9, 4, 8, 12 and 16 px. This choice is arbitrary.

The reference displacement map and the corresponding filtered image are displayed for Case 1
in Figure 20. The effect of inhomogeneous filtering is visible between the right part (i.e., small
displacement amplitudes) and the left part (i.e., higher displacement levels).

(a)

(b)

Figure 20: (a) Displacement map along x-direction in pixels. (b) Corresponding adaptively
filtered image

There are two ways to evaluate the performance of the approach. First, one may look at the
one-step DIC error over the whole range of displacement amplitudes. The RMS of the error
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vector is thus a good indicator. Second, the prediction error is studied for the largest magnitude.
The comparison between homogeneous and inhomogeneous filterings for both indicators are
plotted in Figures 21 and 22 for Cases 1 and 2, respectively.

(a) (b)

Figure 21: One-step DIC error with homogeneous and inhomogeneous filtering over the whole
set of displacement fields, for Cases 1 (a) and 2 (b)

The results are improved with inhomogeneous filtering for both indicators and both cases, for
any filter length. This innovative way of filtering is more adapted. This new technique yields
lower displacement errors, when large amplitudes of displacements occur. Moreover, with
a generic calibration, the results are relevant for two different artificial cases, while the best
respective homogeneous filtering lengths differ.
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(a) (b)

Figure 22: One-step DIC error with homogeneous and inhomogeneous filtering for the larger
displacement magnitude, for Cases 1 (a) and 2 (b)
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