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Coherent presentations of super plactic
monoids of type A by insertions

Nohra Hage

Abstract – In this paper, we study by rewriting methods the presentations of the super plactic
monoid of type A which is related to the representations of the general linear Lie superalgebra. We
construct a convergent presentation of this monoid whose generators are super columns and whose
rules are defined by insertions on super tableaux over a signed alphabet. We extend this presentation
into a coherent one whose syzygies are defined as relations among insertion algorithms. Finally, we
reduce this coherent presentation to a Tietze equivalent one over the initial signed alphabet. Such
coherent presentations are used for representations of super plactic monoids by describing their
actions on categories.
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1. Introduction

We study the presentations of the super version of the plactic monoid of type A over a signed alphabet by
rewriting methods using combinatorial properties of super tableaux. Study presentations by rewriting
consists in the orientation of the relations, then called reduction rules. Two words are equal in a monoid
presented by a rewriting system if they are related by a zig-zag sequence of applications of reductions
rules. A rewriting system is convergent if the reduction relation induced by the rules is well-founded and
any reductions starting on a same word can be extended to end on a same reduced word. Starting with
a presentation of a monoid, we are interested in the computation of all syzygies for this presentation
and in particular to compute a family of generators for the syzygies. In commutative algebra, the
theory of Gröbner bases gives algorithms to compute bases for linear syzygies. By a similar method, the
syzygy problem for presentation of monoids can be algorithmically solved using coherent convergent
presentations. Such presentations extend the notion of a convergent presentation of the monoid by
globular homotopy generators taking into account the relations amongst the relations. Study the syzygies
in a monoid produces in higher dimensions free objects that are homotopically equivalent to the original
monoid and then allows us to compute its homological invariants. Indeed, this study provides the
first two steps in the computation of a polygraphic resolution of the monoid, that is, a categorical
cofibrant replacement of the monoid in a free (𝜔, 1)-category, whose acyclicity is proved by an iterative
construction of a normalization reduction strategy, [15]. Moreover, coherent presentations are used to
describe the notion of actions of the monoid on categories, [12].

This paper is a part of a broader project that consists of studying, by a rewriting approach, families
of plactic-like monoids defined from combinatorial objects constructed using insertion algorithms.
For instance, plactic monoids are related to Young tableaux, [25, 26], Chinese monoids to Chinese
staircases, [9], hypoplactic monoids to quasi-ribbon tableaux, [30], patience sorting monoids to patience
sorting tableaux, [8], and stalactic monoids to stalactic tableaux [31]. Moreover, binary search trees
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are used to describe normal forms for sylvester, taiga and Baxter monoids, [13, 21, 31]. Coherent
presentations are constructed for Artin monoids in [12], for plactic monoids of type A in [19], for plactic
monoids of type C in [29], and for Chinese monoids in [20].

A signed alphabet is a finite or countable totally ordered set S which is disjoint union of two sub-
sets S0 and S1. The super plactic monoid over a signed alphabet S, denoted by P(S), is presented by the
rewriting system Knuth2(S) on S submitted to the following family of super Knuth-like relations, [24]:

𝑧𝑥𝑦 ⇒ 𝑥𝑧𝑦, with 𝑥 = 𝑦 only if 𝑦 ∈ S0 and 𝑦 = 𝑧 only if 𝑦 ∈ S1,

𝑦𝑧𝑥 ⇒ 𝑦𝑥𝑧, with 𝑥 = 𝑦 only if 𝑦 ∈ S1 and 𝑦 = 𝑧 only if 𝑦 ∈ S0,

oriented with respect the lexicographic order, for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 of elements of S. The congruence
generated by this rewriting system, denoted by ∼P(S) , also relates those words that yield the same super
tableau as the result of the super Schensted-like insertion algorithm, [24]. This is the cross-section property
of super tableaux with respect to the congruence relation ∼P(S) . Note that when all the elements of S0
are less than the ones of S1, the congruence ∼P(S) is defined by 𝑢 ∼P(S) 𝑣 if and only if there is a
crystal isomorphism between connected components of the crystal graph of the vector representation
of the general linear Lie superalgebra, that map 𝑢 to 𝑣 , [1]. Note also that the monoid P(S) appeared
in [27] as a deformation of the parastatistics algebra which is is a superalgebra with even parafermi
and odd parabose creation and annihilation operators. Moreover, super algebraic structures have found
many applications as combinatorial tools in the study of the invariant theory of superalgebras, the
representation theory of general Lie super algebras, and algebras satisfying identities, [2, 3, 5, 14].
When S = S0 = {1 < . . . < 𝑛}, we recover the notion of the plactic monoid of type A, [25], which
emerged from the works of Schensted [32] and Knuth [22] on the combinatorial study of Young tableaux.
Plactic monoids have found several applications in algebraic combinatorics, representation theory and
probabilistic combinatorics, [10, 11, 28], and they were recently investigated by rewriting methods.
Indeed, for rank 𝑛 > 3, the Knuth presentation of the plactic monoid of type A does not admit a finite
completion with respect the lexicographic order, [23]. Then convergent presentations are constructed by
adding column generators and rows generators to the Knuth presentation, [4, 6], and similar convergent
presentations are constructed for the plactic monoids of classical types, [7, 17]. The author and Malbos
extend in [19] the column presentation of the plactic monoid of type A into a coherent presentation of
this monoid and we reduce it into a smaller one having Knuth’s generators.

Let S be a signed alphabet. A super tableau over S is a collection of boxes in left-justified rows
filled by elements of S such that the entries in each row are weakly increasing from left to right with
respect S0 and the ones in each column are weakly increasing from top to bottom with respect S1.
Note that when S = S0 and S = S1, we recover the notion of row-strict and column-strict semistandard
tableaux of type A, [11]. We will denote by Yt(S) the set of all super tableaux over S and by 𝑅𝑟𝑜𝑤
the map on Yt(S) that reads the entries of a super tableau row-wise from bottom to top and from left
to right. A super column is a word 𝑥1 . . . 𝑥𝑘 over S such that 𝑥𝑖+1 ⩽ 𝑥𝑖 with 𝑥𝑖 = 𝑥𝑖+1 only if 𝑥𝑖 ∈ S1.
We will denote by col(S) the set of all super columns over S. Super Schensted-like left and right
insertion algorithms are introduced in [24], and consist in inserting elements of S into super tableaux
by rows and columns respectively. Define the map ⟦.⟧𝑟 on the set of words over S sending a word
to the corresponding super tableau by inserting its letters iteratively from left to right using the right
insertion starting from the empty tableau. Following the cross-section property, we deduce that the
internal product ★𝑟 defined on Yt(S) by setting 𝑡 ★𝑟 𝑡

′ := ⟦𝑅𝑟𝑜𝑤 (𝑡)𝑅𝑟𝑜𝑤 (𝑡 ′)⟧𝑟 , for all 𝑡 and 𝑡 ′ in Yt(S),
is associative, and then the set (Yt(S),★𝑟 ) is isomorphic to the super plactic monoid P(S). We show in
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Lemma 2.6 that for all 𝑢 and 𝑣 in col(S) such that the topmost juxtaposition of ⟦𝑢⟧𝑟 and ⟦𝑣⟧𝑟 does not
form a super tableau, the super tableau ⟦𝑢𝑣⟧𝑟 contains at most two columns, and if it contains exactly
two columns then the left one contains more elements than 𝑢.

We construct in Section 2 a convergent presentation of the monoid P(S), denoted by Col2(S), whose
set of generators is Col1(S) :=

{
𝑐𝑢

�� 𝑢 ∈ col(S)} and whose rules are

𝛾𝑢,𝑣 : 𝑐𝑢𝑐𝑣 ⇒ 𝑐𝑤𝑐𝑤′

for every 𝑐𝑢, 𝑐𝑣 in Col1(S) such that the topmost juxtaposition of ⟦𝑢⟧𝑟 and ⟦𝑣⟧𝑟 does not form a super
tableau and where𝑤 and𝑤 ′ denote the readings of the left and right columns of ⟦𝑢𝑣⟧𝑟 respectively. We
show that Col2(S) can be obtained from Knuth2(S) by applying Tietze transformations that consist in
adding or removing derivable generators and in adding or removing derivable relations on a presentation
of a monoid in such a way that they do not change the presented monoid. We also show that the
confluence of Col2(S) is a direct consequence of the associativity of the product★𝑟 . Theorem 2.12 states
that Col2(S) is a convergent presentation of the monoid P(S), called the super column presentation.

We extend in Section 3 the super column presentation into coherent presentations of the monoid
P(S) using the homotopical completion-reduction procedure, [12]. Denote by Col3(S) the extended
presentation of P(S) obtained from Col2(S) by adjunction of one family of syzygies of the following
form

𝑐𝑒𝑐𝑒′𝑐𝑡
𝑐𝑒𝛾𝑒′,𝑡 %9

X𝑢,𝑣,𝑡
��

𝑐𝑒𝑐𝑏𝑐𝑏′
𝛾𝑒,𝑏𝑐𝑏′

�/
𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 ';

𝑐𝑢𝛾𝑣,𝑡
#7

𝑐𝑎𝑐𝑑𝑐𝑏′

𝑐𝑢𝑐𝑤𝑐𝑤′𝛾𝑢,𝑤𝑐𝑤′
%9 𝑐𝑎𝑐𝑎′𝑐𝑤′ 𝑐𝑎𝛾𝑎′,𝑤′

.B

for every 𝑐𝑢 , 𝑐𝑣 and 𝑐𝑡 in Col1(S) such that the juxtapositions of ⟦𝑢⟧𝑟 and ⟦𝑣⟧𝑟 , and of ⟦𝑣⟧𝑟 and ⟦𝑡⟧𝑟 do
not form super tableaux. Following Squier’s coherence theorem, [33], Theorem 3.3 states that Col3(S)
is a coherent presentation of the monoid P(S), called the super column coherent presentation. We then
apply the homotopical reduction procedure on Col3(S) in order to reduce it into a smaller one. As
a first step, we apply a homotopical reduction on Col3(S) with a collapsible part defined by some of
the generating triple confluences of Col2(S) and we reduce it into the coherent presentation Col3(S)
of P(S), whose underlying rewriting system is Col2(S) and the syzygies X𝑥,𝑣,𝑡 are those of Col3(S),
but with 𝑥 in S. In a second step, we reduce Col3(S) into a coherent presentation PreCol3(S) of P(S),
using a collapsible part defined by a set of syzygies of Col3(S). In a final step, we reduce PreCol3(S)
into an extended presentation of P(S), denoted by Knuth3(S), whose underlying rewriting system
is Knuth2(S). Theorem 3.12 states that Knuth3(S) is a coherent presentation of the monoid P(S).
Finally, we use in Subsection 3.13 this coherent presentation in order to describe the actions of super
plactic monoids on categories.

Notation. LetA be a totally ordered alphabet. We will denote byA∗ the free monoid of words overA,
the product being concatenation of words, and the identity being the empty word. We will denote
by 𝑤 = 𝑥1 . . . 𝑥𝑘 a word in A∗ of length 𝑘 , where 𝑥1, . . . , 𝑥𝑘 belong to A. The length of a word 𝑤

will be denoted by |𝑤 |. Let 𝑤 = 𝑥1 . . . 𝑥𝑘 be a word in A∗. We denote by ℓ (𝑤) the leftmost letter
of𝑤 and by Rem(𝑤) the subword of𝑤 such that𝑤 = ℓ (𝑤) Rem(𝑤). A word𝑤 ′ is a subsequence of𝑤
if 𝑤 ′ = 𝑥𝑖1 . . . 𝑥𝑖𝑙 with 1 ⩽ 𝑖1 < . . . < 𝑖𝑙 < 𝑘 . We will denote by [𝑛] the ordered set {1 < . . . < 𝑛} for 𝑛

3
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in Z>0. Let S be a finite or countable totally ordered set and | |.| | : S → Z2 be any map, where Z2 = {0, 1}
denotes the additive cyclic group of order 2. The ordered pair (S, | |.| |) is called a signed alphabet, and
we denote S0 = {𝑎 ∈ S

�� | |𝑎 | | = 0} and S1 = {𝑎 ∈ S
�� | |𝑎 | | = 1}. A monoid M is said a Z2-graded

monoid or a supermonoid if a map | |.| | : M → Z2 is given such that | |𝑢.𝑣 | | = | |𝑢 | | + | |𝑣 | |, for all 𝑢
and 𝑣 in M. We call | |𝑢 | | the Z2-degree of the element 𝑢. The free monoid S∗ over S is Z2-graded by
considering | |𝑤 | | := | |𝑥1 | | + . . . + ||𝑥𝑘 | |, for any word𝑤 = 𝑥1 . . . 𝑥𝑘 in S∗. In the rest of this article, and if
there is no possible confusion, S denotes a signed alphabet.

2. Super column presentation of the super plactic monoid

In this article, rewriting methods are presented in the language of polygraphs, that we recall in this
section and we refer the reader to [12, 16] for a deeper presentation. We also recall the notions of super
plactic monoids and super tableaux from [18, 24]. We end this section by constructing a convergent
presentation of the super plactic monoid by adding super columns generators and using combinatorial
properties of super tableaux.

2.1. Presentations of monoids by 2-polygraphs. In this article, we deal with presentations of
monoids by rewriting systems, described by 2-polygraphs with only 0-cell denoted by •. Such a 2-
polygraph Σ is given by a pair (Σ1, Σ2), where Σ1 is a set and Σ2 is a globular extension of the free
monoid Σ∗1, that is a set of 2-cells 𝛼 : 𝑠1(𝛼) ⇒ 𝑡1(𝛼) relating 1-cells in Σ∗1, where 𝑠1(𝛼) and 𝑡1(𝛼)
denote the source and the target of 𝛼 respectively. If there is no possible confusion, Σ2 will denote the
2-polygraph itself. Recall that a 2-category (resp. (2, 1)-category) is a category enriched in categories
(resp. in groupoids). When two 1-cells, or 2-cells, 𝑓 and 𝑔 of a 2-category are 0-composable (resp.
1-composable), we denote by 𝑓 𝑔 (resp. 𝑓 ★1 𝑔) their 0-composite (resp. 1-composite). We will denote
by Σ∗2 (resp. Σ

⊤
2 ) the 2-category (resp. (2, 1)-category) freely generated by the 2-polygraph Σ, see [16] for

more information. The monoid presented by a 2-polygraph Σ, denoted by Σ, is defined as the quotient of
the free monoid Σ∗1 by the congruence generated by the set of 2-cells Σ2. A presentation of a monoid M
is a 2-polygraph whose presented monoid is isomorphic to M. Two 2-polygraphs are Tietze equivalent if
they present isomorphic monoids. A 2-cell 𝛼 of a 2-polygraph Σ is collapsible, if 𝑡1(𝛼) is a 1-cell of Σ1
and 𝑠1(𝛼) does not contain 𝑡1(𝛼), then 𝑡1(𝛼) is called redundant. An elementary Tietze transformation of a
2-polygraph Σ is a 2-functor with domain Σ⊤2 that belongs to one of the following transformations, [12]:

i) adjunction ]1𝛼 : Σ⊤2 → Σ⊤2 [𝑥] (𝛼) (resp. ]𝛼 : Σ⊤2 → Σ⊤2 (𝛼)) of a redundant 1-cell 𝑥 with its collapsible
2-cell 𝛼 (resp. of a redundant 2-cell 𝛼),

ii) elimination 𝜋𝛼 : Σ⊤2 → (Σ1 \ {𝑥}, Σ2 \ {𝛼})⊤ (resp. 𝜋 (`,𝛼) : Σ⊤2 → Σ⊤2 /(`, 𝛼)) of a redundant 1-cell 𝑥
with its collapsible 2-cell 𝛼 (resp. of a redundant 2-cell 𝛼).

If Σ and Υ are 2-polygraphs, a Tietze transformation from Σ to Υ is a 2-functor 𝐹 : Σ⊤ → Υ⊤ that
decomposes into sequence of elementary Tietze transformations. Two 2-polygraphs are Tietze equivalent
if and only if there exists a Tietze transformation between them, [12]. Given a 2-polygraph Σ and a
2-cell `1 ★1 ` ★1 `2 in Σ⊤2 , the Nielsen transformation ^`←𝛼 is the Tietze transformation that replaces
in Σ⊤2 the 2-cell ` by a 2-cell 𝛼 : 𝑠1(`1) ⇒ 𝑡1(`2). When `2 is identity, we denote by ^

′
`←𝛼 the Nielsen

transformation which, given a 2-cell `1 ★1 ` in Σ⊤2 , replaces the 2-cell ` by a 2-cell 𝛼 : 𝑠1(`1) ⇒ 𝑡1(`).
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2.2. Super Young tableaux and insertions

A rewriting step of a 2-polygraph Σ is a 2-cell of Σ∗2 with shape 𝑤𝛼𝑤 ′, where 𝛼 is a 2-cell of Σ2
and 𝑤 and 𝑤 ′ are 1-cells of Σ∗1. A rewriting sequence of Σ is a finite or infinite sequence of rewriting
steps. A 1-cell 𝑢 of Σ∗1 is a normal form if there is no rewriting step with source 𝑢. The 2-polygraph Σ
terminates if it has no infinite rewriting sequence. A branching of Σ is a non ordered pair (𝑓 , 𝑔) of 2-cells
of Σ∗2 such that 𝑠1(𝑓 ) = 𝑠1(𝑔). A branching (𝑓 , 𝑔) is local if 𝑓 and 𝑔 are rewriting steps. A branching is
aspherical if it is of the form (𝑓 , 𝑓 ), for a rewriting step 𝑓 and Peiffer when it is of the form (𝑓 𝑣,𝑢𝑔) for
rewriting steps 𝑓 and 𝑔 with 𝑠1(𝑓 ) = 𝑢 and 𝑠1(𝑔) = 𝑣 . The overlapping branchings are the remaining
local branchings. An overlapping local branching is critical if it is minimal for the order ⊑ generated by
the relations (𝑓 , 𝑔) ⊑

(
𝑤𝑓𝑤 ′,𝑤𝑔𝑤 ′), given for any local branching (𝑓 , 𝑔) and any possible 1-cells 𝑤

and 𝑤 ′ of the category Σ∗1. A branching (𝑓 , 𝑔) is confluent if there exist 2-cells 𝑓 ′ and 𝑔′ in Σ∗2 such
that 𝑠1(𝑓 ′) = 𝑡1(𝑓 ), 𝑠1(𝑔′) = 𝑡1(𝑔) and 𝑡1(𝑓 ′) = 𝑡1(𝑔′). A 2-polygraph Σ is confluent if all of its branchings
are confluent. It is convergent if it terminates and it is confluent. In that case, every 1-cell 𝑢 of Σ∗1 has a
unique normal form.

2.2. Super Young tableaux and insertions. A partition of a positive integer 𝑛, is a weakly decreasing
sequence _ = (_1, . . . , _𝑘 ) ∈ N𝑘 such that

∑
_𝑖 = 𝑛. The integer 𝑘 is called number of parts or height of _.

The Young diagram of a partition _ = (_1, . . . , _𝑘 ) is the set Y(_) :=
{
(𝑖, 𝑗)

�� 1 ⩽ 𝑖 ⩽ 𝑘, 1 ⩽ 𝑗 ⩽ _𝑖
}
,

that can be represented by a diagram by drawing a box for each pair (𝑖, 𝑗). The transposed diagram
{( 𝑗, 𝑖)

�� (𝑖, 𝑗) ∈ Y(_)} defines another partition, called the conjugate partition of _, whose parts are the
lengths of the columns ofY(_). Let _ be a partition. A super semistandard Young tableau, or super tableau
for short, over S is a pair 𝑡 := (_,T) where T : Y(_) → S is a map satisfying T (𝑖, 𝑗) ⩽ T (𝑖, 𝑗 + 1),
with T (𝑖, 𝑗) = T (𝑖, 𝑗 + 1) only if | | T (𝑖, 𝑗) | | = 0, and T (𝑖, 𝑗) ⩽ T (𝑖 + 1, 𝑗), with T (𝑖, 𝑗) = T (𝑖 + 1, 𝑗) only
if | | T (𝑖, 𝑗) | | = 1. We will call Y(_), T and _, the frame, the filing and the shape of the super tableau 𝑡
respectively. We will denote by Yt(S) the set of all super tableaux over S.

Denote by 𝑅𝑟𝑜𝑤 (resp. 𝑅𝑐𝑜𝑙 ) the reading map on Yt(S) that reads a super tableau row-wise (column-
wise) from bottom to top and from left to right. For instance, consider the alphabet S = {1, 2, 3, 4, 5}
with signature given by S0 = {1, 2, 4} and S1 defined consequently. The following diagram is a super
tableau over S:

𝑡 =

1 1 2
3 4 4
5
5

with 𝑅𝑟𝑜𝑤 (𝑡) = 55344112 and 𝑅𝑐𝑜𝑙 (𝑡) = 55314142.

A super row (resp. super column) is a word 𝑥1 . . . 𝑥𝑘 in S∗ such that 𝑥𝑖 ⩽ 𝑥𝑖+1 (resp. 𝑥𝑖+1 ⩽ 𝑥𝑖 )
with 𝑥𝑖 = 𝑥𝑖+1 only if | |𝑥𝑖 | | = 0 (resp. | |𝑥𝑖 | | = 1). In other words, a super row (resp. super column) is
the reading of a super tableau whose shape is a row (resp. column). We will denote by col(S) the set
of all super columns over S. Denote by ≼deglex (resp. ≼rev) the length lexicographic order (resp. length
reverse lexicographic order) on col(S) defined by 𝑢 ≼deglex 𝑣 (resp. 𝑢 ≼rev 𝑣) if |𝑢 | < |𝑣 | (resp. |𝑢 | > |𝑣 |) or
|𝑢 | = |𝑣 | and 𝑢 <𝑙𝑒𝑥 𝑣 , for all 𝑢 and 𝑣 in col(S), where <lex denotes the lexicographic order on S.

Recall from [24] the right and left insertion algorithms on Yt(S) that insert an element 𝑥 in S into a
super tableau 𝑡 of Yt(S). The right (or row) insertion, denoted by ⇝, computes a super tableau 𝑡 ⇝

𝑥

as follows. If 𝑥 ∈ S𝑜 (resp. 𝑥 ∈ S1) is at least as large as (resp. larger than) the last element of the top
row of 𝑡 , then put 𝑥 in a box to the right of this row. Otherwise, let 𝑦 be the smallest element of the top
row of 𝑡 such that 𝑦 > 𝑥 (resp. 𝑦 ⩾ 𝑥 ). Then 𝑥 replaces 𝑦 in this row and 𝑦 is bumped into the next row
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2. Super column presentation of the super plactic monoid

where the process is repeated. The algorithm terminates when the element which is bumped is at least
as large as (resp. larger than) the last element of the next row. Then it is placed in a box at the right
of that row. The left (or column) insertion, denoted by⇝, computes a super tableau 𝑥 ⇝ 𝑡 as follows.
If 𝑥 ∈ S𝑜 (resp. 𝑥 ∈ S1) is larger than (resp. at least as large as) the bottom element of the leftmost
column of 𝑡 , then put 𝑥 in a box to the bottom of this column. Otherwise, let 𝑦 be the smallest element of
the leftmost column of 𝑡 such that 𝑦 ⩾ 𝑥 (resp. 𝑦 > 𝑥 ). Then 𝑥 replaces 𝑦 in this column and 𝑦 is bumped
into the next column where the process is repeated. The algorithm terminates when the element which
is bumped is greater than (resp. at least as large as) all the elements of the next column. Then it is placed
in a box at the bottom of that column. For instance, consider S = N with signature given by S0 the set
of even numbers and S1 defined consequently. We have

1 2 2 3
1 3 4
3

⇝2 = 1 2 2 2
1 3 4
3
3

and 1⇝ 1 2 5 6
1 4 5
2

= 1 2 2 5 6
1 4 5
1

Note that when S = S0 = [𝑛], the right (resp. left) insertion corresponds to the Schensted’s right
(resp. left) insertion introduced in [32] on row-strict semistandard tableaux over [𝑛]. For any word
𝑤 = 𝑥1 . . . 𝑥𝑘 overS, denote by ⟦𝑤⟧𝑟 the super tableau obtained from𝑤 by inserting its letters iteratively
from left to right using the right insertion starting from the empty tableau:

⟦𝑤⟧𝑟 := (∅ ⇝

𝑤) = ((. . . (∅ ⇝

𝑥1)

⇝

. . .) ⇝

𝑥𝑘 ) .

Note that for any super tableau 𝑡 in Yt(S), the equality ⟦𝑅𝑟𝑜𝑤 (𝑡)⟧𝑟 = 𝑡 holds in Yt(S), [24]. We define
an internal product ★𝑟 on Yt(S) by setting

𝑡 ★𝑟 𝑡
′ := (𝑡 ⇝

𝑅𝑟𝑜𝑤 (𝑡 ′))

for all 𝑡, 𝑡 ′ in Yt(S). By definition the relations 𝑡★𝑟 ∅ = 𝑡 and ∅★𝑟 𝑡 = 𝑡 hold, showing that the product★𝑟

is unitary with respect to ∅.

2.3. The super plactic monoid. The super plactic monoid over S, denoted by P(S), is presented by
the 2-polygraph Knuth2(S), whose set of 1-cells is S and whose 2-cells are, [24] :

[𝑥,𝑦,𝑧 : 𝑧𝑥𝑦 ⇒ 𝑥𝑧𝑦, with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1,
Y𝑥,𝑦,𝑧 : 𝑦𝑧𝑥 ⇒ 𝑦𝑥𝑧, with 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only if | |𝑦 | | = 0, (1)

oriented with respect the lexicographic order, for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 of elements of S. The congruence
generated by this 2-polygraph, denoted by ∼P(S) , is called the super plactic congruence. Note that since
the relations (1) are Z2-homogeneous we have that P(S) is a supermonoid. Moreover, for any𝑤 inS∗, we
have𝑤 ∼P(S) 𝑅𝑟𝑜𝑤 (⟦𝑤⟧𝑟 ), [24], and for any 𝑡 in Yt(S), we have 𝑅𝑟𝑜𝑤 (𝑡) ∼P(S) 𝑅𝑐𝑜𝑙 (𝑡), [18]. Note finally
that super tableaux satisfy the cross-section property for ∼P(S) , that is, for all𝑤 and𝑤 ′ in S∗,𝑤 ∼P(S) 𝑤 ′
if and only if ⟦𝑤⟧𝑟 = ⟦𝑤 ′⟧𝑟 , [24]. As a consequence of the cross-section property, we deduce that the
product ★𝑟 is associative and the following equality

𝑦 ⇝ (𝑡 ⇝

𝑥) = (𝑦 ⇝ 𝑡) ⇝

𝑥 (2)
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holds in Yt(S), for all 𝑡 in Yt(S) and 𝑥,𝑦 in S. In particular, for any word𝑤 = 𝑥1 . . . 𝑥𝑘 in S∗ the super
tableau ⟦𝑤⟧𝑟 can be also computed by inserting its elements iteratively from right to left using the left
insertion starting from the empty tableau:

⟦𝑤⟧𝑟 = (𝑤 ⇝ ∅) := (𝑥1⇝ (. . .⇝ (𝑥𝑘 ⇝ ∅) . . .)).

Note that the associativity of the product ★𝑟 can be obtained using the properties of the super jeu de
taquin introduced in [18]. Note also that we can show the equality (2) using only the definitions of the
insertion algorithms and without supposing the cross-section property, and then the associativity of the
product ★𝑟 and the cross-section property will be consequences of this equality.

Let 𝑤 be in S∗. For any 𝑘 ⩾ 0, denote by 𝑙𝑘 (𝑤) (resp. �̃�𝑘 (𝑤)) the maximal number which can be
obtained as the sum of the lengths of 𝑘 super rows (resp. super columns) that are disjoint subsequences
of𝑤 . Let _ = (_1, . . . , _𝑘 ) be the shape of the super tableau ⟦𝑤⟧𝑟 and _̃ = (_̃1, . . . , _̃𝑙 ) be the conjugate
partition of _. For any 𝑘 ⩾ 0, we have 𝑙𝑘 (𝑤) = _1 + . . . + _𝑘 and �̃�𝑘 (𝑤) = _̃1 + . . . + _̃𝑙 , [24]. In particular,
we deduce the following result.

2.4. Lemma ([24]). Let𝑤 be a word over S. The number of columns in the super tableau ⟦𝑤⟧𝑟 is equal
to the length of the longest super row word that is a subsequence of𝑤 , and the number of rows in ⟦𝑤⟧𝑟 is
equal to the length of the longest super column word that is a subsequence of𝑤 .

2.5. Graphical notations. Given 𝑢 = 𝑥1 . . . 𝑥𝑝 and 𝑣 = 𝑦1 . . . 𝑦𝑞 in col(S). We will use the following
notations depending on whether the juxtaposition of ⟦𝑢⟧𝑟 and ⟦𝑣⟧𝑟 forms a super tableau:

i) we will denote 𝑢 𝑣 if the topmost juxtaposition of ⟦𝑢⟧𝑟 and ⟦𝑣⟧𝑟 forms a super tableau, that is,
|𝑢 | ⩾ |𝑣 | and 𝑥𝑖 ⩽ 𝑦𝑖 , for any 𝑖 ⩽ |𝑣 |, with 𝑥𝑖 = 𝑦𝑖 only if | |𝑥𝑖 | | = 0,

ii) we will denote 𝑢 𝑣
× in all the other cases, that is, when |𝑢 | < |𝑣 | or 𝑥𝑖 ⩾ 𝑦𝑖 , for some 𝑖 ⩽ |𝑣 |,

with 𝑥𝑖 = 𝑦𝑖 only if | |𝑥𝑖 | | = 1.

2.6. Lemma. Let 𝑢 and 𝑣 be in col(S) such that 𝑢 𝑣
× . The super tableau ⟦𝑢𝑣⟧𝑟 contains at most two

columns. Moreover, if ⟦𝑢𝑣⟧𝑟 contains exactly two columns, the left column contains more elements than 𝑢.

Proof. Consider 𝑢 = 𝑥1 . . . 𝑥𝑝 and 𝑣 = 𝑦1 . . . 𝑦𝑞 in col(S) such that 𝑢 𝑣
× . If 𝑥𝑝 ⩾ 𝑦1 with 𝑥𝑝 = 𝑦1 only

if | |𝑥𝑝 | | = 1, then the super tableau ⟦𝑢𝑣⟧𝑟 consists of only column whose reading is 𝑢𝑣 . Otherwise,
suppose 𝑥𝑝 ⩽ 𝑦1 with 𝑥𝑝 = 𝑦1 only if | |𝑥𝑝 | | = 0. Since the words 𝑢 and 𝑣 are decreasing with respect
to S1, the longest super row word that is a subsequence of 𝑢𝑣 contains one element from each of 𝑢
and 𝑣 . Then its length is equal to 2, showing by Lemma 2.4 that ⟦𝑢𝑣⟧𝑟 contains two columns. Suppose
now that ⟦𝑢𝑣⟧𝑟 contains exactly two columns. Then its leftmost column is obtained by inserting some
elements of 𝑣 into 𝑢, and by keeping the elements of 𝑢 unchangeable, showing that it contains more
elements than 𝑢. □

When 𝑢 𝑣
× , we will denote 𝑢 𝑣

×1 if the super tableau ⟦𝑢𝑣⟧𝑟 consists of one column and by 𝑢 𝑣
×2 if it

consists of two columns.
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2. Super column presentation of the super plactic monoid

2.7. Super columns as generators. Suppose S = {𝑥1, 𝑥2, . . .}. Let Col1(S) =
{
𝑐𝑢

�� 𝑢 ∈ col(S)} be
the set of super column generators of the super plactic monoid P(S) and

C2(S) =
{
`𝑢 : 𝑐𝑥𝑝 . . . 𝑐𝑥1 ⇒ 𝑐𝑢

�� 𝑢 = 𝑥𝑝 . . . 𝑥1 ∈ col(S) with |𝑢 | ⩾ 2
}

be the set of the defining relations for the super column generators. We will denote by Knuthc2(S) the
2-polygraph whose set of 1-cells is {𝑐𝑥1, 𝑐𝑥2, . . .} and whose 2-cells are

[𝑐𝑥,𝑦,𝑧 : 𝑐𝑧𝑐𝑥𝑐𝑦 ⇒ 𝑐𝑥𝑐𝑧𝑐𝑦, with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1,
Y𝑐𝑥,𝑦,𝑧 : 𝑐𝑦𝑐𝑧𝑐𝑥 ⇒ 𝑐𝑦𝑐𝑥𝑐𝑧, with 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only if | |𝑦 | | = 0,

for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 of elements of S. By definition, this 2-polygraph is Tietze equivalent to Knuth2(S). In
the sequel, if there is no possible confusion, we will identify the 2-polygraphs Knuthc2(S) and Knuth2(S).
Denote by Knuthcc2 (S) the 2-polygraph whose set of 1-cells is {𝑐𝑥1, 𝑐𝑥2, . . .} and whose set of 2-cells
is C2(S) ∪ Knuthc2(S).

2.8. Proposition. The 2-polygraph Knuthcc2 (S) is a presentation of the super plactic monoid P(S).

Proof. By adding to the 2-polygraph Knuthc2(S) all the column generators 𝑐𝑢 , for all 𝑢 = 𝑥𝑝 . . . 𝑥1
in col(S) such that |𝑢 | ⩾ 2, and the corresponding collapsible 2-cell `𝑢 : 𝑐𝑥𝑝 . . . 𝑐𝑥1 ⇒ 𝑐𝑢 , we obtain that
the 2-polygraphs Knuthc2(S) and Knuthcc2 (S) are Tietze-equivalent, showing the claim. □

2.9. Super pre-column presentation. Denote by PC2(S) the set of 2-cells of the following form:

𝛾 ′𝑥,𝑧𝑦 : 𝑐𝑥𝑐𝑧𝑦 ⇒ 𝑐𝑧𝑥𝑐𝑦, with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1,
𝛾 ′𝑦,𝑧𝑥 : 𝑐𝑦𝑐𝑧𝑥 ⇒ 𝑐𝑦𝑥𝑐𝑧, with 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only if | |𝑦 | | = 0,

for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 elements of S. Define the 2-polygraph PreCol2(S) whose set of 1-cells is Col1(S)
and whose set of 2-cells is PC2(S) ∪

{
𝛾 ′𝑥,𝑢 : 𝑐𝑥𝑐𝑢 ⇒ 𝑐𝑥𝑢 | 𝑥𝑢 ∈ col(S) and 𝑥 ∈ S

}
.

2.10. Proposition. The 2-polygraph PreCol2(S) is a presentation of the super plactic monoid P(S).

Proof. We first prove that 2-polygraph CPC2(S) whose set of 1-cells is Col1(S) and set of 2-cells
is C2(S) ∪ PC2(S), is Tietze equivalent to Knuthcc2 (S). We consider the following critical branching

𝑐𝑥𝑐𝑧𝑐𝑦
𝑐𝑥`𝑧𝑦%9 𝑐𝑥𝑐𝑧𝑦

𝑐𝑧𝑐𝑥𝑐𝑦

[𝑐𝑥,𝑦,𝑧 *>

`𝑧𝑥𝑐𝑦
%9 𝑐𝑧𝑥𝑐𝑦

of the 2-polygraph Knuthcc2 (S), for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only
if | |𝑦 | | = 1, and the Tietze transformation ^[𝑐𝑥,𝑦,𝑧←𝛾 ′𝑥,𝑧𝑦 : Knuthcc2 (S)⊤ −→ Knuthcc2 (S)⊤/([𝑐𝑥,𝑦,𝑧 ← 𝛾 ′𝑥,𝑧𝑦),
that substitutes the 2-cell 𝛾 ′𝑥,𝑧𝑦 for the 2-cell [𝑐𝑥,𝑦,𝑧 , and denote by 𝑇[←𝛾 ′ the successive applications
of ^[𝑐𝑥,𝑦,𝑧←𝛾 ′𝑥,𝑧𝑦 , for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1, with respect
to the lexicographic order on the triples (𝑥,𝑦, 𝑧) induced by the total order on S. Similarly, we study
the critical branching (Y𝑐𝑥,𝑦,𝑧, 𝑐𝑦`𝑧𝑥 ) of Knuthcc2 (S), for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 with 𝑥 = 𝑦 only if | |𝑦 | | = 1
and 𝑦 = 𝑧 only if | |𝑦 | | = 0, by introducing the Tietze transformation ^Y𝑐𝑥,𝑦,𝑧←𝛾 ′𝑦,𝑧𝑥 from Knuthcc2 (S)⊤
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to Knuthcc2 (S)⊤/(Y𝑐𝑥,𝑦,𝑧 ← 𝛾 ′𝑦,𝑧𝑥 ). Denote by 𝑇Y←𝛾 ′ the successive applications of this Tietze transforma-
tion with respect to the lexicographic order on the triples (𝑥,𝑦, 𝑧) induced by the total order on S, and
by 𝑇[,Y←𝛾 ′ the Tietze transformation from Knuthcc2 (S)⊤ to CPC2(S)⊤ given by 𝑇[←𝛾 ′ ◦𝑇Y←𝛾 ′ .

Finally, we prove that the 2-polygraphs CPC2(S) and PreCol2(S) are Tietze equivalents. Let 𝑥𝑝 . . . 𝑥1
be in col(S) with |𝑥𝑝 . . . 𝑥1 | > 2 and define 𝛾 ′𝑦,𝑥 := `𝑦𝑥 : 𝑐𝑦𝑐𝑥 ⇒ 𝑐𝑦𝑥 , for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only
if | |𝑥 | | = 1. We consider the following critical branching

𝑐𝑥𝑝𝑐𝑥𝑝−1 ...𝑥1

𝑐𝑥𝑝 . . . 𝑐𝑥1

𝑐𝑥𝑝 `𝑥𝑝−1 ...𝑥1 )=

`𝑥𝑝 ...𝑥1
%9 𝑐𝑥𝑝 ...𝑥1

of the 2-polygraph CPC2(S) and the following Tietze transformation

^
′

`𝑥𝑝 ...𝑥1←𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1
: CPC2(S)⊤ −→ CPC2(S)⊤/(`𝑥𝑝 ...𝑥1 ← 𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1),

that substitutes the 2-cell 𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1 for the 2-cell `𝑥𝑝 ...𝑥1 , for each column 𝑥𝑝 . . . 𝑥1 such that 𝑝 > 2.
Starting from CPC2(S), we apply successively the Tietze transformation ^

′

`𝑥𝑝 ...𝑥1←𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1
, from the

bigger column to the smaller one with respect to ≼deglex. The composite 𝑇`←𝛾 ′ = ^
′

`𝑥3𝑥2𝑥1←𝛾 ′𝑥3,𝑥2𝑥1
◦ . . . ◦

^
′

`𝑥𝑝 ...𝑥1←𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1
, defines a Tietze transformation from CPC2(S)⊤ to PreCol2(S)⊤. □

2.11. Super column presentation. Consider the 2-polygraph Col2(S) whose set of 1-cells is Col1(S)
and whose 2-cells are

𝛾𝑢,𝑣 : 𝑐𝑢𝑐𝑣 ⇒ 𝑐𝑤𝑐𝑤′

for every 𝑢 and 𝑣 in col(S) such that 𝑢 𝑣
× , where𝑤 and𝑤 ′ are respectively the readings of the left and

right columns of the super tableau ⟦𝑢𝑣⟧𝑟 , if 𝑢 𝑣
×2 , and𝑤 = 𝑢𝑣 and 𝑐𝑤′ = 1, if 𝑢 𝑣

×1 .

2.12. Theorem. The 2-polygraph Col2(S) is a convergent presentation of the super plactic monoid P(S).

The rest of this section is devoted to prove this result. We first show in Lemma 2.13 that the 2-
polygraph Col2(S) is terminating and confluent. We then show in Lemma 2.14 that it is a presentation
of the super plactic monoid by showing that it is Tietze equivalent to the 2-polygraph Knuthcc2 (S).

2.13. Lemma. The 2-polygraph Col2(S) is convergent.

Proof. The termination of Col2(S) is proved using the length-lexicographic order≪ on Col1(S)∗ with
respect to ≼rev defined by setting 𝑐𝑢1 . . . 𝑐𝑢𝑘 ≪ 𝑐𝑣1 . . . 𝑐𝑣𝑙 , if 𝑘 < 𝑙 or 𝑘 = 𝑙 and there exists 𝑖 ∈ {1, . . . , 𝑘}
such that 𝑢𝑖 ≼rev 𝑣𝑖 and 𝑐𝑢 𝑗

= 𝑐𝑣𝑗 , for any 𝑗 < 𝑖 . We prove that ≪ is a well-ordering on Col1(S)∗
that is compatible with rules in Col2(S), that is if 𝑈𝑐𝑢𝑐𝑣𝑉 ⇒ 𝑈𝑐𝑤𝑐𝑤′𝑉 then 𝑈𝑐𝑢𝑐𝑣𝑉 ≪ 𝑈𝑐𝑤𝑐𝑤′𝑉 , for
all 𝑈𝑐𝑢𝑐𝑣𝑉 and 𝑈𝑐𝑤𝑐𝑤′𝑉 in Col1(S)∗. If 𝑐𝑤′ = 1, then 𝑈𝑐𝑢𝑐𝑣𝑉 contains more elements than 𝑈𝑐𝑤𝑉 ,
showing that 𝑈𝑐𝑤𝑉 ≪ 𝑈𝑐𝑢𝑐𝑣𝑉 . On the other hand, suppose that the super tableau ⟦𝑢𝑣⟧𝑟 consists of
two columns whose readings of are denoted by 𝑤 and 𝑤 ′ respectively. By Lemma 2.6, the word 𝑤

contains more elements than 𝑢. Then, we obtain𝑤 ≼rev 𝑢, showing that 𝑈𝑐𝑤𝑉 ≪ 𝑈𝑐𝑢𝑐𝑣𝑉 . Since every
application of a rule yield a≪-preceding word, it follows that every sequence of rewriting using the
2-cells of Col2(S) must terminate.
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We show that the 2-polygraph Col2(S) is locally confluent and thus confluent by the termination
hypothesis. Any critical branching of the 2-polygraph Col2(S) has the following form:

𝑐𝑒𝑐𝑒′𝑐𝑡

𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 ';

𝑐𝑢𝛾𝑣,𝑡
'; 𝑐𝑢𝑐𝑤𝑐𝑤′

(3)

for every 𝑢, 𝑣 and 𝑡 in Col(S) such that 𝑢 𝑣 𝑡
× × , where 𝑒 and 𝑒 ′ (resp. 𝑤 and𝑤 ′) are the readings of the

two columns of the super tableau ⟦𝑢𝑣⟧𝑟 (resp. ⟦𝑣𝑡⟧𝑟 ). Following the definition of the right insertion
algorithm, and by applying the leftmost (resp. rightmost) rewriting path with respect to Col2(S)
on 𝑐𝑢𝑐𝑣𝑐𝑡 , we yield to the three super columns generators corresponding to the columns of the super
tableau

(
⟦𝑢⟧𝑟 ★𝑟 ⟦𝑣⟧𝑟

)
★𝑟 ⟦𝑡⟧𝑟 (resp. ⟦𝑢⟧𝑟 ★𝑟

(
⟦𝑣⟧𝑟 ★𝑟 ⟦𝑡⟧𝑟

)
). By the associativity of the product ★𝑟 ,

we have
(
⟦𝑢⟧𝑟 ★𝑟 ⟦𝑣⟧𝑟

)
★𝑟 ⟦𝑡⟧𝑟 = ⟦𝑢⟧𝑟 ★𝑟

(
⟦𝑣⟧𝑟 ★𝑟 ⟦𝑡⟧𝑟

)
, showing that the critical branching (3) is

confluent. □

2.14. Lemma. The 2-polygraph Col2(S) is a presentation of the super plactic monoid P(S).

Proof. Prove that the 2-polygraph Col2(S) is Tietze equivalent to the 2-polygraph Knuthcc2 (S). Any
2-cell in Knuthcc2 (S) can be deduced from a 2-cell in Col2(S) as follows. For any 𝑥 ⩽ 𝑦 ⩽ 𝑧 in S,
with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1 (resp. 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only
if | |𝑦 | | = 0), the 2-cells [𝑐𝑥,𝑦,𝑧 (resp. Y𝑐𝑥,𝑦,𝑧) can be deduced by the following composition

𝑐𝑧𝑐𝑥𝑐𝑦

[𝑐𝑥,𝑦,𝑧 %9

𝛾𝑧,𝑥𝑐𝑦
��

𝑐𝑥𝑐𝑧𝑐𝑦

𝑐𝑥𝛾𝑧,𝑦
��

𝑐𝑧𝑥𝑐𝑦 𝑐𝑥𝑐𝑧𝑦𝛾𝑥,𝑧𝑦
ey

(resp.

𝑐𝑦𝑐𝑧𝑐𝑥

Y𝑐𝑥,𝑦,𝑧 %9

𝑐𝑦𝛾𝑧,𝑥
��

𝑐𝑦𝑐𝑥𝑐𝑧

𝛾𝑦,𝑥𝑐𝑧
��

𝑐𝑦𝑐𝑧𝑥 𝛾𝑦,𝑧𝑥
%9 𝑐𝑦𝑥𝑐𝑧

).

Moreover, for any super column 𝑥𝑝 . . . 𝑥1, the 2-cell `𝑥𝑝 ...𝑥1 can be deduced by the following composition

𝑐𝑥𝑝 . . . 𝑐𝑥1

`𝑥𝑝 ...𝑥1 %9

𝛾𝑥𝑝 ,𝑥𝑝−1𝑐𝑥𝑝−2 . . . 𝑐𝑥1
��

𝑐𝑥𝑝 ...𝑥1

𝑐𝑥𝑝𝑥𝑝−1𝑐𝑥𝑝−2 . . . 𝑐𝑥1
%9 (. . . ) %9 𝑐𝑥𝑝 ...𝑥2𝑐𝑥1

𝛾𝑥𝑝 ...𝑥2,𝑥1

EY

As a consequence, if the words𝑤 and𝑤 ′ inCol1(S)∗ are equal modulo relations inKnuthcc2 (S), then they
are equal modulo relations in Col2(S). Conversely, following Subsection 2.3, the following equivalence

𝑢𝑣 ∼P(S) 𝑅𝑟𝑜𝑤 (⟦𝑢𝑣⟧𝑟 ) ∼P(S) 𝑅𝑐𝑜𝑙 (⟦𝑢𝑣⟧𝑟 )

holds, for all 𝑢, 𝑣 in Col(S) such that 𝑢 𝑣
× . In this way, if two words in Col1(S)∗ are equal modulo

relations in Col2(S), they are super plactic congruent and hence they are equal modulo Knuthcc2 (S),
showing the claim. □

10



3. Coherent presentations of the super plactic monoid

3. Coherent presentations of the super plactic monoid

In this section, we begin by recalling the notion of coherent presentations of monoids from [12] and we
extend the super column presentation into a coherent presentation of the super plactic monoid. In a
second part, we recall the homotopical reduction procedure from [12] and we reduce the super coherent
column presentation into a smaller one over the initial signed alphabet. We follow for this aim the
approach developed in [19] for the non-signed case.

3.1. Coherent presentations of monoids. A (3, 1)-polygraph is a pair (Σ2, Σ3) made of a 2-polygraph
Σ2 and a globular extension Σ3 of the (2, 1)-category Σ⊤2 , that is a set of 3-cells 𝐴 : 𝑓 ⇛ 𝑔 relating
2-cells 𝑓 and 𝑔 in Σ⊤2 , respectively denoted by 𝑠2(𝐴) and 𝑡2(𝐴) and satisfying the globular relations
𝑠1𝑠2(𝐴) = 𝑠1𝑡2(𝐴) and 𝑡1𝑠2(𝐴) = 𝑡1𝑡2(𝐴). Such a 3-cell can be represented with the following globular
shape:

•

𝑢

""

𝑣

<<𝑓
��

𝑔
��

𝐴 %9 • or 𝑢

𝑓

�)

𝑔

4H 𝑣𝐴��

We will denote by Σ⊤3 the free (3, 1)-category generated by the (3, 1)-polygraph (Σ2, Σ3). A pair (𝑓 , 𝑔) of
2-cells of Σ⊤2 such that 𝑠1(𝑓 ) = 𝑠1(𝑔) and 𝑡1(𝑓 ) = 𝑡1(𝑔) is called a 2-sphere of Σ⊤2 . An extended presentation
of a monoid M is a (3, 1)-polygraph whose underlying 2-polygraph is a presentation of the monoid M.
A coherent presentation of M is an extended presentation Σ of M such that the cellular extension Σ3 is a
homotopy basis of the (2, 1)-category Σ⊤2 , that is, for every 2-sphere ` of Σ⊤2 , there exists a 3-cell in Σ⊤3
with boundary `. The elements in Σ⊤3 are called syzygies of the presentation Σ.

Let Σ be a (3, 1)-polygraph. A 3-cell 𝐴 of Σ is called collapsible if 𝑡2(𝐴) is in Σ2 and 𝑠2(𝐴) is a 2-cell
of the free (2, 1)-category over (Σ2 \ {𝑡2(𝐴)})⊤, then 𝑡2(𝐴) is called redundant. An elementary Tietze
transformation of a (3, 1)-polygraph Σ is a 3-functor with domain Σ⊤3 that belongs to one of the following
operations, [12]:

i) adjunction ]1𝛼 and elimination 𝜋𝛼 of a 2-cell 𝛼 as described in Subsection 2.1,

ii) coherent adjunction ]2
𝐴
: Σ⊤3 → Σ⊤3 (𝛼) (𝐴) (resp. ]𝐴 : Σ⊤3 → Σ⊤3 (𝐴)) of a redundant 2-cell 𝛼 with its

collapsible 3-cell 𝐴 (resp. of a redundant 3-cell 𝐴),

iii) coherent elimination 𝜋𝐴 : Σ⊤3 → Σ⊤3 /𝐴 (resp. 𝜋 (𝐵,𝐴) : Σ⊤3 → Σ⊤3 /(𝐵,𝐴)) of a redundant 2-cell 𝛼 with
its collapsible 3-cell 𝐴 (resp. of a redundant 3-cell 𝐴, that maps 𝐴 to 𝐵).

For (3, 1)-polygraphs Σ and Υ, a Tietze transformation from Σ to Υ is a 3-functor 𝐹 : Σ⊤3 → Υ⊤3 that
decomposes into a sequence of elementary Tietze transformations. Two (3, 1)-polygraphs Σ and Υ are
Tietze-equivalent if there exists an equivalence of 2-categories 𝐹 : Σ⊤2 /Σ3 → Υ⊤2 /Υ3 and the presented
monoids Σ2 and Υ2 are isomorphic. Two (3, 1)-polygraphs are Tietze equivalent if, and only if, there
exists a Tietze transformation between them, [12].

Recall that Squier’s coherence theorem, [33], states that, any convergent 2-polygraph Σ presenting a

11



3. Coherent presentations of the super plactic monoid

monoid M can be extended into a coherent presentation ofM having a generating syzygy

𝑣
𝑓 ′

�+
𝐴��𝑢

𝑓 $8

𝑔 %9

𝑤

𝑣 ′
𝑔′

3G

for every critical branching (𝑓 , 𝑔) of Σ, where 𝑓 ′ and 𝑔′ are chosen confluent rewriting paths.

3.2. Super column coherent presentation. Denote by Col3(S) the extended presentation of the
monoid P(S) obtained from Col2(S) by adjunction of one family of syzygiesX𝑢,𝑣,𝑡 of the following form

𝑐𝑒𝑐𝑒′𝑐𝑡
𝑐𝑒𝛾𝑒′,𝑡 %9

X𝑢,𝑣,𝑡
��

𝑐𝑒𝑐𝑏𝑐𝑏′
𝛾𝑒,𝑏𝑐𝑏′

�/
𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 ';

𝑐𝑢𝛾𝑣,𝑡
#7

𝑐𝑎𝑐𝑑𝑐𝑏′

𝑐𝑢𝑐𝑤𝑐𝑤′𝛾𝑢,𝑤𝑐𝑤′
%9 𝑐𝑎𝑐𝑎′𝑐𝑤′ 𝑐𝑎𝛾𝑎′,𝑤′

.B

(4)

for every 𝑢, 𝑣 and 𝑡 in Col(S) such that 𝑢 𝑣 𝑡
× × , where 𝑒 and 𝑒 ′ (resp. 𝑤 and𝑤 ′) are the readings of the

two columns of the super tableau ⟦𝑢𝑣⟧𝑟 (resp. ⟦𝑣𝑡⟧𝑟 ), and where 𝑎 and 𝑎′ (resp. 𝑏 and 𝑏 ′) denote the
readings of the two columns of the super tableau ⟦𝑢𝑤⟧𝑟 (resp. ⟦𝑒 ′𝑡⟧𝑟 ) and 𝑎, 𝑑 , 𝑏 ′ are the readings of
the three columns of the super tableau ⟦𝑢𝑣𝑡⟧𝑟 . Note that one or further columns 𝑒 ′,𝑤 ′, 𝑎′ and 𝑏 ′ can
be empty as illustrated in Figure 1. In those cases some indicated 2-cells 𝛾 in the confluence diagram
correspond to identities.

3.3. Theorem. The (3, 1)-polygraph Col3(S) is a coherent presentation of the monoid P(S).

Proof. Consider the 2-polygraph whose set of 1-cells is Col1(S) and whose 2-cells are

𝑐𝑢𝑐𝑣 ⇒ 𝑐𝑤𝑐𝑤′

for all 𝑐𝑢, 𝑐𝑣 in Col1(S) such that 𝑢 𝑣
× and where𝑤 and𝑤 ′ denote respectively the readings of the left

and right column of the super tableau (𝑢𝑣 ⇝ ∅) obtained by applying the left insertion. Following
Subsection 2.3, by the associativity of the product ★𝑟 , the super tableaux (𝑢𝑣 ⇝ ∅) and ⟦𝑢𝑣⟧𝑟 are
equal, thus this 2-polygraph coincides with Col2(S). Hence, the generating syzygy of the extended
presentation of the 2-polygraph Col2(S) has the following form

𝑐𝑢𝑐𝑣𝑐𝑡

∅ ⇝

𝑢𝑣𝑡

�+

𝑢𝑣𝑡 ⇝ ∅

2F𝑐𝑎𝑐𝑑𝑐𝑏′��

for all 𝑐𝑢, 𝑐𝑣, 𝑐𝑡 in Col1(S) such that 𝑢 𝑣 𝑡
× × , where 𝑎, 𝑑 , 𝑏 ′ are the readings of the three columns of the

super tableau ⟦𝑢𝑣𝑡⟧𝑟 , and where the 2-source (resp. 2-target) of the syzygy corresponds to the application
of the right (resp. left) insertion

(
∅ ⇝

𝑢𝑣𝑡
)
(resp. (𝑢𝑣𝑡 ⇝ ∅)) on the word 𝑐𝑢𝑐𝑣𝑐𝑡 . Finally, by definition

of the right (resp. left) insertion algorithm ⇝(resp.⇝), we can lead to the normal form 𝑐𝑎𝑐𝑑𝑐𝑏′ by
applying at most three steps of reduction on the initial word 𝑐𝑢𝑐𝑣𝑐𝑡 , showing the claim. □
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3.4. Homotopical reduction procedure

3.3.1. Remark. It is worth noting that there are fives forms for the generating syzygy (4) depending
on the following four cases: 𝑢 𝑣 𝑡

×1 ×1 , 𝑢 𝑣 𝑡
×2 ×1 , 𝑢 𝑣 𝑡

×1 ×2 and 𝑢 𝑣 𝑡
×2 ×2 , as shown in Figure 1. These forms

are obtained by a case-by-case analysis and they will be used in the sequel in order to reduce the super
column coherent presentation Col3(S) into a smaller one over the initial signed alphabet.

Confluence diagrams

𝑢 𝑣 𝑡
×1 ×1 𝑐𝑢𝑣𝑐𝑡

𝛾𝑢𝑣,𝑡

�.A𝑢,𝑣,𝑡��
𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 ';

𝑐𝑢𝛾𝑣,𝑡
#7

𝑐𝑢𝑣𝑡

𝑐𝑢𝑐𝑣𝑡 𝛾𝑢,𝑣𝑡

/C

𝑢 𝑣 𝑡
×2 ×1 𝑐𝑒𝑐𝑒′𝑐𝑡

𝑐𝑒𝛾𝑒′,𝑡 %9

B𝑢,𝑣,𝑡��

𝑐𝑒𝑐𝑒′𝑡 𝛾𝑒,𝑒′𝑡

�'
𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 *>

𝑐𝑢𝛾𝑣,𝑡
$8

𝑐𝑠𝑐𝑠′

𝑐𝑢𝑐𝑣𝑡 𝛾𝑢,𝑣𝑡

,@

𝑢 𝑣 𝑡
×1 ×2 with 𝑢𝑣 𝑡

× 𝑐𝑢𝑣𝑐𝑡
𝛾𝑢𝑣,𝑡

�1C𝑢,𝑣,𝑡��𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 %9

𝑐𝑢𝛾𝑣,𝑡
$8

𝑐𝑢𝑤𝑐𝑤′

𝑐𝑢𝑐𝑤𝑐𝑤′ 𝛾𝑢,𝑤𝑐𝑤′

,@

𝑢 𝑣 𝑡
×1 ×2 with 𝑢𝑣 𝑡 𝑐𝑢𝑣𝑐𝑡

C′𝑢,𝑣,𝑡��𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 %9

𝑐𝑢𝛾𝑣,𝑡
$8 𝑐𝑢𝑐𝑤𝑐𝑤′𝛾𝑢,𝑤𝑐𝑤′

%9 𝑐𝑢𝑣𝑐𝑎′𝑐𝑤′

𝑐𝑢𝑣𝛾𝑎′,𝑤′
au

𝑢 𝑣 𝑡
×2 ×2 𝑐𝑒𝑐𝑒′𝑐𝑡

𝑐𝑒𝛾𝑒′,𝑡 %9

D𝑢,𝑣,𝑡��

𝑐𝑒𝑐𝑏𝑐𝑏′
𝛾𝑒,𝑏𝑐𝑏′

�0
𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣𝑐𝑡 &:

𝑐𝑢𝛾𝑣,𝑡
#7

𝑐𝑎𝑐𝑑𝑐𝑏′

𝑐𝑢𝑐𝑤𝑐𝑤′𝛾𝑢,𝑤𝑐𝑤′
%9 𝑐𝑎𝑐𝑎′𝑐𝑤′ 𝑐𝑎𝛾𝑎′,𝑤′

-A

Figure 1: confluence diagrams

3.4. Homotopical reduction procedure. Let Σ be a (3, 1)-polygraph. A 3-sphere of the (3, 1)-category
Σ⊤3 is a pair (𝑓 , 𝑔) of 3-cells of Σ⊤3 such that 𝑠2(𝑓 ) = 𝑠2(𝑔) and 𝑡2(𝑓 ) = 𝑡2(𝑔). A collapsible part of Σ is a
triple (Γ2, Γ3, Γ4) made of a family Γ2 of 2-cells of Σ, a family Γ3 of 3-cells of Σ and a family Γ4 of 3-spheres
of Σ⊤3 , such that the following conditions are satisfied, [12]:

i) every ` of every Γ𝑘 is collapsible, that is, 𝑡𝑘−1(`) is in Σ𝑘−1 and 𝑠𝑘−1(`) does not contain 𝑡𝑘−1(`),

ii) no cell of Γ2 (resp. Γ3) is the target of a collapsible 3-cell of Γ3 (resp. 3-sphere of Γ4),

iii) there exists a well-founded order on the cells of Σ such that, for every ` in every Γ𝑘 , 𝑡𝑘−1(`) is
strictly greater than every generating (𝑘 − 1)-cell that occurs in the source of `.

The homotopical reduction of the (3, 1)-polygraph Σ with respect to a collapsible part Γ is the Tietze
transformation, denoted by 𝑅Γ , from the (3, 1)-category Σ⊤3 to the (3, 1)-category freely generated by
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3. Coherent presentations of the super plactic monoid

the (3, 1)-polygraph obtained from Σ by removing the cells of Γ and all the corresponding redundant
cells. For any ` in Γ, we have 𝑅Γ (𝑡 (`)) = 𝑅Γ (𝑠 (`)) and 𝑅Γ (`) = 1𝑅Γ (𝑠 (`)) . In any other cases, the
transformation 𝑅Γ acts as an identity, see [12] for more details.

A local triple branching of a 2-polygraph Σ is a triple (𝑓 , 𝑔, ℎ) of rewriting steps of Σ with a common
source. An aspherical triple branchings have two of their 2-cells equal. A Peiffer triple branchings
have at least one of their 2-cells that form a Peiffer branching with the other two. The overlap triple
branchings are the remaining local triple branchings. Local triple branchings are ordered by inclusion of
their sources and a minimal overlap triple branching is called critical. If Σ is a coherent and convergent
(3, 1)-polygraph, a triple generating confluence of Σ is a 3-sphere

𝑣

𝑓 ′1
 4

�3
𝑠 ′ ℎ′′

�%
��

𝑣

𝑓 ′1
 4

𝑓 ′2 �.
��

𝑠 ′ ℎ′′

�%l�
𝑢

𝑓 (<

𝑔 %9

ℎ
"6

𝑤

𝑔′1
0D

𝑔′2 �.l�
𝑢

Ω𝑓 ,𝑔,ℎ
�? 𝑢

𝑓 (<

ℎ
"6

𝑤 ′ 𝑔′′ %9
�3

𝑢

𝑠

ℎ′2

)= 𝑣 ′ 𝑓 ′′

:N

𝑠
ℎ′1
0D

ℎ′2

)= 𝑣 ′ 𝑓 ′′

:N

where (𝑓 , 𝑔, ℎ) is a triple critical branching of the 2-polygraph Σ2 and the other cells are obtained by
confluence, [12].

3.5. Reduced super coherent column presentation. We apply the homotopical reduction proce-
dure on the (3, 1)-polygraph Col3(S) using the collapsible part made of generating triple confluences.
Following Theorem 3.3, the family of syzygies X𝑢,𝑣,𝑡 given in (4) and indexed by columns 𝑢, 𝑣 and 𝑡

in col(S) such that 𝑢 𝑣 𝑡
× × forms a homotopy basis of the (2, 1)-category Col2(S)⊤. Consider such a

triple (𝑢, 𝑣, 𝑡) with |𝑢 | ⩾ 2, and let 𝑥𝑝 be in S and 𝑢1 be in col(S) such that 𝑥𝑝 = ℓ (𝑢) and 𝑢1 = Rem(𝑢).
We will show that the confluence diagram induced by the critical triple branching with source 𝑐𝑥𝑝𝑐𝑢1𝑐𝑣𝑐𝑡
is represented by the 3-sphere Ω𝑥𝑝 ,𝑢1,𝑣,𝑡 whose source is the following 3-cell

𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣
#7

X𝑥𝑝 ,𝑢1,𝑣𝑐𝑡��

𝑐𝑒𝑐𝑒′𝑐𝑡
𝛾𝑒′,𝑡

�3𝑐𝑒X𝑦,𝑠′,𝑡��𝑐𝑒𝑐𝑦𝑐𝑠′𝑐𝑡

𝛾𝑦,𝑠′ +?

𝛾𝑠′,𝑡
�2

𝑐𝑒𝑐𝑏𝑐𝑏′ 𝛾𝑒,𝑏

�(
𝑐𝑥𝑝𝑐𝑢1𝑐𝑣𝑐𝑡

𝛾𝑢1,𝑣 %9

𝛾𝑥𝑝 ,𝑢1

)=

𝛾𝑣,𝑡
�3

𝑐𝑥𝑝𝑐𝑠𝑐𝑠′𝑐𝑡
𝛾𝑥𝑝 ,𝑠

+?

𝛾𝑠′,𝑡 �2𝑐𝑥𝑝X𝑢1,𝑣,𝑡
��

≡ 𝑐𝑒𝑐𝑦𝑐𝑑1𝑐𝑑′1

𝛾𝑦,𝑑1 %9

X𝑥𝑝 ,𝑠,𝑑1𝑐𝑑′1��

𝑐𝑒𝑐𝑏𝑐𝑠2𝑐𝑑′1

𝛾𝑠2,𝑑′1 ,@

𝛾𝑒,𝑏
�2

≡ 𝑐𝑎𝑐𝑑𝑐𝑏′

𝑐𝑥𝑝𝑐𝑢1𝑐𝑤𝑐𝑤′

𝛾𝑢1,𝑤
 4

𝑐𝑥𝑝𝑐𝑠𝑐𝑑1𝑐𝑑′1 𝛾𝑠,𝑑1
�2

𝛾𝑥𝑝 ,𝑠 ,@

𝑐𝑎𝑐𝑑𝑐𝑠2𝑐𝑑′1
𝛾𝛾𝑠2,𝑑′1

5I

𝑐𝑥𝑝𝑐𝑎1𝑐𝑎′1𝑐𝑤
′

𝛾𝑎′1,𝑤
′

%9

𝛾𝑥𝑝 ,𝑎1 !5

𝑐𝑥𝑝𝑐𝑎1𝑐𝑠3𝑐𝑑′1 𝛾𝑥𝑝 ,𝑎1
%9 𝑐𝑎𝑐𝑧𝑐𝑠3𝑐𝑑′1

𝛾𝑧,𝑠3

1E

≡

𝑐𝑎𝑐𝑧𝑐𝑎′1𝑐𝑤
′

𝛾𝑎′1,𝑤
′

5I
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3.7. Super pre-column coherent presentation

and whose target is the following 3-cell

𝑐𝑒𝑐𝑒′𝑐𝑡

𝛾𝑒′,𝑡
"6

X𝑢,𝑣,𝑡��

𝑐𝑒𝑐𝑏𝑐𝑏′ 𝛾𝑒,𝑏

�+
𝑐𝑢𝑐𝑣𝑐𝑡

𝛾𝑢,𝑣 ';

𝛾𝑣,𝑡
�3

𝑐𝑎𝑐𝑑𝑐𝑏′

𝑐𝑥𝑝𝑐𝑢1𝑐𝑣𝑐𝑡

𝛾𝑥𝑝 ,𝑢1 (<

𝛾𝑣,𝑡
�3

≡ 𝑐𝑢𝑐𝑤𝑐𝑤′
𝛾𝑢,𝑤 %9

X𝑥𝑝 ,𝑢1,𝑤𝑐𝑤′��

𝑐𝑎𝑐𝑎′𝑐𝑤′

𝛾𝑎′,𝑤′ ,@

𝑐𝑎X𝑧,𝑎′1,𝑤′';
𝑐𝑎𝑐𝑑𝑐𝑠2𝑐𝑑′1

𝛾𝑠2,𝑑′1au

𝑐𝑥𝑝𝑐𝑢1𝑐𝑤𝑐𝑤′

𝛾𝑥𝑝 ,𝑢1 +?

𝛾𝑢1,𝑤
 4

𝑐𝑎𝑐𝑧𝑐𝑠3𝑐𝑑′1
𝛾𝑧,𝑠3

1E

𝑐𝑥𝑝𝑐𝑎1𝑐𝑎′1𝑐𝑤
′

𝛾𝑥𝑝 ,𝑎1
'; 𝑐𝑎𝑐𝑧𝑐𝑎′1𝑐𝑤′

𝛾𝑎′1,𝑤
′

0D
𝛾𝑧,𝑎′1

EY

In order to facilitate the reading of the generating triple confluence, we have omitted the context of
the 2-cells 𝛾 . Note also that some super columns may be empty and thus the indicated 2-cells 𝛾 may be
identities.

The 3-sphere Ω𝑥𝑝 ,𝑢1,𝑣,𝑡 is constructed as follows. Since 𝑥𝑝 𝑢1
×1

and 𝑢1 𝑤
× , then X𝑥𝑝 ,𝑢1,𝑤 is either of

the form A𝑥𝑝 ,𝑢1,𝑤 , C𝑥𝑝 ,𝑢1,𝑤 or C′𝑥𝑝 ,𝑢1,𝑤 . Denote 𝑎1 and 𝑎′1 the readings of the two columns of ⟦𝑢1𝑤⟧𝑟 .
The 3-cell X𝑥𝑝 ,𝑢1,𝑤 being confluent, we have 𝑅𝑐𝑜𝑙 (⟦𝑥𝑝𝑎1⟧𝑟 ) = 𝑎𝑧 with 𝑧 in S and 𝑅𝑐𝑜𝑙 (⟦𝑧𝑎′1⟧𝑟 ) = 𝑎′.

Since 𝑧 𝑎′1
×1 and 𝑎′1 𝑤

′×
(resp. 𝑥𝑝 𝑢1

×1
and 𝑢1 𝑣

× ), we deduce that X𝑧,𝑎′1,𝑤′ (resp. X𝑥𝑝 ,𝑢1,𝑣) is either of the
formA𝑧,𝑎′1,𝑤

′ , C𝑧,𝑎′1,𝑤′ or C
′

𝑧,𝑎′1,𝑤
′ (resp.A𝑥𝑝 ,𝑢1,𝑣 , C𝑥𝑝 ,𝑢1,𝑣 or C

′
𝑥𝑝 ,𝑢1,𝑣). Denote by 𝑠 and 𝑠

′ the readings of the
two columns of ⟦𝑢1𝑣⟧𝑟 . The 3-cell X𝑥𝑝 ,𝑢1,𝑣 being confluent, we obtain that 𝑅𝑐𝑜𝑙 (⟦𝑥𝑝𝑠⟧𝑟 ) = 𝑒𝑦 with 𝑦 in S
and 𝑅𝑐𝑜𝑙 (⟦𝑦𝑠 ′⟧𝑟 ) = 𝑒 ′. Since 𝑦 𝑠 ′

×1
and 𝑠 ′ 𝑡

× , we deduce that X𝑦,𝑠′,𝑡 is either of the form A𝑦,𝑠′,𝑡 , C𝑦,𝑠′,𝑡
or C′

𝑦,𝑠′,𝑡 . Denote by 𝑑1 and 𝑑 ′1 the readings of the two columns of ⟦𝑠 ′𝑡⟧𝑟 . The 3-cell X𝑦,𝑠′,𝑡 being
confluent and 𝑅𝑐𝑜𝑙 (⟦𝑒 ′𝑡⟧𝑟 ) = 𝑏𝑏 ′, we have 𝑅𝑐𝑜𝑙 (⟦𝑦𝑑1⟧𝑟 ) = 𝑏𝑠2 and 𝑅𝑐𝑜𝑙 (⟦𝑠2𝑑 ′1⟧𝑟 ) = 𝑏 ′. On the other
hand, the 3-cell X𝑢1,𝑣,𝑡 being confluent, we have 𝑅𝑐𝑜𝑙 (⟦𝑠𝑑1⟧𝑟 ) = 𝑎1𝑠3 and 𝑅𝑐𝑜𝑙 (⟦𝑎′1𝑤 ′⟧𝑟 ) = 𝑠3𝑑

′
1. Finally,

since X𝑥𝑝 ,𝑠,𝑑1 is confluent, we deduce that 𝑅𝑐𝑜𝑙 (⟦𝑧𝑠3⟧𝑟 ) = 𝑑𝑠2.
Denote by Col3(S) the extended presentation of the monoid P(S) obtained from Col2(S) by ad-

junction of one family of 3-cells X𝑥,𝑣,𝑡 of the form (4), for all 𝑥 in S and 𝑣, 𝑡 in col(S) such that 𝑥 𝑣 𝑡
× × .

Let Γ4 be the collapsible part made of the family of 3-sphere Ω𝑥𝑝 ,𝑢1,𝑣,𝑡 , indexed by 𝑥𝑝 in S and 𝑢1, 𝑣, 𝑡
in col(S) such that 𝑢 𝑣 𝑡

× × and 𝑢 = 𝑥𝑝𝑢1. We consider the order ◁ on the 3-cells of Col3(S) de-
fined by A𝑢,𝑣,𝑡 ◁ C

′
𝑢,𝑣,𝑡 ◁ C𝑢,𝑣,𝑡 ◁ B𝑢,𝑣,𝑡 ◁ D𝑢,𝑣,𝑡 , and if X𝑢,𝑣,𝑡 ∈ {A𝑢,𝑣,𝑡 ,B𝑢,𝑣,𝑡 , C𝑢,𝑣,𝑡 , C

′
𝑢,𝑣,𝑡 ,D𝑢,𝑣,𝑡 }

with𝑢 ′ ≼deglex 𝑢, thenX𝑢′,𝑣′,𝑡 ′ ◁ X𝑢,𝑣,𝑡 , for all𝑢, 𝑣, 𝑡 in col(S) such that 𝑢 𝑣 𝑡
× × . By construction of the 3-

sphere Ω𝑥𝑝 ,𝑢1,𝑣,𝑡 , its source contains the 3-cellX𝑢1,𝑣,𝑡 and its target contains the 3-cellX𝑢,𝑣,𝑡 with |𝑢1 | < |𝑢 |.
Up to a Nielsen transformation, by applying the reduction 𝑅Γ4 on the (3, 1)-polygraph Col3(S) with
respect to Γ4 and the order ◁, we obtain the (3, 1)-polygraph Col3(S). Hence, we deduce the following
result.

3.6. Proposition. The (3, 1)-polygraph Col3(S) is a coherent presentation of the monoid P(S).

3.7. Super pre-column coherent presentation. We reduce the coherent presentation Col3(S) into
a coherent presentation whose underlying 2-polygraph is PreCol2(S). This reduction is obtained using
the homotopical reduction 𝑅Γ3 on the (3, 1)-polygraph Col3(S) whose collapsible part Γ3 is the set
of 3-cellsA𝑥,𝑣,𝑡 , B𝑥,𝑣,𝑡 and C𝑥,𝑣,𝑡 with 𝑥 ∈ S and 𝑣, 𝑡 ∈ col(S) such that 𝑥 𝑣 𝑡

×1 ×1 , 𝑥 𝑣 𝑡
×2 ×1 and 𝑥 𝑣 𝑡

×1 ×2

15



3. Coherent presentations of the super plactic monoid

with 𝑥𝑣 𝑡
× respectively, and the order ⊳ on the 2-cells of Col2(S) defined by 𝛾𝑢′,𝑣′ ⊳ 𝛾𝑢,𝑣 if |𝑢𝑣 | > |𝑢 ′𝑣 ′ |,

or |𝑢𝑣 | = |𝑢 ′𝑣 ′ | and |𝑢 | > |𝑅𝑐𝑜𝑙 (⟦𝑢 ′𝑣 ′⟧𝑟 ) | or |𝑢 | ⩽ |𝑅𝑐𝑜𝑙 (⟦𝑢 ′𝑣 ′⟧𝑟 ) | and𝑢 ′ ≼rev 𝑢, for all𝑢, 𝑣,𝑢 ′, 𝑣 ′ ∈ col(S)
such that 𝑢 𝑣

× and 𝑢 ′ 𝑣 ′× .
The reduction 𝑅Γ3 induced by the order ⊳ on the 2-cells of Col2(S) and the order ◁ on 3-cells can be

decomposed as follows. For all 𝑥 in S and 𝑣 , 𝑡 in col(S) such that 𝑥 𝑣 𝑡
×1 ×1 , the 2-cells 𝛾𝑥,𝑣 , 𝛾𝑣,𝑡 and 𝛾𝑥,𝑣𝑡

are smaller then 𝛾𝑥𝑣,𝑡 for the order ⊳. Then the reduction 𝑅Γ3 removes the 2-cell 𝛾𝑥𝑣,𝑡 together with the
3-cell A𝑥,𝑣,𝑡 . By iterating this reduction on the length of 𝑣 , we reduce all the 2-cells of Col2(S) to the
following set of 2-cells

{ 𝛾𝑢,𝑣 | |𝑢 | ⩾ 1, |𝑣 | ⩾ 2 and 𝑢 𝑣
×2 } ∪ { 𝛾𝑢,𝑣 | |𝑢 | = 1, |𝑣 | ⩾ 1 and 𝑢 𝑣

×1 }. (5)

For all 𝑥 in S and 𝑣 , 𝑡 in col(S) such that 𝑥 𝑣 𝑡
×1 ×2 with 𝑥𝑣 𝑡

× , the 2-cells 𝛾𝑥,𝑣 , 𝛾𝑣,𝑡 , 𝛾𝑥,𝑤 and 𝛾𝑎′,𝑤′ are
smaller than 𝛾𝑥𝑣,𝑡 for the order ⊳. Then, the reduction 𝑅Γ3 removes the 2-cell 𝛾𝑥𝑣,𝑡 together with the
3-cell C𝑥,𝑣,𝑡 . By iterating this reduction on the length of 𝑣 , we reduce the set (5) to the following one:

{ 𝛾𝑢,𝑣 | |𝑢 | = 1, |𝑣 | ⩾ 2 and 𝑢 𝑣
×2 } ∪ { 𝛾𝑢,𝑣 | |𝑢 | = 1, |𝑣 | ⩾ 1 and 𝑢 𝑣

×1 }. (6)

For all 𝑥 in S and 𝑣 , 𝑡 in col(S) such that 𝑥 𝑣 𝑡
×2 ×1 , consider the following 3-cell:

𝑐𝑒𝑐𝑒′𝑐𝑡
𝑐𝑒𝛾𝑒′,𝑡 %9

B𝑥,𝑣,𝑡��

𝑐𝑒𝑐𝑒′𝑡
𝛾𝑒,𝑒′𝑡

�,
𝑐𝑥𝑐𝑣𝑐𝑡

𝛾𝑥,𝑣𝑐𝑡 (<

𝑐𝑥𝛾𝑣,𝑡
%9

𝑐𝑠𝑐𝑠′

𝑐𝑥𝑐𝑣𝑡 𝛾𝑥,𝑣𝑡

+?

where 𝛾𝑒,𝑒′𝑡 is the 2-cell in (6) obtained from the 2-cell 𝛾𝑒,𝑒′𝑡 by the previous step of the homotopical
reduction by the 3-cell C𝑥,𝑣,𝑡 . Since 𝑥 is inS, we have also that 𝑒 ′ is inS by definition of𝛾 . The 2-cells𝛾𝑥,𝑣 ,
𝛾𝑒′,𝑡 , 𝛾𝑣,𝑡 and 𝛾𝑒,𝑒′𝑡 being smaller than 𝛾𝑥,𝑣𝑡 for the order ⊳, we can remove the 2-cells 𝛾𝑥,𝑣𝑡 together with
the 3-cell B𝑥,𝑣,𝑡 . By iterating this reduction on the length of 𝑡 , we reduce the set (6) to the following set:

{ 𝛾𝑢,𝑣 | |𝑢 | = 1, |𝑣 | = 2 and 𝑢 𝑣
×2 } ∪ { 𝛾𝑢,𝑣 | |𝑢 | = 1, |𝑣 | ⩾ 1 and 𝑢 𝑣

×1 }. (7)

Let us show that the set (7) is equal to the set of 2-cells PreCol2(S) defined in Subsection 2.9. It is
sufficient to prove that PC2(S) is equal to the set of 2-cells 𝛾𝑢,𝑣 in Col2(S) such that |𝑢 | = 1, |𝑣 | = 2
and 𝑢 𝑣

×2 . Suppose that 𝑣 = 𝑥𝑥 ′ with 𝑥 ⩾ 𝑥 ′ in S with 𝑥 = 𝑥 ′ only if | |𝑥 | | = 1. Since 𝑢 𝑣
×2 , we obtain

that 𝑢 ⩽ 𝑥 with 𝑢 = 𝑥 only if | |𝑢 | | = 0. If 𝑢 ⩽ 𝑥 ′ with 𝑢 = 𝑥 ′ only if | |𝑢 | | = 0, then 𝑅𝑐𝑜𝑙 (⟦𝑢𝑣⟧𝑟 ) = (𝑥𝑢)𝑥 ′
and the 2-cell 𝛾𝑢,𝑣 is equal to the 2-cell 𝛾 ′

𝑢,𝑥𝑥′ : 𝑐𝑢𝑐𝑥𝑥 ′ ⇒ 𝑐𝑥𝑢𝑐𝑥′ . If 𝑥 ′ ⩽ 𝑢 with 𝑢 = 𝑥 ′ only if | |𝑢 | | = 1,
then 𝑅𝑐𝑜𝑙 (⟦𝑢𝑣⟧𝑟 ) = (𝑢𝑥 ′)𝑥 , and the 2-cell 𝛾𝑢,𝑣 is equal to 𝛾 ′𝑢,𝑥𝑥 ′ : 𝑐𝑢𝑐𝑥𝑥′ ⇒ 𝑐𝑢𝑥′𝑐𝑥 , showing the claim.

Hence, the homotopical reduction 𝑅Γ3 reduces Col3(S) into a coherent presentation of the monoid
P(S) whose set of 2-cells is PreCol2(S). Denote by PreCol3(S) the extended presentation of the
monoid P(S) obtained from PreCol2(S) by adjunction of the 3-cells 𝑅Γ3 (C

′
𝑥,𝑣,𝑡 ) for 𝑥 𝑣 𝑡

×1 ×2 with 𝑥𝑣 𝑡 ,
and 𝑅Γ3 (D𝑥,𝑣,𝑡 ) for 𝑥 𝑣 𝑡

×2 ×2 . Since the homotopical reduction 𝑅Γ3 eliminates the 3-cells of Col3(S) of
the form A𝑥,𝑣,𝑡 , B𝑥,𝑣,𝑡 and C𝑥,𝑣,𝑡 , we obtain the following result.

3.8. Proposition. The (3, 1)-polygraph PreCol3(S) is a coherent presentation of the monoid P(S).
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3.9. Super Knuth’s coherent presentation

3.9. Super Knuth’s coherent presentation. We reduce the coherent presentation PreCol3(S) into a
coherent presentation of the super plactic monoid P(S) whose underlying 2-polygraph is Knuth2(S).
The Tietze transformation 𝑇`←𝛾 ′ : CPC2(S)⊤ → PreCol2(S)⊤ defined in Proposition 2.10 substitutes a
2-cell 𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1 for the 2-cell `𝑥𝑝 ...𝑥1 in 𝐶2(S), from the bigger column to the smaller one with respect
to the order ≼deglex. Consider the inverse of this Tietze transformation 𝑇 −1

`←𝛾 ′ that substitutes the 2-
cell `𝑥𝑝 ...𝑥1 for the 2-cell 𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1 , for each column 𝑥𝑝 . . . 𝑥1 such that |𝑥𝑝 . . . 𝑥1 | > 2 with respect
to ≼deglex. Denote by CPC3(S) the (3, 1)-polygraph whose underlying 2-polygraph is CPC2(S) and
whose 3-cells are 𝑇 −1

`←𝛾 ′ (𝑅Γ3 (C
′
𝑥,𝑣,𝑡 )) for 𝑥 𝑣 𝑡

×1 ×2 with 𝑥𝑣 𝑡 and 𝑇 −1
`←𝛾 ′ (𝑅Γ3 (D𝑥,𝑣,𝑡 )) for 𝑥 𝑣 𝑡

×2 ×2 . In
this way, we extend 𝑇 −1

`←𝛾 ′ into a Tietze transformation between PreCol3(S) and CPC3(S). The (3, 1)-
polygraph PreCol3(S) being a coherent presentation of P(S), we deduce the following result.

3.10. Lemma. The (3, 1)-polygraph CPC3(S) is a coherent presentation of the monoid P(S).

The Tietze transformation 𝑇[,Y←𝛾 ′ : Knuthcc2 (S)⊤ → CPC2(S)⊤ defined in the proof of Proposi-
tion 2.10 replaces the 2-cells [𝑐𝑥,𝑦,𝑧 and Y𝑐𝑥,𝑦,𝑧 in Knuth

cc
2 (S) by composite of 2-cells in CPC2(S). Consider

the inverse of this Tietze transformation 𝑇 −1
[,Y←𝛾 ′ : CPC2(S)⊤ −→ Knuthcc2 (S)⊤, that substitutes the

2-cell [𝑐𝑥,𝑦,𝑧 (resp. Y𝑐𝑥,𝑦,𝑧) for the 2-cell 𝛾 ′𝑥,𝑧𝑦 (resp. 𝛾 ′𝑦,𝑧𝑥 ). Denote by Knuthcc3 (S) the (3, 1)-polygraph
whose underlying 2-polygraph is Knuthcc2 (S) and whose set of 3-cells is

{ 𝑇 −1[,Y←𝛾 ′ (𝑇 −1`←𝛾 ′ (𝑅Γ3 (C
′
𝑥,𝑣,𝑡 ))) for 𝑥 𝑣 𝑡

×1 ×2 with 𝑥𝑣 𝑡 } ∪ { 𝑇 −1[,Y←𝛾 ′ (𝑇 −1`←𝛾 ′ (𝑅Γ3 (D𝑥,𝑣,𝑡 ))) for 𝑥 𝑣 𝑡
×2 ×2 }.

Weextend𝑇 −1
[,Y←𝛾 ′ into a Tietze transformation between the (3, 1)-polygraphsCPC3(S)⊤ andKnuthcc3 (S)⊤.

Since CPC3(S) is a coherent presentation of P(S), we deduce the following result:

3.11. Lemma. The (3,1)-polygraph Knuthcc3 (S) is a coherent presentation of the monoid P(S).

Finally, we perform the homotopical reduction 𝑅Γ2 on the (3, 1)-polygraph Knuthcc3 (S) whose
collapsible part Γ2 is defined by the 2-cells `𝑢 of C2(S) and the order ≼deglex. Thus, for every 2-cell
`𝑥𝑝 ...𝑥1 : 𝑐𝑥𝑝 . . . 𝑐𝑥1 ⇒ 𝑐𝑥𝑝 ...𝑥1 in C2(S), we eliminate 𝑐𝑥𝑝 ...𝑥1 together with `𝑥𝑝 ...𝑥1 , from the bigger column
to the smaller one with respect to the order ≼deglex.

Consider the following composite of Tietze transformations R := 𝑅Γ2 ◦ 𝑇 −1[,Y←𝛾 ′ ◦ 𝑇 −1`←𝛾 ′ ◦ 𝑅Γ3 ,
defined from Col3(S)⊤ to Knuthcc3 (S)⊤ as follows. Firstly, the transformation R eliminates the 3-cells
of Col3(S) of the formA𝑥,𝑣,𝑡 , B𝑥,𝑣,𝑡 and C𝑥,𝑣,𝑡 and reduces its set of 2-cells to PreCol2(S). Secondly, this
transformation coherently replaces the 2-cells `𝑥𝑝 ...𝑥1 by the 2-cells 𝛾 ′𝑥𝑝 ,𝑥𝑝−1 ...𝑥1 , for each column 𝑥𝑝 . . . 𝑥1
such that |𝑥𝑝 . . . 𝑥1 | > 2, the 2-cells 𝛾 ′𝑥,𝑧𝑦 by [𝑐𝑥,𝑦,𝑧 , for any 𝑥 ⩽ 𝑦 ⩽ 𝑧, with 𝑥 = 𝑦 only if | |𝑦 | | = 0
and 𝑦 = 𝑧 only if | |𝑦 | | = 1 and the 2-cells 𝛾 ′𝑦,𝑧𝑥 by Y𝑐𝑥,𝑦,𝑧 for any 𝑥 ⩽ 𝑦 ⩽ 𝑧, with 𝑥 = 𝑦 only if | |𝑦 | | = 1
and 𝑦 = 𝑧 only if | |𝑦 | | = 0. Finally, for each column 𝑢, the transformation R eliminates the generator 𝑐𝑢
together with the 2-cell `𝑢 with respect to the order ≼deglex.

Let Knuth3(S) be the extended presentation of the monoid P(S) obtained from Knuth2(S) by ad-
junction of the 3-cellsR(C′𝑥,𝑣,𝑡 ) for 𝑥 𝑣 𝑡

×1 ×2 with 𝑥𝑣 𝑡 andR(D𝑥,𝑣,𝑡 ) for 𝑥 𝑣 𝑡
×2 ×2 . The transformationR

being a composite of Tietze transformations, we deduce the following result.

3.12. Theorem. The (3, 1)-polygraph Knuth3(S) is a coherent presentation of the monoid P(S).

17
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3.13. Actions of super plactic monoids on categories. A monoidM can be seen as a 2-category
with exactly one 0-cell •, with the elements of the monoidM as 1-cells and with identity 2-cells only.
The category of actions of M on categories is the category Act(M) of 2-representations of M in the
category Cat of categories. The full subcategory of Act(M) whose objects are the 2-functors is denoted
by 2Cat(M,Cat). We refer the reader to [12] for a full introduction on the category of 2-representations
of 2-categories. More explicitly, an action 𝐴 of the monoidM is specified by a category C = 𝐴(•), an
endofunctor 𝐴(𝑢) : C→ C for every 𝑢 in M, a natural isomorphism 𝐴𝑢,𝑣 : 𝐴(𝑢)𝐴(𝑣) ⇒ 𝐴(𝑢𝑣) for every
elements 𝑢 and 𝑣 ofM, and a natural isomorphism 𝐴• : 1C ⇒ 𝐴(1) such that:

i) for every triple (𝑢, 𝑣,𝑤) of elements of the monoidM, the following diagram commutes

𝐴(𝑢𝑣)𝐴(𝑤) 𝐴𝑢𝑣,𝑤

�/
=𝐴(𝑢)𝐴(𝑣)𝐴(𝑤)

𝐴𝑢,𝑣𝐴(𝑤) ';

𝐴(𝑢)𝐴𝑣,𝑤
#7

𝐴(𝑢𝑣𝑤)

𝐴(𝑢)𝐴(𝑣𝑤) 𝐴𝑢,𝑣𝑤

/C

ii) for every element 𝑢 of the monoidM, the following diagrams commute

𝐴(1)𝐴(𝑢) 𝐴1,𝑢
�)

𝐴(𝑢)

𝐴•𝐴(𝑢) )=

𝐴(𝑢)
=

𝐴(𝑢)𝐴(1) 𝐴𝑢,1

�.
𝐴(𝑢)

𝐴(𝑢)𝐴• &:

𝐴(𝑢)
=

Let M be a monoid and let Σ be an extended presentation of M. The (3, 1)-polygraph Σ is a
coherent presentation of M if, and only if, for every 2-category C, there is an equivalence of categories
between Act(M) and 2Cat(Σ∗1/Σ2, C), that is natural in C, [12]. In this way, up to equivalence, the
actions of a monoid M on categories are the same as the 2-functors from Σ∗1/Σ2 to Cat.

As a consequence, Theorem 3.12 allows us to present actions of super plactic monoids on categories
as follows:

3.14. Theorem. The category Act(P(S)) of actions of the monoid P(S) on categories is equivalent to the
category of 2-functors from the free (2, 1)-category Knuth2(S)⊤ generated by the 2-polygraph Knuth2(S)
to the category Cat of categories, sending the 3-cells of Knuth3(S) to commutative diagrams in Cat.
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