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COHERENT PRESENTATIONS OF SUPER PLACTIC
MONOIDS OF TYPE A BY INSERTIONS

NoHRA HAGE

Abstract — In this paper, we study by rewriting methods the presentations of the super plactic
monoid of type A which is related to the representations of the general linear Lie superalgebra. We
construct a convergent presentation of this monoid whose generators are super columns and whose
rules are defined by insertions on super tableaux over a signed alphabet. We extend this presentation
into a coherent one whose syzygies are defined as relations among insertion algorithms. Finally, we
reduce this coherent presentation to a Tietze equivalent one over the initial signed alphabet. Such
coherent presentations are used for representations of super plactic monoids by describing their
actions on categories.

Keywords — Super plactic monoids, syzygies, super tableaux, insertions, string rewriting.

M.S.C. 2010 — Primary: 20M05, 16S15. Secondary: 68Q42, 20M35.

1. INTRODUCTION

We study the presentations of the super version of the plactic monoid of type A over a signed alphabet by
rewriting methods using combinatorial properties of super tableaux. Study presentations by rewriting
consists in the orientation of the relations, then called reduction rules. Two words are equal in a monoid
presented by a rewriting system if they are related by a zig-zag sequence of applications of reductions
rules. A rewriting system is convergent if the reduction relation induced by the rules is well-founded and
any reductions starting on a same word can be extended to end on a same reduced word. Starting with
a presentation of a monoid, we are interested in the computation of all syzygies for this presentation
and in particular to compute a family of generators for the syzygies. In commutative algebra, the
theory of Grobner bases gives algorithms to compute bases for linear syzygies. By a similar method, the
syzygy problem for presentation of monoids can be algorithmically solved using coherent convergent
presentations. Such presentations extend the notion of a convergent presentation of the monoid by
globular homotopy generators taking into account the relations amongst the relations. Study the syzygies
in a monoid produces in higher dimensions free objects that are homotopically equivalent to the original
monoid and then allows us to compute its homological invariants. Indeed, this study provides the
first two steps in the computation of a polygraphic resolution of the monoid, that is, a categorical
cofibrant replacement of the monoid in a free (w, 1)-category, whose acyclicity is proved by an iterative
construction of a normalization reduction strategy, [15]. Moreover, coherent presentations are used to
describe the notion of actions of the monoid on categories, [12]].

This paper is a part of a broader project that consists of studying, by a rewriting approach, families
of plactic-like monoids defined from combinatorial objects constructed using insertion algorithms.
For instance, plactic monoids are related to Young tableaux, [25] [26]], Chinese monoids to Chinese
staircases, [9]], hypoplactic monoids to quasi-ribbon tableaux, [30]], patience sorting monoids to patience
sorting tableaux, [8]], and stalactic monoids to stalactic tableaux [31]]. Moreover, binary search trees
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are used to describe normal forms for sylvester, taiga and Baxter monoids, [13] 21} 31]]. Coherent
presentations are constructed for Artin monoids in [12], for plactic monoids of type A in [[19], for plactic
monoids of type C in [29], and for Chinese monoids in [20]].

A signed alphabet is a finite or countable totally ordered set S which is disjoint union of two sub-
sets Sy and S;. The super plactic monoid over a signed alphabet S, denoted by P(S), is presented by the
rewriting system Knuth,(S) on S submitted to the following family of super Knuth-like relations, [24]:

zxy = xzy, with x =y onlyif ye€ Sy and y==z onlyif y € Sy,
yzx = yxz, with x=y onlyif ye€ S; and y=2z onlyif y e S,,

oriented with respect the lexicographic order, for any x < y < z of elements of S. The congruence
generated by this rewriting system, denoted by ~ps), also relates those words that yield the same super
tableau as the result of the super Schensted-like insertion algorithm, [24]. This is the cross-section property
of super tableaux with respect to the congruence relation ~p(s). Note that when all the elements of S
are less than the ones of Sy, the congruence ~p(s) is defined by u ~p(s) v if and only if there is a
crystal isomorphism between connected components of the crystal graph of the vector representation
of the general linear Lie superalgebra, that map u to o, [1]]. Note also that the monoid P(S) appeared
in [27] as a deformation of the parastatistics algebra which is is a superalgebra with even parafermi
and odd parabose creation and annihilation operators. Moreover, super algebraic structures have found
many applications as combinatorial tools in the study of the invariant theory of superalgebras, the
representation theory of general Lie super algebras, and algebras satisfying identities, (12 3, 5, [14].
When § = 8§y = {1 < ... < n}, we recover the notion of the plactic monoid of type A, [25], which
emerged from the works of Schensted [32] and Knuth [22] on the combinatorial study of Young tableaux.
Plactic monoids have found several applications in algebraic combinatorics, representation theory and
probabilistic combinatorics, [10, 11} 28], and they were recently investigated by rewriting methods.
Indeed, for rank n > 3, the Knuth presentation of the plactic monoid of type A does not admit a finite
completion with respect the lexicographic order, [23]]. Then convergent presentations are constructed by
adding column generators and rows generators to the Knuth presentation, [4} 6], and similar convergent
presentations are constructed for the plactic monoids of classical types, [7,[17]. The author and Malbos
extend in [19]] the column presentation of the plactic monoid of type A into a coherent presentation of
this monoid and we reduce it into a smaller one having Knuth’s generators.

Let S be a signed alphabet. A super tableau over S is a collection of boxes in left-justified rows
filled by elements of S such that the entries in each row are weakly increasing from left to right with
respect Sy and the ones in each column are weakly increasing from top to bottom with respect S;.
Note that when S = Sy and S = S, we recover the notion of row-strict and column-strict semistandard
tableaux of type A, [11]. We will denote by Yt(S) the set of all super tableaux over S§ and by R+,
the map on Yt(S) that reads the entries of a super tableau row-wise from bottom to top and from left
to right. A super column is a word xy ... x; over S such that x;4; < x; with x; = x;41 only if x; € S;.
We will denote by col(S) the set of all super columns over S. Super Schensted-like left and right
insertion algorithms are introduced in [24]], and consist in inserting elements of S into super tableaux
by rows and columns respectively. Define the map [.]], on the set of words over S sending a word
to the corresponding super tableau by inserting its letters iteratively from left to right using the right
insertion starting from the empty tableau. Following the cross-section property, we deduce that the
internal product x, defined on Yt(S) by setting t *, ¢’ := [ Ryow(t)Rrow(t’) ||, for all t and ¢” in Yt(S),
is associative, and then the set (Yt(S), x,) is isomorphic to the super plactic monoid P(S). We show in
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Lemma [2.6] that for all u and v in col(S) such that the topmost juxtaposition of [u], and [[o], does not
form a super tableau, the super tableau [uv], contains at most two columns, and if it contains exactly
two columns then the left one contains more elements than .

We construct in Section[2]a convergent presentation of the monoid P(S), denoted by Col;(S), whose
set of generators is Col;(S) := {cu | ue col(S)} and whose rules are

Yu,o : CuCy = CwCry

for every ¢, ¢, in Col;(S) such that the topmost juxtaposition of [u], and [0], does not form a super
tableau and where w and w’ denote the readings of the left and right columns of [uv], respectively. We
show that Col;(S) can be obtained from Knuth,(S) by applying Tietze transformations that consist in
adding or removing derivable generators and in adding or removing derivable relations on a presentation
of a monoid in such a way that they do not change the presented monoid. We also show that the
confluence of Col,(S) is a direct consequence of the associativity of the product . Theorem[2.12]states
that Col,(S) is a convergent presentation of the monoid P(S), called the super column presentation.

We extend in Section 3| the super column presentation into coherent presentations of the monoid
P(S) using the homotopical completion-reduction procedure, [12]]. Denote by Col3(S) the extended
presentation of P(S) obtained from Col,(S) by adjunction of one family of syzygies of the following
form

CeYe,
Yu,vct CeCe’Cy % CeCpCly Ye,bcb,

CuCyCy Xu,v,t CaCdCl

CuYor Cucwcw'ym/caca/cwr Ca¥Ya' W

for every ¢, ¢, and ¢; in Col; (S) such that the juxtapositions of [u]), and [[v];, and of [[0] and [[¢], do
not form super tableaux. Following Squier’s coherence theorem, [33], Theorem [3.3|states that Cols(S)
is a coherent presentation of the monoid P(S), called the super column coherent presentation. We then
apply the homotopical reduction procedure on Cols;(S) in order to reduce it into a smaller one. As
a first step, we apply a homotopical reduction on Cols(S) with a collapsible part defined by some of
the generating triple confluences of Col(S) and we reduce it into the coherent presentation Cols(S)
of P(S), whose underlying rewriting system is Col;(S) and the syzygies X, ,; are those of Col3(S),
but with x in §. In a second step, we reduce Cols(S) into a coherent presentation PreCol;(S) of P(S),
using a collapsible part defined by a set of syzygies of Cols(S). In a final step, we reduce PreCols(S)
into an extended presentation of P(S), denoted by Knuths(S), whose underlying rewriting system
is Knuthy(S). Theorem states that Knuths3(S) is a coherent presentation of the monoid P(S).
Finally, we use in Subsection this coherent presentation in order to describe the actions of super
plactic monoids on categories.

Notation. Let A be a totally ordered alphabet. We will denote by A" the free monoid of words over A,
the product being concatenation of words, and the identity being the empty word. We will denote
by w = x1...x; a word in A* of length k, where x,...,xx belong to A. The length of a word w
will be denoted by |w|. Let w = x1...x; be a word in A*. We denote by £(w) the leftmost letter
of w and by Rem(w) the subword of w such that w = £(w) Rem(w). A word w’ is a subsequence of w
ifw =x; ...x; with1 <i; <...< i < k. We will denote by [n] the ordered set {1 < ... < n} forn
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in Z. Let S be a finite or countable totally ordered set and ||.|| : & — Z; be any map, where Z, = {0, 1}
denotes the additive cyclic group of order 2. The ordered pair (S, ||.||) is called a signed alphabet, and
we denote Sg = {a € S | [la]| = 0} and S; = {a € S f [la|| = 1}. A monoid M is said a Z,-graded

monoid or a supermonoid if a map ||.|| : M — Z, is given such that ||[u.0|| = ||u|| + [|0]|, for all u
and v in M. We call ||u|| the Z,-degree of the element u. The free monoid S8* over § is Z,-graded by
considering ||w]|| := ||x1]| + ...+ ||xk||, for any word w = x; ... xx in S8”. In the rest of this article, and if

there is no possible confusion, S denotes a signed alphabet.

2. SUPER COLUMN PRESENTATION OF THE SUPER PLACTIC MONOID

In this article, rewriting methods are presented in the language of polygraphs, that we recall in this
section and we refer the reader to [12}[16] for a deeper presentation. We also recall the notions of super
plactic monoids and super tableaux from [[18 [24]. We end this section by constructing a convergent
presentation of the super plactic monoid by adding super columns generators and using combinatorial
properties of super tableaux.

2.1. Presentations of monoids by 2-polygraphs. In this article, we deal with presentations of
monoids by rewriting systems, described by 2-polygraphs with only 0-cell denoted by e. Such a 2-
polygraph 3. is given by a pair (21, X,), where 3 is a set and X, is a globular extension of the free
monoid X7, that is a set of 2-cells a : s;(a) = t;(«) relating 1-cells in %], where s;(a) and t;(@)
denote the source and the target of a respectively. If there is no possible confusion, ¥, will denote the
2-polygraph itself. Recall that a 2-category (resp. (2, 1)-category) is a category enriched in categories
(resp. in groupoids). When two 1-cells, or 2-cells, f and g of a 2-category are 0-composable (resp.
1-composable), we denote by fg (resp. f *; g) their 0-composite (resp. 1-composite). We will denote
by X (resp. 2, ) the 2-category (resp. (2, 1)-category) freely generated by the 2-polygraph X, see [[16] for
more information. The monoid presented by a 2-polygraph 3., denoted by %, is defined as the quotient of
the free monoid X7 by the congruence generated by the set of 2-cells X,. A presentation of a monoid M
is a 2-polygraph whose presented monoid is isomorphic to M. Two 2-polygraphs are Tietze equivalent if
they present isomorphic monoids. A 2-cell @ of a 2-polygraph ¥ is collapsible, if t; () is a 1-cell of ¥4
and s; () does not contain 1 («), then t; (@) is called redundant. An elementary Tietze transformation of a
2-polygraph ¥ is a 2-functor with domain ¥, that belongs to one of the following transformations, [12]:

i) adjunction i}, : ] — 3] [x](a) (resp. 14 : £, — 3] (a)) of a redundant 1-cell x with its collapsible
2-cell a (resp. of a redundant 2-cell @),

ii) elimination 7t : 3, — (21 \ {x}, 32\ {a}) " (resp. 7(yq) : B, — =, /(p, @)) of a redundant 1-cell x
with its collapsible 2-cell & (resp. of a redundant 2-cell ).

If 3 and Y are 2-polygraphs, a Tietze transformation from ¥ to Y is a 2-functor F : 7 — YT that
decomposes into sequence of elementary Tietze transformations. Two 2-polygraphs are Tietze equivalent
if and only if there exists a Tietze transformation between them, [12]. Given a 2-polygraph ¥ and a
2-cell iy *y pp*y pp in X, the Nielsen transformation k4 is the Tietze transformation that replaces
in 2, the 2-cell p by a 2-cell @ : s1(p1) = t1(p2). When p;, is identity, we denote by K;“_a the Nielsen
transformation which, given a 2-cell y; x; pin 3, replaces the 2-cell u by a 2-cell « : s;(p1) = t1(p).
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A rewriting step of a 2-polygraph X is a 2-cell of X} with shape waw’, where « is a 2-cell of X
and w and w’ are 1-cells of X]. A rewriting sequence of ¥ is a finite or infinite sequence of rewriting
steps. A 1-cell u of X7 is a normal form if there is no rewriting step with source u. The 2-polygraph X
terminates if it has no infinite rewriting sequence. A branching of X is a non ordered pair (f, g) of 2-cells
of 37 such that s;(f) = s;(g). A branching (f, g) is local if f and g are rewriting steps. A branching is
aspherical if it is of the form (f, f), for a rewriting step f and Peiffer when it is of the form (fv, ug) for
rewriting steps f and g with s;(f) = u and s;(g) = v. The overlapping branchings are the remaining
local branchings. An overlapping local branching is critical if it is minimal for the order C generated by
the relations (f,g) T (wfw’, wgw’), given for any local branching (f,g) and any possible 1-cells w
and w’ of the category X]. A branching (f,g) is confluent if there exist 2-cells f’ and g’ in X] such
that s1(f’) = t1(f), s1(g") = t1(g9) and t; () = t1(g"). A 2-polygraph X is confluent if all of its branchings
are confluent. It is convergent if it terminates and it is confluent. In that case, every 1-cell u of X} has a
unique normal form.

2.2. Super Young tableaux and insertions. A partition of a positive integer n, is a weakly decreasing
sequence A = (A, ...,Ax) € NF such that 3’ A; = n. The integer k is called number of parts or height of A.
The Young diagram of a partition A = (A, ..., Ax) is the set Y (1) := {(i, j) | 1<i<k1<j< )Ll-},
that can be represented by a diagram by drawing a box for each pair (i, j). The transposed diagram
{(J,1) | (i, j) € Y (L)} defines another partition, called the conjugate partition of A, whose parts are the
lengths of the columns of Y/ (A). Let A be a partition. A super semistandard Young tableau, or super tableau
for short, over S is a pair t := (A, 7") where 7 : Y (1) — S is a map satisfying 7 (i, j) < 7 (i, j + 1),
with 7 (i, j) =7 (i, j+1) only if || 7 (i, j)|| = 0,and T (i, j) < T (i+1, ), with 7 (i, j) = T (i +1, j) only
if || 7°(i, j)|| = 1. We will call Y (1), T and A, the frame, the filing and the shape of the super tableau t
respectively. We will denote by Yt(S) the set of all super tableaux over S.

Denote by Ry, (resp. Reop) the reading map on Yt(S) that reads a super tableau row-wise (column-
wise) from bottom to top and from left to right. For instance, consider the alphabet S = {1,2,3,4,5}
with signature given by Sy = {1, 2,4} and §; defined consequently. The following diagram is a super
tableau over S:

! with Reow(f) = 55344112  and R.y(f) = 55314142.

~
I
lmlmw»—-

A super row (resp. super column) is a word xj ...x; in 8* such that x; < x;41 (resp. xj41 < x;)
with x; = x;41 only if [|x;|| = 0 (resp. ||x;|| = 1). In other words, a super row (resp. super column) is
the reading of a super tableau whose shape is a row (resp. column). We will denote by col(S) the set
of all super columns over S. Denote by <geglex (resp. <rev) the length lexicographic order (resp. length
reverse lexicographic order) on col(S) defined by u <geglex v (resp. U <iey 0) if |u| < [o| (resp. |u| > [v]) or
|u| = |v] and u <jey 0, for all ¥ and v in col(S), where <jx denotes the lexicographic order on S.

Recall from [24]] the right and left insertion algorithms on Yt(S) that insert an element x in S into a
super tableau ¢ of Yt(S). The right (or row) insertion, denoted by «~ , computes a super tableau ¢ «~ x
as follows. If x € S, (resp. x € Sj) is at least as large as (resp. larger than) the last element of the top
row of ¢, then put x in a box to the right of this row. Otherwise, let y be the smallest element of the top
row of t such that y > x (resp. y > x). Then x replaces y in this row and y is bumped into the next row
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where the process is repeated. The algorithm terminates when the element which is bumped is at least
as large as (resp. larger than) the last element of the next row. Then it is placed in a box at the right
of that row. The left (or column) insertion, denoted by ~», computes a super tableau x ~» t as follows.
If x € S, (resp. x € Sy) is larger than (resp. at least as large as) the bottom element of the leftmost
column of t, then put x in a box to the bottom of this column. Otherwise, let y be the smallest element of
the leftmost column of ¢ such that y > x (resp. y > x). Then x replaces y in this column and y is bumped
into the next column where the process is repeated. The algorithm terminates when the element which
is bumped is greater than (resp. at least as large as) all the elements of the next column. Then it is placed
in a box at the bottom of that column. For instance, consider S = N with signature given by Sy the set
of even numbers and S; defined consequently. We have

Do
Do
wu
[=)}
|
[—=]
Do

2]5]6]

2[3]ew 2 = 1
1[a]5] 1[4]5]
2

1
1[3]4]
13]

22 ]l and 1~
3]4]

[w]S] =]~

Note that when S = Sy = [n], the right (resp. left) insertion corresponds to the Schensted’s right
(resp. left) insertion introduced in [32] on row-strict semistandard tableaux over [n]. For any word
W = X1 ...x; over S, denote by [ w]|, the super tableau obtained from w by inserting its letters iteratively
from left to right using the right insertion starting from the empty tableau:

[wl: == (@erw) = ((...(0 e~ x1) &~ ...) e~ xp).

Note that for any super tableau ¢ in Yt(S), the equality [Ryo.w(t) ] = t holds in Yt(S), [24]. We define
an internal product %, on Yt(S) by setting

t 3, t' = (t e~ Rrow(t'))

for all ¢, " in Yt(S). By definition the relations t x, @ = t and @ %, t = t hold, showing that the product %,
is unitary with respect to 0.

2.3. The super plactic monoid. The super plactic monoid over S, denoted by P(S), is presented by
the 2-polygraph Knuth;(S), whose set of 1-cells is S and whose 2-cells are, [24] :

Nx,yz : 2Xy = xzy, with x =y onlyif [|y|[=0 and y =z onlyif [|y|| =1, (1)
Ex,yz  Yzx = yxz, with x =y onlyif [|y||=1 and y =z onlyif ||y|| =0,

oriented with respect the lexicographic order, for any x < y < z of elements of S. The congruence
generated by this 2-polygraph, denoted by ~p(s), is called the super plactic congruence. Note that since
the relations (1) are Z,-homogeneous we have that P(S) is a supermonoid. Moreover, for any w in S, we
have w ~p(s) Rrow([W],), [24], and for any t in Yt(S), we have Ryo.,(t) ~p(s) Reor(t), [18]. Note finally
that super tableaux satisfy the cross-section property for ~p(s), that is, for all w and w’ in S*, w ~p(s) W’
if and only if [w], = [w’]l», [24]. As a consequence of the cross-section property, we deduce that the
product *, is associative and the following equality

yw (tevx) = (ywit) evx @)
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holds in Yt(S), for all ¢ in Yt(S) and x,y in S. In particular, for any word w = x; ... x; in 8™ the super
tableau [[w], can be also computed by inserting its elements iteratively from right to left using the left
insertion starting from the empty tableau:

[w]r = (W 0) = (x1 » (... (xp » 0)...)).

Note that the associativity of the product x, can be obtained using the properties of the super jeu de
taquin introduced in [18]]. Note also that we can show the equality (2) using only the definitions of the
insertion algorithms and without supposing the cross-section property, and then the associativity of the
product %, and the cross-section property will be consequences of this equality.

Let w be in 8. For any k > 0, denote by It (w) (resp. Ec(w)) the maximal number which can be
obtained as the sum of the lengths of k super rows (resp. super columns) that are disjoint subsequences
of w. Let A = (44, ..., Ax) be the shape of the super tableau [w], and If (A, ,gl) be the conjugate
partition of A. For any k > 0, we have [ (w) = A1 + ...+ A¢ and [y (w) = A1 + ... + A;, [24]. In particular,
we deduce the following result.

2.4. Lemma ([24]). Let w be a word over S. The number of columns in the super tableau [w], is equal
to the length of the longest super row word that is a subsequence of w, and the number of rows in [w], is
equal to the length of the longest super column word that is a subsequence of w.

2.5. Graphical notations. Givenu = x;...x, and v = y; ... yg in col(S). We will use the following
notations depending on whether the juxtaposition of [u], and [v], forms a super tableau:

i) we will denote 4~ v if the topmost juxtaposition of [u]), and [[o], forms a super tableau, that is,
lu| > |v| and x; < y;, for any i < ||, with x; = y; only if ||x;]| = 0,

ii) we will denote u* v in all the other cases, that is, when |u| < |o| or x; > y;, for some i < |o],
with x; = y; only if ||x;|| = 1.

2.6. Lemma. Let u and v be in col(S) such that u™ v. The super tableau [uv], contains at most two
columns. Moreover, if [uv]|, contains exactly two columns, the left column contains more elements than u.

Proof. Consider u = xy...x, and v = y; ...yg in col(S) such that uo. If xXp > Yy with x, = y; only
if [|x,|| = 1, then the super tableau [[uv], consists of only column whose reading is uv. Otherwise,
suppose x;, < y; with x, = y; only if [|x,|| = 0. Since the words u and v are decreasing with respect
to 81, the longest super row word that is a subsequence of uv contains one element from each of u
and v. Then its length is equal to 2, showing by Lemmathat [uv], contains two columns. Suppose
now that [uv]), contains exactly two columns. Then its leftmost column is obtained by inserting some
elements of v into u, and by keeping the elements of u unchangeable, showing that it contains more
elements than u. ]

When u ™ v, we will denote «*'o if the super tableau [uv], consists of one column and by u*?v if it
consists of two columns.
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2.7. Super columns as generators. Suppose S = {xy,xz,...}. Let Col;(S) = {cu | u € col(S)} be
the set of super column generators of the super plactic monoid P(S) and

Cy(S) = {,uu:cxp...cx1 =X |u:xp...x1€col(S) with |u| >2}

be the set of the defining relations for the super column generators. We will denote by Knuth3(S) the
2-polygraph whose set of 1-cells is {cy,, cx,, . . .} and whose 2-cells are

1 CoCxCy = CxCzCy, With x =y onlyif [[y[[=0 and y =z onlyif ||y[|=1,
P CyCrCx = CyCxCz, With x =y onlyif [|[y|[=1 and y =z onlyif ||y|| =0,

c
Ux, Y.z

c
x, Y.z

for any x < y < z of elements of S. By definition, this 2-polygraph is Tietze equivalent to Knuthy(S). In
the sequel, if there is no possible confusion, we will identify the 2-polygraphs Knuthj(S) and Knuth,(S).
Denote by Knuth;°(S) the 2-polygraph whose set of 1-cells is {cy,, cx,, - . .} and whose set of 2-cells
is C2(S) U Knuth3(S).

2.8. Proposition. The 2-polygraph Knuth;(S) is a presentation of the super plactic monoid P(S).

Proof. By adding to the 2-polygraph Knuth3(S) all the column generators c,, for all u = x,...x
in col(S) such that [u| > 2, and the corresponding collapsible 2-cell i, : ¢y, . .. cx, = ¢y, We obtain that
the 2-polygraphs Knuth3(S) and Knuth3®(S) are Tietze-equivalent, showing the claim. O

2.9. Super pre-column presentation. Denote by PC;(S) the set of 2-cells of the following form:

:CxCzy = CzxCy, With x =y onlyif ||y|| =0 and y =z onlyif [|y|| =1,
P CyCax = CyxCz, With x =y onlyif ||y|[| =1 and y =z onlyif [|y|| =0,

’

Yx,z y
’

}/y,zx

for any x < y < z elements of S. Define the 2-polygraph PreCol,(S) whose set of 1-cells is Col; (S)
and whose set of 2-cells is PCy(S) U {y)’c’u P CxCy = Cxy | xu € col(S) and x € S }

2.10. Proposition. The 2-polygraph PreColy(S) is a presentation of the super plactic monoid P(S).

Proof. We first prove that 2-polygraph CPC,(S) whose set of 1-cells is Col;(S) and set of 2-cells
is C2(8) UPC,(S), is Tietze equivalent to Knuth; (S). We consider the following critical branching

CxHzy
c
Nx.y.z CxCzCy = CxCzy

CszCylﬁyszcy

of the 2-polygraph Knuth; (S), for any x < y < z with x = y only if ||y|| = 0 and y = z only
if [|yl| = 1, and the Tietze transformation Ky .+ Knuthy'(8)T — Knuthy'(S)7/(ng ., < vx.zy)s
that substitutes the 2-cell y, ., for the 2-cell 5y , ., and denote by T,/ the successive applications
of Kye . yi.,» forany x <y < z with x = y only if [|y[| = 0 and y = z only if [|y|| = 1, with respect
to the lexicographic order on the triples (x, y, z) induced by the total order on S. Similarly, we study
the critical branching (§ , ., cypizx) of Knuth3*(S), for any x < y < z with x = y only if |[y|| = 1

X,Y,2°
and y = z only if ||y|| = 0, by introducing the Tietze transformation KeS . y)zy LTOM Knuth*(8) T

Y.z



2.11. Super column presentation

to Knuthy*(S)"/(e5 , . < ¥y,.x)- Denote by T,/ the successive applications of this Tietze transforma-
tion with respect to the lexicographic order on the triples (x, y, z) induced by the total order on S, and
by T,y the Tietze transformation from Knuth$‘(S)T to CPCy(S) T given by T,y 0 Try.

Finally, we prove that the 2-polygraphs CPC,(S) and PreCol, (S) are Tietze equivalents. Let x;, .. . x;
be in col(S) with |xp ... x1| > 2 and define yj , = pyx : cycx = cyx, for any x < y with x = y only
if [|x|| = 1. We consider the following critical branching

CxpHxpoy..x CxpCoxpy.xy

Cxp + v+ Cxy ﬁ Cxp...xy
X1

of the 2-polygraph CPC,(S) and the following Tietze transformation

’

. T T ’
KPXp---n‘_Y;cp,xp_l---xl . CPCZ(S) — CPCZ(S) /(ﬂxp...xl — Yxpaxp—l---xl)’

that substitutes the 2-cell YJ/cp,xp,l...xl for the 2-cell py, . ,, for each column x,, ... x; such that p > 2.

Starting from CPC,(S), we apply successively the Tietze transformation «’ , from the

lep,,,xl <_Y;cP,xp_1...x1
. . . 4
bigger column to the smaller one with respect to <geglex- The composite T, = 0...0

’
Hxzxpx) €V x3,500x1

, defines a Tietze transformation from CPC,(S) T to PreCol,(S)T. O

’

K ’
'uxp---xl (_YXP Xp—1-+-X1

2.11. Super column presentation. Consider the 2-polygraph Col,(S) whose set of 1-cells is Col; (S)
and whose 2-cells are

Yu,o * CuCy = CywCy

for every u and v in col(S) such that u * v, where w and w’ are respectively the readings of the left and
right columns of the super tableau [uv],, if «**0, and w = uv and ¢, = 1, if u™"0.

2.12. Theorem. The 2-polygraph Coly(S) is a convergent presentation of the super plactic monoid P(S).

The rest of this section is devoted to prove this result. We first show in Lemma that the 2-
polygraph Col,(S) is terminating and confluent. We then show in Lemma that it is a presentation
of the super plactic monoid by showing that it is Tietze equivalent to the 2-polygraph Knuth3(S).

2.13. Lemma. The 2-polygraph Col,(S) is convergent.

Proof. The termination of Col,(S8) is proved using the length-lexicographic order < on Col; (S)* with
respect to <y defined by setting c,,, ...c,, < ¢y, ...cy, if kK <l or k =1and there exists i € {1,...,k}
such that u; <ev v; and ¢y; = ¢y, for any j < i. We prove that <« is a well-ordering on Col;(S)*
that is compatible with rules in Coly(S), that is if Uc,c,V = UcycyV then Ucyc,V < Uc,yycq,V, for
all Ucyc,V and Ucy,c,,/V in Coly(S)*. If ¢,y = 1, then Ucyc,V contains more elements than Uc,,V,
showing that Uc,,V < Uc,c,V. On the other hand, suppose that the super tableau [[uv]|, consists of
two columns whose readings of are denoted by w and w’ respectively. By Lemma the word w
contains more elements than u. Then, we obtain w <.y 4, showing that Uc,,V <« Uc,c,V. Since every
application of a rule yield a <-preceding word, it follows that every sequence of rewriting using the
2-cells of Coly(S) must terminate.



2. Super column presentation of the super plactic monoid

We show that the 2-polygraph Col;(S) is locally confluent and thus confluent by the termination
hypothesis. Any critical branching of the 2-polygraph Col,(S) has the following form:

Yuolt = cocpcy 3)

CyCuCy CCrC
CuYo,t

for every u, v and t in Col(S) such that u o * t, where e and e’ (resp. w and w’) are the readings of the
two columns of the super tableau [[uv], (resp. [vt];). Following the definition of the right insertion
algorithm, and by applying the leftmost (resp. rightmost) rewriting path with respect to Col,(S)
on ¢, ¢, ¢, we yield to the three super columns generators corresponding to the columns of the super
tableau ([u]l, *» [v]l,) *, [t]- (resp. [ul; *, ([v]- %+ [£];))- By the associativity of the product *,,
we have ([u], *, [0],) * [£]» = [u]l- * ([o]- *» [£]l;), showing that the critical branching (3) is

confluent. O

2.14. Lemma. The 2-polygraph Col,(S) is a presentation of the super plactic monoid P(S).

Proof. Prove that the 2-polygraph Colz(S) is Tietze equivalent to the 2-polygraph Knuth3°(S). Any
2-cell in Knuth3°(S) can be deduced from a 2-cell in Col,(S) as follows. For any x < y < zin S,
with x = y only if ||y|| = 0 and y = z only if ||y|| = 1 (resp. x = y only if ||y|]| = 1 and y = z only
if [ly|| = 0), the 2-cells g , , (resp. & , ;) can be deduced by the following composition

X,Y,2

c C
Ux,y,z é‘x, Z
C2CxCy = CxCzCy CyCzCx = CyCxCz
Yzx€ y\ﬂ/ JLCX Yz,y (resp. Cy Yz,xﬂ \“/Yy,x Cz ).
CzxC CxC CyCrxy =——> CyxC
zxCy sz xCzy yCzx Yyox yxCz

Moreover, for any super column x,, . . . x1, the 2-cell yix, _x, can be deduced by the following composition

ﬂxp---xl
Cxp - Cxy > Cxp..x1
Yap,xp-1Cxpg - - - Cxq Vp...x2,%1

Cxpxp-1Cxp_y - - - Cxy = ( .- ) = Cxp..x2Cx

As a consequence, if the words w and w’ in Col; (S)* are equal modulo relations in Knuth3;®(S), then they
are equal modulo relations in Coly(S). Conversely, following Subsection [2.3] the following equivalence

uv ~p(8) Rrow([uv]lr) ~p(s) Reor([uv]r)

holds, for all u,v in Col(S) such that u * 0. In this way, if two words in Col;(S)* are equal modulo
relations in Col,(S), they are super plactic congruent and hence they are equal modulo Knuth$®(S),
showing the claim. ]
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3. Coherent presentations of the super plactic monoid

3. COHERENT PRESENTATIONS OF THE SUPER PLACTIC MONOID

In this section, we begin by recalling the notion of coherent presentations of monoids from [12]] and we
extend the super column presentation into a coherent presentation of the super plactic monoid. In a
second part, we recall the homotopical reduction procedure from [[12] and we reduce the super coherent
column presentation into a smaller one over the initial signed alphabet. We follow for this aim the
approach developed in [19] for the non-signed case.

3.1. Coherent presentations of monoids. A (3,1)-polygraph is a pair (2;, £3) made of a 2-polygraph
¥, and a globular extension 33 of the (2, 1)-category X/, that is a set of 3-cells A : f = g relating
2-cells f and g in X, respectively denoted by s;(A) and t,(A) and satisfying the globular relations
s182(A) = s115(A) and t152(A) = t122(A). Such a 3-cell can be represented with the following globular
shape:

U f
.@. or U@U

We will denote by 3; the free (3, 1)-category generated by the (3, 1)-polygraph (2;, £3). A pair (f, g) of
2-cells of 2, such that s;(f) = s1(g) and t; (f) = t;(g) is called a 2-sphere of X, . An extended presentation
of a monoid M is a (3, 1)-polygraph whose underlying 2-polygraph is a presentation of the monoid M.
A coherent presentation of M is an extended presentation ¥ of M such that the cellular extension X5 is a
homotopy basis of the (2, 1)-category X, , that is, for every 2-sphere y of 3,
with boundary . The elements in 3] are called syzygies of the presentation X.

Let ¥ be a (3, 1)-polygraph. A 3-cell A of X is called collapsible if t;(A) is in 2, and s3(A) is a 2-cell
of the free (2, 1)-category over (2, \ {t2(A)})7, then £,(A) is called redundant. An elementary Tietze
transformation of a (3, 1)-polygraph X is a 3-functor with domain 3; that belongs to one of the following
operations, [12]:

, there exists a 3-cell in %

i) adjunction i}, and elimination m, of a 2-cell a as described in Subsection

ii) coherent adjunction Lﬁ‘ : 3y — 25 (a)(A) (resp. 14 : £ — 25 (A)) of a redundant 2-cell & with its
collapsible 3-cell A (resp. of a redundant 3-cell A),

iii) coherent elimination mp : %, — 3, [A (resp. m(pa) : 23 — 25 [(B, A)) of a redundant 2-cell « with
its collapsible 3-cell A (resp. of a redundant 3-cell A, that maps A to B).

For (3,1)-polygraphs ¥ and Y, a Tietze transformation from ¥ to Y is a 3-functor F : 3; — Y. that
decomposes into a sequence of elementary Tietze transformations. Two (3, 1)-polygraphs X and Y are
Tietze-equivalent if there exists an equivalence of 2-categories F : X, /33 — Y, /Y3 and the presented
monoids 3, and Y, are isomorphic. Two (3, 1)-polygraphs are Tietze equivalent if, and only if, there
exists a Tietze transformation between them, [12]].

Recall that Squier’s coherence theorem, [33], states that, any convergent 2-polygraph X presenting a

11



3. Coherent presentations of the super plactic monoid

monoid M can be extended into a coherent presentation of M having a generating syzygy

/\
\,/

for every critical branching (f, g) of 3, where f’ and g’ are chosen confluent rewriting paths.

3.2. Super column coherent presentation. Denote by Col;(S) the extended presentation of the
monoid P(S) obtained from Col;(S) by adjunction of one family of syzygies X, ,, ; of the following form

Yu,0Ct CeCe/Cy % CeChCly Ye,bCb’ (4)
CyCoyCy MXu ot CaCdCp

CuYor CquCWYm CaCa'Crv = Ca¥a' w

for every u, v and t in Col(S) such that u o * t, where e and e’ (resp. w and w’) are the readings of the
two columns of the super tableau [uv]|, (resp. [0t];), and where a and a’ (resp. b and b’) denote the
readings of the two columns of the super tableau [uw], (resp. [e’t]];) and a, d, b’ are the readings of
the three columns of the super tableau [uot]),. Note that one or further columns e’, w’, @’ and b’ can
be empty as illustrated in Figure|1] In those cases some indicated 2-cells y in the confluence diagram
correspond to identities.

3.3. Theorem. The (3,1)-polygraph Cols(S) is a coherent presentation of the monoid P(S).
Proof. Consider the 2-polygraph whose set of 1-cells is Col; (S) and whose 2-cells are
CuCp = CrCoy

for all ¢, ¢, in Col;(S) such that u ™ v and where w and w’ denote respectively the readings of the left
and right column of the super tableau (uv ~» 0) obtained by applying the left insertion. Following
Subsection by the associativity of the product x,, the super tableaux (uv ~» 0) and [uv], are
equal, thus this 2-polygraph coincides with Col,(S). Hence, the generating syzygy of the extended
presentation of the 2-polygraph Col,(S) has the following form

0 e~ uot

CuCoyCt m CaCqCp
uovt ~» ()

for all ¢y, ¢y, ¢; in Col;(S) such that u * 0™ t, where a, d, b’ are the readings of the three columns of the
super tableau [[uot ||, and where the 2-source (resp. 2-target) of the syzygy corresponds to the application
of the right (resp. left) insertion (0 «~ uot) (resp. (uvt ~> 0)) on the word cyc,c;. Finally, by definition
of the right (resp. left) insertion algorithm ¢~ (resp. ~»), we can lead to the normal form c,c4cp by
applying at most three steps of reduction on the initial word ¢, c,c;, showing the claim. ]

12



3.4. Homotopical reduction procedure

3.3.1. Remark. It is worth noting that there are fives forms for the generating syzygy (4) depending

. 1 X1 X2 X1 X1 X2 X2 X2 . .
on the following four cases: u t,u " t,u 0t and u” 0" "t, as shown in Flgure These forms

are obtained by a case-by-case analy51s and they will be used in the sequel in order to reduce the super
column coherent presentation Col;(S) into a smaller one over the initial signed alphabet.

Confluence diagrams

C
BRI }’u% Cuoct Yuo,t

CyCyCy ﬂu ot Cuot
% CuCot %
c CeYe' t ,
uXZUXlt Yu,z% CeCe’Cy ﬁ CeCelt Yee't
CuCyCy By ,0,t CsCs

><1 X2

Yu,0Ct Yuo,t
t with uo*t /‘>c ct

Ct

S1p%2 Yuo

t with ud t /C’“’ct, CuvYa',w
CuCoCy l”Cu,v,t

% CuCwCy m CuvCa’ Cw

c Ce)/e’,g Cp
u><20><2t % CeCe’Ct CeCpCpy %
CuCoCt JJJz)u,v,t CaCdCp

CuYar” CulwCwym—pr CaCa o Ty v

Figure 1: confluence diagrams

3.4. Homotopical reduction procedure. Let X be a (3, 1)-polygraph. A 3-sphere of the (3, 1)-category

5 is a pair (f, g) of 3-cells of 3; such that s;(f) = s2(g) and t,(f) = t2(g). A collapsible part of 3 is a
triple (I, I3, I;) made of a family T, of 2-cells of 3, a family I3 of 3-cells of ¥ and a family Iy of 3-spheres
of X, , such that the following conditions are satisfied, [12]:

i) every u of every I} is collapsible, that is, fx_; () is in Xg_; and sr_;(p) does not contain tx_1 (),
ii) no cell of T; (resp. I3) is the target of a collapsible 3-cell of T; (resp. 3-sphere of Iy),

iii) there exists a well-founded order on the cells of ¥ such that, for every p in every Iy, tr_;(p) is
strictly greater than every generating (k — 1)-cell that occurs in the source of p.

The homotopical reduction of the (3, 1)-polygraph ¥ with respect to a collapsible part T is the Tietze
transformation, denoted by Rr, from the (3, 1)-category X, to the (3, 1)-category freely generated by

13



3. Coherent presentations of the super plactic monoid

the (3, 1)-polygraph obtained from X by removing the cells of I" and all the corresponding redundant
cells. For any y in I', we have Rr(¢(1)) = Rr(s(p)) and Rr(p) = 1py(s(y))- In any other cases, the
transformation Ry acts as an identity, see [12] for more details.

A local triple branching of a 2-polygraph ¥ is a triple (f, g, h) of rewriting steps of X with a common
source. An aspherical triple branchings have two of their 2-cells equal. A Peiffer triple branchings
have at least one of their 2-cells that form a Peiffer branching with the other two. The overlap triple
branchings are the remaining local triple branchings. Local triple branchings are ordered by inclusion of
their sources and a minimal overlap triple branching is called critical. If ¥ is a coherent and convergent
(3, 1)-polygraph, a triple generating confluence of ¥ is a 3-sphere

7 £
%U@s'\ht\ . /U?s\l
u 97%&%/ m u = M " w=—¢"—>1u
%s%v’% \ /h /f

where (f, g, h) is a triple critical branching of the 2-polygraph ¥, and the other cells are obtained by
confluence, [12]].

3.5. Reduced super coherent column presentation. We apply the homotopical reduction proce-
dure on the (3, 1)-polygraph Cols(S) using the collapsible part made of generating triple confluences.
Following Theorem [3.3] the family of syzygies X, given in (4) and indexed by columns u, v and ¢
in col(S) such that u” v ™t forms a homotopy basis of the (2, 1)-category Col;(S)T. Consider such a
triple (u,0,t) with |u| > 2, and let x,, be in S and u; be in col(S) such that x, = £(u) and u; = Rem(u).
We will show that the confluence diagram induced by the critical triple branching with source ¢y, cy, cyct
is represented by the 3-sphere Q. 1, whose source is the following 3-cell

CuCoCt )/y s CeCeCt Vet
YXp,Ml /
X, u1,0Ct “J,Cexy,s’,t
m psU1s CeCyCS Ct Vet },s d/ CeCpCly *’
\ Yy,dl

Yuyv
Xp,S —
cxpcul CyCy : CXPCSCS'CI V. P = Cecycdl cq # CerCSZCd/ = CaCdCly
\ YX% l %) /
/
Yot 7 ¢ ey CopCoy Cprul,v,t Ys deg CsCg, Cqr Xi,.5.d, Cd C2CdCs,Cq’ stz,di
p Ul D d,td; P 1 dCs,Cd]

s 4 =
YMI,W Cxpcal Ca,l Cy/ :{ Cxpca1 CS3Cd1 ﬁ Caczcgcd; YZ,SB

Ya,l,w Xp,ai

CaCzCa| Cw

14



3.7. Super pre-column coherent presentation

and whose target is the following 3-cell

Ye' t
Yu,o CeCe'Ct CeChCly Ye,b

Yp.u CuCyC MX CaCdCpy Ysaud,

P ulo t% u,o,t Ya'w atdCh 2,04
Yu,w

Cxpp Cuy CoCt = Vxput CLuCwCw = CaCa'Cry CaXz,a’l,w' CaCdCs,Ca;
Yot Cx, Cuuy CwCo/ mXxp,ul,wa/ Yzd,  CaCzCyCq; Vz.s3
Y» Cx,Cay Cal Cov CaCzCalCrw VW

yxp,al

In order to facilitate the reading of the generating triple confluence, we have omitted the context of
the 2-cells y. Note also that some super columns may be empty and thus the indicated 2-cells y may be
identities. » y

The 3-sphere Qupurot 18 constructed as follows. Since *» %1 and 41" w, then Xxp,ul,w is either of
the form Ay, ws Cxpuw OF C;Cp’ul,w.
The 3-cell Xy, 4, w being confluent, we have Reoi([xpai1],) = az with z in S and Reoi([[2za{],) = a’.

Denote a; and a] the readings of the two columns of [u;w],.

X X1
Since 2“9} and 4 W’ (resp. *p U1 and ui v ), we deduce that Xz,a’l,w’ (resp. Xxp,ul,v) is either of the
form Az o v, Cra,w OF Cz’a,l’w, (resp. Ax, u;,00 Cx,,
two columns of [u;0],. The 3-cell Xy, 4, » being confluent, we obtain that R.o; ([ xps]l;) = ey withyin S

up.0 OF C;Cp,u ..0)- Denote by s and s’ the readings of the

and Reoi([lys’]l;) = €’. Since v’ and 5%t , we deduce that X s ; is either of the form Ay s, Cys s
or C,y,s’,t' Denote by d; and d; the readings of the two columns of [[s't],. The 3-cell Xy, being
confluent and Reo([[e’t],) = bb’, we have Reoi([[yd:]») = bsy and Rei([s2d;];) = b’. On the other
hand, the 3-cell X, ,; being confluent, we have Ro;([[sd1 ] ) = a1s3 and Reor([[a;w’];) = ssd;. Finally,
since Xy, 5.4, is confluent, we deduce that Reoi([zs3]) = dsa.

Denote by Cols(S) the extended presentation of the monoid P(S) obtained from Coly(S) by ad-
junction of one family of 3-cells Xy ,; of the form , for all x in S and o, t in col(S) such that x ot
Let Iy be the collapsible part made of the family of 3-sphere Qy 1, ., indexed by x, in S and uy, 0, ¢
in col(S) such that « 0t andu = xpu;. We consider the order < on the 3-cells of Col3(S) de-
fined bY Apor < Cl;,l},t < Cyuor < Bu,u,t < Dyors and if Xu,v,t € {ﬂu,zy,ts Bu,v,ta Cuots C;’U’p Du,u,t}
with t <geglex #, then Xy v v < Xy or, for all u, v, t in col(S) such that u 0 Xt By construction of the 3-
sphere Qu,u1,0.t» its source contains the 3-cell Xy, ,,; and its target contains the 3-cell X,, , ; with |u;| < |u].
Up to a Nielsen transformation, by applying the reduction Rr, on the (3, 1)-polygraph Cols(S) with
respect to Ty and the order <, we obtain the (3, 1)-polygraph Cols(.S). Hence, we deduce the following
result.

3.6. Proposition. The (3,1)-polygraph Cols(S) is a coherent presentation of the monoid P(S).

3.7. Super pre-column coherent presentation. We reduce the coherent presentation Cols(S) into
a coherent presentation whose underlying 2-polygraph is PreCol,(S). This reduction is obtained using
the homotopical reduction Rr, on the (3, 1)-polygraph Cols(S) whose collapsible part Is is the set

of 3-cells Ay o ¢, By ot and Cy» with x € S and v, t € col(S) such that ¥t %™t and o™t
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3. Coherent presentations of the super plactic monoid

with x0™t respectively, and the order < on the 2-cells of Col,(S) defined by y,s o < yu0 if [uv| > |u'0’],
or |luo| = [u'v’| and |u| > |Reor([u'v’];)| or [u] < [Reor([w'0"]l»)] and v’ <yev u, for all u, v, u’,0” € col(S)
such that u”v and u 0" .

The reduction Ry, induced by the order < on the 2-cells of Col;(S) and the order < on 3-cells can be
decomposed as follows. For all x in § and v, t in col(S) such that 0™t | the 2-cells Yx0o Yor and Yy of
are smaller then y,,; for the order <. Then the reduction Rr, removes the 2-cell y,,; together with the
3-cell Ay ;. By iterating this reduction on the length of v, we reduce all the 2-cells of Col;(S) to the

following set of 2-cells
{Vuollul>1, Jo| >2and ™ } U {yuo | lu| =1, |0| > 1 and u*'0 }. (5)
For all x in S and v, t in col(S) such that x10**t with x0*t, the 2-cells Yx.05 Yot> Ya,w and ygr 4y are
smaller than yy,, for the order <. Then, the reduction Ry, removes the 2-cell y,,; together with the
3-cell Cy ;- By iterating this reduction on the length of v, we reduce the set (5) to the following one:
{Vuo | lul =1, o] > 2and w% } U { yuo | lul =1, Jo| > 1 and w0 }. (6)

For all x in S and v, t in col(S) such that %"t , consider the following 3-cell:

CeYe' t v
)’x,%ct CeCe’Cy : CeCe’t %
CxCoCt MBX,UJ CsCs
CxYo,t CxCot Yx,ot

where Y, is the 2-cell in (6) obtained from the 2-cell y. ., by the previous step of the homotopical
reduction by the 3-cell Cx . Since x is in S, we have also that e’ is in S by definition of y. The 2-cells yy. ,,
Ye'.ts Yo and Ye s being smaller than yy ., for the order <, we can remove the 2-cells yy ,; together with
the 3-cell By ;. By iterating this reduction on the length of ¢, we reduce the set (6) to the following set:

{vuo!lul=1, |v|=2and W%y }UA{vuollul=1 lo| >1and Wy }. (7)

Let us show that the set (7) is equal to the set of 2-cells PreCol,(S) defined in Subsection[2.9] It is
sufficient to prove that PC,(S8) is equal to the set of 2-cells y,,, in Coly(S) such that |u| = 1, |o]| = 2
and 10 . Suppose that v = xx” with x > x’ in S with x = x” only if ||x|| = 1. Since ©**0, we obtain
that u < x with u = x only if ||u|| = 0. f u < x” with u = x” only if ||u|| = 0, then R.o;([uv],) = (xu)x’
and the 2-cell y,, , is equal to the 2-cell y;’xx, D CuCxxr = CxyuCyr- X7 < uwithu = x" only if ||u]| = 1,
then R.o;([uv],) = (ux’)x, and the 2-cell y,,, is equal to y;,xx, : CuCxx’ = Cyx'Cx, showing the claim.

Hence, the homotopical reduction Ry, reduces Cols(8) into a coherent presentation of the monoid
P(S) whose set of 2-cells is PreCol;(S). Denote by PreCols(S) the extended presentation of the
monoid P(S) obtained from PreCol;(S) by adjunction of the 3-cells R, (C;C,v,t) for x'0"*t with x0 1,
and Rr,(Dx ) for x* %%t . Since the homotopical reduction Rr, eliminates the 3-cells of Col3(S) of
the form Ay s, Bx.o and Cx s, We obtain the following result.

3.8. Proposition. The (3, 1)-polygraph PreCols(S) is a coherent presentation of the monoid P(S).
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3.9. Super Knuth’s coherent presentation

3.9. Super Knuth’s coherent presentation. We reduce the coherent presentation PreCols(S) into a
coherent presentation of the super plactic monoid P(S) whose underlying 2-polygraph is Knuth, (S).
The Tietze transformation T,/ : CPC2(S)" — PreCol,(S) " defined in Proposition substitutes a
2-cell y;p,xp_lmxl for the 2-cell piy, x, in C2(S), from the bigger column to the smaller one with respect
to the order <geglex- Consider the inverse of this Tietze transformation T‘i , that substitutes the 2-
cell .1 for the 2-cell Y;’cp,xp,l...xl’ for each column x, ...x; such that [x,...x;| > 2 with respect
t0 <deglex- Denote by CPC3(S) the (3, 1)-polygraph whose underlying 2-polygraph is CPC;(S) and
whose 3-cells are Tu_iy,(Rr3 (C;C’U’t)) for x'0**t with xo t and Ty‘iy, (Rr, (Dx pt)) for I A
this way, we extend T ! , into a Tietze transformation between PreCols;(S) and CPC;(S). The (3,1)-
polygraph PreCol;(S) being a coherent presentation of P(S), we deduce the following result.

3.10. Lemma. The (3, 1)-polygraph CPCs(S) is a coherent presentation of the monoid P(S).

The Tietze transformation T, ., : Knuthy*(S)T — CPC3(S)" defined in the proof of Proposi-
tionreplaces the 2-cells 5, ,, . and ¢, , in Knuth;®(S) by composite of 2-cells in CPC;(S). Consider
the inverse of this Tietze transformation T”_’gl(_ , : CPC(S)T —> Knuth$*(S)T, that substitutes the
2-cell ng , , (resp. e ) for the 2-cell yy ,, (resp. y, .,). Denote by Knuths®*(S) the (3,1)-polygraph

whose underlying 2-polygraph is Knuth;(S) and whose set of 3-cells is
(Tt (T2 (R (Cry ) for X 0™ with x6t } U { T} (T2, (R, (Dyar))) for x 0%t }.

We extend T, ;_y, into a Tietze transformation between the (3, 1)-polygraphs CPC5(S) " and Knuths®(S) 7.
Since CPCs5(S) is a coherent presentation of P(S), we deduce the following result:

3.11. Lemma. The (3,1)-polygraph Knuths®(S) is a coherent presentation of the monoid P(S).

Finally, we perform the homotopical reduction Ry, on the (3, 1)-polygraph Knuths®(S) whose
collapsible part I'; is defined by the 2-cells y,, of C2(S) and the order <geglex. Thus, for every 2-cell
Hxpo.xy © Cxp oo+ Cxp = Cx,p 3y INCo (8S), we eliminate Cxp..xy together with Hxp..xps from the bigger column
to the smaller one with respect to the order <geglex-

Consider the following composite of Tietze transformations R := R, o Tn_’ghy, o Ty‘iy, o Rr,,
defined from Cols(S)T to Knuth$®(S) T as follows. Firstly, the transformation R eliminates the 3-cells
of mg (S) of the form Ay s, Byx.or and Cy s and reduces its set of 2-cells to PreCol,(S). Secondly, this
transformation coherently replaces the 2-cells piy, x, by the 2-cells y)’cp’xp_l_“xl, for each column x,, ... x;
such that |x,...x1| > 2, the 2-cells y; ., by n% , ., for any x < y < z, with x = y only if [|y[| = 0
and y = z only if |[y|| = 1 and the 2-cells y, ., by & , . forany x < y < z, with x = y only if [|y]| = 1
and y = z only if ||y|| = 0. Finally, for each column u, the transformation R eliminates the generator ¢,
together with the 2-cell y,, with respect to the order <geglex-

Let Knuth3(S) be the extended presentation of the monoid P(S) obtained from Knuth,(S) by ad-
junction of the 3-cells ﬂ(C;’vst) for x'0**t with x4 t and R(Dy.o,) for x*?0”?t . The transformation R

being a composite of Tietze transformations, we deduce the following result.

3.12. Theorem. The (3, 1)-polygraph Knuths;(S) is a coherent presentation of the monoid P(S).
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3.13. Actions of super plactic monoids on categories. A monoid M can be seen as a 2-category
with exactly one 0-cell o, with the elements of the monoid M as 1-cells and with identity 2-cells only.
The category of actions of M on categories is the category Act(M) of 2-representations of M in the
category Cat of categories. The full subcategory of Act(M) whose objects are the 2-functors is denoted
by 2Cat(M, Cat). We refer the reader to [12] for a full introduction on the category of 2-representations
of 2-categories. More explicitly, an action A of the monoid M is specified by a category C = A(e), an
endofunctor A(u) : C — C for every u in M, a natural isomorphism A, , : A(u)A(v) = A(uv) for every
elements u and v of M, and a natural isomorphism A, : 1¢ = A(1) such that:

i) for every triple (u, v, w) of elements of the monoid M, the following diagram commutes

Au,vA(W Auv,w

A(uv)A(w)
A(u)A(v)A(w) = A(uow)

Am AWA@wW) =%,

ii) for every element u of the monoid M, the following diagrams commute

A2 A(A <L A(W%f AWA() %

A(u) A(u) A(u) A(u)

Let M be a monoid and let 3 be an extended presentation of M. The (3,1)-polygraph X is a
coherent presentation of M if, and only if, for every 2-category C, there is an equivalence of categories
between Act(M) and 2Cat(X]/2,, C), that is natural in C, [12]. In this way, up to equivalence, the
actions of a monoid M on categories are the same as the 2-functors from X7/ to Cat.

As a consequence, Theorem allows us to present actions of super plactic monoids on categories
as follows:

3.14. Theorem. The category Act(P(S)) of actions of the monoid P(S) on categories is equivalent to the
category of 2-functors from the free (2, 1)-category Knuth,(S) T generated by the 2-polygraph Knuth,(S)
to the category Cat of categories, sending the 3-cells of Knuth;(S) to commutative diagrams in Cat.
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