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Sensitivity analysis of an end-to-end Atlantis model of the Eastern English Channel

• Morris screening analysis with growth, mortality, and reproduction parameters • All parameters important for system stability • Bottom-up effects (plankton and some invertebrate parameters) stronger role than topdown

Introduction

Ecosystem models are growing in popularity in fisheries management in tandem with the rise of ecosystem-based management (EBM), in recognition of the complex ecosystem interactions that are rarely or only partially incorporated into traditional single-species models [START_REF] Curtin | Understanding marine ecosystem based management: a literature review[END_REF][START_REF] Garcia | The ecosystem approach to fisheries: issues, terminology, principles, institutional foundations, implementation and outlook[END_REF][START_REF] Pikitch | Ecosystem-based fishery management[END_REF], Skern-Mauritzen et al. 2016).

In particular, end-to-end ecosystem models strive to include all major relevant processes ranging from mechanistic processes like hydrodynamics and nutrient cycling to food web interactions to human activity in one modeling framework [START_REF] Fulton | Approaches to end-to-end ecosystem models[END_REF]. One particular endto-end ecosystem model is Atlantis [START_REF] Fulton | Lessons in modelling and management of marine ecosystems: the Atlantis experience[END_REF], Audzijonyte et al. 2019), which has been implemented across at least 25 ecosystems around the globe with more in development (Weijerman et al. 2016). Atlantis models have been used to investigate different management strategies [START_REF] Fulton | An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation[END_REF][START_REF] Kaplan | Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model[END_REF], Weijerman et al. 2016), potential impacts of climate change on ecosystems [START_REF] Griffith | Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models[END_REF][START_REF] Marshall | Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections[END_REF][START_REF] Nye | The relative impact of warming and removing top predators on the Northeast US large marine biotic community[END_REF][START_REF] Ortega-Cisneros | Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework[END_REF], and impacts of extreme events such as oil spills (Ainsworth et al. 2018[START_REF] Morzaria-Luna | Diet composition uncertainty determines impacts on fisheries following an oil spill[END_REF]). However, a drawback of end-to-end ecosystem models in general and Atlantis models in particular, is the sheer number of parameters combined with the long running time which makes robust calibration and evaluation of the model difficult [START_REF] Arhonditsis | Evaluation of the current state of mechanistic aquatic biogeochemical modeling[END_REF][START_REF] Fulton | Approaches to end-to-end ecosystem models[END_REF][START_REF] Rose | End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps[END_REF].

Due to these challenges, sensitivity analyses (SAs) of Atlantis models are rare and have tended to be local rather than global, meaning they explore small changes around the nominal values of parameters, e.g. the calibrated model, rather than a more complete exploration of the parameters space [START_REF] Iooss | A review on global sensitivity analysis methods[END_REF]. For example, Ortega-Cisnerosa et al. (2017) utilized a full factorial design but changed only the growth rate parameter for three plankton groups to three different values. [START_REF] Sturludottir | End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability[END_REF] likewise examined parameters for plankton growth, as well as vertebrate recruitment, and oceanographic regime. [START_REF] Kaplan | Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model[END_REF] modified the fishing mortalities across all fleets and all species by five values as well as tested removing spatial management. A more comprehensive SA was undertaken by [START_REF] Hansen | Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species[END_REF] involving four parameters for nine different groups, utilizing primarily a one-at-a-time (OAT) design centered on baseline values. However, problems with a simple OAT approach of varying one parameter while holding the rest constant at baseline values are that is a local approach, thus it presumes model linearity and has also been shown to inadequately explore the parameter space, particularly as the number of parameters increases [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF]. Additionally, a simple OAT SA cannot identify interactions among parameters. On the other hand, the full factorial designs used for few parameters and groups are not scalable to a comprehensive SA of an Atlantis model. [START_REF] Pantus | Sensitivity analysis for complex ecosystem models[END_REF] used a precursor to Atlantis to examine adaptive screening, where the experimental design is not prespecified, rather information from each experiment is used to design the next, thus adaptively exploring the parameter space. However, adaptive screening generally assumes relatively few parameters (i.e. 10-20% of the total) are responsible for most of the response variance and that the effects of parameter interactions are small, which are increasingly violated the longer the model is run for, and thus was not successful when running the model beyond 10 years.

In this paper, we take a global, screening approach to perform a more comprehensive SA of an Atlantis model for growth, recruitment, and mortality parameters. We chose a Morris analysis [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF], the most complete screening method [START_REF] Iooss | A review on global sensitivity analysis methods[END_REF] and a recommended alternative to a simple OAT SA for models with long run times that preclude more expensive variance based methods [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF]. We propose that this approach could be used for existing Atlantis models as well as facilitate performing a SA as part of model development for new Atlantis implementations.

We performed the SA on the Atlantis Eastern English Channel (Atlantis-EEC) model, which was developed to investigate the ecosystem dynamics and effects of fisheries in that system [START_REF] Girardin | Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model[END_REF]. Located between England and France, the eastern English Channel is a shallow temperate continental shelf sea characterized by strong megatidal hydrodynamics, vertical mixing present throughout the year, resuspension of particulate matter, and significant freshwater and nutrient inputs from rivers, particularly the Seine River (Bailly du Bois and Dumas 2005, [START_REF] Korotenko | Variability of turbulent quantities in the tidal bottom boundary layer: Case study in the eastern English Channel[END_REF]). Ecologically the system is characterized by both high benthic productivity and a strong bentho-pelagic coupling. [START_REF] Desroy | Macrobenthic resources of the shallow soft-bottom sediments in the eastern English Channel and southern North Sea[END_REF][START_REF] Giraldo | Depth gradient in the resource use of a fish community from a semi-enclosed sea[END_REF][START_REF] Kopp | Reorganization of a marine trophic network along an inshore-offshore gradient due to stronger pelagic-benthic coupling in coastal areas[END_REF]. The species assemblages are structured by the abiotic habitat and constitute a diversity of species (pelagic, flatfish, gadoids, skates, catsharks, crustaceans, and cephalopods) exploited by different fishing fleets [START_REF] Vaz | Eastern English Channel fish assemblages: measuring the structuring effect of habitats on distinct sub-communities[END_REF][START_REF] Carpentier | Atlas des Habitats des Ressources Marines de la Manche Orientale -CHARM II, Channel Habitat Atlas for marine Resource Management -CHARM II[END_REF].

Our goals for the SA are 1) to better understand the internal structure and dynamics of the Atlantis-EEC model, in particular, the effect on Atlantis model outputs of a change in parameter inputs, 2) to provide information to aid calibration of new Atlantis models and potential future automatic calibration efforts (e.g. Fennel et al. 2001), and 3) to determine which parameters are most influential on Atlantis model output. However, a set of noninfluential parameters that can be fixed to nominal values is unlikely to be found for two reasons: we evaluate parameters frequently tuned during calibration and thus already known to be sensitive, and models with feedback loops, such as the trophic network in complex ecological models, have high levels of interactions and thus all parameters can potentially influence outputs [START_REF] Pantus | Sensitivity analysis for complex ecosystem models[END_REF]. We hypothesize that the strong bentho-pelagic coupling in the EEC may be reflected in the SA through bottom-up effects of parameters for benthic producers influencing benthic and pelagic consumers.

Methods

Model

We performed the SA on the Atlantis-EEC model [START_REF] Girardin | Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model[END_REF], an implementation of the Atlantis framework [START_REF] Audzijonyte | Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economics modules[END_REF][START_REF] Fulton | Lessons in modelling and management of marine ecosystems: the Atlantis experience[END_REF].

Atlantis is an end-to-end ecosystem model comprising of biophysical, trophic food web, and fisheries components which uses a set of deterministic, mechanistic equations to represent the underlying processes of ecosystem dynamics and tracks nitrogen through the system (Fig. 1).

The Atlantis-EEC model covers approximately 35,000 km 2 and is spatially structured by 35 polygons. Hydrodynamic forcing is from the integrated output of the MARS3D (Model for Applications at Regional Scales) numerical coastal hydrodynamic model (Baily du Bois and Dumas 2005), and freshwater and nutrient inputs from rivers were also included. The trophic network is represented by 40 functional groups: 21 vertebrate groups, 16 invertebrate groups (including 4 plankton groups), and 3 detrital groups (Table A.1). Vertebrate groups are each subdivided into 10 age classes, while invertebrate groups are considered as biomass pools, with the exception of cephalopods that have juvenile and adult stages. While the original model considered multiple fishing fleets organized by fishing activities or métiers, we opted to simplify this portion of the model by utilizing a single fishing fleet with constant fishing mortality per functional group.

Selected parameters

From the thousands of possible Atlantis parameters, we focused our efforts on the parameters most frequently tuned during the model calibration process [START_REF] Audzijonyte | Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economics modules[END_REF]): those governing growth (C, mum), mortality (mL, mQ), and recruitment (BHalpha, BHbeta, KDENR) applied across the vertebrate and invertebrate/plankton groups (Table 1).

Even with this restricted list of parameters, the total number was still over 500 parameters across functional groups and age classes. Due to the long simulation running time (~4 hours with an Intel i5-6440HQ 2.60 GHz processor), we thus examined ways to further reduce the number of parameters examined. We now briefly describe how the parameters we selected function in the Atlantis model, and we direct the interested reader to [START_REF] Audzijonyte | Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economics modules[END_REF], particularly Supplement 1, for a more complete description of Atlantis model equations, to [START_REF] Girardin | Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model[END_REF] for how baseline parameter values were determined, and to Appendix A for more details on the parameters in the SA.

Growth/consumption parameters

The parameters C and mum are used in the model to describe how much prey biomass is consumed by each predator relative to what is available. Atlantis-EEC uses a modified Holling type II functional response [START_REF] Murray | Port Phillip Bay Integrated Model: Final Report[END_REF] to describe predation, and the amount of biomass for each prey group (i) consumed by a predator (j) is expressed as a consumption term, CRij:

= ∑ (1)
where Bi is the biomass of prey i, aij is the availability of prey i to predator j, and Ekj is the assimilation efficiency of prey k for predator j. Specifically, for predator j, Cj is the clearance rate, or volume of water searched by an active predator or filtered by a filter feeder, and mumj is the maximum consumption rate or growth rate, which can be thought of as the inverse of the handling time. The values for the parameters C and mum are strongly correlated as a consequence of model construction, where an initial relationship between C and mum was assumed and only adjusted slightly for some groups as necessary during the model calibration process [START_REF] Audzijonyte | Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economics modules[END_REF]. We therefore opted to move these parameters together, using the linear relationship mum = 3 * C for vertebrate groups and the baseline mum value for invertebrate groups (Appendix A). This means that we are running SA on the "growth" parameter, i.e. the combined effects of C and mum. For phytoplankton the growth equation is different; mum is the maximum specific growth rate and is multiplied by the biomass and a light limitation factor, thus we varied mum directly in this case (Appendix A).

For vertebrate groups with growth parameters defined per age classes, changing them independently would result in ecologically unrealistic values and require many parameters.

Instead, for each vertebrate group i, we used a function of a single hyperparameter ai based on allometric relationships between the clearance rate at age x, Ci(x), and the nitrogen dry weight-at-age of an average individual, Wi(x), as suggested by [START_REF] Audzijonyte | Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economics modules[END_REF]:

Ci(x) = ai Wi(x) 0.7 , where the age x is ℕ ∊ [1, 10]. ( 2 
)
We estimated ai by fitting the function to the existing baseline values for C using least squares (Fig. 

Asymptotic recruitment

Two stock recruitment relations are used in Atlantis-EEC, Beverton-Holt (BH) for all the fish functional groups and fixed recruitment (a fixed number of pups per adult) for mammals and birds. The BH stock-recruit relationship is given by

= "#• % &#' %()* ( 3 
)
where Sp is the spawn produced, B is the group's total biomass, and BHalpha and BHbeta are the BH α and β parameters. To examine its sensitivity, we chose to constrain the SA to the asymptotic part of the equation (see Appendix A) and investigate only the asymptotic recruitment parameter, BHalpha, leaving BHbeta fixed. For mammals and birds, recruitment

is defined as = +,-. •ρ• . ( 4 
)
where KDENR specifies the number of pups per adult, ρ is the proportion of mature individuals, and N is the total number of individuals. In this case, recruits are calculated as a number of individuals and an initial size is specified to convert into biomass.

Natural mortalities

Most Atlantis model are calibrated to capture mortality through fishing and predation mortality, however for some functional groups additional mortality can be used to mimic other processes not explicitly modeled. For vertebrate groups this additional mortality is represented as 0 = (12 + 13 .) .

(5) based on their numbers, ., and uses stage-specific (juvenile and adult) values, while for invertebrate groups it is instead based on biomass, B,

0 = (12 + 13 B) B, (6) 
where in both cases mL represents linear additional mortality and mQ represents quadratic additional mortality. Non-zero mortality is classically used for invertebrate groups to enforce density dependence due to space limitation. Therefore a quadratic mortality term suitable for density-dependent processes is defined for invertebrates groups, while the linear mortality is set to zero. Conversely, for top predators (e.g., large fish, marine mammals, sea birds) and a few other fish groups with sources of mortality that are not included in the model through predation and fishing, non-zero linear mortality, and rarely quadratic mortality, are used (Table 1, Appendix A). For the 13 groups that have a value of zero for mortality in the calibrated model, meaning all mortality is already accounted for by fishing and predation, the outcome of changing the value to a non-zero value would be testing the effect of the parameter outside the range of meaningful values, or, in effect, testing the impact of decreasing the biomass of that group on the ecosystem. Thus, we did not include mortality parameters with a baseline value of zero in the SA, and left their value fixed at zero.

Defining parameter bounds

The approach described above thus allowed us to reduce the number of parameters to examine in the SA to 90. To determine upper and lower bounds for each parameter in the SA, we first considered if there were any data available to inform our choice of parameter bounds.

For the BHalpha parameter, we compiled 2018 ICES (International Council for the Exploration of the Sea) stock assessment data for all species in the model for which stock distributions in the assessment encompassed the EEC (Table A.3) and assembled the time series of estimated recruitment and spawning stock biomass (SSB) for each species. For each species, only the years with SSB above Blim, were retained (as we focused on the asymptotic part of the stock recruitment relationship). Then, for each year, we calculated the recruitment error, or the percentage difference in recruitment relative to the average recruitment, over the entire time series. The 5th and 95th percentiles across all the years were used as the upper and lower bounds for the percent change from the baseline BHalpha value in the calibrated Atlantis-EEC model. For functional groups with no assessment available, the same method was applied using the ICES data for all species combined.

For other parameters (i.e., growth, mortality, and non-Beverton-Holt recruitment), data to set parameter bounds was unavailable, and we used the upper and lower bounds of -50% and +100% around the baseline parameter value (Girardin et al. 2018, Table A.4). These bounds were based on an examination of parameter ranges used in the small number of existing SAs for Atlantis models [START_REF] Hansen | Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species[END_REF][START_REF] Kaplan | Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model[END_REF], Ortega-Cisnerosa et al. 2017[START_REF] Sturludottir | End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability[END_REF], as well as a small series of test simulations on key groups identified by [START_REF] Girardin | Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model[END_REF] to explore model outcomes of different magnitudes of parameter value changes. In particular, we wanted to avoid parameter values that would frequently lead to group extinctions which was a problem with larger decreases from parameter baseline values like -75%.. The doubling and halving of these values allows us to account for the asymmetric nature of increasing and decreasing by a fixed percentage and was verified in some preliminary simulations.

Sensitivity analysis plan

We used a Morris screening analysis [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF] as a feasible approach given the number of parameters we had to analyze, the long-running time of the simulation, and our access to Datarmor, Ifremer's supercomputer. The advantage of the Morris method is that one obtains information for both the main effects/linear effects and the non-linear effects and/or interactions, although one is not able to distinguish between non-linear effects and interactions like more comprehensive decomposition-of-variance methods. With the Morris method, the parameter space is turned into a grid by discretizing the space into a user-defined number of subintervals. The more subintervals, the finer the evaluation of non-linearities will be, though possibly at the cost of a thorough exploration of the space. One follows a set of trajectories through parameter space. Each trajectory starts with a random point in parameter space, and then each step consists of moving one parameter in turn. From a set of trajectories, the elementary effects (EE) can be calculated, that is, the changes in the output measure for a relative change in the input parameter. The standard set of metrics calculated from the elementary effects [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF] are µi, the mean of the EE (the average change in output across all changes to the parameter i) which gives the sensitivity of output to input i due to all first-and higher-order effects, and σi, the standard deviation of EE (the variance in how much the output changes in response to changes in the parameter i) which indicates interactions and/or non-linearities. In addition, the metric µi* is similar to µi, except the absolute value is first applied to the EE before the mean is taken (i.e., the average absolute value of change in output across all changes to parameter i), which is useful for the sensitivity of the parameter independent of cancelling out effects if the direction of the change in output is not always consistent [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]. Furthermore, we used the intervals of σ/µ* established by [START_REF] Sanchez | Application of sensitivity analysis in building energy simulations: Combining first-and second-order elementary effects methods[END_REF] to classify parameter effects into different zones: almost linear (σ/µ* < 0.1), monotonic (0.1 < σ/µ* < 0.5), almost-monotonic (0.5 < σ/µ* < 1), and markedly nonmonotonic or with interactions (σ/µ* > 1), and these zones are demarcated in the figures.

We performed two Morris SAs, both of which used 50 trajectories (at the high end of recommended ranges for the number of trajectories; [START_REF] Saltelli | Sensitivity analysis in practice: a guide to assessing scientific models[END_REF][START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]), 8 levels for each parameter (including upper and lower bounds with values uniformly distributed between them), and the recommended grid jump of 4 (how many levels the parameter changes for a step in the trajectory). The 50 trajectories were selected from a candidate set of 200 trajectories as the most orthogonal and thereby best spanning the parameter space [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]. Because computing resources are often limited and other models have even longer running times, we also considered the impact of using fewer trajectories (10, 20, 30, and 40 trajectories) by performing a bootstrap test with 100 sampled trajectory sets for each size to compare with the results from all 50 trajectories. We compared the estimation of µ* and σ for the top five parameters for as well as the agreement in order of the top ten parameters between each subset and the full trajectory set.

We created the SA plan and calculated the resulting EE using the morris method in the 'sensitivity' R package [START_REF] Iooss | sensitivity: Global Sensitivity Analysis of Model Outputs[END_REF]. We ran the full set of simulations on the Datarmor supercomputer. We performed an initial SA (SA1) with the full parameter set of 90 parameters with 4550 simulations. From the results of SA1, we first investigated the crashing simulations (9 trajectories), then analyzed the Morris metrics (µ, µ*, σ) for the non-crashing (i.e., complete) trajectories (41 trajectories). Based on the results of that analysis, we determined that the parameters implicated in the crashing simulations and those with the most important effects were the parameters of the fixed-recruitment top-predator groups and the plankton groups (see Table A.4 for a complete list of parameters in each analysis and values for each level). Thus the complete SA is described in three steps: 1) analysis of parameter values and combinations with extreme effect, i.e. those that crash the model in SA1 2) analysis of parameter effects for the trajectories without crashing simulations for SA1, and 3) analysis of parameter effects in SA2 for the core food web excluding top predator and plankton groups.

For all the analyses, we ran the simulations for 100 years, enough time for the calibrated model to reach a steady-state, and then took as outputs the average biomass for the last 10 years of the simulation (years 91-100) for the 40 groups in the model. Note that not all parameter combinations in the SA allow the system to reach a steady-state, and we also analyzed the system stability as discussed below. For the 21 vertebrate groups, we also examined the average number of individuals for the last 10 years of the simulation. These outputs are used during calibration and offer good insight into the system state. In order to summarize the effects of a parameter for the system in addition to its effect on each group individually, we examined total biomass (excluding detrital and bacteria groups) and total numbers for vertebrates. Note that this does weight more massive or abundant groups higher, but total biomass/numbers is a commonly used metric and we also report results for individual groups. Finally, we also looked at the stability of the system by examining how many groups achieved equilibrium in the last ten years of the simulation, an important criterion for model calibration. Any group that had a biomass < 0.1 t (functionally extinct) in the last ten years was defined to be non-stable, as well as all groups in crashing simulations. For the rest, we fit a linear model to the last ten years of biomass values for each group, and defined stability as the regression line staying within ±5% of the mean biomass of the last ten years. This criteria is more flexible than simply examining the significance of the slope coefficient (possibly significant even for very small changes in biomass) or a strict window approach (frequently not met by plankton and recycling groups which exhibit cyclic behavior even at equilibrium), but still detects groups that continue to increase or decrease at the end of the simulation. Note that we are simply looking for any steady-state, not that the groups reach equilibrium at a specific value as in model calibration. We examined the influence of parameters on system stability by calculating the Morris metrics on the output of the percent of groups stable in the simulations. All analysis was performed using R 3.6.0 (R Core Team 2019). We used Atlantis version trunk rev 6290.

Results

Step 1: Crashing simulations and stability in SA1

Crashing simulations. Of the 4550 simulations in SA1, 244 simulations crashed, affecting 9 of the trajectories. In Atlantis, simulations crash when any flux reaches a fixed threshold. In our simulations, the cause of the crash was the same in all cases, an accumulation of too much detrital matter to be processed in the epibenthic layer, which was due to a population explosion in some groups and extinction in others. We determined that the crashes were due to a combination of low juvenile linear mortality rate and high reproduction rate for toothed cetaceans (CET) (Appendix B). With no density dependence or trophic control for this top predator, which uses fixed recruitment, this leads to a population explosion.

Stability. An average of 69% (range 0-95%) of groups were stable across all simulations (including those that crashed which were considered unstable) , and in 6% of simulations there were no groups stable (Fig. 2). Like with the results for the crashing simulations, cetacean juvenile mortality and recruitment rates were extremely influential for determining system stability (Fig. 3c). The juvenile mortality and recruitments rates for seabirds (SB) and seals (SXX) were also influential for system stability, as were phytoplankton (PP) and zooplankton (ZOO) growth rates.

Step 2: Trajectories without crashes in SA1

Parameters that had strong main effects (high µ* values) also tended to have strong interaction and/or nonlinear effects (high σ values), both for total biomass and numbers (Fig. We next discuss the effects of the most influential parameters, those of plankton and fixedrecruitment top predators, on biomass. For all other groups, the parameter effects can be broadly divided into three categories 1) those with moderate to strong effects across many groups' biomass, primarily consisting of the growth and mortality rates for benthic invertebrates; 2) those with strong effects on their own group but no other groups, which was true for many parameters, generally growth and mortality rates for invertebrates and growth and recruitment rates for vertebrates; and finally, 3) those with weak or little effect, mostly vertebrate mortality rates (other than top predators with fixed recruitment), top predator growth and adult mortality rates, and some primary production parameters (Fig. 4). These other groups are examined in more detail in SA2.

Plankton production parameters.

The growth rate parameters of phytoplankton and zooplankton had strong effects on nearly all groups' biomass, demonstrating bottom up effects (Fig. 4, Fig. B.2). The direction of the effect was consistent: increasing the phytoplankton growth rate had a strong positive effect, and that of zooplankton a strong negative effect (Fig. 4, center panel). In fact, the only groups' biomass not strongly influenced were the bird and mammal top predators using fixed recruitment that were driven solely by their own parameters, as well as cephalopods (CEP)

and refractory detritus (DR) biomass, which were mostly affected by seabird and cetacean parameters. The effects of zooplankton mortality rates on biomass were also broad, though less consistent in direction of effect within some groups (i.e. µ small compared to µ*, indicating the sign of the effect varied across simulations for that group). Carnivorous (ZOC)

and gelatinous (ZOG) zooplankton parameters, as well as phytoplankton's mortality parameter, generally had little effect across groups' biomass. The effects of lower trophic level parameters on was stronger on biomass than vertebrate numbers (Appendix B).

Top predator parameters.

The recruitment and mortality parameters of top predators with fixed recruitment (seabirds, seals, and particularly toothed cetaceans) strongly influenced the biomass of nearly all groups (Fig. 4,B.2). The only groups relatively unaffected by these parameters were each other's biomass, and that of planktons and scallops (SCE). Furthermore, these effects are likely understated due to the removal of trajectories with crashing simulations, which were found to be due to specific toothed cetacean parameter combinations. This interplay between parameters could play a role in the strong interaction/nonlinear effects (large σ) observed. The direction of the effect (µ) varied by group. While model crashes were only observed from toothed cetacean parameters with low mortality and high recruitment, some combinations of sea bird and seal parameters also caused their biomass to increase exponentially in some simulations and correspondingly many of their prey species went extinct. The juvenile mortality parameter appears to be the most sensitive. In the case of juvenile toothed cetacean mortality parameters, any increase above the baseline value always resulted in their own extinction, while decreases from the baseline value resulted in a range of outcomes from extinction to exponential growth. The situation was similar but less extreme for sea bird and seal parameters, and the direction of the effect was less consistent. The effects of these population explosions and resulting extinctions can also be seen through the importance of top predator recruitment and mortality parameters on vertebrate numbers (Appendix B).

Step 3: Core food web in SA2

Removing the most influential parameters from SA1 (those of top predators with fixed recruitment and plankton, Table 1) focused the SA on the parameters for the core of the food web with the system generally in a stable state, i.e. without the extinctions and exponential growth that characterized many simulations in SA1. For total biomass of the system, the growth rates and, to a lesser extent, mortality rates of benthic invertebrates had the strongest influence, while total vertebrate numbers were primarily driven by the parameters of the most numerous groups (Fig. 5). We next discuss the influential parameters for system stability and groups' biomass in more detail. There were fewer influential parameters for vertebrate numbers than for biomass, and a group's own recruitment rate was the most important (Appendix B).

Stability.

Stability was considerably higher in SA2 than SA1 with an average of 95% (range 80-100%) groups stable, and all 40 groups were stable in12% of simulations (Fig. 2). With the narrower range of stability in SA2, there was a gradient of effect of the various parameters on the system stability, though deposit feeder mortality was the most influential while Clupeidae (CLU) quadratic mortality the least (Fig. 5). Thus, all the parameters had some influence on the stability of the system in non-linear and/or interacting ways.

Biomass.

The most influential parameters on total biomass were the growth rates of benthic invertebrates such as echinoderms (ECH), bivalves (BIV), deposit feeders (DEP), scallops, and suspension feeders (SUS) (and to a lesser extent some of these groups' mortality rates) (Fig. 5), and these same parameters are also important across numerous individual groups' biomass (Figs. 6,B.5). The biomasses of plankton and recycling groups, which did not have their parameters modified in SA2, were strongly influenced by nearly every parameter, while the direction of effect for these parameters was generally inconsistent (Fig. 6) and with strong non-linear/interaction effects (Fig. B.5). Groups differed in how linear or non-linear the impact of influential parameters was on their biomass, likely due to different positions in the food web (Fig. B.5). For example, the impact of most parameters was clearly non-monotonic or with interactions/non-linearities for the biomass of cephalopods, echinoderms, lobsters (LBE), Pollack (POL), suspension feeders, and whelk (WHE). On the contrary, the biomass of pelagics and their predators, that is, Clupeids, mackerels, sparidae, cetaceans, sea birds and seals, responded to parameters in a more linear way, probably because of the weaker influence of benthic compartments.

Most groups' biomass was primarily influenced by between two and ten parameters, their own and those of several other groups (Figs. 6 andB.5). The other group's parameters were generally those of the more abundant vertebrate and invertebrate groups, and were frequently, but not always, prey of the affected group. Groups' biomass being influenced by their predators' parameters, on the other hand, was more rare, and only tended to occur with the biomass of groups at the lowest tropic level. Finally, there were a handful of groups affected almost solely by their own parameters (Clupeidae, mackerels (MAC), scallops, and sharks (SHK)). These groups (except for sharks) have a plankton/detritus diet in common, the parameters of which were not changed in SA2. However, suspension feeders share a similar diet but their biomass was also influenced by their predators' parameters.

The food web interactions can be seen through the direction of the effect (Fig. 6, µ columns). For example, bivalve's growth rate had a generally positive impact on other groups' biomass, except for phytoplankton (prey) and suspension feeders (competition).

Similarly, deposit feeder's growth rate had a generally positive effect on other groups' biomass except for their prey and competitors, while the growth rate of echinoderms almost universally negatively affected other groups' biomass (except phytoplankton). For nearly all vertebrate groups' biomass, as well as larger invertebrates like shrimp (SHP), lobsters, and cephalopods, the groups' parameters strongly influenced that same group's biomass, but had little effect on the biomass of other groups (excepting plankton and recycling groups influenced by all or most parameters as noted above). The parameters for Clupeidae, and to a lesser extent whiting (WHG), both of which are numerous in the system, had a strong influence on the biomass of top bird and mammal predators, for which they are an important food source, but little influence on their benthic prey. Interestingly, only seal biomass was also influenced by a number of other fish groups' parameters, reflecting diet differences.

Mortality parameters were generally less influential than growth rate.

SA 1 and SA2 summary

To summarize the most important results of the SA, strong main effects of parameters tended to go hand in hand with strong interaction and/or nonlinear effects, and all parameters influenced system stability. The strongest effects were due to fixed recruitment top predators (particularly the juvenile mortality and reproduction rates) and plankton (particularly phytoplankton and zooplankton growth rates). There was also high sensitivity to benthos parameters, particularly growth rate, across nearly all groups. Each group's biomass tended to be highly sensitive to 2-10 parameters, their own and more commonly their prey than their predators. Vertebrate numbers were most often linearly influenced by a group's own recruitment rate.

Number of trajectories

3.5.1 SA1.

In general, µ*and σ estimates for the most influential parameters for most groups in SA1

were robust with respect to the number of trajectories (Figs. B.8, B.9). Exceptions were parameters affecting fixed-recruitment top predators, phytoplankton, bacteria, and detrital groups, where smaller estimations of effect size were likely with fewer trajectories.

Furthermore, interaction/nonlinear effects of the recruitment and mortality parameters of fixed-recruitment top predators were smaller for numerous groups. Perhaps more important is the relative ordering of the most important parameters, which was in agreement on average of 82% for µ* and 72% for σ even for only 10 trajectories. Across all groups and numbers of trajectories, the agreement in ordering the most influential parameters was higher for µ*than σ, demonstrating the increased difficulty in estimating the non-linear/interaction effects (Fig.

B.10).

SA2.

The error with estimating SA metrics with fewer trajectories was greatly reduced in SA2

with greater system stability (Figs. B.11, B.12). The agreement for ordering the most influential parameters was generally quite good, except for some bacteria, detrital, and plankton groups whose parameters were not included in SA2 (Fig. B.15). Across all groups, the agreement averaged 87% for µ and 80% for σ for 10 trajectories, increasing to 95% and 93% respectively for 40 trajectories.

Discussion

While SA has long been recognized as an important part of ecological model development [START_REF] Scott | Uncertainty and sensitivity studies of models of environmental systems[END_REF], Shaeffer, D.L. 1980[START_REF] Thornton | Improving ecological simulation through sensitivity analysis[END_REF] 

Interesting insights about the Atlantis-EEC model.

Our results highlight a difficulty, raised by Patus ( 2007), that finding parameters that are less sensitive and thus can be ignored in models that contain cyclic feedbacks like Atlantis is perhaps unrealistic. Our results generally confirm this, bearing in mind that we selected the parameters most frequently tuned during calibration and thus already known to be sensitive.

There could certainly be insensitive parameters among the many remaining parameters in Atlantis. While there are perhaps only a handful of more influential parameters for any given group, the effects were almost never strictly linear and frequently show evidence of nonlinear/interaction effects. In addition, every parameter was influential for at least one group, illustrating why all parameters were important for system stability. Although in SA1 there were some growth and mortality parameters that had little effect on biomass across all groups (Fig. 4) and a subset of those that had little effect on numbers (Fig. B.3), these parameters did still affect system stability. Furthermore, for those parameters that were also included in SA2, all appear to influence biomass, at least interact with numbers, and especially contribute to system stability (Fig. 5). With that caveat, the least influential parameters were adult mortality and growth rates for vertebrates with fixed recruitment, juvenile mortality rate for some vertebrates with BH recruitment, cephalopod growth rate, growth and mortality rates for gelatinous zooplankton, and phytoplankton mortality rate. The lack of influence of the phytoplankton mortality rate was particularly striking given the strong effects of phytoplankton growth rates and of both growth and mortality rates for zooplankton.

The importance of both top-down and bottom-up effects is evident with the most influential parameters. These include those of top predators with fixed recruitment (i.e.

toothed cetaceans, sea birds, seals) and illustrate a structural issue with the Atlantis-EEC model. These top predators are not density-dependent either through their recruitment or mortality, allowing them to increase exponentially. That is, they reproduce through pups rather than a self-limiting BH recruitment function, and, like other vertebrates in the model with the exception of Clupeidae, they have no quadratic mortality. Furthermore, they are not impacted by the fishery and experience little predation themselves. These groups are thus very sensitive to their parameterization, particularly the reproduction rate and the juvenile mortality rate, which can quickly shift the population from extinction to unrealistic exponential growth. To dampen these effects, different values of starvation mortality, currently underutilized in Atlantis models [START_REF] Pethybridge | Calibrating process-based marine ecosystem models: An example case using Atlantis[END_REF], should be explored in the Atlantis-EEC model to better represent competition among top predators and the effects of limited food. In addition, unfished top predators modeled with Atlantis could be controlled by a quadratic mortality term and/or a modified fecundity using the ratio of reserve to structural nitrogen. Additionally, the lack of starvation mortality likely explains the decoupling observed between biomass and numbers in vertebrates: biomass and number do not react the same way. Numbers are primarily determined by a group's own reproduction parameter (and top predator parameters in SA1 which drove extinctions), while biomass is determined by individual weights that depend on growth rates and prey abundance. Thus, it is possible to have large numbers of individuals at below normal weights who do not die at increased rates.

This makes numbers less sensitive to trophic network effects than biomass.

Bottom-up control was emphasized by the other extremely sensitive parameters, the growth rates of phytoplankton and zooplankton. [START_REF] Hansen | Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species[END_REF] also found the strongest effects in response to changing the growth rates for zooplankton groups. While the SA performed by Ortega-Cisneros et al. (2015) only included the growth rate of phytoplankton and zooplankton, they also observed large effects throughout the food web, particularly on phytoplankton and zooplankton themselves and small pelagic fish, though large pelagic fish were less sensitive. [START_REF] Sturludottir | End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability[END_REF] found a strong response to phytoplankton growth rate but not macrozooplankton growth rate, though other zooplankton groups were not included. This sensitivity to plankton dynamics has also been found in other ecosystem models [START_REF] Steele | Constructing end-to-end models using ECOPATH data[END_REF], reflecting the importance of both primary producers to bottom-up forcing, as well as the role of zooplankton in linking trophic levels [START_REF] Carlotti | Towards methodological approaches to implement the zooplankton component in "end to end" food-web models[END_REF][START_REF] Rose | End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps[END_REF]). However, this importance of plankton dynamics also highlights a challenge of parameterizing end-to-end ecosystem models given data limitations for plankton communities. This is further complicated by the fact that, for reasons of the relatively coarse spatiotemporal scale, the plankton dynamics are represented with less detail in comparison with existing NPZ models [START_REF] Baretta | The European regional seas ecosystem model, a complex marine ecosystem model[END_REF][START_REF] Butenschön | ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels[END_REF][START_REF] Kishi | NEMURO-a lower trophic level model for the North Pacific marine ecosystem[END_REF][START_REF] Schrum | Development of a coupled physicalbiological ecosystem model ECOSMO: part I: model description and validation for the North Sea[END_REF].

The universal positive effect of a higher phytoplankton growth rate on all groups is unsurprising, but the opposite universally negative effect of a higher zooplankton growth rate, even for zooplankton itself, is striking and counterintuitive. There are several possible reasons. First, Atlantis does not explicitly model the larval stage for fish (the option for phytoplankton and/or zooplankton abundance to affect recruitment is not utilized in the Atlantis-EEC model), which depend heavily on zooplankton (Last 1978a[START_REF] Last | The food of three species of gadoid larvae in the eastern English Channel and southern North Sea[END_REF]. However, zooplankton makes up the majority of the diet (80-99%) for mackerels, Clupeidae (which both migrate outside the system), carnivorous zooplankton, and gelatinous zooplankton, as well as a significant portion of the diet (5-20%) for Mulgilidae, shrimps, and zooplankton itself. More likely, a higher zooplankton growth rate causes the zooplankton to increase and consume all the phytoplankton which then cannot regrow (i.e., the extreme case of Lotka Voltera dynamics: no oscillation). This would cut off the pelagic pathway, and could cut off the benthic pathway in the ecosystem, as many benthic invertebrates are planktivores, and phytoplankton is particularly important in the diet of suspension feeders and scallops. Finally, an increase in the zooplankton growth rate might divert energy from the detrital-benthic pathway by consuming plankton that would otherwise die and so could contribute the negative response seen across groups. Even in relatively simple NPZ models, where multiple functional forms are used for zooplankton grazing (e.g. Eq. 1), this relationship is known to be problematic and a strong determinant of system dynamics [START_REF] Franks | NPZ models of plankton dynamics: their construction, coupling to physics, and application[END_REF].

Examining the direction of the effects (µ) of different parameters elucidates the complex food web dynamics captured in the Atlantis-EEC model. The inconsistent direction of effects of top predator parameters demonstrates indirect effects, that is, negative effects on their prey's biomass, but positive effects on the biomass of their prey's prey. While fixedrecruitment top predators do appear to structure the entire ecosystem in the sense of a trophic cascade [START_REF] Paine | Food webs: linkage, interaction strength and community infrastructure[END_REF][START_REF] Ripple | What is a trophic cascade?[END_REF]) in SA1, this is not the case under more stable conditions in SA2 where we saw weaker effects of upper trophic-level predators' parameters on other groups' biomass in the system. For example, the parameters of the more abundant predators, such as whiting and other Gadidae (GAD), had little effect on their benthic prey's biomass. Rather, the most influential parameters were those of the invertebrate benthic groups, particularly the growth rates, thus confirming the bottom-up dynamics of the system.

The SA thus supported our hypothesis of important effect from benthic parameters based on the strong bentho-pelagic coupling in the system and this would be interesting to confirm with a more thorough validation analysis of the model. The EEC ecosystem is a shallow continental shelf sea driven by benthic productivity [START_REF] Dauvin | The food web in the lower part of the Seine estuary: a synthesis of existing knowledge[END_REF][START_REF] Desroy | Macrobenthic resources of the shallow soft-bottom sediments in the eastern English Channel and southern North Sea[END_REF][START_REF] Garcia | Assessment of benthic ecosystem functioning through trophic web modelling: the example of the eastern basin of the English Channel and the Southern Bight of the North Sea[END_REF]). The food web structure is comprised of benthic and pelagic pathways, and the benthic-pelagic coupling increases in shallow coastal areas where both benthic and pelagic sources are easily available [START_REF] Kopp | Reorganization of a marine trophic network along an inshore-offshore gradient due to stronger pelagic-benthic coupling in coastal areas[END_REF]. Benthic sources make up the majority of the diet for all trophic groups, ranging from just over 50% for even pelagic piscivorous fish to 100% for groups such as benthic predators and demersal piscivorous fish [START_REF] Giraldo | Depth gradient in the resource use of a fish community from a semi-enclosed sea[END_REF]. Furthermore, this importance of benthos to EEC ecosystem functioning has also been found with a variety of modeling approaches [START_REF] Daskalov | Modelling possible food-web effects of aggregate dredging in the eastern English Channel[END_REF][START_REF] Girardin | Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model[END_REF], Travers-Trolet et al. 2019).

Implications for other Atlantis models.

Although some insights are specific to the precise formulation of the Atlantis-EEC model [START_REF] Girardin | Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model[END_REF], such as its trophic and physical structure, there is also learning that could apply to other Atlantis implementations. New Atlantis implementations continue to be developed (Weijerman et al. 2016), and calibration of these models is a challenging undertaking. The results of this SA can provide additional information to complement existing advice for how to approach calibration [START_REF] Audzijonyte | Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economics modules[END_REF], Pethybridge et al. 2019).

While we were unable to find a simple list of parameters with minimal effects across all groups, this is unsurprising given that we focused on a subset of the most frequently calibrated parameters [START_REF] Pethybridge | Calibrating process-based marine ecosystem models: An example case using Atlantis[END_REF]) and the known feedback interactions present in Atlantis through the trophic structure [START_REF] Pantus | Sensitivity analysis for complex ecosystem models[END_REF]). However, there were still differences in the strength of effect among parameters. One important distinction, particularly when calibrating models, is that between parameters that have a strong main effect on the outcomes of many or nearly all groups versus those parameters whose main effect is primarily on the group itself. While the ubiquity of nonlinear/interaction effects means there are no parameters that are strictly limited to only influencing their own groups, there are clear differences in the degree of interactions.

The strong contribution of the plankton parameters to system stability and the determination of most groups' biomass suggests a useful approach is to first calibrate a simplified NPZ model [START_REF] Pethybridge | Calibrating process-based marine ecosystem models: An example case using Atlantis[END_REF], which was successfully applied for the calibration of the Atlantis-EEC model [START_REF] Girardin | Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model[END_REF]. While the representation of lower trophic levels in Atlantis is necessarily coarse given its spatial and temporal resolution [START_REF] Pethybridge | Calibrating process-based marine ecosystem models: An example case using Atlantis[END_REF], it is still likely that a subset of these groups will be highly influential for the entire system, though which subset appears to be model-dependent [START_REF] Ortega-Cisneros | An Atlantis model of the southern Benguela upwelling system: Validation, sensitivity analysis and insights into ecosystem functioning[END_REF][START_REF] Hansen | Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species[END_REF][START_REF] Sturludottir | End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability[END_REF]. Further, the large influence of fixed-recruitment top predator parameters on system stability despite those groups' comparatively small biomass suggests that it is essential to set parameters for these groups approximately correctly early in the calibration process. There was hardly any interaction between fixed-recruitment top predator and plankton parameters, suggesting the lowest and highest trophic levels could be calibrated sequentially.

Once the highest and lowest trophic levels are stabilized (i.e. SA2), many parameter interactions fall into the monotonic or almost monotonic zone for individual outputs (though not total system biomass or stability). One surprising discovery was the relatively localized and monotonic effect of manipulating BH recruitment (BHalpha), with only the group itself affected and no other parameters contributing in most cases. In these groups, generally fish, nonlinear/interaction effects were more prevalent with growth and mortality parameters. In general, growth rates were more important than mortality rates for determining biomass, though mortality rates appeared important for controlling system stability. For vertebrate groups, this may be because most mortality is captured through predation and fishing mortality. While mortality rates were more important for invertebrate groups, they were still less important than growth rates, and this may be due to natural mortality rates being low for invertebrates in the baseline model. For context, nearly all vertebrate mortality rates (that were not zero) were above the 1e-5 day -1 threshold Pethybridge et al. ( 2019) consider high additional mortality, while nearly all invertebrate mortality rates, other than plankton, were below the threshold. Groups whose parameters were important to other groups tended to be the most abundant benthic invertebrates and planktivorous fish. While it is unclear how much these results depend on the specific trophic network and environment of the Atlantis-EEC model, we can make some preliminary suggestions on the order in which to tackle groups within the context of other advice on calibrating Atlantis models [START_REF] Audzijonyte | Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economics modules[END_REF], Pethybridge et al. 2019). That is, 1) calibrate the plankton and recycling groups, perhaps as a simplified NPZ model, 2) ensure reasonable (avoiding extinction or exponential growth) mortality and recruitment rates of fixed-or constant-recruitment groups, generally top predators, 3) adjust growth rates of non-age-structured groups, 4) adjust growth rates of agestructured groups, focusing on high-abundance groups, 5) adjust mortality rates as needed for stability, 6) adjust BH recruitment to match numbers, 7) continue to iteratively fine tune groups. Furthermore, if resources are available, we suggest that once reasonable starting points for parameters are identified, a SA, even with few trajectories, can be very useful for calibration efforts.

An important consideration for performing a SA on an Atlantis model is what resources are available given the long simulation running times. Our results indicate that useful information can still be obtained even from many fewer trajectories than the 50 we used here. While some form of parallelization would still be essential, this may not necessarily require access to a supercomputer. There are several considerations with using relatively few trajectories in a highly parameterized and complex model suggested by our analysis. Most importantly, interaction/nonlinear effects are likely to be underestimated, particularly with very small trajectory samples. In general, while the effect sizes may vary with smaller numbers of trajectories, the approximate ordering of parameters was still fairly accurate. These issues may be accentuated if the system frequently becomes unstable in the SA simulations (i.e.

groups exploding or going extinct, crashes), so that repeating the SA in that context may not give consistent results.

While a SA generally provides information on how much each parameter influences the output, an uncertainty analysis (UA) focuses rather on how much the results are influenced by the uncertainty of the inputs. UA comprises a broader context than a SA; for example, [START_REF] Link | Dealing with uncertainty in ecosystem models: the paradox of use for living marine resource management[END_REF] [START_REF] Fulton | Effect of complexity on marine ecosystem models[END_REF][START_REF] Smith | Ecosystem modelling in the southern Benguela: comparisons of Atlantis, Ecopath with Ecosim, and OSMOSE under fishing scenarios[END_REF]. Investigating model uncertainty is a current focus of the Atlantis community (Weijerman et al. 2015). Our results suggest that one possible starting point would be to include uncertainty in the plankton dynamics, as these tend to be data poor (particularly zooplankton dynamics and phytoplankton species composition) but also influential to system stability and dynamics.

Zooplankton are a key feature of end-to-end ecosystem models linking lower and upper trophic levels, as compared to NPZ models which focus on biogeochemical cycling or multispecies fish models with simplified representations [START_REF] Rose | End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps[END_REF]. Other parameters to consider in a UA scenario could be determined from uncertainty based on the data pedigree [START_REF] Pethybridge | Calibrating process-based marine ecosystem models: An example case using Atlantis[END_REF]) combined with information from a SA like the one presented here.

This analysis could be limited to or weighted by the key groups depending on the scenario investigated (e.g. commercially important or threatened species). This would allow comparing the magnitude of impact on output of model uncertainties and management alternatives, as well as propagating uncertainty in the analysis.

Future directions

While comprehensive, the current SA is still only a first step in understanding the sensitivity of the Atlantis-EEC model to its input parameters. Here we covered the most frequently calibrated growth, mortality, and recruitment parameters, which are not known precisely but for which some insight is available. Other parameters which could be crucial but which are rarely changed in Atlantis models, such as assimilation efficiency or environmental response functions like temperature dependent growth, would be interesting to explore. Future analyses could also take into account how the fishing fleets are parameterized and how the predator-prey diet availability matrix is defined. Earlier work has already demonstrated how species life history traits drive responses to fishing pressure (Kaplan et al.2012). Furthermore, an uncertainty analysis of the diet availability matrix showed great variation in the biomass and catch predicted as well as provided a possible framework for conducting a SA of the diet availability matrix [START_REF] Morzaria-Luna | Diet composition uncertainty determines impacts on fisheries following an oil spill[END_REF]. Finally, the sensitivity to model structure, such as which functional response or recruitment relationship is used, could be important.

We considered the direct outputs of biomass and vertebrate numbers as well as system stability, but future analyses could also include additional outputs like size-at-age for vertebrates, realized diet, or consider the outputs spatially rather than aggregated. Here our aim was two-fold: to gain insight into model functioning and to provide guidance for calibration. Therefore we used biomass and numbers as our outputs of interest. In order to more precisely inform an automated calibration, the sensitivity of the objective function (OF) could also be investigated. Indeed, 1) depending on the formulation of the OF, other parameters than those affecting absolute biomass and numbers may be shown to be influential and 2) it is worth exploring the sensitivity of alternative formulations of the OF beforehand to ensure responsiveness. Automatic calibration has been successfully implemented for other ecosystem models such as OSMOSE [START_REF] Duboz | Application of an evolutionary algorithm to the inverse parameter estimation of an individual-based model[END_REF] and NEMURO [START_REF] Rose | Calibration of the NEMURO nutrient-phytoplankton-zooplankton food web model to a coastal ecosystem: Evaluation of an automated calibration approach[END_REF]), but has not yet been attempted for an Atlantis model. A successful automatic calibration framework for Atlantis models would provide advantages such as reducing the time necessary to calibrate the model and providing an objective common ground for calibrating different implementations of the model. Given the complexity and highly-parameterized nature of Atlantis, substantial uncertainty may remain in the parameters that should be characterized, and a unique set of parameter values may not be obtained [START_REF] Janssen | Calibration of process-oriented models[END_REF].

Furthermore, a sequential calibration approach, like that used with OSMOSE, may be helpful.

Conducting SAs across other Atlantis model implementations would allow better understanding of whether parameter sensitivities are due to structural design of the Atlantis model, locale-specific environmental or trophic network effects, or perhaps even common trophic structures across models. SAs of Atlantis models, including this one, have consistently found plankton growth parameters to be important drivers of biomass across groups [START_REF] Hansen | Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species[END_REF][START_REF] Ortega-Cisneros | An Atlantis model of the southern Benguela upwelling system: Validation, sensitivity analysis and insights into ecosystem functioning[END_REF][START_REF] Sturludottir | End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability[END_REF]. In particular, we recommend the Morris screening method [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF] as well-suited to the complexity and long running time of Atlantis models. It provides the ability to gain information on nonlinear/interaction effects with no linearity assumptions of the model but with the number of simulations required still on the order of a simple OAT analysis [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF], and has been successfully applied to other end-to-end marine ecosystem models [START_REF] Morris | Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos[END_REF]). More and more thorough SAs across a variety of Atlantis models may also allow the simplification of some model processes [START_REF] Fulton | Effect of complexity on marine ecosystem models[END_REF][START_REF] Van Nes | A strategy to improve the contribution of complex simulation models to ecological theory[END_REF].

Tables Table 1: for each group by dividing each parameter's metric value by the maximum for the group.

Guilds have been identified through colors (left hand side) valid both for input parameter (rows) and output biomass (columns). Heat map were realized using BiocManager package [START_REF] Gu | Complex heatmaps reveal patterns and correlations in multidimensional genomic data[END_REF]. 
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  3) and for individual groups (Fig.B.2). Generally seabirds, seals, and especially toothed cetacean parameters as well as those of phytoplankton and zooplankton had the strongest effects (Fig.3), including important effects across many groups(Figs. 4, B.2). While all parameters influenced at least one group's biomass, most groups' biomass was strongly affected by a small subset of parameters (Figs.4, B.2). Recruitment parameters, generally that of the same group, were also important to explain individual vertebrate groups' numbers (Fig. B.3, B.4, Appendix B).
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  , it has generally been neglected for Atlantis models (but see[START_REF] Hansen | Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species[END_REF][START_REF] Kaplan | Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model[END_REF], Ortega-Cisnerosa et al. 2017[START_REF] Sturludottir | End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability[END_REF]) due to computational challenges with long run times and technical challenges with the large number of parameters. We demonstrate the feasibility of a large-

	scale SA on a complex ecosystem model and illustrate a number of ways to accommodate a
	large number of parameters. First, even if computationally feasible, the sheer number of
	parameters in Atlantis means a complete SA on all parameters would be uninterpretable, and
	thus some pre-selection of parameters must take place. In this paper we focused on the
	growth, recruitment, and mortality parameters most frequently adjusted during calibration, but
	nonlinear/interactions. Finally, like Morzaria-Luna et al. (2018), our analysis would not have
	been possible without access to supercomputer resources, and we suggest these resources are
	generally essential to carrying out SAs of complex ecosystem models. Furthermore, we
	suggest that these advances imply that new Atlantis model implementations should
	incorporate SA in the model development, as suggested by modeling guidelines (Cariboni et

other approaches are possible, such as examining the diet matrix

[START_REF] Morzaria-Luna | Diet composition uncertainty determines impacts on fisheries following an oil spill[END_REF]

, choosing parameters to determine where the most improvement could be found through improved data collection

[START_REF] Lebauer | Facilitating feedbacks between field measurements and ecosystem models[END_REF]

, or with an eye to uncertainty analysis to quantify the impact of parameter uncertainty on output variability

[START_REF] Cariboni | The role of sensitivity analysis in ecological modelling[END_REF]

.

Another important technique we utilized was collapsing many-valued age-structured parameters with a function utilizing a hyperparameter that was manipulated in the SA.

Additionally, we moved correlated parameters together, which both reduced the number of parameters to consider in the SA and maintained ecological coherence among the set of parameters. Using a Morris screening SA allowed us to perform a global analysis with relatively few simulations and thus differentiate effects as approximately linear, monotonic, or al. 2007) and which have already started being carried out

[START_REF] Hansen | Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species[END_REF]

).

  list six major categories of uncertainty in ecosystem models: natural variability;

	observation error; inadequate communication among scientists, decision-makers and
	stakeholders; model structural complexity; outcome uncertainty; and unclear management
	objectives. UAs of complex ecosystem models are also relatively rare. UAs can highlight how
	uncertainty in parameter specification translates to uncertainty in model outputs (Morzaria-
	Luna et al. 2018), and cross-model comparisons can give insight into the effects of
	uncertainty in process specification

Parameters included in the SA applied across 35 vertebrate and invertebrate/plankton groups (that is, omitting detritus and bacteria groups), see Table A.4 for a complete list of parameters and their values used in the SA and Table A.1 for a complete list of groups.

  

	Parameter Meaning	Min bound	Max bound	Notes
	C	clearance rate,	-50% baseline	+100% baseline	For vertebrate
		similar to a	value	value	groups, ai controls C
		search volume			across age classes
	Mum	maximum	-50% baseline		
		consumption rate			
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