

Pulsed electric energy and ultrasonication assisted green solvent extraction of bio-molecules from different microalgal species

Rui Zhang, Nikolai Lebovka, Luc Marchal, Eugène Vorobiev, Nabil Grimi

► To cite this version:

Rui Zhang, Nikolai Lebovka, Luc Marchal, Eugène Vorobiev, Nabil Grimi. Pulsed electric energy and ultrasonication assisted green solvent extraction of bio-molecules from different microalgal species. Innovative Food Science & Emerging Technologies / Innovative Food Science and Emerging Technologies , 2020, 62, pp.102358 -. 10.1016/j.ifset.2020.102358 . hal-03490521

HAL Id: hal-03490521 https://hal.science/hal-03490521v1

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S1466856420303040 Manuscript_40d57ec2163427adf80a83abff549ebf

1 Pulsed electric energy and ultrasonication assisted green solvent

2 extraction of bio-molecules from different microalgal species

- 3 Rui Zhang¹, Nikolai Lebovka^{1,2}, Luc Marchal³, Eugène Vorobiev¹, Nabil Grimi^{1*}
- 4
- ¹Sorbonne University, Université de Technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de
- 6 recherche Royallieu CS 60319 60203 Compiègne cedex, France
- ⁷²Institute of Biocolloidal Chemistry named after F. D. Ovcharenko, NAS of Ukraine, 42, blvr.
- 8 Vernadskogo, Kyiv 03142, Ukraine
- 9 ³LUNAM Université, CNRS, GEPEA, Université de Nantes, UMR6144, CRTT, Boulevard de
- 10 l'Université, BP 406, 44602 Saint-Nazaire Cedex, France
- 11
- 12
- 13 *Corresponding Author Address:
- 14 Dr. Nabil Grimi
- 15 Sorbonne University, Université de Technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de
- 16 recherche Royallieu CS 60319 60203 Compiègne cedex, France
- 17 E-mail address: nabil.grimi@utc.fr
- 18

19 Abstract

20	The effects of physical treatments (pulsed electrical fields (PEF), high voltage electrical discharges
21	(HVED) and ultrasonication (US)) on aqueous extraction of carbohydrates and proteins, and ethanolic
22	extraction of chlorophyll a from three microalgal species (Nannochloropsis sp., P. tricornutum and P.
23	kessleri) have been studied. The total energy consumption of 530 kJ/kg suspension was applied for each
24	treatment. For studied species, HVED was the most effective for extraction of carbohydrates, while US
25	was the most effective for extraction of proteins and chlorophyll a. The observed differences for studied
26	species can reflect the more fragile cell wall structure for P. tricornutum as compared with
27	Nannochloropsis sp. or P. kessleri. The applied PEE of US treatments along with combinations of
28	aqueous extraction of carbohydrates and proteins, and ethanolic extraction of pigments can be used in
29	future implementations of selective extraction of valuable bio-molecules from microalgae.
30	Keywords: Carbohydrates; Microalgae; Pigments; Proteins; Pulsed electric energy; Ultrasonication
31	

1. Introduction

33	Microalgae are microscopic unicellular organisms capable to covert solar energy to chemical energy
34	via photosynthesis (Hosikian, Lim, Halim, & Danquah, 2010) and they have the advantage of capturing
35	CO2 from the environment and combustion processes, thereby reducing greenhouse gases (Gerde,
36	Montalbo-Lomboy, Yao, Grewell, & Wang, 2012). Microalgae can accumulate large amounts of
37	metabolites over short periods of time, including carbohydrates, proteins, and lipids, as well as pigments
38	(Khili, 2013; Sankaran et al., 2018). For example, for cultivation of <i>Chlorella vulgaris</i> under illumination
39	with red light, the highest yield of chlorophyll a was achieved, corresponding to 1.29% of cell biomass
40	(da Silva Ferreira & Sant'Anna, 2017). The chlorophyll content can be also greatly affected by the
41	cultivation temperature, stirring the microalgal culture and content of nutrients (nitrogen, phosphorus) and
42	micronutrients (iron, zinc, manganese, copper)
43	Natural pigments have an important role in the photosynthetic metabolism and pigmentation of
44	microalgae (D'Alessandro & Antoniosi Filho, 2016). The major photosynthetic pigments are represented
45	by chlorophylls, violaxanthin, and vaucheraxanthin in microalgae (Rebolloso-Fuentes, Navarro-Pérez,
46	Garcia-Camacho, Ramos-Miras, & Guil-Guerrero, 2001). Commonly, there exists a directly proportional
47	relationship between content of chlorophyll a and the amount of algal biomass (Henriques, Silva, &
48	Rocha, 2007).
49	However, the extraction of valuable bio-molecules from the microalgae is not an easy task. These
50	bio-molecules are commonly located in the intracellular compartments, protected by the rigid cell walls,
51	and membranes surrounding the cytoplasm and the internal organelles (Postma et al., 2017). For example,
52	the proteins are commonly located in the cell walls, cytoplasms and chloroplasts, whereas the pigments

53	(chlorophylls and some carotenoids) are located in the thylakoids of the chloroplasts. Different techniques
54	to release water-soluble bio-molecules from microalgae by chemical hydrolysis (Duongbia, Chaiwongsar,
55	Chaichana, & Chaiklangmuang, 2019; Lorenzo-Hernando, Ruiz-Vegas, Vega-Alegre, & Bolado-
56	Rodriguez, 2019; Sedighi, Jalili, Darvish, Sadeghi, & Ranaei-Siadat, 2019), bead milling (Garcia, Lo,
57	Eppink, Wijffels, & van den Berg, 2019; Rivera et al., 2018), high pressure homogenization (Pataro et al.,
58	2017), ultrasonication (US) (Gonzalez-Balderas, Velasquez-Orta, Valdez-Vazquez, & Ledesma, 2020;
59	Skorupskaite, Makareviciene, Sendzikiene, & Gumbyte, 2019; Zhang, Grimi, Marchal, Lebovka, &
60	Vorobiev, 2019), pulsed electrical fields (PEF) (Parniakov et al., 2015b, 2015a; Pataro et al., 2017), high
61	voltage electrical discharges (HVED) (Grimi et al., 2014) have been applied. Note that pigments are
62	poorly soluble in water (practically insoluble), the classical organic solvent extraction or supercritical
63	fluid extraction are commonly used for their extraction (Hosikian et al., 2010; Macias-Sánchez et al.,
64	2008). However, as far as we know the PEF and HVED techniques were still rarely applied for assistance
65	of extraction of insoluble pigments.
66	The main aim of this work is to explore the feasibility of physical treatments (PEF, HVED and US)
67	to recovery of water-soluble (proteins and carbohydrates) and -insoluble (chlorophyll a) bio-molecules
68	from different microalgal species. The data were compared for three different microalgal species
69	(Nannochloropsis sp., Phaeodactylum tricornutum (P. tricornutum), and Parachlorella kessleri (P.
70	kessleri)). These species have different cell shapes, structures and biomass composition. The cells of
71	Nannochloropsis sp. (marina green algae), and P. kessleri (freshwater green algae) are approximately
72	spherical (2–4 μ m in diameter), while the cells of <i>P. tricornutum</i> (marina diatom) have the fusiform shape
73	(similar to the lemon-shape) with a length of 20–30 μ m and a diameter of 1-3 μ m (Alhattab,

/4	Kermanshahi-Pour, & Brooks, 2019). Besides, <i>Nannochloropsis</i> sp. and <i>P. kessleri</i> cells have strong and
75	rigid cell walls mainly composed of cellulose and hemicelluloses (Payne & Rippingale, 2000), while the
76	cell walls of <i>P. tricornutum</i> are poor in silica and composed of sulfated glucomannan (Francius, Tesson,
77	Dague, Martin-Jézéquel, & Dufrêne, 2008). The studied microalgal species have different contents of
78	carbohydrates, proteins, total pigments and lipids. For example, the Nannochloropsis sp. contains
79	maximum content of lipids ($\approx 9.0\%$ (wt. DW biomass) as compared with <i>P. tricornutum</i> ($\approx 3.9\%$) and <i>P.</i>
80	<i>kessleri</i> (\approx 3.8%), whereas the <i>P. kessleri</i> contains maximum contents of carbohydrates (\approx 35%) as
81	compared with <i>Nannochloropsis</i> sp. ($\approx 11\%$) and <i>P. tricornutum</i> ($\approx 12.4\%$). The impact of different
82	physical treatments on bio-molecules extractability was discussed at equivalent energy consumption.
83	Attention was also focused on the effects of physical treatments on extraction kinetics of chlorophyll a.

84 **2. Materials and methods**

85 2.1 Chemicals

D-glucose, bovine serum albumin (BSA) and chlorophyll *a* standard ((#C5753) were provided from
Sigma-Aldrich (Saint-Quentin Fallavier, France). Bradford Dye Reagent and ethanol (EtOH, 95%, v/v)
were obtained from Thermo Fisher (Kandel, Germany). Sulfuric acid and phenol were purchased from
VWR (France).

90 2.2 Microalgae

91 Three microalgal species (*Nannochloropsis* sp, *P. tricornutum* and *P. kessleri*) were provided by
92 AlgoSolis (Saint-Nazaire, France). The details of cultivation procedures were described previously for
93 *Nannochloropsis* sp. (Parniakov et al., 2015a), *P. tricornutum* (Guihéneuf et al., 2011) and *P. kessleri*

94 (Zhang et al., 2019).

95	The samples were obtained as frozen microalgal pastes with $\approx 80\%$ (<i>Nannochloropsis</i> sp.), $\approx 70\%$ (<i>P</i>
96	<i>tricornutum</i>) and $\approx 82\%$ (<i>P. kessleri</i>) of moisture content, respectively. The pastes were preliminary
97	washed 3 times using deionized water. Briefly, in the applied washing procedure, the biomass was diluted
98	to 1% dry matter (DM) (hereinafter %), agitated at 150 rpm for 10 min, and centrifuged for 10 min at
99	4600 g. Then supernatant was removed, and the sediment was freeze-dried using a MUT 002A pilot
100	freeze-drier (Cryotec, France) for 64 h at -20 °C. The composition of the biomass was determined
101	according to the previously described methods (Macias-Sánchez et al., 2008; Phelippe, Gonccalves,
102	Thouand, Cogne, & Laroche, 2019; Ritchie, 2006). The carbohydrate content was determined after two
103	passes in high pressure disrupter (CellD, Constant System) at 270 MPa and centrifugation at 3,000g for 5
104	minutes. The protein concentration was determined in the total high-pressure lysate. The total pigment
105	content was measured after centrifugation of intact cells and methanol extraction. The analysis' data gave
106	that <i>Nannochloropsis</i> sp. contains $\approx 11\%$ (wt. DW biomass) of carbohydrates, $\approx 43.7\%$ of proteins, \approx
107	2.0% of total pigments and \approx 9.0% of lipids; <i>P. tricornutum</i> contains \approx 12.4% of carbohydrates, \approx 28.7%
108	of proteins, $\approx 1.0\%$ of total pigments and $\approx 3.9\%$ of lipids; <i>P. kessleri</i> contains $\approx 35\%$ of carbohydrates, \approx
109	44% of proteins, $\approx 4.0\%$ of total pigments and $\approx 3.8\%$ of lipids.

110 2.3 Extraction procedures

Fig. 1 presents the schema of the applied experimental procedures. The applied procedure include cell disintegration by physical treatments (leaching in pure water), and common extraction using green solvent for recovery of chlorophyll *a*. In control experiments, untreated (U) suspensions were also analyzed.

115 <u>2.3.1 Physical treatments</u>

116	For physical treatments, the suspensions with the biomass concentrations of 1% were prepared. All
117	treatments (PEF, HVED and US) were performed using 250 g of the suspension.
118	Treatments by pulsed electric energy (PEF or HVED) were done using a high voltage pulsed power
119	generator (40 kV-10 kA, Basis, Saint-Quentin, France) in cylindrical batch treatment chamber with
120	different types of electrodes (Fig. 2a). The PEF treatment was done between two parallel plate electrodes.
121	The distance between the electrodes was fixed at 2 cm to produce the electric field strength of $E = 20$
122	kV/cm. The HVED treatment was performed using electrodes in needle-plate geometry. The distance
123	between the stainless steel needle and the grounded plate electrodes was fixed at 1 cm, the corresponding
124	electric field strength of $E = 40$ kV/cm. The protocols of pulsed electric energy (PEF or HVED)
125	treatments comprised application of $n = 600$ successive pulses with a frequency of 0.5 Hz, the total
126	electrical treatment duration was $t_e = 0.01$ -6 ms. The exponential decay of voltage $U \propto \exp(-t/t_p)$ with
127	effective decay time $t_p \approx 10 \pm 0.1 \mu\text{s}$ were observed for applied modes of treatment (Fig. 2b).
128	Specific energy consumption, W (J/kg suspension), was calculated for PEF and HVED treatment as
129	following formula (Yu, Gouyo, Grimi, Bals, & Vorobiev, 2016):
	$W = (C \times U^2 \times n)/2m \tag{1}$
130	where C is the capacitance of the capacitor; U is the voltage of the generator; n is number of pulses; m is
131	the mass of 1% suspension (kg).
132	Treatment by US, a UP-400S ultrasound processor (Hielscher GmbH, Germany) with a constant
133	frequency of 24 kHz was applied. The ultrasound probe (diameter: 14 mm, length: 100 mm) was plunged
134	into a beaker, containing of suspension. The total treatment time of US was $t_u = 660$ s, and the amplitude
135	was fixed at 50%, which corresponded to the power, $W_u = 200$ W.

136 Specific energy consumption, *W* (J/kg suspension), was calculated for US treatment as following

137 formula:

$$E = W_u \times t_u / m \tag{2}$$

- 138 where *m* is the mass of 1% suspension (kg).
- For all treatments (PEF, HVED and US), the samples were cooled in order to prevent overheating,
 the temperature was maintained approximately at ambient temperature, and elevation of temperature not
- 141 exceeded 5 °C.
- 142 <u>2.3.2 Solvent extraction</u>
- 143 After physical treatments, the microalgal cells were dried by vacuum in a vacuum chamber (Cole-
- 144 Parmer, USA) at pressure of 30 kPa, and temperature of 50 °C for 24 h. Then dried biomass was mixed
- 145 with EtOH (95%, v/v) with solid-liquid ratio of 1: 20 (w/w) and solvent extraction under the stirring at
- 146 150 rpm was done for the time of $t = 1440 \min (24 \text{ h})$. To avoid any evaporation, the extraction cells were
- 147 covered with aluminum foil during the solvent extraction process. The pigments content was measured
- 148 continuously during extraction.
- 149 2.4 Characterization
- 150 The supernatant was collected by centrifugation using a MiniSpin Plus Rotor F-45-12-11
- 151 (Eppendorf, France) at 14,100 g for 10 min, and then used for analysis. All the characterization
- 152 measurements were done at ambient temperature.

153 <u>2.4.1 Carbohydrates analysis</u>

154 The carbohydrates content, C_c , was determined by phenol-sulfuric acid method (Dubois, Gilles,

- 155 Hamilton, Rebers, & Smith, 1956). D-glucose was used as a standard. Briefly, 1 mL of supernatant was
- 156 mixed with 0.1 mL of phenol solution (5%, w/w) and 5 mL of concentrated sulfuric acid. The mixture
- 157 was stored at 20 °C for 20 min. The absorbance was measured at the wavelength λ = 490 nm using a
- 158 UV/VIS spectrophotometer Spectronic Genesys 20 (Thermo Electron Corporation, MA). The extraction
- 159 yield of carbohydrates, Y_c (%), was calculated by as following formula: $Y_c = C_c / C_c^{max} \times 100$ (3)
- 160 where C_c^{max} the total carbohydrate content in microalgae.

161 <u>2.4.2 Proteins analysis</u>

162	The proteins content, C_p , was determined using the method of Bradford (Bradford, 1976). BSA was
163	used as a standard. Briefly, 0.1 mL of supernatant was mixed with 1 mL of Bradford Dye Reagent. The
164	mixture was vortex for 10 s and kept for 5 min. The absorbance was measured at the wavelength $\lambda = 595$
165	nm using a UV/VIS spectrophotometer Spectronic Genesys 20 (Thermo Electron Corporation, MA). The
166	extraction yield of proteins, Y_p (%), was calculated by as following formula:
	$Y_p = C_p / C_p^{max} \times 100 \tag{4}$

167 where C_p^{max} the total proteins content in microalgae.

168 <u>2.4.3 Pigments analysis</u>

- 169 Absorption spectra of supernatants (diluted if required) obtained from solvent extraction procedure
- 170 was measured in the wavelength range of 300-900 nm against the blank (with the precision of ± 1 nm)
- 171 (See, Supplementary materials Fig. S1). The maximum absorbance of chlorophyll *a* of all microalgal
- species was at the wavelength of $\lambda = 660$ nm. The content of chlorophyll *a*, $C_{chl a}$, in the extracts were
- estimated by chlorophyll *a* calibration curve ($A=87.86\times C+0.0055$, $R^2=0.9998$).

174 2.5 Statistical analysis

175 Each experiment was repeated at least three times. Data are expressed as mean ± standard deviation.

176 The error bars, presented on the figures, correspond to the standard deviations.

177 **3. Results and discussion**

- 178 3.1 Extractability of carbohydrates and proteins
- 179 The cell disintegration efficiency of tested physical treatments at equivalent energy consumption
- 180 were evaluated by monitoring the extractability of water-soluble carbohydrates (small-size molecules)
- 181 and proteins (large-size molecules), respectively. Fig. 3 presents the extraction yields of carbohydrates, Y_c ,
- and proteins, Y_p , in the supernatants, obtained from three microalgal species after application of different
- 183 physical treatments. The total energy consumption for all treatments was the same, $W \approx 530$ kJ/kg
- 184 suspension. At this energy consumption, the pulsed electric energy treatments were sufficient for
- 185 extraction of water-soluble bio-molecules (e.g. proteins) and further increase in W resulted in insignificant

186 supplementary effects (Grimi et al., 2014; Parniakov et al., 2015b).

187 The lowest extraction yields of carbohydrates ($Y_c = 4-11.5\%$) and proteins ($Y_p = 0.1-3.5\%$) were

188 obtained for U samples for each tested specie. The application of physical treatments improved the

189 extraction yields for both carbohydrates and proteins, as compared to the U samples. The higher

190 extraction yields for carbohydrates as compare to that for proteins were observed. The highest extraction

191 yield of carbohydrates ($Y_c \approx 37.5 \pm 1.8$ % using the HVED treatment) was obtained for *Nannochloropsis*

- sp., while the highest extraction yield of proteins ($Y_p \approx 10.1 \pm 0.3$ % using the US treatment) was obtained
- 193 for *P. tricornutum*. For all tested species, the extraction yields of carbohydrates and proteins can be

194	arranged in the rows of U < PEF < US < HVED and U < PEF < HVED < US, respectively. Therefore, the
195	HVED treatment was the most efficient technique to extract carbohydrates, while US treatment was the
196	most efficient technique to extract proteins. However, at once the PEF treatment obtained the smallest
197	extraction efficiencies of water-soluble bio-molecules for all tested species. This reflects that the
198	electroporation mechanism itself was not very effective for extraction of intracellular molecules as
199	compared with efficiency of HVED and US treatments (Pataro et al., 2017). The observed data are in
200	agreement with previously published results (Grimi et al., 2014). The poor yield of proteins for PEE and
201	US assisted extractions can be explained by the following arguments. The microalgal proteins are located
202	within different parts of the cells, including the cell wall, cytoplasm, chloroplast and all organelles inside
203	the barrier of the cell wall (Safi et al., 2015). The "gentle" treatments, like PEE or US, can partially assist
204	a release of the proteins present in cytoplasm or inside weak organelles. The complete extraction proteins
205	require more serious disintegration of cells with applications of stronger techniques like bead milling or
206	high pressure homogenization (Pataro et al., 2017). However, application of severe disruption techniques
207	may induce significant to biological macromolecules (Günerken et al., 2015).
208	Among the tested species, P. tricornutum demonstrated the highest extraction yields of
209	carbohydrates and proteins, while the lowest extraction yields were observed for P. kessleri. This possibly
210	reflects the differences in resistance of cell walls against physical damages for these species. For PEF and
211	US treatments, the values of Y_c and Y_p were arranged the row <i>P. tricornutum</i> > <i>Nannochloropsis</i> sp. > <i>P.</i>
212	kessleri, whereas for HVED treatment they were arranged the row Nannochloropsis sp. > P.
213	tricornutum > P. kessleri for carbohydrates and in the row P. tricornutum > P. kessleri > Nannochloropsis
214	sp. for proteins. This extraction sensibility for different physical treatment techniques can reflect that the

- 215 differences in cell structure (e.g. size, shape, cell-wall structure and location of bio-molecules) in the
- tested microalgal species.
- 217 3.2 Extraction kinetic of pigments
- **Fig. 4** presents kinetics of chlorophyll *a*, C_{ch} , extraction in the EtOH (95%, v/v) for different
- 219 microalgae with application of different physical pretreatments. The value of C_{ch} increased with the
- increase of extraction time, t. For all species, at relatively long time ($t \approx 24$ h), the US treatment was most
- 221 efficient. HVED resulted in the approximately extraction efficiency as compared with PEF. The similar
- tendencies were observed for all times of extraction for *P. tricornutum*, and *P. kessleri*, but for
- 223 Nannochloropsis sp. at t < 700 min, the extraction efficiencies for pulsed electric energy treatments were
- 224 more effective than for US treatment (**Fig. 4**).
- 225 The analysis of the experimental data showed that the extraction behavior of chlorophyll *a* after PEF,
- 226 HVED, and US treatments followed the different kinetics. The extraction assisted by pulsed electric
- 227 energy (PEF and HVED) can be fitted using the first-order exponential equation: $C_{ch} = C_{ch}^{m} [1 - \exp((-t/\tau))]$ (5)
- where C_{ch} is the content of chlorophyll *a* in the course of extraction; C_{ch}^{m} is the maximum value of C_{ch} for

long extraction times; t is the time of extraction, and τ is the effective extraction time.

230 The extraction of chlorophyll *a* assisted by US occurred in two stages and can be fitted by the

231 following two-exponential law:

$$C_{ch} = C_{ch}^{m} [C_{f}^{*}(1 - \exp(-t/\tau_{f})) + (1 - C_{f}^{*})(1 - \exp(-t/\tau))]$$
(6)

- where τ_f and τ correspond to the effective extraction times for the first (fast) and second (slow) stages,
- respectively. Here, $C_f^* = C_f/C_{ch}{}^m$, C_f is the maximum concentration extracted during the first (fast) stage.

234	The dashed lines in the Fig. 4 correspond to the fittings of the experimental data (symbols) using
235	one- exponential (Eq. (5) for PEE) and two-exponential (Eq. (6) for US) laws. In all cases the
236	determination coefficients of fitting were rather high (in the interval $R^2 = 0.96-0.99$).
237	The corresponding parameters evaluated for one-exponential (PEE) and two-exponential (US) laws
238	for different species are presented in Supplementary materials (Table S1). For US assisted extraction the
239	duration of the second (slow) stage was significantly higher of the first one ($\tau > \tau_f$). For <i>Nannochloropsis</i>
240	sp. and <i>P. kessleri</i> the relative fraction of extracted chlorophyll <i>a</i> during the fast stage was rather small
241	$(C_f^*=0.02-0.05)$ and it was $C_f^*=0.52 \pm 0.04$ for <i>P. tricornutum</i> .
242	The obtained data clearly demonstrated the quite different behaviors of extraction kinetic of
243	chlorophyll a with assistance of pulsed electric energy (PEF and HVED) or US treatments. The similar
244	two-exponential behavior was previously observed for aqueous extraction assisted by US fennel tissue
245	(Moubarik, El-Belghiti, & Vorobiev, 2011). The two stages in US assisted extraction can reflect the
246	presence of pigments with different binding inside the cells and to the cell walls of the microalgal species.
247	The first (fast) stage can be attributed to the release of some portion of weakly coupled pigments
248	(possibly coupled with cell walls), while the second (slow) stage can be related with extraction of
249	remained pigments from interior cell organelles. The values of relative concentration extracted during the
250	first (fast) stage, C_1^* , can be the arranged in the rows of <i>P. tricornutum</i> > <i>Nannochloropsis</i> sp. > <i>P.</i>
251	kessleri. This order was in line with the order of extraction efficiencies of carbohydrates and proteins by
252	US treatment. It possibly reflects the more fragile cell wall structure of <i>P. tricornutum</i> as compared to that
253	for Nannochloropsis sp. or P. kessleri. The cell walls of P. tricornutum are composed of sulfated
254	glucomannan (Francius et al., 2008) and they have more fragile structure as compare with cell walls of

255 Nannochloropsis sp. and P. kessleri mainly composed of cellulose and hemicelluloses (Payne &

256 Rippingale, 2000).

257	To compare the efficiencies of extraction for untreated (U), physically treated (by PEF, HVED, and
258	US) samples, the ratios $F = C_{ch}^{m}/C_{ch}^{max}$ (C_{ch}^{max} is the total chlorophyll <i>a</i> content in microalgae) have been
259	evaluated. Fig. 5 presents the values of F for studied microalgal species.
260	For all studied microalgal species, the values of F can be arranged in the same row as for extraction
261	yields of proteins (U < PEF < HVED < US). The highest extraction efficiency (18-40%) was observed for
262	US assisted extraction. The similar effect of US treatment on extraction of proteins and pigments can
263	reflect formation of protein-pigment complexes. The increased aqueous extraction of proteins
264	supplemented with extraction of pigments was previously observed for application of US treatment of
265	microalgal suspension (Parniakov et al., 2015).
266	Note that the highest content of chlorophyll a was observed in the raw P. kessleri, and it was
267	smallest in the raw <i>P. tricornutum</i> (Fig. 5). However, for each tested physical method, the better
268	extraction efficiency was observed from Nannochloropsis sp. as compared with P. tricornutum and P.
269	<i>kessleri</i> . For example, the highest value of $F (\approx 40\%)$ obtained from <i>Nannochloropsis</i> sp. after US
270	pretreatment was almost 2-fold and 2.6-fold higher than those obtained from <i>P. tricornutum</i> and <i>P.</i>
271	kessleri.
272	Fig. 6 compares the extraction time of slow stage, τ , for different microalgal species for untreated
273	(U), and PEF, HVED, and US (slow stage) treated samples. For green microalgae (Nannochloropsis sp.
274	and <i>P. kessleri</i>), the value of τ can be arranged in the row of U < PEF < US < HVED. The similar order

275 was observed for both the values of F (Fig. 5) and τ (Fig. 6). However, for *P. tricornutum*, the more

276	complicated behaviour was observed. Here, the extraction efficiency was highest for US treatment
277	whereas the longest extraction time was observed for PEF treatment. The observed behavior reflect the
278	sensibility of extraction efficiency upon the physical treatment and type of microalgal species.
279	4. Conclusions
280	This study compares the extraction efficiencies of water-soluble (carbohydrates and proteins) and -
281	insoluble (chlorophyll a) bio-molecules assisted by PEF, HVED and US techniques. The extraction
282	efficiency arranged in the rows of U < PEF < US < HVED (for carbohydrates) and U < PEF < HVED <
283	US (for proteins) was observed for all tested microalgal species. PEF treatment demonstrated the smallest
284	efficiency for extraction of bio-molecules. The kinetics of extraction of chlorophyll <i>a</i> in EtOH solution
285	was described using one-exponential (PEF and HVED) and two-exponential (US) equations. Significant
286	differences in extraction behavior were observed for green microalgae (Nannochloropsis sp. and P.
287	kessleri) and diatom (P. tricornutum). For Nannochloropsis sp. and P. kessleri, the US treatment was the
288	most effective for extraction of chlorophyll a, but the longest extraction times were required with
289	application of this technique. The observed differences for studied species can reflect the more fragile cell
290	wall structure for P. tricornutum as compared with Nannochloropsis sp. or P. kessleri.
291	Declaration of competing Interest
292	None.
293	Acknowledgments
294	Rui Zhang would like to acknowledge the financial support of China Scholarship Council for thesis
295	fellowship. The authors would like to thank Mrs. Laurence Lavenant for their technical assistance.
296	15

References

298 299	Alhattab, M., Kermanshahi-Pour, A., & Brooks, M. SL. (2019). Microalgae disruption techniques for product recovery: influence of cell wall composition. <i>Journal of Applied Phycology</i> , 31(1), 61–88.
300	Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of
301	protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
302	D'Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of
303	microalgae: a review. Renewable and Sustainable Energy Reviews, 58, 832-841.
304	Da Silva Ferreira, V., & Sant'Anna, C. (2017). Impact of culture conditions on the chlorophyll content of
305	microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology,
306	<i>33</i> (1), 20.
307	Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. t, & Smith, F. (1956). Colorimetric method for
308	determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
309	Duongbia, N., Chaiwongsar, S., Chaichana, C., & Chaiklangmuang, S. (2019). Acidic hydrolysis
310	performance and hydrolyzed lipid characterizations of wet Spirulina platensis. Biomass Conversion
311	and Biorefinery, 9(2), 305–319.
312	Francius, G., Tesson, B., Dague, E., Martin-Jézéquel, V., & Dufrêne, Y. F. (2008). Nanostructure and
313	nanomechanics of live Phaeodactylum tricornutum morphotypes. Environmental Microbiology,
314	10(5), 1344–1356.
315	Garcia, E. S., Lo, C., Eppink, M. H. M., Wijffels, R. H., & van den Berg, C. (2019). Understanding mild
316	cell disintegration of microalgae in bead mills for the release of biomolecules. Chemical
317	Engineering Science, 203, 380–390.
318	Gerde, J. A., Montalbo-Lomboy, M., Yao, L., Grewell, D., & Wang, T. (2012). Evaluation of microalgae
319	cell disruption by ultrasonic treatment. Bioresource Technology, 125, 175-181.
320	Gonzalez-Balderas, R. M., Velasquez-Orta, S. B., Valdez-Vazquez, I., & Ledesma, M. T. O. (2020).
321	Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae
322	Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852.
323	Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N. I., & Vorobiev, E. (2014). Selective
324	extraction from microalgae Nannochloropsis sp. using different methods of cell disruption.
325	Bioresource Technology, 153, 254–259.

326 327	Günerken, E., D'Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. <i>Biotechnology Advances</i> , <i>33</i> (2), 243–260.
328	Guihéneuf, F., Leu, S., Zarka, A., Khozin-Goldberg, I., Khalilov, I., & Boussiba, S. (2011). Cloning and
329	molecular characterization of a novel acyl-CoA: diacylglycerol acyltransferase 1-like gene
330	(PtDGAT1) from the diatom Phaeodactylum tricornutum. <i>The FEBS Journal</i> , 278(19), 3651–3666.
331	Henriques, M., Silva, A., & Rocha, J. (2007). Extraction and quantification of pigments from a marine
332 333	microalga: a simple and reproducible method. <i>Communicating Current Research and Educational Topics and Trends in Applied Microbiology Formatex</i> , 2, 586–593.
334	Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: a
335 336	review on the process engineering aspects. <i>International Journal of Chemical Engineering</i> , 2010, 391632 (11 pages).
337	Khili, M. (2013). Characterization of Value Added Proteins and Lipids form Microalgae. Virginia Tech.
338	Lorenzo-Hernando, A., Ruiz-Vegas, J., Vega-Alegre, M., & Bolado-Rodriguez, S. (2019). Recovery of
339	proteins from biomass grown in pig manure microalgae-based treatment plants by alkaline
340	hydrolysis and acidic precipitation. <i>Bioresource Technology</i> , 273, 599-607.
341	Macías-Sánchez, M. D., Mantell Serrano, C., Rodríguez Rodríguez, M., de la Ossa, E., Lubián, L. M., &
342 343	Montero, O. (2008). Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. <i>Journal of Separation Science</i> , <i>31</i> (8), 1352–1362.
344	Moubarik, A., El-Belghiti, K., & Vorobiev, E. (2011). Kinetic model of solute aqueous extraction from
345	Fennel (Foeniculum vulgare) treated by pulsed electric field, electrical discharges and ultrasonic
346	irradiations. Food and Bioproducts Processing, 89(4), 356–361.
347	Parniakov, O., Barba, F. J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., & Vorobiev, E. (2015a).
348 349	Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. <i>Algal Research</i> , 8, 128–134.
350	Parniakov, O., Barba, F. J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., & Vorobiev, E. (2015b).
351	Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae
352	Nannochloropsis spp. using the binary mixture of organic solvents and water. Innovative Food
353	Science & Emerging Technologies, 27, 79–85.
354	Pataro, G., Goettel, M., Straessner, R., Gusbeth, C., Ferrari, G., & Frey, W. (2017). Effect of PEF
355	treatment on extraction of valuable compounds from microalgae C. vulgaris. Chemical Engineering
356	Transactions, 57, 67–72.
357	Payne, M. F., & Rippingale, R. J. (2000). Evaluation of diets for culture of the calanoid copepod
358	Gladioterens imparipes. Aquaculture, 187(1-2), 85–96.

- Phelippe, M., Gonccalves, O., Thouand, G., Cogne, G., & Laroche, C. (2019). Characterization of the
 polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. *Algal Research*, *38*,
 101426.
- Postma, P. R., Suarez-Garcia, E., Safi, C., Yonathan, K., Olivieri, G., Barbosa, M. J., ... Eppink, M. H. M.
 (2017). Energy efficient bead milling of microalgae: Effect of bead size on disintegration and
 release of proteins and carbohydrates. *Bioresource Technology*, 224, 670–679.
- Rebolloso-Fuentes, M. M., Navarro-Pérez, A., Garc'\ia-Camacho, F., Ramos-Miras, J. J., & Guil Guerrero, J. L. (2001). Biomass nutrient profiles of the microalga Nannochloropsis. *Journal of Agricultural and Food Chemistry*, 49(6), 2966–2972.
- Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol
 and ethanol solvents. *Photosynthesis Research*, 89(1), 27–41.
- Rivera, E. C., Montalescot, V., Viau, M., Drouin, D., Bourseau, P., Frappart, M., ... Couallier, E. (2018).
 Mechanical cell disruption of Parachlorella kessleri microalgae: Impact on lipid fraction
 composition. *Bioresource Technology*, 256, 77–85.
- Safi, C., Frances, C., Ursu, A. V., Laroche, C., Pouzet, C., Vaca-Garcia, C., & Pontalier, P.-Y. (2015).
 Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins
 and pigments in the aqueous phase. *Algal Research*, *8*, 61–68.
- Sankaran, R., Manickam, S., Yap, Y. J., Ling, T. C., Chang, J.-S., & Show, P. L. (2018). Extraction of
 proteins from microalgae using integrated method of sugaring-out assisted liquid biphasic flotation
 (LBF) and ultrasound. *Ultrasonics Sonochemistry*, 48, 231–239.
- Sedighi, M., Jalili, H., Darvish, M., Sadeghi, S., & Ranaei-Siadat, S.-O. (2019). Enzymatic hydrolysis of
 microalgae proteins using serine proteases: A study to characterize kinetic parameters. *Food Chemistry*, 284, 334–339.
- Skorupskaite, V., Makareviciene, V., Sendzikiene, E., & Gumbyte, M. (2019). Microalgae Chlorella sp.
 cell disruption efficiency utilising ultrasonication and ultrahomogenisation methods. *Journal of Applied Phycology*, 1–6.
- Yu, X., Gouyo, T., Grimi, N., Bals, O., & Vorobiev, E. (2016). Pulsed electric field pretreatment of
 rapeseed green biomass (stems) to enhance pressing and extractives recovery. *Bioresource Technology*, 199, 194–201.
- Zhang, R., Grimi, N., Marchal, L., Lebovka, N., & Vorobiev, E. (2019). Effect of ultrasonication, high
 pressure homogenization and their combination on efficiency of extraction of bio-molecules from
 microalgae Parachlorella kessleri. *Algal Research*, 40, 101524.

392 Figure captions

- **Fig. 1** Schema of the applied experimental procedures.
- 394 Fig. 2. Schematic representation of pulsed electric energy (PEF and HVED) treatment chambers (a), and
- 395 pulsed protocols (b) used for treatment of microalgal suspensions.
- **Fig. 3.** The extraction yields of carbohydrates, Y_c , and proteins, Y_p , in the supernatants, obtained from
- 397 untreated (U) and physically (PEF, HVED, US) treated samples for different microalgae species. The total
- energy consumption of physical treatments was the same, $W \approx 530$ kJ/kg suspension.
- 399 Fig. 4. The extraction kinetics of chlorophyll a, C_{ch}, for different microalgal species for physically (PEF,
- 400 HVED, US) treated samples. The dashed lines in the Fig. 4 correspond to the fittings of the experimental
- 401 data (symbols) using one-exponential (Eq. (5) for PEE) and two-exponential (Eq. (6) for US) laws.
- 402 Fig. 5. Maximum extraction efficiency of chlorophyll *a*, *F*, for different microalgal species for untreated
- 403 (U) and physically (PEF, HVED, US) treated samples.
- 404 **Fig. 6**. Effective extraction time, τ , for different microalgal species for untreated (U) and PEF, HVED, US
- 405 (slow stage) treated samples.

a)

Needle to plate geometry

Fig. 2b

Fig. 4

