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A B S T R A C T

In the case of parallel surfaces, such as the oil control ring, no load carrying capacity is generated without
texture. A flow conserving multigrid code is used to solve the hydrodynamic lubrication equation described by
the Reynolds equation. This code is used to investigate the influence of texture geometry (dimples) and its
position along the contact. In particular the behavior of the load carrying capacity according to the texture
position on the central line of the contact is studied. To generate positive load carrying capacity, only partial
texturing must be used. A significant difference can be observed between inlet texturing and outlet texturing. A
multigrid code has been developped that allows a comparison between Dirichlet and periodic results. A com-
parison with equivalent step bearings is made to analyse the load carrying capacity.

1. Introduction

Texturing greatly affects the performance of lubricated contacts in
terms of pressure, load carrying capacity and friction. For parallel
surfaces, it can generate a load carrying capacity by creating the
equivalent of a Raleigh step bearing. Full texturing induces a negative
load carrying capacity, but inlet texture generates a positive one. Hence
the texture parameters (size, density, texture position) have to be
carefully designed in order to optimize the contact performance.

Early research was conducted by Etsion, Kligerman, Halperin,
Brizmer [1–6]. They performed experimental but also analytical in-
vestigations and showed the benefits of surface texturing for the en-
hancement of lubrication and in particular of partial texturing for
parallel surfaces. In Ref. [3] for a simplified model, the distribution of
the local pressure for partial texturing in the inlet and for full texturing
was shown. Tonder [7] introduced the idea that performance im-
provement can be gained by introducing artificial roughness in the
contact inlet by means of micro-structures instead of macro-structures,
inducing low coefficients of friction coexisting with high hydrodynamic
stiffness and damping parameters. In an experimental study, Vladescu
et al. [8] analysed the influence of texturing in reciprocating contacts
for various lubrication regimes. Surface texture just after reversal helps
to build up the film and reduces friction. Texture pockets should en-
tirely lie inside the contact zone. No pocket should be at the reversal
point. An experimental study of Lu et al. [9] for reciprocating sliding
line contacts analysed the effect of surface texturing by square dimples
in various lubrication regimes. A lower friction coefficient was obtained
in the boundary regime, due to the fact that the dimples act as lubricant

reservoirs. They observed that texture at the reversal point can reduce
friction, this observation contradicts [8].

Many 1D analytical or numerical studies have been performed.
Using a 1D model Tomanik [10] has investigated the influence of laser
textured profiles for cylinder bore and rings and particularly for the oil
control ring. Fowell et al. [11] explained the inlet suction phenomenon
on a 1D analytical model. Fowell et al. [12] have used a 1D mass
conserving numerical model to study the influence of the texture
parameters according to the convergence ratio of the two main surfaces
on load support and friction. Pascovci et al. [13] have performed a 1D
analysis without cavitation to optimize the texture parameters for
parallel sliders and made a comparison with Raleigh step bearings.
Rahmani et al. [14] have used an analytical solution of the 1D Reynolds
equation to optimize micro dimple texture for parallel thrust bearings.

The validity of the Reynolds model was discussed in several papers.
Sahlin et al. [15] used a commercial CFD code to solve the Navier-
Stokes system for a single micro-groove on one of 2 parallel surfaces.
For them, fluid inertia is an important factor for the load carrying ca-
pacity and they have shown that for deep and wide grooves a vortex
occurs that limits the increase in load carrying capacity. In their sequel,
Menon et al. [16] also think that fluid advection is a major factor for
generating load carrying capacity. In both works, cavitation was not
considered. They tend to show that the Reynolds model is not adequate
to study these problems. However, in Ref. [17], Dobrica and Fillon have
studied the range of validity of the Reynolds equation also neglecting
cavitation. They conclude that the Reynolds number and the dimple
aspect ratio (dimple depth/dimple width) must be sufficiently small but
nevertheless in a range that covers most useful cases.
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Non mass-conserving models underestimate the cavitation area
leading to poor estimates of the pressure as explained by Ausas et al.,
[18]. Ausas et al. [19] proposed a finite volume implementation of the
Elrod-Adams model.

To study cavitation in dimples, Qiu and Khonsari [20] developped a
mass-conservative cavitation multigrid algorithm based on the work by
Vijayaraghavan and Keith [21]. Bayada, Martin and Vazquez [22] de-
velopped a mass-conserving algorithm using homogenization techni-
ques. Using the pressure and the void fraction, Giacoponi et al. [23]
built a mass-conserving complementary formulation of the 1D cavita-
tion problem. Bertocchi et al. [24] have extended it to 2D domains and
for compressible, piezoviscous and non-Newtonian fluids and used fi-
nite element methods to numerically solve the problem. An im-
plementation of a finite volume method derived from the −p θ Elrod-
Adams cavitation model [25,26] was proposed by Profito et al. [27].
Woloszynski, Podsiadlo and Stachowiak [28] have reformulated the
complementary constraint on = ≥ ≥p θ p θ. 0, 0, 0 by a continuous
differentiable system =F p θ( , ) 0 to which Newton's method can be
efficiently applied. Biboulet [29] has successfully reduced the storage
requirements and improved robustness through the use of a multigrid
strategy.

Using a mass-conserving algorithm, Dobrica et al. [30] have studied
the influence of full and partial texturing for parallel and plane inclined
sliders, verifying in particular the benefit of inlet partial texturing and
the importance of the cavitation phenomenon to generate load carrying
capacity in parallel or nearly parallel structures. Cupillard et al. [31,32]
used the full Navier-Stokes equation with a multi-phase flow cavitation
model to study the performance of a dimple textured journal bearing
and analyse the pressure buildup mechanism. In Ref. [33], Tala-Ighil,
Fillon and Maspeyrot have analysed various texture configurations on
the performance of a journal bearing. Shen and Khonsari ([34–37])
have numerically and experimentally studied parallel textured surfaces.
For macroscopic dimples,the influence of the cavitation pressure in
steady state lubrication can experimentally be significantly lower than
the ambient pressure. Its value can influence simulation results. In the
case of macroscopic dimples, the influence of the size and shape of the
dimples on the load carrying capacity was investigated. They tried to
optimize the texture shape for parallel surfaces. Gherca et al. [38–40]
have recently developed a mass-conserving algorithm to study the in-
fluence of surface texturing in steady-state but also transient hydro-
dynamic lubrication of parallel sliders.

In this paper, a multigrid flow-conserving algorithm based on
Alcouffe's paper [41] and on the Elrod and Adams [25,26] model is
built. It does not show full multigrid efficiency. This is probably due to
the discontinuity of the Poiseuille and Couette flow which were not well
accounted for when the pressure builds up again. However, the code
converges sufficiently fast and is flow conserving. It can therefore be
used to study and discuss dimple textured parallel surfaces, even with
deep dimples.

2. Problem formulation and algorithm

2.1. Notations

The following parameters are used.

a Dimple depth [m]

d Distance between dimples [m]
h Geometry height [m]
hoil Film thickness [m]
h0 Clearance [m]
p Pressure[Pa]
r Dimple radius[m]
pamb Ambient pressure
x Coordinate in direction of sliding [m]
y Coordinate perpendicular to direction of sliding [m]

w Load carrying capacity[N]
η Fluid viscosity [Pa.s]
ρ Fluid density [kg/m3]

2.2. Mass complementary formulation

The hydrodynamic lubrication of the piston ring-cylinder liner
contact can be described by the Reynolds equation. According to Elrod,
because of cavitation and in order to have a mass conserving algorithm,
the following complementary problem is solved:
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with

> = = < <p p θ p p θ( and 1) or ( and 0 1)cav cav (2)

Where p is the hydrodynamic pressure, h, the geometry, um the mean
velocity. The lubricant density, ρ and the viscosity, η can be considered
constant in the studied regime. Considering that p in equation (1) is the
difference between the pressure and the cavitation pressure, pcav, pcav is
set to 0 in equation (2). This problem will be solved on a rectangle Ω.
The difference between the ambient pressure and the cavitation pres-
sure is denoted is denoted pamb. Here the generated pressures are not
very high because the considered surfaces are mainly parallel. There-
fore the difference between the ambient pressure and the cavitation
pressure is significant. No pressure would be generated if the cavitation
pressure and the ambient pressure were identical. The pressure would
not be able to decrease when entering the dimple and no extra oil
would flow inside the dimple. In the cavitated area the fluid becomes a
mixture of liquid, vapor and gas and θρ can be viewed as the lubricant
density.Here we prefer to consider the variable =h θhoil , that re-
presents the fluid level or an equivalent of the fluid level in the whole
domain = − × −x x y yΩ [ , ] [ , ]0 0 0 0 . Hence =h hoil in the pressurized
zones and lies between 0 and h elsewhere. In this paper only the sta-
tionary case is considered and therefore, we solve the following pro-
blem:
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with

> = = < <p h h p h h( 0 and ) or ( 0 and 0 )oil oil (4a)

= ∂p p on Ωamb (4b)

Two kinds of boundary conditions are considered:

• Dirichlet conditions: the pressure is set to pamb, the ambient pres-
sure, on the boundaries of the domain.

• Periodic conditions: the pressure and the geometry are periodic in
the y-direction that is perpendicular to the sliding direction, while
the pressure is pamb on the x-boundaries of the domain.

In what follows the fluid will be considered to flow between two
parallel surfaces of constant gap h0. The stationary surface will be in-
dented by circular dimples of radius r and depth a. For a single dimple,
the cross section of the two surfaces by a plane passing through the
middle of the dimple is sketched in Fig. 1. The geometry h is defined as
follows:

= +h x y h ϕ x y( , ) ( , )0
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= ⎛
⎝

+ ⎛
⎝

− + − ⎞
⎠

⎞
⎠

ϕ x y a π
r

x x y y( , )
2

1 cos ( ) ( )i i
2 2

if there is a dimple of depth a centered at x y( , )i i and if
− + − ≤x x y y r( ) ( )i i

2 2 2 and =ϕ x y( , ) 0 otherwise.
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2.3. Dimensionless equations

Upper letters are used for the associated dimensionless parameters:
The lengths in directions orthogonal to the surfaces are made di-
mensionless using h0. In the x and y directions, a reference length λ is
used. It could be =λ x0 or =λ r . For the pressure and the load

=p ηu λ
h0

12 m

0
2 and =w p λ0 0

2 are respectively used.

=A a h/ 0Dimensionless dimple depth
=D d λ/ Dimensionless distance dimples
=H h h/ 0Dimensionless geometry height

=Hoil hoil h/ 0Dimensionless film thickness
=P p p/ 0Dimensionless pressure
=R r λ/ Dimensionless dimple radius
=X x λ/ Dimensionless coordinate in direction of sliding
=Y y λ/ Dimensionless coordinate perpendicular to direction of

sliding
=LCC w w/ 0Dimensionless load carrying capacity

With these dimensionless variables the dimensionless Reynolds
equation reads:
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with the following dimensionless complementary and boundary con-
ditions:

> = = < <P H H P H H( 0 and ) or ( 0 and 0 )oil oil (6a)
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if there is a dimple of depth A centered at X Y( , )i i and if
− + − ≤X X Y Y R( ) ( )i i

2 2 2 and =X YΦ( , ) 0 otherwise.

2.4. Algorithm

A multigrid code using Alcouffe et al. ideas [41] was adapted to
have flow conservation. A volume discretization is still used to dis-
cretize the problem and the residual represents the flow balance
through a cell centered at the node i j( , ) where the pressure is eval-
uated. To eliminate the residual it is possible to act on the pressure or
on the equivalent oil level. This is done in agreement with the physics of
the problem for more details see Ref. [42]. This enables one to build a
satisfying mono-grid discretization scheme that correctly describes the

flow behavior through an elementary cell. Afterwards, to properly re-
present the flow behavior through a coarse grid cell made of four fine
grid cells, many difficulties were encountered. When using multigrid
techniques, the problem to be solved is written as

=Lu f .

Here, we have two options.

• Option 1: set =f 0 and the unknown vector u contains P and Hoil.
• Option 2: set = ∂ ∂f Hoil X/ which means that the Couette part of the
flow is put in the right hand side of the equation.

In the first case we need to define coarsening and refining proce-
dures for Hoil as well as for P while in the second case this is not needed
but it will be necessary to update the right hand side f on the finest grid
of each V-cycle each time the value of Hoil is changed. The coarsening
routines for f should induce the correct right-hand side for the coarse
grid equations.

In both cases an interpolation of Hoil will be needed if FMG (full
multigrid see Refs. [43,44]) is used. Option 2 is the simplest one and
was the one we finally chose. In that case it was also decided not to
change the free boundaries on the coarser grids. Henceforth, the coarse
grid relaxation will consist in only changing the pressure in the pres-
surized zone.

3. Computing time

The convergence is not the expected convergence of a multigrid
process. Convergence difficulties are located at the film reformation
boundary. While the frontiers of the cavitation zone stabilized rather
rapidly, the flow equilibrium is slowly reached at the film reformation
boundary. The multigrid routines are efficient in solving the pressure in
the non cavitated zone but the equation changes a little especially at the
film reformation boundary on the fine grid and this slows down the
process. However the obtained convergence is sufficiently robust and
fast and allows us to study the influence of dimples in the hydro-
dynamical lubrication of parallel surfaces. Table 1 shows the obtained
residual and computing time for a single dimple of radius 1 and depth
1 at the center of a square domain = − × −Ω [ 4,4] [ 4,4] for various values
of the ambient pressure Pamb with Dirichlet conditions for a 10242 grid.
Table 2 shows the obtained residual and computing time for a single
dimple of radius 1 at the center of a square domain = − × −Ω [ 4,4] [ 4,4]
for various depths with =P 0.01amb and Dirichlet conditions for a 10242

grid. It takes about 40min. Afterwards most computations will be done
using a 6402 grid that will ensure in each considered case that there are
enough points to properly describe the dimple geometry. The com-
puting time will then be around 10min to get a very small residual. In
the periodic case, for some texture patterns, it is also possible to work
on a domain that is much smaller in the Y-direction (see 7.2) and this
will greatly diminish the calculation time. It seems that the cavitation
boundary is rapidly found but then, especially at film reformation, the
oil film level and henceforth the pressure distribution are slow to
converge. In Fig. 2, the dimple and the cavitation zone obtained for
various values of Pamb are shown. The convergence seems to depend on
the height of the jump for the oil film when it reforms. It also corre-
sponds to the proximity of the frontier at film reformation with the

Fig. 1. Geometry: cross section through the middle of a dimple.

Table 1
Computing time, average residual (res) and load carrying capacity (LCC) for a
10242 grid on − × −[ 4,4] [ 4,4], single dimple of radius 1 and depth 1 at the center.

Pamb 0.1 0.05 0.01 0.005 0.001

Time s34 s2180 s2229 s2214 s2297
Res −1.69 10 17 −2.94 10 12 −2.99 10 12 −4.95 10 13 −6.32 10 14

LCC − −2.403 10 13 − −1.108 10 2 − −1.466 10 2 − −9.211 10 3 − −2.397 10 3
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middle of the dimple. Without cavitation (high ambient pressure or
very small or very large depth or small dimple radius), the algorithm
recovers the multigrid efficiency and solution only takes a few seconds.
This is illustrated in Table 1 with =P 0.1amb . In these Tables, LCC stands
for the load carrying capacity and corresponds to the integral of

−P Pamb over the domain. It can be noted that the load carrying ca-
pacity is always negative for a centered dimple. An explanation is
provided in section 5. Table 3 shows the grid convergence of the load
carrying capacity: the LCC has a relative accuracy of 0.1%.

4. Generated pressure and oil film

In this section some figures of the pressure and oil film obtained for
several dimple configurations are shown. In the chosen examples

=P 0.01.amb Fig. 3 shows the results for a single dimple of depth =A 1
and radius =R 1 in the domain = − × −Ω [ 4,4] [ 4,4] whose center is
located at = −X Y( , ) ( 2,0)i i . The geometry is given in Fig. 3(a): the

dimple is located at the center of the first half of the domain. The re-
sulting pressure is given in Fig. 3(c) and (d) respectively in the Dirichlet
and periodic cases. The pressure rapidly decreases towards the cavita-
tion pressure inside the dimple. At the dimple exit which corresponds to
the convergent part of the surfaces, it grows very rapidly to reach its
maximum value. In Fig. 3(b), the equivalent oil level is given for the
Dirichlet case. In the cavitation zone the representation is not adequate
since, in reality, there is a mixture of gas, oil and vapor. We have
decided to represent an equivalent oil level that is to say =Hoil θH
where θ is the filling ratio. The oil flow inside the dimple before cavi-
tation can be viewed. Inside the cavitation zone it remains constant in
the X-direction. At the exit of the dimple, where the film reforms, a
discontinuity can be observed. The full film zone inside the dimple is
narrow around the dimple edges. Fig. 5 shows the geometry, the oil
level and the pressure for a set of nine dimples of depth =A 1 and
radius =R 1 in the domain = − × −Ω [ 10,10] [ 10,10] whose center is
located at = −X Y( , ) ( 2,0)i i . The dimple pattern is also shown in that
figure. In each dimple the pressure shows the same behavior as in a
single dimple but at the exit of the first 2 rows of dimples the pressure
does not reach very high values since rapidly it will decrease towards
cavitation because of the next row of dimples. The maximum pressure is
reached at the exit of the last row of dimples because afterwards no
cavitation occurs. Here the limitation is mainly given by the exit
boundary condition and therefore depends on the distance to the con-
tact exit. Related results can be seen on the oil film. The last row of
dimples is the fullest of the three. The main difference between the
Dirichlet and the periodic case lies in the fact that the pressure does not
reach the ambient pressure on the Y-boundaries enlarging the zone
where the pressure is above the ambient pressure in the case of a dent
or a pattern of dents in the contact inlet or enlarging the zone of
pressure smaller than the ambient pressure in the case of a texture in
the contact outlet. It may be noticed that the cavitated areas are not
significantly different in those 2 cases as shown in Fig. 4. Henceforth it
seems that the distance of the dimple to the boundaries and the
boundary conditions must have a large influence on the load carrying
capacity.

5. Load carrying capacity

5.1. Influence of the textured area on the load carrying capacity

The load carrying capacity is defined as:

∫= −LCC P P dX dY( ) .ambΩ (8)

When the dimples are near the inlet, the load carrying capacity is
positive and then it becomes negative as noticed by many authors.
Considering a single dimple, it may be noted that the pressure will first
decrease. This decrease will be limited by the cavitation pressure. To
conserve the flow, oil must enter the dimple leading to the “inlet suc-
tion” phenomenon. Afterwards, in the convergent part of the dimple,
the pressure will rise again starting from a point determined by the
extra oil inside the dimple and then it will decrease to reach the am-
bient pressure at the contact exit. If the dimple is situated near the
contact entrance, the zone where the pressure is less than the ambient
pressure is limited and if it is located near the exit, the zone where it is
above the ambient pressure is more limited. Besides, in case of cavi-
tation, the pressure is not anti-symmetric with respect to Pamb and if Pmax
denotes the maximum pressure, −P Pmax amb is usually higher than

−P Pamb cav. This is illustrated in Fig. 6 where, on each row, the middle
figure shows the part of the pressure above Pamb while the last one
shows the part of the pressure below the ambient pressure to highlight
the zone where the pressure is less that the ambient pressure. In the last
figure we have plotted − P and− Pamb. Again it may be noted that in the
case of a dent in the inlet, the zone of pressure above Pamb significantly
increases.

Table 2
: Computing time, average residual and LCC for a 10242 grid on − × −[ 4,4] [ 4,4],
single dimple of radius 1 at the center, =P 0.01amb .

Depth 1 0.5 0.2 0.1

Time s2229 s2224 s2215 s2302
Residual −2.99 10 12 −4.25 10 13 −3.98 10 14 −2.00 10 15

LCC − −1.466 10 2 − −1.166 10 2 − −6.807 10 3 − −2.707 10 3

Fig. 2. : Dimple section (black) and cavitation zones for a dimple of radius 1,
depth 1 at the center of = − × −Ω [ 4,4] [ 4,4] for =P 0.001, 0.005, 0.01, 0.05amb in
red, green, blue and pink. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Table 3
: Computing time, average residual and LCC for various level with a 82 coarse
grid on − × −[ 4,4] [ 4,4], single dimple of radius 1 and depth 1 at the center,

=P 0.01amb .

Level 8 7 6 5

Time ss2229 s468 s99 s22
Residual −2.99 10 12 −9.98 10 13 −9.28 10 15 −2.23 10 18

LCC − −1.466 10 2 − −1.468 10 2 − −1.468 10 2 − −1.470 10 2
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If the texture symmetrically covers the domain the generated load
carrying capacity becomes zero in case of no cavitation and negative
otherwise. Hence partial texturing is needed to induce a positive load.
To illustrate this, rows of three dimples of depth 1 spaced by 4 centered
at = − =X Y18, 0i i , then = − =X Y16, 0i i , then = − =X Y14, 0i i , etc
… up to = =X Y18, 0i i where they cover the whole domain

= − × −Ω [ 20,20] [ 20,20] in the X-direction were progressively added
and the generated load was computed. The pressure distribution can be
viewed in Fig. 7. It can be noticed that at the exit of each row the
pressure progressively increases except in the last figure where the
whole range of values in X is covered. The largest pressures are ob-
tained on the last row of dimples when the dimples remain in the first
part of the domain. The load carrying capacity in terms of the number,

N, of dimple rows is shown in Fig. 8. The maximum load carrying ca-
pacity is obtained with 3 rows of dimples in the inlet of the contact.
When adding more rows it rapidly decreases to reach a negative value
when the entire domain is covered. When rows are added at the end of
the contact, there is always a loss in LCC. The variations in LCC are
more limited than when rows are added in the inlet. The behavior of the
maximum pressure is also quite different. Considering the different
behaviors of the load carrying capacity and of the maximum pressure
according to whether the inlet or the outlet is textured (see Figs. 7 and
8, it can be noticed that the loss of load carrying capacity when the
outlet is textured is lower than the gain when the inlet is textured. The
maximum pressure is much higher if the inlet is textured rather than the
outlet and its variations are also less important. For a one-dimensional
simple model, Fowell et al. [11] show that ≈P P L/Δmax amb where L is
the contact length and Δ, the distance of the pocket to the inlet. Here it
seems that a similar trend can be observed. It can be noticed that in the
periodic case these effects are increased due to the larger zone where
the pressure is greater that the ambient pressure. In the periodic case
the maximum LCC is roughly twice the maximum LCC in the Dirichlet
case. The size of the domain in the direction that is perpendicular to the
sliding direction probably plays an important part in this phenomenon.
Besides, in the periodic case the flow remains constant.

5.2. Partial texturing at both ends

Because of the previous remarks, it may be worthwhile for re-
ciprocating contacts to have partial texturing at both ends of the con-
tact. This type of partial texturing for piston rings was experimentally
tested by Ryk and Etsion [45] and Etsion and Sher [46]. Tomanik [10]
also investigated that kind of partial texturing but using a 1D code
without mass-conservation. In 2016, Shen and Khonsari [37] have also
conducted experimental as well as numerical studies with a mass-con-
serving algorithm and for the transient case on the effects of different

Fig. 3. Pressure and oil film generated on − × −[ 4,4] [ 4,4] by a single dimple of depth 1 centered at −( 2,0). (a) Geometry, (b) Film height, (c) Pressure (Dirichlet), (d)
Pressure (periodic).

Fig. 4. Cavitation zone: zone inside the dimple (blue disk), cavitation zone:
Dirichlet (red + green), Periodic green. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)
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positions of pockets (rather patches of micro-dimples) in the inlet and in
the outlet for a flat piston ring. Tala-Ighil, Fillon and Maspeyrot [33]
have also tested various configurations of patches of dimples but for a
hydrodynamic journal bearing. As can be seen in Fig. 9, a positive load
carrying capacity is always generated. Its value is indicated for each
case on the corresponding image of the pressure distribution. For our
example the maximum load carrying capacity is obtained for two rows
of indents at both ends. The maximum pressure is obtained at the exit of
the last row of indents in the inlet. It will reach a sufficiently high value
if the distance between the 2 sets of dimples is large enough and if the
first set of dimples lies sufficiently near the inlet boundary inducing a
total positive load carrying capacity. Fig. 10 shows similar results with
similar conclusions for the periodic case.

5.3. Load carrying capacity in terms of the texture location

The behavior of the load carrying capacity in terms of the position
of the set of dimples along the line =Y 0 is now studied. In Fig. 11, the
results are shown for = − × −Ω [ 10,10] [ 10,10] and for

= − × −Ω [ 20,20] [ 20,20] for a pattern of nine dimples of radius 1, depth
1 and equally spaced by 4. The load carrying capacity becomes negative
when the texture approaches the middle of the contact. A linear be-
havior is observed in the center of the domain although this is less clear
on the smaller domain. In that case, the domain is not large enough to
ensure that no dimple is close to the inlet or the outlet of the contact.
Close to the boundaries and especially near the inlet, the dimple in-
fluence becomes non linear. The maximum pressure and the size of the
zone behind the texture induce the positive part in the load carrying

Fig. 5. Pressure and oil film generated on − × −[ 10,10] [ 10,10] by a pattern of 9 dimples of depth 1 and spaced by =D 4 centered at −( 2,0).(a) Geometry (b) Film
height (Dirichlet) (c) Pressure (Dirichlet), (d) Pressure (periodic) (e) Nine dimple pattern.
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capacity while the cavitation pressure and the size of the zone ahead
the texture determine the negative part.

6. Homogenization

In this section it is shown that the behavior of a pattern of dimples

can be investigated using a single well chosen dimple. Choosing
= − × −Ω [ 10,10] [ 10,10], we tried to replace the previous pattern of nine

dimples by a square dimple. The volume of the chosen dimples (see
equation (7)) of radius R and depth A is given by = −V AR π π( /2 2/ )2 .
We considered a single rectangular dimple of the same volume and the
same center as the nine dimples. We had two obvious choices for that

Fig. 6. : (a, d) Pressure generated on − × −[ 4,4] [ 4,4] by a single dimple of depth 1 centered at −( 2,0). (b, e) Part above the ambient pressure (c, f) Part below the
ambient pressure (Here − P and − Pamb are plotted). First row: Dirichlet case, second row: periodic case.

Fig. 7. Pressure generated on − × −[ 20,20] [ 20,20] as a function of the number of rows of 3 dimples of depth 1 in the inlet or in the outlet. Left: 3 rows in the inlet -
Middle: 10 rows - Right: 3 rows in the outlet. First row: Dirichlet conditions - Second row: periodic conditions.

M.-P. Noutary et al. Tribology International xxx (xxxx) xxx–xxx

7



square: a ×10 10 square corresponding to the smallest square con-
taining all dimples or a ×8 8 square passing through the centers of the
external dimples. Both were tried and results are shown in Fig. 12. The
square of size 10 is the best choice in the inlet while the square of size 8
is better in the outlet. Similar trends as for step bearings are observed
(see Fig. 13).

Another comparison with the results shown in Figs. 7–9 was done by
considering rectangular dimples of the same volume as the dimple
patterns tangent to the external dimples (see 13).

Results can be viewed in Figs. 14–16. Similar behavior can be ob-
served but with a roughly doubled load carrying capacity. Again in the
periodic case, larger load carrying capacity than in the Dirichlet case is
generated. Here too the maximum LCC is roughly doubled (from Di-
richlet to the periodic case) as with the pattern of dimples. The flow and
therefore the load carrying capacity is influenced by the geometry. The
flow behavior depends on the “conductance” values generated by the

geometry. These conductances defined by H3 have been evaluated for
the two geometries, rows of three dimples and equivalent rectangular
dimples. Using conductance rules, the ratio of the additional con-
ductance CR generated by the equivalent rectangular dimple and the
dimples was computed.

=
−

−
CR N

H
H

( )
Equivalent rectangular dimple conductance

Dimple row conductance
0
3

0
3 (9)

With our discretization, the conductance is computed by ∑
∑j

1

i Hi j

1

,
3
.

In the smooth case, it simplifies to H0
3. The values are given in Table 4.

It shows a ratio around 1.8. The other columns of the table show the
values that are obtained by multiplying the LCC for a row of three
dimples and the LCC for the associated rectangular dimple of the same
volume for the periodic case (columns 3 and 4) and for the Dirichlet
case (columns 5 and 6). For a number N of rows between 2 and 5, there

Fig. 8. Load carrying capacity as a function of the number N of rows of three dimples of depth 1 spaced by =D 4 on = − × −Ω [ 20,20] [ 20,20]. In blue the first row is
located at −( 18,0), in red the last row is located at (18,0). (a) Dirichlet - (b) Periodic. (Note the different vertical axes.). (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. Dirichlet case: Pressure generated on − × −[ 20,20] [ 20,20] with N rows of 3 dimples of depth 1 spaced by 4 at both ends, =P 0.01amb .(a) =N 1 (b) =N 2 (c)
=N 3 (d) =N 4.
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Fig. 10. Periodic case: Pressure generated on − × −[ 20,20] [ 20,20] with N rows of 3 dimples of depth 1 spaced by 4 at both ends, =P 0.01amb .(a) =N 1 (b) =N 2 (c)
=N 3 (d) =N 4.

Fig. 11. Load carrying capacity generated by a pattern of nine dimples of depth 1 spaced by 4 as a function of the position of the center of the pattern on the line
=Y 0.(a) and (c) = − × −Ω [ 10,10] [ 10,10] - (b) and (d) = − × −Ω [ 20,20] [ 20,20]. First Row: Dirichlet case - Second row: periodic case.
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is less than 10% difference.

7. Comparison with the behavior of one dimensional step bearing

7.1. Analytical results for a one dimensional step bearing

The 1D geometry and the notations used are described in Fig. 17. In

this case the dimensionless Reynolds equation reads:

∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

=
X

H P
X

H
X

( ) 0oil3
(10)

In Fig. 18, the step bearing is represented in black. The red line
represents the pressure distribution in the case of cavitation. P0 corre-
sponds to Pamb.

In the 1D case analytical formulas for the pressure and the oil film
can easily be found using flow conservation. In case of cavitation and
fully flooded conditions, the following results are obtained:

= − − = ∈
= = = + ∈
= − − = + ∈

= − −

− +

= ∈

P X P X X l H H X X X
P X P H H H P l X X X
P X P X X X X H H A X X X

P X P P X X

X X P

H H X X X

( ) (1 ( )/ ) [ , ]
( ) 0 / [ , ]
( ) ( )/( ) [ , ]

( ) ( )( )

/( )

[ , ]

oil a

cav oil r

max r r oil r

max b

b

oil b

0 0 0 1

0 0
3

0 1

2 0 2

0

2 0

0 2

(12)

with

= +P P L l(1 / )max 0

Fig. 12. Dirichlet case: Load carrying capacity of a square dimple of identical volume as the nine indent pattern (in blue) compared with the load carrying capacity
(in red) of the pattern of nine dimples of depth 1 spaced by 4 on = − × −Ω [ 10,10] [ 10,10], (a) a square dimple of size 10, (b) a square dimple of size 8. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 13. Section of a rectangular dimple equivalent to 4 rows of 3 dimples.

Fig. 14. Pressure generated on − × −[ 20,20] [ 20,20] with an equivalent rectangular dimple of position similar to the indent position of Fig. 7. First row: Dirichlet
conditions - Second row: periodic conditions.
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and

= + + −X X P H A H P l A( ) /( / )r max2 0
3

0
3

0

It may be noted that the maximum pressure does not depend on A,
the step depth. The influence of A results from the position Xr of the
film reformation boundary. Similarly, in the non cavitated case, the
following results are obtained:

= − + − = ∈
= − + − = + ∈
= − + − = ∈

P X P X X l P X X l H H X X X
P X P X X ls P X X ls H H A X X X
P X P X X L P X X L H H X X X

( ) ( )/ ( )/ [ , ]
( ) ( )/ ( )/ [ , ]
( ) ( )/ ( )/ [ , ]

min a oil a

min max oil

max b oil b

0 1 0 1

2 1 0 1 2

0 2 0 2

(14)

with, for =H 10 ,

= − + + +P P ll A l l L A/( ( )(1 ) )min s s0
3

and

= + + + +P P Ll A l l L A/( ( )(1 ) )max s s0
3

In this case, Pmin and Pmax depend on A. There is no cavitation if Pmin
is positive, that is to say if + + + <ll A l l L A P/( ( )(1 ) )s s

3
0. Therefore if

=P Pamb0 is sufficiently large or A sufficiently small or sufficiently large
there is no cavitation. This is also true in the 2D case. These analytical
results can be used to validate our code in Fig. 18, the numerical
pressure (in blue) and the analytical pressure in (red) are represented
together. The two curves superimpose.

An analytical expression of the load carrying capacity can easily be
deduced from the above expression of the pressure. In the cavitated
case when the cavitation is important enough, it can be approximated
by the following expression:

⎜ ⎟⎜ ⎟≈ ⎛
⎝

− − + ⎞
⎠

= ⎛
⎝

− + − −
− −

⎞
⎠

LCC P l l L
l

P X X X X l
X X l2 2

0.5 ( )
0.5s a b

b a s

mil a s
0

2
0

2

(15)

Fig. 15. Pressure generated on − × −[ 20,20] [ 20,20] with an equivalent rectangular dimple of position similar to the indent position of Fig. 9. (a) Dirichlet (b) Periodic.

Fig. 16. Load carrying capacity for equivalent volume rectangular dimple in terms of the number N of associated rows of three dimples of depth 1 spaced by =D 4 on
= − × −Ω [ 20,20] [ 20,20]. In blue the first row is located at −( 18,0), in red the last row is located at (18,0). (a) Dirichlet, (b) Periodic. (Note the different axes.). (For

interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 4
Conductance ratio between equivalent volume rectangular dimple and N rows
of three dimples.

N Conductance ×CR N LCC( ) LCC ×CR N LCC( ) LCC

ratio N Rows equivalent N Rows equivalent

CR N( ) of 3 dimples rectangular
dimples

of 3 dimples rectangular
dimples

Periodic Periodic Dirichlet Dirichlet

1 1.68 15.9 19.3 9.7 11.7
2 1.79 30.3 30.1 16.8 16.5
3 1.81 37.0 35.8 19.2 18.2
4 1.82 37.9 36.0 19.2 17.8
5 1.81 33.7 31.3 17.5 15.8
6 1.80 26.2 22.8 14.7 12.5
7 1.79 17.1 12.4 10.7 7.9
8 1.78 8.3 2.3 6.0 2.2
9 1.77 1.1 − 5.9 1.2 − 3.8
10 1.76 − 2.8 − 10.5 − 1.9 − 8.1

Fig. 17. One dimensional step bearing: in black, geometry and in red pressure
(cavitated case). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

M.-P. Noutary et al. Tribology International xxx (xxxx) xxx–xxx

11



Where Xmil is the position of the middle of the step bearing. It may be
noted that this approximated value does not depend on the step bearing
depth. The curve of the approximated LCC as a function of the position
of the middle of the step and computed values are shown in Fig. 19.
There is a good agreement between them. One also notes a good
agreement between the calculated results and predicted values for the
maximum pressure (see Fig. 20).

7.2. Comparison with two dimensional numerical results for a single dimple
in the periodic case

Numerical 2D calculations were performed for the periodic case to
determine the difference in LCC capacity generated by a row of dents in
the Y-direction and an equivalent rectangular dimple of the same vo-
lume. Because of the periodicity it is sufficient to consider a single

dimple. Four types of dimples where considered: our basic circular
dimple of depth =A 1 of radius =R 1 and rectangular dimples of the
same volume of section =l R2x , =l R R R2 , 2.5 , 3y centered on the
line =Y 0.

The domain Ω on which calculations were performed is
= − × −Ω [ 20,20] [ 2,2]. The final LCC is divided by the domain width for

comparison with the 1D results. Results are shown in Fig. 21.
It can be noted that the 1D model provides a good approximation of

the LCC behavior after the first quarter of the domain. There is an

Fig. 18. Computed 1D pressure (in red) generated by a step bearing of length 4 of depth 0.5 located at the center of the contact together with the analytical pressure
(in blue) in = −Ω [ 20,20]. (a) Cavitated case =P 0.01amb , (b) Non cavitated case =P 0.3amb . (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 19. Computed 1D load carrying capacity (left, blue dots) and maximum pressure (right, blue dots), generated by a step bearing of length 4 of depth 0.5 as a
function of the position of its middle point along the contact together with the analytical approximated functions (red curve) on = −Ω [ 20,20] in the cavitated case for

=P 0.01amb . (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 20. Schematic view of the step bearing, and the section of the circular
dimple of radius R and rectangular dimples of sides lx and ly on

= ×X X Y YΩ [ , ] [ , ]a b a b .

Fig. 21. On = − × −Ω [ 20,20] [ 2,2] in the cavitated case for =P 0.01amb and
=R 1, computed load carrying capacity for a circular dimple of radius =R 1,

depth =A 1 (red dots) together with the LCC generated by a step bearing of size
= =l R l2 , 4x y (black dots), rectangular dimples of sizes =l R2x and
=l R R R2 , 2.5 , 3y (pink, green and blue dots) of the same volume with the

analytical solution (black curve) as a function of the position of its middle point
along the contact. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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asymptotic line corresponding to the position of Xmil for which the
dimple starts to completely lie in the contact. Before this position, the
analytical approximated value is not valid. The approximation is much
better with rectangular dimples and of course also better when they get
larger in the Y-direction becoming closer to the 1D case. The geometry
of the dimple seems to affect the LCC mostly in the contact inlet.

7.3. Dimensional results

For a viscosity =η 0.02 Pa.s, a mean velocity =u 5m m/s, a clear-
ance =h μ1.0 m, a contact width − =x x 0.3b a mm a ring length of
20 cm and dimples of depth =a μ1. m radius =r μ7.5 m, the di-
mensionless pressure is =P p p/ 0 with =p 90 MPa. In this case, using

the dimple radius and the clearance as dimensionless factors, we have,
for =P 0.01amb , − =p p 0.09 MPaamb cav . For a periodic pattern in the y-
direction of period 0.3 mm with N rows of three dents at the inlet and at
the outlet of the contact (see Fig. 10), the obtained dimensionless and
total dimensional load carrying capacity are given in Table 5. For a
periodic pattern in the y-direction of period 0.3 mm with N rows of 10
dents at the inlet and at the outlet of the contact, the obtained di-
mensionless and total dimensional load carrying capacity are given in
Table 6.

8. Conclusion

For parallel surfaces in hydrodynamic lubrication, no pressure can
be generated without a surface texture. A multigrid flow preserving
algorithm is used to analyse the influence of the texture on the load
carrying capacity. Partial texturing with micro dimples can induce
positive pressure when the texture is located in the contact inlet.
However, the loss of pressure generation is less important for the outlet
texture than the gain for the inlet texture. By texturing both contact
ends, a positive load carrying capacity is generated which may be useful
for reciprocating contacts as for the flat ring in the piston ring cylinder
liner contact. Partial texturing generates a pressure distribution similar
to that of a step bearing. This behavior was analysed by comparison
with a rectangular dimple of the same volume as the indent texture
pattern and similar location. Higher LCC is generated by the equivalent
rectangular dimple. This was explained by the influence of the geo-
metry on the conductances. Besides in the periodic case and in the case
of cavitation, the analytical LCC expression for the 1D model for a step
bearing as a function of the position of the texture provides a good
estimate of the load carrying capacity for dimples in the 2 dimensional
case. This can provide a way of designing micro-textures for the flat
ring without further calculations.

Appendix. comparison with literature results

A validation of our code was previously mentioned by comparison with the 1D analytical results in section 7.2.
Our results were also compared with the results obtained by Biboulet and Lubrecht in Ref. [29] with a code based on the Woloszynski, Podsiadlo

and Stachowiak [28] approach. The dimensionless domain Ω is a square − × −[ 10,10] [ 10,10]. They consider a pattern of 25 dents of depth =A 1
spaced by =D 4 and radius =R 1 of center located at Xc on the central line. The comparison was made for =P 0.04amb and = −X 0, 1,1c on a

×1025 1025 grid. It was also tested for a non cavitating case =P 0.4amb and = −X 1c . The dimensionless parameters are the same but [29] computes
the mean value of −P Pamb and henceforth our results have to be divided by the domain area. Results are given in Table 7. Our results and those of
[29] are converged up to machine accuracy. Hence the difference stems from the discretization schemes used. Both are second order accurate but our
scheme has an error that is 3/8 of the error in Ref. [29]. This result is coherent with a grid convergence analysis performed.

Finally, our results were compared with the results obtained by Profito et al. in [27] for a textured sliding bearing. They consider parallel
bearings with the characteristics described in Table 8. The dimples have a parabolic geometry. For the load carrying capacity they compute

∫=W P dX dY .Ω
The stationary bearing is textured with N parallel rows of 10 dimples in the inlet spaced by r4 . This texture will be denoted by × N10 . The results

are shown in Table 9
Our results are calculated up to machine precision on a ×1025 1025 grid. It leads to about 2500 nodes per local dimple cell and 104 nodes per full

dimple cell instead of respectively 900 and 3600 in [27]. We keep a uniform mesh all over the domain even in the non textured area which is not the
case in [27]. This can explain the observed difference which increases with increasing non textured area. However, the difference is smaller than 1%
for the worst case.

Table 5
Load Carrying capacity in the case of partial texturing with patterns of N rows
of three dimples in the inlet and in the outlet of the contact.

N Dimensionless LCC Dimensional total LCC

1 6.12 2.07 N
2 10.38 3.50 N
3 9.35 3.16 N
4 4.22 1.42 N

Table 6
: Load Carrying capacity in the case of partial texturing with patterns of N rows
of ten dimples in the inlet and in the outlet of the contact.

N Dimensionless LCC Dimensional total LCC

1 33.26 11.23 N
2 60.80 20.52 N
3 41.02 13.84 N
4 10.50 3.54 N

Table 7
Comparison with the Biboulet and Lubrecht results in Ref. [29].

Pamb Xc [29] results Present code results

0.04 0 − −1.0458 10 3 − −1.04658 10 3

0.04 − 1 − −16.7097 10 3 − −16.0447 10 3

0.04 1 − −10.1009 10 3 − −10.1116 10 3

0.4 − 1 − −15.2877 10 3 − −15.3012 10 3
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Table 8
Parallel bearings characteristics in Ref. [27].

Bearing length: 20mm

Bearing width: 20mm
Clearance: =h μ40 m
Velocity: 10m/s
Viscosity: =η 10mPa.s
Ambient pressure: 100 kPa
Cavitation pressure: 90 kPa
Dimple radius: =r μ500 m
Dimple depth: =a μ10 m

Table 9
Comparison with the Profito et al. results in Ref. [27].

Texture [27] results Present code results

×10 10 38.91 N 38.95 N
×10 8 41.57 N 41.50 N
×10 6 44.84 N 44.61 N
×10 4 47.06 N 46.71 N
×10 2 48.24 N 47.81 N
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