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A lack-of-fit test for functional regression models is proposed. The test is based on the fact that checking the no-effect of a functional covariate is equivalent to checking the nullity of the conditional expectation of the error term given a sufficiently rich set of projections of that covariate. The idea then is to search the projection that is, in some sense, the least favorable for the null hypothesis. Finally, it remains to perform a nonparametric check of the nullity of the conditional expectation of the residuals of the regression given the selected least favorable projection. For the search of a least favorable projection and the nonparametric check we use a kernel-based approach. As a result, the test statistic is a quadratic form based on univariate kernel smoothing and the asymptotic critical values are given by the standard normal law. The test is able to detect general departures from the model. The error term of the regression could present heteroscedasticity of unknown form. The law of the functional covariate need not be known. The test could be implemented quite easily and performs well in simulations and real data applications.

Introduction

Recently, there has been a large amount of work on functional data analysis. The monographs of [START_REF] Ramsay | Functional Data Analysis[END_REF] and Horváth and Kokoszka (2012) provide a comprehensive landscape of the importance of statistical methods for functional data. See also [START_REF] Wang | Functional Data Analysis[END_REF] for a recent 5 review. Estimation and prediction with functional covariates has received substantial attention: see for example [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF], [START_REF] Cai | Prediction in functional linear regression[END_REF], [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF], [START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF], [START_REF] Yao | Functional quadratic regression[END_REF] and the references therein. The lack-of-fit problem remains less explored, especially general regression model checks against general alternatives.

To illustrate the problem we address in this paper, let L 2 [0, 1] be the space of the square-integrable real-valued functions defined on the unit interval. For any X 1 , X 2 ∈ L 2 [0, 1], let X 1 , X 2 = There is a large literature on regression model checks against nonparametric alternatives when X is a finite-dimension vector, see for instance [START_REF] Härdle | Comparing nonparametric versus parametric regression fits[END_REF], [START_REF] Stute | Nonparametric models checks for regression[END_REF], [START_REF] Hart | Nonparametric smoothing and lack-of-fit tests[END_REF], [START_REF] Horowitz | An adaptive, rate-optimal test of a parametric model against a nonparametric alternative[END_REF], [START_REF] Guerre | Data-driven rate-optimal specification testing in regression models[END_REF]. See González-Manteiga and Crujeiras (2013) for a recent review.

An increasing interest for extending the regression model check approaches to functional data is evidenced lately. Delsol, Ferraty and Vieu (2011) extended the idea of [START_REF] Härdle | Comparing nonparametric versus parametric regression fits[END_REF] to a functional data framework. However, their results seem of little practical use since they are derived under strong assumptions, for instance on the so-called small ball probabilities. Bücher, Dette and Wieczorek (2011) proposed a test based on a stochastic process estimating L 2 -distances between the response and the regression function, but restricted their investigation to the functional linear model. Some more work was done for testing for lack-of-fit in a functional linear model, see [START_REF] Cardot | Testing Hypotheses in the Functional Linear Model[END_REF], Cardot, Goia and Sarda (2004), Hilgert, Mas and Verzelen (2013), or for testing the functional linear model against quadratic alternatives, see [START_REF] Horvàth | A test of significance in functional quadratic regression[END_REF]. Though these approaches could be quite effective in some cases, by construction, they are not designed to detect general departures from the null hypothesis (1.1).

The test we introduce herein is based on the following dimension reduction idea: condition (1.1) is equivalent to the nullity of the conditional expectation of U given a sufficiently rich set of projections of X on elements of norm 1 from finite-dimension subspaces of L 2 [0, 1]. This remark was used by [START_REF] Lavergne | Breaking the curse of dimensionality in nonparametric testing[END_REF] in a finite dimension framework. Patilea, Sánchez-Sellero and Saumard (2016) used a similar dimension reduction idea. Next, the idea is to search in finite-dimension subspaces of L 2 [0, 1] for a least favorable element of norm 1 and to check the nullity of the conditional expectation of U given the scalar product between X and the selected least favorable direction. Our test is able to detect nonparametric alternatives, including polynomial ones. The conditional variance of U given X need not be constant and the expression of this conditional variance need not be known. We do not require the law of the covariate X to be given or to be of a certain type, as for instance Gaussian.

A related approach was considered recently by Cuesta-Albertos et al. (2019).

Extending the approach of [START_REF] Stute | Nonparametric models checks for regression[END_REF], they propose to draw randomly an element of L 2 [0, 1], to project X in the direction of this element and to check the nullity of the conditional expectation of U given this random projection using the functionals of a marked empirical process. With finite samples, the random draw is also realized in finite-dimension subspaces of L 2 [0, 1].

The paper is organized as follows. In section 2 we derive the fundamental lemma for the dimension reduction idea. In section 3 the new test is introduced in a simplified setting where U is observed and the no-effect of X on U is being tested. Our statistic is a quadratic form, based on univariate kernel smoothing, that behaves asymptotically like a standard normal random variable under H 0 . We prove that, under mild assumptions, the induced test is consistent against any type of fixed alternatives and against sequences of directional alternatives approaching the null hypothesis at a suitable rate. Moreover, a wild bootstrap procedure is proposed as a mean to approximate the critical values with finite samples and its asymptotic validity is proved. In section 4 we apply our projection-based approach for nonparametric checks of the functional regression models. For the sake of clarity, we focus on the functional linear model. We still obtain standard normal critical values and consistency against nonparametric alternatives, fixed or approaching the null hypothesis. In section 5 an extensive empirical study with simulated data is reported. Finally, the new test is applied to check the lack-of-fit of the functional linear model and the functional quadratic model for the Tecator data set. Some concluding remarks are gathered in section 6. The assumptions and the main proofs are relegated to the Appendix. The remaining proofs, completed by additional technical proofs and details, and additional simulation results are provided in a Supplementary Material.

Dimension reduction in nonparametric testing

Let R = {φ 1 , φ 2 , • • • } be an arbitrarily fixed orthonormal basis of the function space L 2 [0, 1]. The predictor process X can be then expanded into X(t) = ∞ j=1 X, φ j φ j (t). The idea is to reduce dimension to a fixed positive integer p, so X [p] ∈ L 2 [0, 1] will be the projection of X on the subspace generated by the first p elements of the basis R, that is

X [p] (t) = p j=1
X, φ j φ j (t).

We identify X [p] with the random vector ( X, φ 1 , • • • , X, φ p ) and for any nonrandom vector γ = (γ 1 , • • • , γ p ) we write X, γ = p j=1 γ j X, φ j .

Our approach relies on the following lemma, an extension to Hilbert spacevalued conditioning random variables of Lemma 2.1 of [START_REF] Lavergne | Breaking the curse of dimensionality in nonparametric testing[END_REF] and Theorem 1 in [START_REF] Bierens | A consistent conditional moment test of functional form[END_REF]. This requires some definitions and notations. A set in R p will be called negligible if it has Lebesgue measure zero and is nowhere dense. Let S p = {γ ∈ R p : γ = 1} denote the unit hypersphere in R p . A subset S of S p will be called negligible if the set {bγ : |b| ≤ 1, γ ∈ S} is negligible in R p . For the sake of simplicity, for building the test statistic and deriving the theoretical properties, we could assume, without loss of generality, a mean-zero covariate (predictor), that is E[X(t)] = 0, ∀t ∈ [0, 1], or equivalently E[ X, φ j ] = 0, ∀j ≥ 1. Let • L 2 denote the norm associated with the scalar

product in L 2 [0, 1]. Lemma 2.1. Let X ∈ L 2 [0, 1] and U ∈ R be random variables. Assume that E|U | < ∞.
(A) The following statements are equivalent:

1. E(U | X) = 0 a.s.

for any integer

p ≥ 1, E(U | X [p] ) = 0 a.s. 3. for any integer p ≥ 1, E(U | X, γ ) = 0 a.s. ∀γ ∈ S p .
(B) Suppose in addition that there exists some s > 0 such that

E(|U | exp{s X L 2 }) < ∞.
(2.1)

If P[E(U | X) = 0] < 1,
then there exists a positive integer p 0 ≥ 1 such that for any integer p > p 0 , the set {γ ∈ S p : E(U | X, γ ) = 0 a.s. } is negligible.

Point (A) is a cornerstone for proving the behavior of our test under the null and the alternative hypothesis. García-Portugués, González-Manteiga and Febrero-Bande (2014) used this property to build a goodness-of-fit test for the functional linear model in the spirit of [START_REF] Stute | Nonparametric models checks for regression[END_REF]. Point (B) shows that in practice it is not difficult to find directions γ able to reveal the failure of the null hypothesis (1.1). Under the additional assumption (2.1) such directions represent almost all the points in S p , provided p is sufficiently large. Condition (2.1) is guaranteed if, for instance, E(|U | c ) < ∞ for some c > 1 and E(exp{ X L 2 }) < ∞ for = sc/(c -1). The latter condition is met if, for instance, X is a mean-zero Gaussian process with sup t∈[0,1] E[X 2 (t)] < ∞; see chapter A.2 in van der [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF]. Moreover, in general, moment restrictions on X are not restrictive for goodness-of-fit testing purposes. Indeed, if X does not satisfy (2.1), it suffices to transform X into some variable W ∈ L 2 [0, 1] such that W generates the same σ-field and W satisfies condition (2.1).

The following reformulation of H 0 is a consequence of Lemma 2.1.

Corollary 2.2. Consider a real-valued variable U such that condition (2.1) holds true. For any p ≥ 1, let B p ⊂ S p be a set that is not negligible. For any

γ ∈ B p , let t → w p (γ, t) ∈ R, t ∈ R, be a function such that w p (γ, X, γ ) > 0.
The following statements are equivalent:

Testing the effect of a functional covariate

We introduce a general approach for nonparametric testing of the effect of a functional covariate X on a real-valued outcome U satisfying E(U ) = 0. The variable U could be, for instance, the error term of a mean regression model, which means that our framework includes model check problems for a large panel of regression models. Hence the problem considered in this section is the test of the null hypothesis defined in equation (1.1).

Our approach is based on Corollary 2.2-(2) and univariate kernel smoothing.

Hence we avoid the problem of smoothing in infinite-dimension; in particular we avoid the small ball function required in the kernel regression with functional covariates, see [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF], [START_REF] Delsol | Structural test in regression on functional variables[END_REF].

For any p ≥ 1, let B p ⊂ S p be a set that is not negligible in S p . To avoid handling denominators close to zero, we set the weight function ω(γ, •) in Corollary 2.2 equal to the density of X, γ , denoted by f γ (•), which is assumed to exist ∀γ ∈ B p . For any γ ∈ B p , let

Q(γ) = E{U E[U | X, γ ]f γ ( X, γ )} = E{E 2 [U | X, γ ]f γ ( X, γ )}.
By Corollary 2.2, the null hypothesis (1.1) holds true if and only if

∀p ≥ 1, max γ∈Bp Q(γ) = 0.
(3.1)

The test statistic

In view of equation (3.1), the goal is to estimate Q(γ). Given an independent sample (U 1 , X 1 ),

• • • , (U n , X n ) from (U, X), let Q n (γ) = 1 n(n -1) 1≤i =j≤n U i U j 1 h K h ( X i -X j , γ ) , γ ∈ S p ,
where K h (•) = K (•/h), where K(•) is a kernel and h a bandwidth. In the case of finite dimension covariates, Q n (γ) is the statistic considered by [START_REF] Lavergne | Breaking the curse of dimensionality in nonparametric testing[END_REF]. For a fixed p, Q n (γ) is expected to be close to Q(γ) uniformly in γ. One of our results shows that this uniform closeness remains valid when p grows with n. On the other hand, Lemma 2.1-(B) indicates that when H 0 fails, the maximum of Q (γ) over γ is positive, provided p is large enough. A natural idea then would be to build a test statistic using the maximum of Q n (γ) with respect to γ. However, under H 0 , one expects Q n (γ) to be close to zero for any p and γ and thus the objective function of the maximization problem to be flat. To avoid this problem, we will choose a direction γ as the least favorable direction for the null hypothesis H 0 using a penalized criterion based on a standardized version of Q n (γ). Lavergne and Patilea (2008) considered this idea with finite dimension covariates using Q n (γ), see also [START_REF] Bierens | A consistent conditional moment test of functional form[END_REF].

Let us fix some b

0 = (b 01 , b 02 , • • • ) ∈ R ∞ , with ∞ j=1 b 2 0j
< ∞, that could be interpreted as an initial 'guess' of an unfavorable direction for H 0 . For any p ≥ 1 such that

p j=1 b 2 0j > 0, let γ (p) 0 = (b 01 , • • • , b 0p )/ (b 01 , • • • , b 0p ) . Let v 2 n (•) be an estimate of the variance of nh 1/2 Q n (•). Given B p ⊂ S p that contains γ (p)
0 , the least favorable direction γ for H 0 is defined as

γ n = arg max γ∈Bp nh 1/2 Q n (γ)/ v n (γ) -α n I γ =γ (p) 0 , (3.2) 
where I A is the indicator function of a set A, and α n , n ≥ 1 is a sequence of positive numbers increasing to infinity. The rate of α n will be made explicit below; it will depend on the sample size and the rates of h and p. The role of γ (p) 0 will be explained in more detail in section 3.5.2. Let us note that the definition of γ n requires only finite dimension optimization.

The test statistic we consider is

T n = nh 1/2 Q n ( γ n ) v n ( γ n ) . (3.3) 
We will prove that, with suitable rates of increase for α n and p and decrease for h, the probability of the event

{ γ n = γ (p) 0 } tends to 1 under H 0 . Hence T n behaves asymptotically like nh 1/2 Q n (γ (p) 0 )/ v n (γ (p) 0
). If p were fixed, T n would be asymptotically standard normal distributed under H 0 ; see for instance [START_REF] Guerre | Data-driven rate-optimal specification testing in regression models[END_REF]. We will show that the asymptotic normality is preserved when p grows at a suitable rate. In particular this means that the choice of γ (p) 0 does not affect the asymptotic critical values. This choice will also not affect the consistency. In practice the choice of γ (p) 0 could be related to prior information of the practitioner on a class of alternatives. See section 3.5 for a discussion on the implementation aspects.

Variance estimation

To find the direction γ n and to build the test statistics (3.3), an estimate of the variance of nh 1/2 Q n (γ) is needed. The approach that is expected not to inflate the variance estimate under the alternatives and thus to guarantee better power would involve an estimate of the conditional variance of nh 1/2 Q n (γ) given X i 's which can be written as

τ 2 n (γ) = 2 n(n -1)h j =i σ 2 p (X i )σ 2 p (X j )K 2 h ( X i -X j , γ ) , γ ∈ B p , (3.4) 
where

σ 2 p (X) = V ar[U | X [p]
]. An estimator of τ 2 n (γ) can easily be obtained from an estimate of σ 2 p (•). In theory, a good solution would be a nonparametric estimate of the p-variate function σ 2 p (•), but this is of little practical value when p grows with n. A simplistic solution could be to replace σ 2 p (X i ) by U 2 i and define

τ 2 n (γ) = 2 n(n -1)h U 2 i U 2 j K 2 h ( X i -X j , γ ) . (3.5)
Since we expect P( γ n = γ (p) 0 ) → 1 under H 0 , a first simple variance estimator we propose is

v 2 n (γ) = v 2 n (γ, γ (p) 0 ) = τ 2 n (γ) + τ 2 n (γ (p) 0 ) /2. (3.6) Using γ (p)
0 in the convex combination will simplify the control of the small values of v 2 n (γ), in particular in the proof of the second part of Lemma 3.1.

The simplistic replacement of σ 2 p (X i ) by U 2 i inflates the variance estimator v 2 n ( γ n ) under the alternative hypothesis, and thus deteriorates the power of the test. To propose a compromise between using a nonparametric estimation of

σ 2 p (•) or the squared U i , let σ 2 γ (•) = V ar(U | X, γ = •). Clearly, we have E(U 2 | X, γ ) ≥ V ar(U | X, γ
) and the inequality is strict under general alternative hypotheses. Hence a compromise for estimating the variance of

nh 1/2 Q n (γ) could be v 2 n (γ) = 2 n(n -1)h j =i σ 2 γ ( X i , γ ) σ 2 γ ( X j , γ )K 2 h ( X i -X j , γ ) , (3.7) 
where

σ 2 γ (•) is a nonparametric estimate of the univariate function σ 2 γ (t) = V ar(U | X, γ = t), satisfying the conditions sup 1≤i≤n sup γ∈Bp σ -2 γ ( X i , γ ) = O P (1) (3.8) 
and there exists a sequence of sets I n , n ≥ 1, on the real line such that P X, γ

(p) 0 ∈ I n → 1, sup 1≤i≤n σ 2 γ (p) 0 ( X i , γ (p) 0 ) σ 2 γ (p) 0 ( X i , γ (p) 0 ) -1 I { Xi,γ (p) 0 ∈In} = o P (1) , (3.9 
) when p increases with the sample size. We will prove that both definitions, (3.6) and (3.7), for a variance estimator, guarantee the standard normal asymptotic critical values and the consistency of our test. In the Supplementary Material we provide an example of estimator satisfying conditions (3.8) and (3.9). In simulations, the variance estimator (3.7) produced a more powerful test.

Behavior under the null hypothesis

The first step is the study of the behavior of the process Q n (γ)/ v n (γ), γ ∈ B p , under H 0 when p is allowed to increase with the sample size. 

( γ n = γ (p) 0 ) → 1 under H 0 .
Under H 0 , α n has to grow to infinity sufficiently fast to render the probability of the event { γ n = γ (p) 0 } close to 1. We will see below that, for better detection of alternative hypotheses, α n should grow as slow as possible. Indeed, smaller α n will allow directions γ n to be selected, that could be better suited than γ (p) 0 for revealing the departure from H 0 . The rate of p is also involved in the search for a trade-off: larger p renders slower, the rate of uniform convergence to zero of Q n (γ), γ ∈ B p , and hence requires larger α n .

The following result provides the asymptotic critical values of our test. 

[E(U | X) = 0] < 1.
We can write 

T n ≥ max γ∈Bp nh 1/2 Q n (γ) v n (γ) -α n ≥ nh 1/2 Q n ( γ) v n ( γ) -α n , ∀ γ ∈ B p ⊂
) ≥ V ar(U | X, γ (p) 0 ) ≥ σ 2 , it is clear that sup γ {1/ v n (γ)} = O P (1)
for both variance estimates introduced above. On the other hand, from Lemma 2.1, there exists p 0 and γ ∈ B p0 such that the expectation of Q n ( γ) stays away from zero as the sample size grows to infinity and h decreases to zero. Finally, for any p > p 0 and any n and h, clearly max γ∈Bp Q n (γ) ≥ Q n ( γ), because B p0 × 0 p-p0 ⊂ B p . All these facts show why our test is consistent against a nonparametric alternative like H 1 , provided p → ∞.

To formalize the consistency result, let us fix some real-valued function δ(X)

and a sequence of real numbers r n that could decrease to zero, the case r n ≡ 1 being also allowed. Consider the sequence of alternative hypotheses

H 1n : U = U 0 + r n δ(X), n ≥ 1, with E(U 0 | X) = 0. (3.11)
Theorem 3.4. Suppose that Assumption D holds true with U replaced by U 0 , Assumption K is satisfied, and so is the condition (3.8) if the variance estimator is the one defined in (3.7). Moreover,

(a) r n , n ≥ 1 is such that r 2 n nh 1/2 /α n → ∞; (b) E[δ(X)] = 0 and 0 < E[δ 4 (X)] < ∞.
The test based on T n is then consistent against the sequence of alternatives H 1n if there exists p ≥ 1 and γ ∈ B p such that P(E[δ(X) | X, γ ] = 0) < 1 and one of the following conditions is satisfied:

1. the density f γ is bounded; 2. the function E[δ(X) | X, γ = •]f γ (•) is bounded; 3. the Fourier transform of E[δ(X) | X, γ = •]f γ (•) is integrable on R.
Theorem 3.4 states that directional alternatives H 1n can be detected as soon as r 2 n nh 1/2 /α n tends to infinity. This is exactly the same condition as in the finite dimension covariate case; see [START_REF] Lavergne | Breaking the curse of dimensionality in nonparametric testing[END_REF]. However, in the functional data framework, to obtain the standard normal critical values, we need 1/α n = o(p -1 ln -1 n). Hence, the rate r n at which the alternatives H 1n tend to the null hypothesis, should satisfy r 2 n nh 1/2 /{p ln n} → ∞. Finally, let us recall that the existence of p and γ ∈ B p such that

P[E[δ(X) | X, γ ] = 0) < 1 is guaranteed by Lemma 2.1.
Finally, let us point out that for achieving consistency, it is clearly not necessary γ

(p) 0 to satisfy the condition P[E[δ(X) | X, γ (p) 0 ] = 0) < 1.
Indeed, under the alternative hypotheses, our procedure will automatically search for a least favorable γ n direction close to some γ as in Theorem 3.4. However, a careful inspection of the proof of Theorem 3.4 reveals that in the case where the alternative hypotheses are given by a function δ(X) = d( X, γ (p) 0

), with some univariate function d(•), our test could show even higher power in finite samples. Indeed, in such a case the penalty will likely induce a least favorable γ n close or equal to γ (p) 0 and, in general, this will produce a test statistic with a larger positive mean and thus a higher probability of rejection.

Implementation aspects

Our lack-of-fit test requires the choice of several quantities: the basis R in the space of X, the order p, the privileged direction γ (p) 0 and the set B p , the penalty α n and the bandwidth h. The theoretical results are based on mild restrictions on these quantities that allow for a large range of choices. However, suitable choices of these quantities will help the user to perform a powerful test with an accurate level. Let us provide some guidelines on how these quantities could be chosen in practice in order to achieve this. Simulations given on Section 5.2 and in the Supplementary Material are also helpful for a convenient choice of these quantities.

The choice of p

The theoretical results above are derived for a fixed basis R and the assumptions that were used impose only very mild conditions on this basis. For the implementation of the test, the statistician would likely prefer a basis allowing an accurate low-dimension representation of the covariate to be achieved, and hence small values of p.

A widely used basis is given by the eigenfunctions of the covariance operator K that is defined by (Kv

)(t) = K(t, s)v(s)ds, v ∈ L 2 [0, 1], where X is supposed to satisfy the condition E(X 2 (t))dt < ∞ and K(t, s) = E[{X(t) - E(X(t))}{X(s) -E(X(s))}] is supposed positive definite. Let θ 1 ≥ θ 2 ≥ • • • de- note the ordered eigenvalues of K and let R = {φ 1 , φ 2 , • • • } be
the corresponding basis of eigenfunctions that are usually called the functional principal components (FPC). The FPC represent the orthonormal basis of the Karhunen-Loève decomposition of X and provide optimal (with respect to the mean-squared error) low-dimension representations of X. See, for instance, [START_REF] Ramsay | Functional Data Analysis[END_REF]. In most of the applications the FPC are unknown and are estimated from

( Kv)(t) = [0,1] K(t, s)v(s)ds, t ∈ [0, 1],
where

K(t, s) = n -1 n i=1 {X i (t) -X n (t)}{X i (s) -X n (s)}] and X n (t) = n -1 n i=1 X i (t). Let θ 1 ≥ θ 2 ≥ • • • ≥ 0 denote the eigenvalues of K and let φ 1 , φ 2 , • • •
be the corresponding basis of eigenfunctions, that is the estimated FPC. We adopt the usual identification condition and we suppose that for any j, φ j , φ j ≥ 0. For any γ

= (γ 1 , • • • , γ p ) ∈ S p let us define X i , γ n = p k=1 γ k [0,1] X i (t) φ k (t)dt.
Let T n be the statistic defined in equations (3.2) and (3.3) after replacing the X i , γ by the estimated versions X i , γ n . Corollary 3.5. Let Assumptions D-(a,b) and K-(a,c) hold true. Moreover, K(t, s) is positive definite and there exist C, η > 0 such that θ j -θ j+1 ≥ Cj -η , ∀j ≥ 1. Assume that one of the following conditions is met:

1. nh 4 /p 2η+1 ln 2 n → ∞; 2. nh 2 /p 2η+1 ln 2 n → ∞ and sup p sup γ∈Bp f γ < C for some constant C; 3. nh 1+α → ∞ for some α ∈ (0, 1) and ∀ε > 0, ∃δ > 0 such that ∀t, s ∈ R, |t -s| < δ implies sup p sup γ∈Bp |f γ (t) -f γ (s)| < ε.
Then Theorems 3.3 and 3.4 remain valid with T n replaced by T n .

Conditions 1 to 3 in Corollary 3.5 represent three possible trade-offs between the range for h and regularity conditions on X and B p . Condition 3 is met for instance for a Gaussian covariate and

B p = {(γ 1 , • • • , γ p ) : |γ 1 | ≥ c} for some constant c > 0.
For consistency against general alternatives, p needs to grow to infinity. Meanwhile, larger p makes the optimization over B p more difficult. Using the FPC basis could be a good compromise to detect general alternatives with small p. Then, if θ j ∼ j -λ-1 for some λ > 0, an automatic choice for p could be given by min{p : sup j≥p θ j ≤ C ln -1 n} for some constant C. This would result in a logarithmic rate for p. In practice θ j should be replaced by the estimates θ j , but the rate of p will not change. Indeed, on one hand, sup j≥1 | θ j -θ j | is bounded by the Hilbert-Schmidt norm of K -K. See, for instance [START_REF] Cai | Prediction in functional linear regression[END_REF]. On the other hand, this norm is of order O P (n -1/2 ) under mild conditions. See, for instance, Horváth and Kokoszka, P. (2012), Theorem 2.5. Finally, it is easy to see that min{p : sup j≥p θ j ≤ C ln -1 n} and min{p : sup j≥p θ j ≤ C ln -1 n} have the same rate. In practice simple empirical rules work as well. For instance p could be the smallest value such that more than some fixed high percentage, say 90%, of the variance within the sample, is captured by the first p principal components.

The choice of γ (p) 0 and the set of directions B p

We have proven that the choice of the privileged direction γ (p) 0 is irrelevant for the theory of the test. This privileged direction has a twofold purpose. On one hand, whatever the choice, it allows us to derive a test statistic with a simple standard normal asymptotic behavior under the null hypothesis. Meanwhile the test remains consistent. The privileged direction also has a practical purpose. In applications the practitioner may use γ Concerning the set B p , since Q n (γ) = Q n (-γ) for any γ ∈ S p , one could restrict the set B p to a half-unit hypersphere such as {γ ∈ S p : γ 1 ≥ 0}. One could restrict B p even more, and hence speed optimization algorithms, when some prior information indicates a set of directions suitable for detecting the alternative.

Assumption D-(c)(i) also imposes some mild restrictions on B p but in view of our extensive empirical investigation, we argue that in practice, the choice of B p is not an issue; one can confidently let B p be a whole half-hypersphere S p . trustful for detecting alternatives. On the contrary, smaller α n (for instance α n = 1) will likely lead to a value of the test statistic equal to the maximum value of nh 1/2 Q n (γ)/ v n (γ) and hence in general the test I(T n ≥ z 1-a ) will be too liberal. Meanwhile, smaller α n is preferable for detecting general alternatives.

On the basis of our detailed simulation investigation, we recommend 3 ≤ α n ≤ 5 as a compromise, and a correction of the critical values using resampling, as explained in the empirical section below.

The choice of the bandwidth h

For an optimal bandwidth choice, one could follow Horowitz and Spokoiny (2008), such procedure would have some optimality property, uniformly over smoothness classes of alternatives (e.g., Hölder classes of functions), provided such functions depend only on some X, γ for a fixed finite-dimension γ. Under suitable assumptions, one could expect to extend the results to single-index functions depending on some X, b for some fixed b ∈ L 2 [0, 1]. The optimal data-driven bandwidth choice for general classes of alternatives depending on X, remains a challenging problem that deserve a separate investigation. Already, in the empirical reported in the Supplementary Material, we show that the test performs reasonably well for a large range of bandwidths.

Testing the goodness-of-fit of functional regression models

Here we apply our projection-based methodology for testing the goodnessof-fit of the functional linear regression against general alternatives. To the best of our knowledge, our results are new in the functional regression framework.

Let U be a real-valued random variable and X be a random element of L 2 [0, 1]. The model we want to test is the functional linear model

Y = a + b, X + U, a ∈ R, b ∈ L 2 [0, 1],
where a and b are unknown. The null hypothesis is H 0 : E (U |X) = 0 a.s.

The observations are (Y 1 , X 1 ), • • • , (Y n , X n ), independent copies of (Y, X). Hence the error term U has to be estimated in a preliminary step from the estimates of the parameters a and b. We will investigate the behavior of our test statistic under the null and alternative hypotheses for a generic estimate of the slope with a suitable rate of convergence. Next, we will investigate the details in the standard case of the slope estimate based on the functional principal component analysis. For simplicity and to highlight the influence of each aspect on our goodness-of-fit test approach, in this section we consider again a fixed basis R and we set R to be the FPC basis. Clearly, the arguments used for Corollary 3.5 would still apply and a test built with the estimated FPC basis is readily available. 

a = Y n - 1 0 b(t)X n (t)dt = a - 1 0 { b(t) -b(t)}X n (t)dt + U n , with U n = n -1 n i=1 U i . Let U i = Y i -a -b, X i be the i-th residual and Q n (γ; a, b) = 1 n(n -1) 1≤i =j≤n U i U j 1 h K h ( X i -X j , γ ) , γ ∈ S p .
Since the test statistic only depends on the observed differences X i -X j , here it is not needed to impose X to have zero-mean. Let v ∈ B p ⊂ S p , B p that is not negligible in S p , the least favorable direction γ for H 0 being defined as

γ n = arg max γ∈Bp nh 1/2 Q n (γ; a, b)/ v n (γ; a, b) -α n I γ =γ (p) 0 . (4.1)
The test statistic is then

T n = nh 1/2 Q n ( γ n ; a, b) v n ( γ n ; a, b) . (4.2)
To derive the behavior of the test under the null hypothesis, we show that

sup γ∈S p {nh 1/2 |Q n (γ; a, b) -Q n (γ)| + |1 -v 2 n (γ; a, b) v -2 n (γ)|} = o P (1), (4.3) 
with Q n (γ) and v 2 n (γ) defined as in section 3; i.e., that is we will bring the problem back to the case where the U i are observed. At this stage it is worthwhile to note an important difference between the functional data framework and the finite-dimension case. In the latter case, the parameters of the regression model are usually estimated at the rate O P (n -1/2 ) and this immediately makes the equivalences (4.3) true. In the functional regression case, the rate of b -b L 2 depends on the regularities of the covariate and of the slope parameter and is in general less than O P (n -1/2 ), see [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF], Crambes, Kneip and Sarda (2009). To make the U i -U i sufficiently small and hence to preserve the standard normal critical values for T n defined in (4.2), we pay a price on the bandwidth h: slower rates of b -b L 2 will require faster decreases for h, and this will result in a loss of power against sequences of local alternatives.

The proof of the following result is a direct consequence of Lemma 4.1 and the arguments we used for Theorem 3.3, therefore, we shall omit it. Theorem 4.2. Under the conditions of Lemma 4.1 and if the hypothesis H 0 holds true, the law of the statistic T n is asymptotically standard normal. Consequently the test given by I(T n ≥ z 1-a ) has asymptotic level a.

Next, let us consider the case where b is obtained using the standard functional principal component analysis approach; see, e.g., [START_REF] Ramsay | Functional Data Analysis[END_REF] and [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]. In this case

b(t) = m j=1 b j φ j (t), t ∈ [0, 1], (4.4) 
where b j = θ -1 j g j , g j = g, φ j and

g(t) = n -1 n i=1 (Y i -Y n )(X i (t) -X n (t)) (4.5)
with

Y n = n -1 n i=1 Y i . As in section 3.5, θ 1 ≥ θ 2 ≥ • • • ≥ 0 denote the eigenvalues of K and φ 1 , φ 2 , • • • is the corresponding basis of eigenfunctions.
The truncation point m is a smoothing parameter in the estimation of b. Hall and Horowitz showed that under Assumption P and if

m n 1/(α+2β) , b -b 2 L 2 = O P n -2β-1 α+2β
, and this rate is optimal in a minimax sense. In this case ρ = (2β -1)/{2(α + 2β)} and our condition ρ > 1/4, which guarantees a non empty range for the bandwidth, becomes β > 1 2 α + 1, that is precisely the condition in Assumption P-(d) above and used by [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF].

The behavior under the alternatives

The alternatives of the functional linear model we consider are of the form

H 1n : Y in = a + b, X i + r n δ(X i ) + U 0 i , E(U 0 i | X i ) = 0, 1 ≤ i ≤ n, (4.6) 
with δ(•) some fixed function and r n , n ≥ 1 a sequence of real numbers. Firstly, we have to analyze the behavior of the estimator b under these alternatives.

To keep the paper at a reasonable length, hereafter we consider that b is the estimator obtained through the FPC approach. Moreover, we assume

0 < E[δ 4 (X)] < ∞, E[δ(X)] = 0 and E[δ(X)X] = 0. (4.7)
The last two conditions are quite common in nonparametric testing, they allow us to focus on the performance of the test to detect departures from the model; see for instance equation (3.11) in [START_REF] Guerre | Data-driven rate-optimal specification testing in regression models[END_REF].

Lemma 4.3. Assume that X 1 , . . . , X n are independent draws from X. Moreover,

1 0 E[X 4 (t)
]dt < ∞ and condition (4.7) holds true. Let b (resp. b 0 ) be the estimator (4.4) obtained from data generated according to the model (4.6) with a bounded sequence r n ≥ 0, n ≥ 1 (resp. with r n = 0, ∀n ≥ 1). Then

b 0 -b 2 L 2 = O P (r 2 n n -1 ) m j=1 θ -2 j .
If in addition Assumption P hold true and m n 1/(α+2β) , then

1 0 { b(t) -b(t)} 2 dt = O P n -2β-1 α+2β + o P (r 2 n ).
We will not need to investigate the rate of the estimator of a under the alternatives since by construction a -a = - The residuals U i can be decomposed thus 

U i = U 0 i + r n δ(X i ) -b -b, X i -X n -r n δ(X) n -U 0 n . ( 4 
(i)r 2 n nh 1/2 /α n → ∞; (ii) r -1 n b -b L 2 = o P (1); (iii) α n /{p ln n} → ∞.
The test based on T n defined in (4.2) then rejects the functional linear regression model with probability tending to 1, provided there exists p ≥ 1 and γ ∈ B p such that one of conditions (1) to (3) of Theorem 3.4 holds true.

If Assumption P is met, condition (ii) of Theorem 4.4 indicates that the test could detect only alternatives H 1n that approach H 0 more slowly than n -(2β-1)/{2(α+2β)} . Meanwhile, to detect the fastest possible alternatives, the bandwidth should decrease to zero as slowly as allowed by condition (i), that is faster than n -2(α+1)/(α+2β) times a power of ln n, provided the dimension p and α n increase as fast as a power of ln n such that condition (iii) is met.

Empirical analysis

Bootstrap critical values

In the Supplementary Material we provide some empirical evidence about the effectiveness of the asymptotic approximation of our test statistics. The conclusion is that the accuracy of the theoretical standard normal critical values depend on the tuning of the sequence α n . In order to improve the accuracy of the asymptotic critical values for finite samples, let us introduce a simple and effective bootstrap procedure that we extensively used in our simulation experiments.

Let U b i = ζ i U i , 1 ≤ i ≤ n
, be the bootstrap sample where ζ i are independent variables following the two-points distribution proposed by [START_REF] Mammen | Bootstrap and Wild Bootstrap for High Dimensional Linear Models[END_REF] : 

ζ i = -( √ 5 - 
sup x∈R P T b n ≤ x | U 1 , X 1 , • • • , U n , X n -P(T n ≤ x) → 0, in probability.
The same statement remains true with T b n and T n replacing T b n and T n respectively, provided the conditions of Corollary 3.5 are met.

Simulation study

We present here some simulation results to illustrate the performance of the test both under the null and under the alternative. Some comparison with competing tests will be illustrated. Empirical evidence on the influence of some parameters of the test, such as the bandwidth h, the privileged direction and the penalization, is provided in the Supplementary Material.

Our first study will be focused on testing the covariate effect. A parametric test of covariate linear effect was proposed by [START_REF] Cardot | Testing Hypotheses in the Functional Linear Model[END_REF]. We will compare the performance of the new test proposed here with this parametric competitor, under the null and under linear and non-linear alternatives. The following models will be considered:

No-effect:

Y = σU 0 Linear effect: Y = b 1 , X + σU 0 Quadratic effect: Y = b 2 , X 2 + U 0
where X is a standard Brownian motion on [0, 1], U 0 is centered normal and U 0 and X are independent. The parameters are taken as σ = 0.253, b 1 (t) = (sin(2πt 3 )) Table 1 shows the percentages of rejection based on one thousand simulated samples obtained by the new test and Cardot's test when testing the covariate effect. For the new test, estimated functional principal components were used for the basis, together with an 'uninformative' privileged direction γ

(p) 0 = (1, • • • , 1)/
√ p and the penalization α n = 3. Several values of the dimension p were considered and their results are presented in Table 1. We used the Epanechnikov kernel and bandwidth h = 1.4n -2/9 . To search for the least favorable direction γ n , we used the sequential algorithm proposed by Patilea, Sánchez-Sellero and Saumard (2016). This algorithm, that we explain in the Supplementary Material for the sake of completeness, involves only onedimensional optimizations and preserves the consistency of the test. The sequential algorithm was applied to solve the optimization problem with a grid of 50 points in each dimension.

To estimate the conditional variance, both estimators (3.6) and (3.7) were considered. For the estimator (3.7), a kernel estimator of the errors' conditional variance was used, with uniform kernel and bandwidth h v = 0.5n -1/6 . We observed a better power under the alternative with the estimator (3.7), so the results will be given with this estimator.

The wild bootstrap procedure proposed in Section 3.5 was used to approximate the critical values. For each sample, we used 199 bootstrap samples to compute the critical value for a nominal level of 5%.

As shown in Table 1, both the new test and Cardot's test respect the nominal level under the null hypothesis of no-effect. Under the linear alternative, Cardot's test is clearly more powerful than the new test. This was expected because their test is specially designed to detect this type of alternative. Under the quadratic alternative, the new test is powerful while Cardot's test does not detect this non-linear alternative. As expected, a larger sample size leads to a larger power. The dimension p has no much influence on the power results. In our experience, the power increases with the initial increments of the dimension p, while additional high dimensions are harmful for the power. Note also that the new test statistic is designed to overcome the effect of large dimensions.

Other simpler tests would lead to a dramatic effect of the dimension on the power of the test. The next experiment that we will present here consists of a lack-of-fit test of functional linear model. Under the null hypothesis, the simulated data will be generated following the linear effect. Note that this model was considered as an alternative in the test of effect. As a deviation from the functional linear model, we will now consider the functional quadratic model, that was defined in Yao and Muller (2010) by

n = 100 n =
Y = α + β(t)X c (t) dt + h(s, t)X c (s)X c (t) dt + U
where X c = X -E(X) is the centered functional covariate. The first single integral represents the functional linear component, while the double integral is the quadratic deviation. Horvàth and Reeder (2013) proposed a test to detect this type of quadratic alternative.

Table 2 shows the percentages of rejection of the new test and Horvàth and Reeder's test, under the null hypothesis (functional linear model) and under the following quadratic and cubic models:

Quadratic model: Y = b 1 (t)X c (t) dt + h(s, t)X c (s)X c (t) dt + σU 0 Cubic model: Y = b 1 (t)X c (t) dt + 0.3( b 3 , X 3 -b 3 , X ) + σU 0
where X and U 0 are generated as in the previous models, σ and b 1 also coincide with their values in previous models, h(s, t) = 0.2 for all s, t ∈ [0, 1] and b 3 (t) = 1 for all t ∈ [0, 1]. The basis, privileged direction, penalization, bandwidth and conditional variance will follow the same rules as in the test of effect. Again, the sequential algorithm is applied and the bootstrap approximation based on 199 replicates are used. 2. Note that Horvàth and Reeder's test also requires a dimension to estimate the possible quadratic deviation. However a large value of this dimension makes a dramatic effect on their level accuracy under the null.

Observe that a chi-squared approximation is used there, which could be a very imprecise approximation for large dimensions. Meanwhile, the new test shows a good approximation of the nominal level under the null. The dimension p does not have much effect on the new test. Under the quadratic alternative, and ignoring large dimensions, Horvàth and Reeder's test is more powerful, as expected. On the contrary, the new test is clearly more powerful for detecting the cubic deviation from the null. The conclusion is that the new test is required to detect general deviations from the null hypothesis.

Application to real data

We analyzed the data set collected by Tecator. The task is to predict the fat content of a meat sample on the basis of its near infrared absorbance spectrum. The data set, available at http://lib.stat.cmu.edu/datasets/tecator, contains 240 samples. For each sample of finely chopped pure meat, a 100 channel spectrum of absorbances was recorded using a Tecator Infratec Food and Feed Analyzer, a spectrometer that works in the wavelength range 850-1050 nm.

These absorbances can be thought of as a discrete approximation of a continuous record X(t). For each sample of meat, the fat content Y was measured by analytical chemistry. [START_REF] Yao | Functional quadratic regression[END_REF] proposed a functional quadratic model to predict the fat content Y based on the absorbance spectrum X. [START_REF] Horvàth | A test of significance in functional quadratic regression[END_REF] applied their test to check whether the quadratic term is needed, versus the null hypothesis of a functional linear model. The conclusion was that the quadratic effect is significant. We applied the test proposed here, first to check the goodness-of-fit of the functional linear model, and next the goodness-of-fit of the functional quadratic model. Table 3 contains the p-values corresponding to our test for different values of the bandwidth, h = c•n -2/9 , the parameter m for model estimation and the dimension p. The basis was estimated by FPC. The penalization was α n = 3. The p-values were approximated by means of 9999 bootstrap replicates. We can conclude that both the functional linear and the functional quadratic models should be rejected for the Tecator data set. This conclusion confirms the empirical results of Chen, Hall and Müller (2011) who proposed an additive double index model. Indeed, the link functions estimated by Chen, Hall and Müller (2011) do not show respective linear and quadratic patterns.

Concluding remarks

A new method has been proposed to test the effect of a functional covariate on a scalar response, and also to test the lack-of-fit of a functional linear model. This method can be applied to lack-of-fit testing of many other functional regression models, such as for instance, the partial functional linear model, see [START_REF] Ramsay | Functional Data Analysis[END_REF] chapter 10, and the generalized functional linear models introduced by [START_REF] Müller | Generalized functional linear models[END_REF].

Limit distribution of the test statistic under the null hypothesis has been shown to be standard normal. Consistency under alternatives converging to the null has been established, where the allowed rates of convergence are almost the same as in parametric model checks based on kernel smoothing with univariate covariate, see for instance [START_REF] Guerre | Data-driven rate-optimal specification testing in regression models[END_REF]. It was also proved that our theoretical results, first derived for a fixed basis in L 2 [0, 1], remain true with an estimated basis.

A simulation study shows that the proposed bootstrap approximation performs well and that the test is able to detect general departures from the null hypothesis. Additional simulations, provided in the Supplementary material, illustrate the possible effect of some parameters necessary to implement the test, as the basis, the dimension p, the privileged direction, the penalization and the bandwidth. Some advice are then given in order to apply the test in practice.

In an illustration with the Tecator data set, the proposed test was useful to detect that two known models should be rejected, a conclusion that is consistent with the recent literature on this dataset.

Appendix

For real random variables, A n P B n means that there exists a constant C > 1 such that P(1/C ≤ A n /B n ≤ C) goes to 1 when n grows. In the following C, C 1 , c, c 1 , • • • represent constants that may change from line to line. Below F[•] denotes the Fourier transform, cf. Rudin (1987).

Assumptions

In the following we present the assumptions we use to derive the technical results and we provide some comments.

Assumption D.

(a) (U 1 , X 1 ), . . . , (U n , X n ) is an independent sample of the random vector 

(U, X)∈ R ×L 2 [0, 1]. EU 8 < ∞ and ∃ > 0 such that E(exp{ X L 2 }) < ∞. (b) ∃ 0 < σ 2 < σ 2 < ∞ and ν > 2 such that σ 2 ≤ E(U 2 | X) and E(|U | ν | X) ≤ σ
, • • • ), with ∞ j=1 b 2 0j < ∞, is such that (i) ∞ j=1 X, φ j b 0j has a density f 0 such that R f 2 0 < ∞ and R {f γ (p) 0 - f 0 } 2 → 0 when p → ∞; (ii) ∃c f (independent of p) such that ∀p ≥ 1 and ∀γ ∈ B p , R f 2 γ ≥ c f > 0; (iii) ∃C 2 (independent of p) such that f γ (p) 0 ≤ C 2 , ∀p ≥ 1.
Assumption K.

(a) The kernel K is a symmetric integrable Lipschitz function of bounded variation and R K = 1. (b) h → 0 and nh 1+α → ∞ for some α ∈ (0, 1). (c) p ≥ 1 increases to infinity with n and there exists a constant λ > 0 such that p ln -λ n is bounded.

Let us comment on these assumptions. In Assumption K, continuity and bounded variation guarantee that K can be recovered by the inverse Fourier transform. See, for instance, [START_REF] Boas | Inversion of Fourier and Laplace Transforms[END_REF]. The Lipschitz property of K will help to control the increments of Q n (γ) when γ varies in S p . Moreover, this mild property represent one of the three types of sufficient conditions that we propose for deriving the same asymptotic result with an estimated instead of a fixed basis R in the definition of T n , see section 3.5. In Assumption K-(c), it is also possible to let p grow faster than the logarithmic rate. However, in theory, this could induce a loss of power for our test. Concerning Assumption D, there is a trade off between the moment conditions on U and the range of rates allowed for the bandwidth h: higher moments will be needed for wider ranges; see the proof of Lemma 3.1. On the other hand, faster decrease of h will be needed to smooth out the effect of slower convergence for the slope estimator when testing the lack of fit of the linear functional model. The condition nh 1+α → ∞ for some small α > 0, is nearly optimal for this purpose. The upper and lower bounds on the conditional moments of U are mild conditions that allow the variance of Q n (γ) to be controlled. Finally, let us comment on Assumptions D-(c,d). On one hand, a key issue in the proof of Lemma 3.1 below, and some of the subsequent proofs, will be to control E[h -1 K h ( X 1 -X 2 , γ )] uniformly in γ ∈ B p as p grows and h decreases to zero. A simple solution is to bound this quantity by a constant. Using the Fourier transform and Plancherel theorem, this is guaranteed if R f 2 γ is uniformly bounded. Such integrability conditions, and even uniform boundedness, could be easily achieved for instance when the variables X, φ j are independent. It then suffices to fix some j ≥ 1 such that the density of X, φ j is bounded and some small c independent of p and to take

B p = {(γ 1 , • • • , γ j , • • • , γ p ) ∈ S p : |γ j | ≥ c}.
Elementary properties of the convolution of densities then guarantee that f γ are uniformly bounded ∀p ≥ 1 and ∀γ ∈ B p . On the other hand, we have to keep the variance estimate in the denominator of the test statistic (3.3) away from zero. Given the way variance estimators were defined, it suffices to ensure that

E[h -1 K 2 h ( X 1 -X 2 , γ (p) 0 
)] is bounded away from zero. Assumption D-(d)(i) provides mild sufficient conditions for this. When one uses the variance estimator defined in (3.7), a similar control of small values of the denominator appearing in (3.2) is also required for

E[h -1 K 2 h ( X 1 -X 2 , γ )],
uniformly with respect to γ ∈ B p . This control is realized using Assumption D-(d)(ii). See the proof of Lemma 3.1. Assumption D-(d)(iii) will complete the sufficient conditions for deriving standard normal critical values using the central limit theorem for U -statistics of Guerre and Lavergne (2005, Lemma 2). Finally, the condition B p × 0 p -p ⊂ B p , ∀p < p , is a mild technical condition that combined with Lemma 2.1-(A), greatly simplifies the proof of the consistency of our test. Some practical guidance for the choice of p, γ (p) 0 and B p is provided in section 3.5. The following assumptions are standard conditions on the covariance operator K and the slope parameter in the linear model, as could be found in [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]. Let ξ j = X, φ j , where φ j are the FPC.

Assumption P. (a) For some constant C > 1, E[ξ j -E(ξ j )] 4 ≤ Cθ 2
j for all j. (b) The error U is independent of X, has zero mean and finite variance. (c) The eigenvalues θ j of K satisfy θ j -θ j+1 ≥ C -1 j -α-1 , ∀j ≥ 1. (d) The Fourier coefficients b j satisfy |b j | ≤ Cj -β and α > 1, 1 2 α + 1 < β.

Preliminary results

The proofs of the results stated in this section are provided in the Supplementary Material.

A tool used for proving Lemma 3.1 is an exponential bound for the tail probability of U -statistics that we state below. Let Z 1 , • • • , Z n be independent, not necessarily identically distributed, random variables taking values in a measurable space (Z, Υ). Let h i,j (•, •), 1 ≤ i, j ≤ n be bounded real-valued measurable functions on

Z 2 such that h i,j (z i , z j ) = h j,i (z j , z i ), E[h i,j (z i , Z j )] = 0, ∀1 ≤ i, j ≤ n, ∀z i , z j . Define A n = max i,j h i,j (•, •) ∞ , B 2 n = max j i E[h 2 i,j (Z i , •)] ∞ , C 2 n = i,j E[h 2 i,j (Z i , Z j )],
(here and elsewhere • ∞ denote the sup norm) and

D n = sup    E i,j h i,j (Z i , Z j )f i (Z i )g j (Z j ) : E i f 2 i (Z i ) ≤ 1, E j g 2 j (Z j ) ≤ 1    .
The following lemma is a version of Th. 3.3 in Giné, Lata la and Zinn (2000).

Lemma 7.1. There exists an universal constant L < ∞ (in particular, independent on n and the functions h i,j ) such that ∀t > 0

P    1≤i =j≤n h i,j (Z i , Z j ) ≥ t    ≤ L exp - 1 L min t 2 C 2 n , t D n , t 2/3 B 2/3 n , t 1/2 A 1/2 n . Let γ ∈ S p and let x 1 , • • • , x n be an arbitrary collection of non-random points in L 2 [0, 1]. Consider Z 1 , • • • , Z n independent real-valued variables such that for each 1 ≤ i ≤ n, the law of Z i is the conditional law of U i given X i = x i .
Given γ ∈ S p , we apply Lemma 7.1 with h i,i ≡ 0 and

h i,j (Z i , Z j ) = Z i Z j n(n -1)hM 2 K h ( x i , γ -x j , γ ) , 1 ≤ i = j ≤ n, (7.1) 
Z i = Z i I {| Zi|≤M } -E[ Z i I {| Zi|≤M } ], M > 0 (M is allowed to increase with n). In particular, E[ Z i I {| Zi|≤M } ] coincide with the values E[U i I {|Ui|≤M } | X i = x i ]. For a squared matrix A, let A 2 = sup u∈R n ,u =0 Au / u and A 2 F = tr(A A).
The following lemmas provide upper bounds for the quantities

A n to D n , given x 1 , • • • , x n ∈ L 2 [0, 1].
Lemma 7.2. Let W n (γ) be the non random matrix with generic element

W n,ij (γ) = K h ( x i -x j , γ ) /[n(n -1)h], i = j, and W n,ii = 0. Moreover, let S n (γ) = sup t∈R n -1 h -1 n j=1 |K h (t -x j , γ )| .
Under the conditions of Lemma 3.1, for h i,j defined in (7.1),

A n = K ∞ n(n-1)h , B 2 n ≤ c K ∞ S n (γ) n 3 hM 2 , C 2 n ≤ c W n (γ) 2 F M 4 , D n ≤ cS n (γ) nM 2 ,
for some constant c depending only on the upper bound of E(U 2 | X).

Let us define

S n (γ; t) = 1 nh n j=1 |K h (t -X j , γ )| , (7.2) 
and let W n (γ; t) be the matrix with elements W n,ii (γ; t) = 0

W n,ij (γ; t) = K h ( X i -X j , γ + t) /[n(n -1)h], i = j. (7.3) 
Lemma 7.3. Suppose that Assumptions D-(a) and K are met.

1. Assume that sup p sup γ∈Bp R f 2 γ ≤ C 1 < ∞. Then, ∃C 1 > 0 independent of p and h such that: (a) sup γ∈Bp sup t∈R E[S n (γ; t)] ≤ C 1 /h; (b) sup γ∈Bp sup t∈R E W n (γ; t) 2 F ≤ C 1 /(n 2 h).
2. Assume that f γ (•) ≤ C 2 for some C 2 > 0 independent of p and γ. Then, ∃C 2 independent of p, h and γ such that

sup t∈R E[S n (γ; t)] ≤ C 2 . 3. Assume that sup p sup γ∈Bp R f 2 γ ≤ C 1 . Then (a) sup γ∈Bp max 1≤i≤n |S n (γ; X i , γ ) -E[S n (γ; X i , γ ) | X i ]| = o P (h -1/2 ); (b) sup γ∈Bp sup |t|≤1 W n (γ; t) 2 F -E W n (γ; t) 2 F = o P (1/(n 2 h)). 4. Assume that f γ (p) 0 (•) ≤ C 2 for some C 2 > 0 independent of p. Then max 1≤i≤n |S n (γ (p) 0 ; X i , γ (p) 0 
)

-E[S n (γ (p) 0 ; X i , γ (p) 0 ) | X i ]| = o P (1). 5. Assume that sup p sup γ∈Bp f γ (•) ≤ C for some C > 0. Then sup γ∈Bp sup |t|≤ln n |S n (γ; t) -E[S n (γ; t]| = o P (1). Let v 2 n (γ (p) 0 ) = 2 n(n -1)h j =i σ 2 γ (p) 0 ( X j , γ (p) 0 )σ 2 γ (p) 0 ( X j , γ (p) 0 )K 2 h X i -X j , γ (p) 0 . (7.4 
) For proving Lemma 3.1, we also need the following result on the variance. The following facts are needed for proving Corollary 3.5. For any γ, let us write

X i , γ n = X i , γ + X i , ∆ n,γ where ∆ n,γ (t) = p k=1 γ k [ φ k (t) -φ k (t)], t ∈ [0, 1].
Consider the operator norm K S defined by K 2 S = σ 2 (t, s)dtds. Under Assumption D-(a) and the moment assumption on X , K-K S = O P (1/ √ n), see for instance [START_REF] Bosq | Linear Processes in Function Spaces: Theory and Applications[END_REF]. Next, by Cauchy-Schwarz inequality, Lemma 4.3 in Bosq (2000), and the fact that the spectral norm of the operator K -K is smaller or equal to K -K S ,

[0,1] ∆ 2 n,γ (t)dt ≤ p k=1 γ 2 k p k=1 φ k -φ k 2 ≤ p 8 ς 2 p K -K 2 S ,
where ς p = min 1≤j≤p (λ j -λ j+1 ). Then the lower bound for the spacing between the eigenvalues implies sup

γ∈S p [0,1] ∆ 2 n,γ (t)dt ≤ cp 2η+1 K -K 2 S , for some c > 0. Deduce sup γ∈S p max 1≤i≤n | X i , γ n -X i , γ | is bounded by max 1≤i≤n X i L 2 c 1/2 p η+1/2 K -K S = O P (p η+1/2 ln n/ √ n).
For this, we used E[exp(

X L 2 )] < ∞ to deduce that max 1≤i≤n X i L 2 = O P (ln n). Let b n ↓ 0 such that b n √ n/[p η+1/2
ln n] → ∞ and define the event

E 1n = {sup γ∈S p max 1≤i≤n | X i , γ n -X i , γ | ≤ b n } so that P(E c
1n ) → 0. Lemma 7.5. Suppose that Assumptions D-(a,b) and K-(a,c) are met. Moreover, K(t, s) is positive definite and there exist C, η > 0 such that θ j -θ j+1 ≥ Cj -η , ∀j ≥ 1. Assume that one of the conditions 1 to 3 of Corollary 3.5 is met.

Then, for l = 1 and l = 2, sup

γ∈S p max 1≤i≤n 1 nh n j=1 K l h ( X i -X j , γ n ) -K l h ( X i -X j , γ ) = o P (1), (7.5) sup γ∈S p 1 n(n-1)h i =j K 2 h ( X i -X j , γ n )-K 2 h ( X i -X j , γ ) = o P (1). (7.6) 
The following result is needed for studying the functional linear model.

Lemma 7.6. Suppose Assumptions D and K hold true and let 

U 1n (γ) = 1 n(n-1)h i =j U i K h,ij (γ), U 2n (γ) = 1 n(n-1)h i =j U i X j K h,ij (γ). Then sup γ∈Bp |U 1n (γ)| = O P p 1/2 ln 1/2 n h 1/4 n 1/2 , sup γ∈Bp U 2n (γ) L 2 = O P p 1/2 ln 3/2 n h 1/4 n 1/2 .
[E(U | X [p0] ) = 0] < 1. Since E(U | X [p0] ) = E[E(U | X [p] ) | X [p0] ], necessarily P[E(U | X [p] ) = 0] < 1,
∀p > p 0 . Fix arbitrarily p > p 0 and note that by our assumptions, ∀γ ∈ S p , ∀|b| ≤ 1,

E(|U exp{b X, γ }|) ≤ E(|U | exp{|b|| X, γ |}) ≤ E(|U | exp{ X L 2 }) < ∞.
(Recall that, for any γ ∈ R p , by definition X, γ = X [p] , γ = p j=1 γ j X, φ j .) Next, let A p = {γ ∈ S p : E(U | X, γ ) = 0 a.s. } and note that

∀0 < |b| ≤ 1, bA p ⊂ A p = { γ ∈ R p : 0 < γ ≤ 1, E(U exp{ X, γ }) = 0}.
For (B) it suffice to show that A p has Lebesgue measure zero and is nowhere dense in R p . For this purpose, we shall use the following property (proven in the Supplement): if W 1 , W 2 are real variables with 

E(|W 1 | exp{a|W 2 |}) < ∞ for some a > 0, then P(E(W 1 | W 2 ) = 0) < 1 implies the set {|b| < a : E(W 1 exp{bW 2 }) = 0}
A l = {(t 1 , • • • , t l ) ∈ R l : (t 1 , • • • , t l ) < ζ, E(U e ξ1t1+•••+ξ l t l ) = 0}, l = 1, • • • , p. Since |ξ 1 t 1 + • • • + ξ l t l + X [p] , υ | < ( υ + ζ) X L 2
, deduce that the expectations in the definition of the sets A l are well defined. Since the norm of υ could be taken arbitrarily small such that A p ⊂ A p , it suffices to show that A p is negligible, that is it has Lebesgue measure zero and is nowhere dense. For this purpose, first apply the property (7.7) with a = ζ, W 1 = U and W 2 = ξ 1 to deduce that the set A 1 is empty or finite. Next, for |t 1 | < ζ, define the set

A 2 (t 1 ) = {|t 2 | < ζ : E(U exp{ξ 1 t 1 } exp{ξ 2 t 2 }) = 0}. If |t 1 | < ζ but t 1 / ∈ A 1 , it means that E(U exp{ξ 1 t 1 }) = 0. In particular this means that P(E(U exp{ξ 1 t 1 } | ξ 2 ) = 0) < 1. Then, for such |t 1 | < ζ with t 1 / ∈ A 1 , use again property (7.7) with a = ζ, W 1 = U exp{ξ 1 t 1 }, W 2 = ξ 2 . Deduce that, for |t 1 | < ζ with t 1 / ∈ A 1 , the set A 2 (t 1
) is empty or finite. Next, note that

A 2 ⊂ {A 1 × (-ζ, ζ)} t1∈(-ζ,ζ)\A 1 S 2 (t 1 ),
where S 2 (t 1 ) = {t 1 } × A 2 (t 1 ).

Since the union of finitely many negligible sets is negligible, it suffices to show that the sets A 

(A × (-ζ, ζ)) = Int(A) × Int([-ζ, ζ]) = ∅ × (-ζ, ζ) = ∅. Deduce that A 1 × (-ζ,
E [U E (U | X, γ ) w p (γ, X, γ )] = E E 2 (U | X, γ ) w p (γ, X, γ ) .
Next, for any p ≥ 1, if max γ∈Bp E [U E (U | X, γ ) w p (γ, X, γ )] = 0, then necessarily E (U | X, γ ) = 0 a.s., ∀γ ∈ B p . Then, by Lemma 2.1-B and the fact that B p is not negligible, necessarily

P(E(U | X) = 0) = 1.
Proof of Lemma 3.1. By the Lipschitz property of K, ∀γ, γ ∈ S p ,

|K l h ( X i -X j , γ ) -K l h ( X i -X j , γ ) | ≤ C K l-1 ∞ h -1 γ -γ max 1≤i≤n X i L 2 ,
for l = 1 or l = 2 and some C independent of n, h, p and γ, γ . Deduce that Fix some γ ∈ G p . For any c > 0 and sample size n define the set of n-uples, 

|Q n (γ) -Q n (γ )| ≤ Ch -2 γ -γ max 1≤i≤n X i L 2 . ( 7 
E n (c) = {(x 1 , • • • , x n ) : x i ∈ L 2 [0, 1], 1 ≤ i ≤ n, max(S n (γ), W n (γ)) ≤ ch -1/
P((X 1 , • • • , X n ) ∈ E n (c )) = 1. Now, let M = n 1/4-b for some small b, define η M i = U i I {|Ui|≤M } - E(U i I {|Ui|≤M } | X i ) and consider 750 Q M,n (γ) = 1 n(n -1) 1≤i =j≤n η M i η M j K h ( X i -X j , γ ) . (7.9) Let x 1 , • • • , x n be a n-uple in E n (c ). Let b n = M -2 n -1 h -1/2 p ln n. By Lemma 7.
1 and Boole's inequality, there exists universal constant L and C depending only c and σ 2 (independent of n, h, p) such that ∀t > 0,

P ( sup γ∈Gp |Q M,n (γ)| > tp ln n nh 1/2 | X 1 = x 1 , • • • , X n = x n ) ≤ max{L, 1} exp[ap ln n -L -1 Ctp ln n].
The uniform rate of Q M,n (γ) follows. Moreover, using the moment conditions on U , we show in the Supplementary Material that sup

γ∈S p |Q n (γ)-Q M,n (γ)| = o P (n -1 h -1/2 p ln n).
For the variance estimator, without loss of generality, suppose

K ≥ 0. By Assumption D-(b), ∃C > 0 such that E[U 2 I {|U |≤C} | X] ≥ σ 2 /2. Let g γ (Z i , Z j ) = U 2 i U 2 j C -4 I {|Ui|,|Uj |≤C} K 2 h ( X i -X j , γ ) .
By the construction of the variance estimator (3.6),

v 2 n (γ) ≥ 1 2 [U n (g γ (p) 0 ) -E[g γ (p) 0 (Z 1 , Z 2 )]] + 1 2 E[g γ (p) 0 (Z 1 , Z 2 )].
First, we look for a lower bound for E

[g γ (p) 0 (Z 1 , Z 2 )]. Note that E[g γ (p) 0 (Z 1 , Z 2 )] ≥ σ 4 4h E[K h ( X 1 -X 2 , γ (p) 0 )] = σ 4 √ 2π 4 R |F[f γ (p) 0 ](t)| 2 F[K](ht)dt. Use the fact that F[δf γ ] ∈ L 1 (R), the fact that F[K](ht) → F[K](0) = 1/ √ 2π as h → 0, |F[K](ht)| ≤ F[|K|](0), and Lebesgue dominated convergence the- orem to deduce that the map v → E[δ(X j )h -1 K h (v -V j )] is bounded by a constant (and converges to δ(v)f γ (v)). Hence v 2
n is bounded by a constant. Deduce that with any of the conditions (1) to (3), Q 1n ( γ) = O P (n -1/2 ). Finally, it is easy to show that V ar[Q 2n ( γ)] → 0 (see, e.g., the proof of Lemma 7.4). It remains to study

E[Q 2n ( γ)] = (2π) 1/2 R |F[δf γ ]| 2 (t)F[K](ht)dt.
If condition (1) or (2) holds true, δf γ ∈ L 2 (R) and by the Plancherel theorem and the Lebesgue dominated convergence theorem,

E[Q 2n ( γ)] → R |δf γ | 2 > 0. If condition (3) is met, F[δf γ ] ∈ L 2 (R). Hence δf γ ∈ L 2 (
R) and we can continue with the same arguments. Deduce that with any of the Conditions (1) to (3), 790 Q 2n ( γ) O P (1). Collecting the rates, we obtain the result.

Proof of Corollary 3.5. Let X ij = X i -X j and for l = 1 or l = 2 let Λ

(l) n (γ) be the n × n-matrix of generic element Λ (l) n,ij (γ) = K l h ( X ij , γ n ) -K l h ( X ij , γ ) . First we consider the null hypothesis H 0 . For any γ ∈ S p , let Ξ n (γ) = 1 n(n -1)h 1≤i =j≤n U i U j Λ (1) n,ij (γ).
Follow the steps of the proof of Lemma 3.1 with Q n (γ) replaced by Ξ n (γ) and consider the truncated version Ξ n,M (γ) analogously to Q n,M (γ) defined in equation (7.9). Apply Lemmas 7.1 and 7.2 and take into account the rates (7.5) and (7.6). Deduce that sup γ∈Bp |Ξ n,M (γ) | = o P (n -1 h -1/2 p ln n). The tail probability of Ξ n (γ) is uniformly of rate o P (n -1 h -1/2 p ln n) by the same arguments we used for Q n (γ). To bound the difference between the variance estimators built as in (3.6) with •, • n and •, • , let us write

sup γ∈Bp 1 n(n -1)h i =j U 2 i U 2 j Λ (2) n,ij (γ) ≤ sup γ∈Bp Λ (2) n (γ) (n -1)h 2 1 n n i=1 U 4 i = o P (1),
where for the equality we used (7.5). Deduce that T n -T n = o P (1) under H 0 .

Under H 1n it remains to reconsider the terms Q 1n ( γ) and Q 2n ( γ) in the proof of Theorem 3.4, see equation (7.13). For the difference between Q 2n ( γ) computed with •, • n and •, • , using again (7.5), we can write n(n -1)h

1 n(n -1)h i =j δ(X i )δ(X j )Λ (1) n,ij ( γ) ≤ Λ (1) n ( γ) (n -1)h 2 1 n n i=1 δ 2 (X i ) = o P (1).
i =j { X i -X n }{ X j -X n }K h,ij (γ) ≤ nh 1/2 b -b 2 1 n n i=1 { X i -X n } 2 sup γ∈Bp W n (γ) 2 F ,
where W n (γ) is the matrix with generic element

W n,ij (γ) = K 1/2
h ( X i -X j , γ ) /[n(n -1)h] 1/2 , i = j, and W n,ii (γ) = 0.

By easy adaptation of the arguments used for Lemma 7. Proof of Lemma 4.3. Let g (resp. g 0 ) be the random function defined in (4.5) that one would obtain under the null (resp. alternative) hypothesis, i.e., with covariates X i and responses a + b, X i + U 0 i (resp. a + b, X i + δ(X i ) + U 0 i ). We can write By the Fubini Theorem applied twice and the Cauchy-Schwarz inequality,

E 1 0 n i=1 δ(X i )X i (u) 2 du = 1 0 n i=1 E[δ 2 (X i )X 2 i (u)]du ≤ n E[δ 4 (X)]E[ X 4 ],
where for the equality we used the fact that E[Xδ(X)] = 0. On the other hand, since E[δ(X)] = 0, δ(X) n = n -1 n i=1 δ(X i ) = o P (1) by the law of large numbers. Recall that X n = O P (n -1/2 ). Deduce 

h b i,j = ζ i ζ j n(n -1)h C n,ij , C n,ij = U i U j I { |Ui|,|Ui|≤M } M 2 K h ( X ij , γ ) .
Let Q b n (γ) be the bootstrap version of Q n (γ) , and let 

Q b M,n (γ) = 1 n(n -1)
(p) 0 ) = U i U j K h ( X ij , γ (p) 0 
). Suppose for simplicity, but without loss of generality, K ≥ 0. Let us note that sup

j,k E[U 2 i h -1 K h,ij (γ (p) 0 )K h,ik (γ (p) 0 ) | X j , X k ] ≤ C < ∞. (7.15)
Indeed, using the upper bound of E[U 2 | X] and Cauchy-Schwarz inequality,

E[U 2 i h -1 K h,ij (γ (p) 0 )K h,ik (γ (p) 0 ) | X j , X k ] ≤ σ 2 E 1/2 [h -1 K h,ij (γ (p) 0 ) | X j ]E 1/2 [h -1 K h,ik (γ (p) 0 ) | X k ] ≤ C,
where for the last inequality we used . Next, let E n denote the conditional expectation given

X 1 , • • • , X n , note that E n (|U i U j |) ≤ E 1/2 (|U i | 2 | X i )E 1/2 (|U j | 2 | X j ) ≤ σ 2/ν .
Using the conditional independence between any U i and the rest of the sample, for any w ∈ R n with w = 1, 

E W b n (γ (p) 0 )w 2 ≤ E    n i=1 E(|U i | 2 | X i )E n   n j=1,j =i |U j |K h,ij (γ (p) 0 )w j   2    ≤ σ 4/ν hn 2 (n -1) 2 E   n i,j,k=1 E h -1 K h,ij (γ (p) 0 )K h,ik (γ (p) 0 ) | X k , X j |w j w k |   ≤ C 3 hn(n -1) 2 n j,k=1 |w j w k | ≤ C 3 (n -1)
(p) 0 ) = U i U j K h ( X ij , γ (p) 0 n 
). Finally, it is easy to check that the arguments used above in this proof remain true if U i = U 0 i + r n δ(X i ), that is in the case of a sequence of alternatives. Now the proof is complete.

1 0 X 1

 11 (t)X 2 (t)dt. Consider a functional linear model Y = a + b, X + U , where U ∈ R and X ∈ L 2 [0, 1] are random, while a ∈ R and b ∈ L 2 [0, 1] are the unknown parameters of the model. Testing for lack-of-fit of this regression model against general alternatives means to test the null hypothesis H 0 : E (U |X) = 0 almost surely (a.s.) (1.1) against the nonparametric alternative P[E (U |X) = 0] < 1.

  aspects of the model check, for instance to make the test powerful against specific alternatives. See also our comments following Theorem 3.4 above. Without such prior preference or information, γ(p) 0 = (1, • • • , 1)/√ p could be the choice by default.

3. 5 . 3 .

 53 The choice of the penalty α n Unlike for[START_REF] Lavergne | Breaking the curse of dimensionality in nonparametric testing[END_REF], we work here with a standardized version of Q n (γ) and this simplifies the choice of α n . In theory, α n has to grow as slowly as possible but faster than p ln n. In practice, for sample sizes of hundreds and p up to 6 or 8, α n needs not vary much with n and p. Larger α n (for instance α n = 10) will likely result in taking γ n = γ (p) 0 and in this case the standard normal critical values could be accurate even for moderate samples sizes. Having γ n = γ (p) 0 might be reasonable when the practitioner judges γ (p) 0

(

  2001), Guerre and Lavergne (2005), and define a test based on the maximum of T n over a grid of bandwidths. In view of Theorem 3.5 of Lavergne and Patilea

4. 1 .

 1 The test statistic and the behavior under the null hypothesis Let b ∈ L 2 [0, 1] denote a generic estimator of the slope b and let

Lemma 4 . 1 .

 41 Assume that the conditions of Theorem 3.3 are met. Let b ∈ L 2 [0, 1] be an estimator of b such that b -b L 2 = O P (n -ρ ) for some 1/4 < ρ ≤ 1/2. Moreover, suppose that n 1-2ζ h 1/2 → 0 for some 1/4 < ζ < ρ. Then, under the hypothesis H 0 the uniform convergence in (4.3) holds true.

1 0

 1 { b(t) -b(t)}X n (t)dt + U n . We can now analyze the behavior of the test statistics under the alternatives (4.6).

. 8 ) 4 . 4 .

 844 Theorem Consider the hypotheses (4.6) with δ(•) satisfying (4.7). Let b ∈ L 2 [0, 1] be an estimator of b. Suppose the conditions of Theorem 4.2 are met with U replaced by U 0 . Moreover,

Theorem 5 . 1 .

 51 A bootstrap statistic T b n is built from a bootstrap sample as was the original statistic T n . Similarly, let T b n be the bootstrap statistic obtained with the estimated FPC basis. When the scheme is repeated many times, the bootstrap critical value z 1-a,n at level a is the empirical (1a)-th quantile of the bootstrapped test statistics. The asymptotic validity of this bootstrap procedure is guaranteed by the next result that follows from the asymptotic results presented in the previous sections. The detailed justification of this is postponed to the Appendix. If the conditions of of the Theorem 3.3 and Theorem 3.4 are met. Then,

  3 and b 2 (t) = 0.6 for all t ∈ [0, 1]. The function b 1 was already considered by[START_REF] Cardot | Testing Hypotheses in the Functional Linear Model[END_REF] and the value σ = 0.253 was chosen in order to obtain a signal-to noise ratio of 10% (see[START_REF] Cardot | Testing Hypotheses in the Functional Linear Model[END_REF]).

Table 3 .

 3 Percentages of rejection for the Tecator data with different bandwidthsh = c • n -2/9, different m for model estimation and different p.

2

 2 almost surely; (c) The sets B p ⊂ S p , p ≥ 1 from the definition of γ n are such that: (i) ∃C 1 (independent of p) such that ∀p ≥ 1 and ∀γ ∈ B p , the variable X, γ admits a density f γ and R f 2 γ ≤ C 1 ; (ii) γ (p) 0 ∈ B p and B p × 0 p -p ⊂ B p , ∀1 ≤ p < p , where 0 p -p denotes the null vector of dimension p -p. (d) The initial 'guess' b 0 = (b 01 , b 02

Lemma 7 . 4 .

 74 Let Assumptions D, K and hypothesis H 0 hold true. Then1. + o P (1)}, with v 2 n (γ (p)0 ) defined in (3.7), provided condition (3.9) holds true;

7. 3 . 1 .

 31 Proofs For simpler formulae and without loss of generality, we suppose > 8/7 in the exponential moment condition in Assumption D-(a), so that condition (2.1) holds with s = 7 /8 > Proof of Lemma 2.1. (A). The implication (1) ⇒ (2) is obvious. To prove (2) ⇒ (1), note that M p = E(U | X [p] ) is a martingale. Doob's Martingale Convergence Theorem implies that M p → E(U | X) with probability 1, thus necessarily E(U | X) = 0. The equivalence (2) ⇔ (3) follows from Lemma 2.1-(A) of Lavergne and Patilea (2008) applied for each p. (B). From (A)-(3), ∃p 0 ≥ 1 such that P[E(U | X [p0] ) = 0] < 1.Next, assume that p 0 is the smallest with the property P

  is empty or finite.(7.7) Now, let us fix some 1 < ζ < s. To investigate the properties of A p , note that by (A), ∃ γ ∈ S p such that P(E(U | X, γ ) = 0) < 1. Then, property (7.7) applied with some a = ζ, W 1 = U and W 2 = X, γ implies that the set {|b| < ζ : E(U exp{b X, γ }) = 0} is empty or finite. Deduce that there exists υ ∈ R p , arbitrarily close to the origin, in particular satisfying υ < s -ζ, such that E(U exp{ X [p] , υ }) = 0. Next, we adapt the lines of the proof of Lemma 1 in[START_REF] Bierens | A consistent conditional moment test of functional form[END_REF]. Let U = U exp{ X [p] , υ } and ξ l = X, φ l . By construction, P(E(U | ξ 1 , • • • , ξ l ) = 0) < 1, for l = 1, • • • , p. Define the sets

. 8 )

 8 Next, fix some a > 3 and let G p ⊂ R p be a set of n ap points on S p such that ∀γ ∈ S p ∃γ ∈ G p with γ -γ ≤ n -3 . (To build such a grid, use for instance evenly spaced points grids on the intervals [0, π] and [0, 2π] and spherical coordinates.) By the construction of G p and equation (7.8), sup γ∈Bp⊂S p |Q n (γ)| ≤ sup γ∈Gp⊂S p |Q n (γ)| + o P (n -1 ).

Finally, consider the

  difference between Q 1n ( γ) computed with •, • n and •, • . If condition 1 of Corollary 3.5 is met, use the Lipschitz property and deduce that this difference is of rate o P (n -1/2 ) under any of the conditions 1 to 3 of By the Cauchy-Schwarz inequality, the rate of X n and Lemma 7.6,nh 1/2 sup γ∈Bp |V 22 | = nh 1/2 O P ( b -b )O P (n -1/2 )O P (h -1/4 n -1/2 p 1/2 ln 3/2 n).Deduce that sup γ∈S p nh 1/2 |V 2 | = o P (1). For V 3 take absolute values and use the 805 Cauchy-Schwarz inequality to write nh 1/2 sup γ∈Bp |V 3 | ≤ sup γ∈Bp nh 1/2 b -b 2

  3-(1b,3b), we have sup γ W n (γ) 2 F = o P (1). Thus sup γ nh 1/2 |V 3 | = nh 1/2 O P ( b -b 2 )O P (1) = o P[START_REF] Bierens | A consistent conditional moment test of functional form[END_REF]. Similar arguments apply for the uniform rates of V 4 and V 5 .

  i ){X i (u) -X n (u)}

2 = 1 01 θ - 2 j=

 212 o P (n -1 ), and finally that Γ n = O P (n -1 ). For the last part, Th. 1 of Hall and Horowitz 810 (2007) provides the rate of { b 0 (t) -b(t)} 2 dt. Next, Assumption P-(c) implies θ j ≥ cj -α for some constant c and thus mO(n (2α+1)/(α+2β) ) = o(n) provided m n 1/(α+2β) . Finally, deduce from the equations (5.6) to (5.9) of[START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF] that m j=1 (θ -2 j -θ -2 j ) = o P (n).Proof of Theorem 4.4. It suffices to show that Q n ( γ, a, b) P r 2 n for some fixed p sufficiently large and γ ∈ B p . Decomposing U i as in (4.8), Q n ( γ, a, b) can be decomposed into 15 terms similar or identical to those analyzed in the proofs of Theorem 3.4 and Lemma 4.1. We omit the details. Proof of Theorem 5.1. First consider the case of a fixed basis R. Let X ij = X i -X j . The idea is to show the asymptotic normality of T b n conditionally on the observed data adapting the steps used for the asymptotic normality for T n . Consider the event A n = {max 1≤i≤n |U i | ≤ M } with M = n 1/4-b for some b > 0. Assumption D-(a) guarantees P(A c n ) → 0. Moreover, ∀i, E[U 2 i I {|U |≤M } | X i ] ≥ σ 2 /2 for M sufficiently large. Define

| U 1 , X 1 ,

 11 , γ ∈ S p .Note that for any t > 0P sup γ M -2 Q b n (γ) -Q b M,n (γ) > t | U 1 , X 1 , • • • , U n , X n ≤ P(A c n ) → 0. (7.14) Define the quantities A b n , B b n , C b n and D b n such as A n to D n but with h i,j replaced by h b i,j and the expectations replaced by the conditional expectations given(U 1 , X 1 ), • • • , (U n , X n ).It is easy to check that the same upper bounds as in Lemma 7.2, could be derived on the event A n . Then equation(7.14) and the exponential inequality from Lemma 7.1 applied (following the lines of the proof of Lemma 3.1) to Q b M,n (γ) on the event A n yield,∀C > 0, P[sup γ Q b n (γ) > Cp ln n/nh 1/2 | U 1 , X 1 , • • • , U n , X n ] → 0,in probability. The second part of Lemma 3.1 on the variance estimator follows by similar arguments. Deduce that P(γ n = γ (p) 0 • • • , U n , X n ) →0, in probability. It remains to reconsider the steps of Theorem 3.3 and to derive the rates in equation (7.12) for the matrix W b n

2

 2 

where C 3 2 F 2 F 2 F

 3222 is some constant. Deduce that W b n (γ (p) 0 ) 2 = o P (n -1 ). On the other hand, by Assumption D-(b) σ 4 E[ W n (γ ] ≤ σ 4 E[ W n (γ ) → 0. Hence it suffices to consider the upper and lower bounds of nh 1/2 W n (γ (p) 0 ) F and the result follows. In the case of an estimated basis, the equations (7.14) and (7.16) remain valid. Moreover, by the arguments used in the proof of Lemma 7.5, the variance of n 2 h W b n (γ still converges to zero and W b n (γ (p) 0 ) 2 is also of rate o P (n -1 ), where now W b n (γ (p) 0 ) is the matrix with generic element K b h,ij (γ

  Let us now describe the behavior of γ n under H 0 .

	Lemma 3.2. Under Assumptions D, K, and condition (3.8) if the variance
	estimator v 2 n (γ) is the one defined in (3.7), for a positive sequence α n , n ≥ 1
	such that α n /{p ln n} → ∞, we have P		
	Lemma 3.1. Under Assumptions D and K and if H 0 holds true,
	sup γ∈Bp⊂S p	|Q n (γ)| = O P (n -1 h -1/2 p ln n) and	sup γ∈Bp⊂S p	1/ v 2 n (γ) = O P (1),
	with v 2 n (γ) defined in (3.6), or with v 2 n (γ) defined in (3.7) provided that the
	condition (3.8) also holds true.		

  2 n (•; a, b) be an estimate of the variance of nh 1/2 Q n (•; a, b) as in section 3.2. Given γ

	(p)
	0

Table 1 .

 1 Percentages of rejection by the new test and Cardot's test (entitled CFMS) for testing the covariate effect under the null hypothesis and under linear and quadratic alternatives. The nominal level was 5%.

	200

Table 2 .

 2 The percentages of rejection are based on one thousand samples and the nominal level was 5%. Percentages of rejection by the new test and Horvàth and Reeder's test (entitled HR) for testing the lack-of fit of the functional linear model under the null hypothesis and under quadratic and cubic deviations. The nominal level was 5%.Following[START_REF] Cardot | Testing Hypotheses in the Functional Linear Model[END_REF], five dimensions were used to estimate the functional linear model. Several numbers of dimensions to detect the alternative are considered in Table

			n = 100	n = 200
	Model	p	New HR	New HR
	Linear (Null) 3	4.8	10.6	4.2	6.6
		5	5.3	28.8	4.7	12.4
		7	4.7	70.3	4.4	28.9
		9	4.5	99.1	4.5	60.7
	Quadratic	3	46.7 82.0	81.8 97.6
		5	49.8 82.1	83.6 95.5
		7	52.0 93.6	84.3 95.5
		9	53.0 99.7	83.8 97.6
	Cubic	3	54.5 37.8	88.4 37.9
		5	54.5 55.0	88.6 46.3
		7	54.9 84.2	89.2 60.8
		9	57.3 99.6	90.0 82.0

  1 × (-ζ, ζ) and t1∈(-ζ,ζ)\A 1 S 2 (t 1 ) are negligible. If A 1 has zero Lebesgue measure, by Fubini's Theorem, its product with any interval (-ζ, ζ) has also zero Lebesgue measure. Next, let us point out that if A ⊂ R d is a nowhere dense set, the sets (-ζ, ζ) × A and A × (-ζ, ζ) are nowhere dense in R d+1 . Indeed, we have Int

  ζ) is nowhere dense. (Here, Int(A) denotes the interior of the set A while A denotes its closure.) Concerning the set t1∈(-ζ,ζ)\A 1 S 2 (t 1 ), using Fubini's Theorem, the Lebesgue measure of this set is clearly equal to zero. Next, if by definition S 2 (t 1 ) = ∅ for t 1 ∈ A 1 , then it suffices to study a set under the form S 2 = t1∈(-ζ,ζ) S 2 (t 1 ) with each S 2 (t 1 ) ⊂ (-ζ, ζ) an empty or finite set. First, let us notice that the set S c 2 = (-ζ, ζ) 2 \ S 2 is open. Indeed, if (t 1 , t 2 ) ∈ S 2 , then t 2 ∈ S 2 (t 1 ). Given that S 2 (t 1 ) is at most finite and the map (t 1 , t 2 ) → E(U exp{ξ 1 t 1 } exp{ξ 2 t 2 }) is continuous, there there exists c > 0 and δ > 0 such that |E(U exp{ξ 1 t 1 } exp{ξ 2 t 2 })| > c for any (t 1 , t 2 ) such that |t 1 -t 1 |, |t 2 -t 2 | < δ. This means that for any (t 1 , t 2 ) ∈ S c 2 , there exists a square neighborhood of (t 1 , t 2 ) contained in S c 2 , and thus S c 2 is an open set. Next, let us notice that (-ζ, ζ) 2 ⊂ S c 2 ∩ (-ζ, ζ) 2 . To check this it suffices to note that for any (t 1 , t 2 ) ∈ S 2 there exists some c close to zero such that, for each t 2 between t 2 and t 2 + c, (t 1 , t 2 ) ∈ S 2 but (t 1 , t 2 ) ∈ S c 2 . Then, necessarily, (t 1 , t 2 ) ∈ S c 2 ∩ (-ζ, ζ) 2 and thus the whole square (-ζ, ζ) 2 is contained in that closure. In particular this shows that S 2 is contained in the boundary of the open set S c

2 and is thus nowhere dense. Finally, repeat the same type of arguments with l = 3, • • • , p. Proof of Corollary 2.2. By Lemma 2.1, if the null hypothesis holds true, ∀p ≥ 1 and ∀γ ∈ B p , E (U | X, γ ) = 0 a.s. Thus E [U E (U | X, γ ) w p (γ, X, γ )] = 0. Conversely, first note that for any p, γ and any function w p (•, •),

  2 } with S n (γ) and W n (γ) the non-random quantities defined in Lemma 7.2. By Lemma 7.3, ∃c (independent of n, p, h and γ) such that the covariate observations belong to E n (c ) with probability tending to 1, i.e., lim n
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Let f 0 be the density of 

→ 0, (7.10) for some constant C. Moreover, by dominated convergence [START_REF] Bierens | A consistent conditional moment test of functional form[END_REF]; see Supplementary Material for the details. The statement for the first variance estimator follows. The statement for the second variance estimator is a direct consequence of [START_REF] Bosq | Linear Processes in Function Spaces: Theory and Applications[END_REF].

The proof of Lemma 3.2 and an example of nonparametric estimator satisfying the condition (3.9) are provided in the Supplementary Material.

Proof of Theorem 3.3. By Lemma 3.2, the probabilities of the events [START_REF] Guerre | Data-driven rate-optimal specification testing in regression models[END_REF]. Let W n (γ) be the zero diagonal n × n-matrix with generic element K h ( X i -X j , γ ) /(h n(n -1)) for i = j. To apply CLT in Lemma 2 of Guerre and Lavergne (2005) it suffices to have

) with S n (γ, t) defined in equation ( 7.2), the first rate in (7.12) follows from [START_REF] Bücher | Testing model assumptions in functional regression models[END_REF]. By Lemma ). The conditional variance of nh 1/2 Q n (γ (7.4). Deduce that ∃C depending only on σ 2 and σ 2 such that for n sufficiently large,

Finally, to deduce the asymptotic law of our test statistic with any of the variance estimators, we propose it suffices to apply Lemma 7.4.

Proof of Theorem 3.4. The proof is based on inequality (3.10).

), clearly the variance estimate v 2 n ( γ) stays away from zero. It is easy to check that the moment conditions on δ 2 (•) guarantee that v 2 n ( γ) is also bounded in probability. Hence it suffices to look at the behavior of Q n (γ). By Lemma 2.1-(B) there exists p 0 and γ ∈ B p0 ⊂ S p0 (p 0 and γ independent of

Since γ is fixed (and of finite dimension),

). First we can use Condition (1) and the Marcinkiewicz-Zygmund inequality and proceed as in the proof of equations ( 25) and ( 28) in [START_REF] Lavergne | Breaking the curse of dimensionality in nonparametric testing[END_REF]. Alternatively, Q 1n ( γ) can be decomposed as the sum of a degenerate U -statistic of order 2 with the rate O P (h -1/2 n -1 ) = O P (n -1/2 ) and

Hence it suffices to bound

Then using the inverse Fourier transform we have

Theorem 3.4. If condition 2 of Corollary 3.5 is met, necessarily f γ is bounded and so we are under the condition 1 of Theorem 3.4. We can then follow the lines of the proof of equation ( 28) and ( 29) of [START_REF] Lavergne | Breaking the curse of dimensionality in nonparametric testing[END_REF] and apply the Marcinkiewicz-Zygmund inequality, and use (7.5) with γ. Finally, condition 3 of Corollary 3.5 is met, the density f γ is uniformly continuous and 800 thus necessarily bounded and so we are in the previous situation. The proof of Corollary 3.5 is now complete.

Recall that without loss of generality, we can take E(X) = 0. Moreover, for simpler formulae, hereafter we write

Below, we show that sup γ∈Bp⊂S p nh 1/2 |V j | = o P (1), for j = 1, • • • , 5. First note that, by the Fubini Theorem, E( X n 2 ) = n -1 1 0 E[X(t) 2 ]dt and so X n = O P (n -1/2 ). For V 1 , since U n = O P (n -1/2 ), by Lemma 7.6 sup γ∈Bp⊂S p nh 1/2 |V 1 | = nh 1/2 O P (n -1/2 )O P (h -1/4 n -1/2 p 1/2 ln 1/2 n) = o P (1).

Next,

By the Cauchy-Schwarz inequality and Lemma 7.