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Abstract: 

Treatment with immune checkpoint inhibitors targeting programmed cell death protein 1 

(PD-1) or its ligand (PD-L1) can generate durable responses in various cancer types, but only 

in a subset of patients. The use of predictive biomarkers for response to PD-1/PD-L1 

inhibitors is critical for patient selection. Expression of PD-L1 has demonstrated utility in 

patient selection. Tumor mutation burden (TMB) is an emerging biomarker for response to 

PD-1/PD-L1 inhibitors. The evaluation of this biomarker is based on the hypothesis that a 

high number of mutations in somatic exonic regions will lead to increase neoantigen 

production which could then be recognized by CD8+ T cells, resulting in improved immune 

responses. In this review, we will discuss rationale and implementation of TMB usage in 

patients, development of different methods to assess it, current limitations and technical 

issues to use this biomarker as a diagnostic test and propose future perspectives beyond 

TMB. 
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Introduction 

Immune checkpoint inhibitors (ICI) have demonstrated durable antitumor effects in 

treatment of multiple cancer types. Since the initial approval of ipilimumab in metastatic 

melanoma in 2011, multiple ICIs have been developed for a variety of cancer types. Phase III 

clinical trials have demonstrated the efficacy of anti PD-1/PD-L1 alone or in combination 

with other agents in many cancer types such as small and non-small cell lung cancer, 

urothelial, head and neck, clear renal cell, hepatocellular carcinoma, and triple negative 

breast cancer (1–10). Furthermore, evidence of ICI efficacy in tumors with mismatch repair 

deficiency led to the first tumor-agnostic FDA approval, based on molecular alteration rather 

than tumor location. 

Despite the impressive results obtained with ICIs, only a subset of patients have a durable 

clinical benefit from such therapies. It is estimated that only 12% of all cancer patients will 

benefit from ICIs used as monotherapy(11). In addition, ICIs have substantial costs, carry 

significant risks of immune related toxicities, and may even cause tumor hyperprogression 

and worsen tumor prognosis in a subset of patients(12). To improve patient selection, there 

is an urgent need of biomarkers to identify the subgroup of patients with a durable survival 

upon ICI treatment. 

A. Immunotherapy in solid cancer: Development of predictive biomarkers is crucial 

Optimization of ICI treatment requires predictive biomarkers to identify patients which are 

likely to benefit from this treatment. Biomarkers for ICI effectiveness have been found, 

nevertheless their predictive role remains unsatisfying. Currently, only PD-L1 is validated to 

predict response to ICIs. Indeed, pembrolizumab as a monotherapy is approved for the first-

line of non-small cell lung cancer (NSCLC) in patients selected with PD-L1 >50%(2). In breast 

cancer, atezolizumab is approved in combination with nab paclitaxel in metastatic triple 

negative breast cancer with PD-L1 >1%, evaluated using SP142 antibody(9). 

However, PD-L1 is an imperfect biomarker due to tumor intrinsic PD-L1 heterogeneity and its 

lability during cancer history(13). Despite association between PD-L1 expression and 

response rate to immunotherapy in a pan cancer analysis, many patients with PD-L1 

expression are resistant to ICIs and some patients without PD-L1 expression gain benefit 

from the therapy. Hence, this marker is not optimal to stratify patients who will have a 
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clinical benefit from ICI treatment. Therefore, other approaches are tested such as 

transcriptomic signatures or tumor infiltrate lymphocytes (TILs) presence. For example, we 

have shown that in NSCLC patients treated with anti-PD-1, addition of CD8+ T lymphocytes 

infiltration analysis improves PD-L1 ability to predict PFS(14). Furthermore, CD8 and PD-L1 

combination seems to be more effective as a biomarker when assessed by transcriptomic 

analysis rather than IHC. When compared to other transcriptomic signatures like IFN or 

EIG(15), this 2 genes signature provides similar results. 

Genomic analysis is another promising way to find biomarkers of response to ICIs. Cancer is 

inherently a somatic genetic disease. Tumor cells are characterized by abnormal functions 

(proliferation, apoptosis resistance, etc.), which are consequences of genomic alterations. 

Some of these mutations are considered to be “driver mutations”, leading the oncogenic 

process, while other mutations are “passenger” and less essential for cancer cell survival. 

Yet, the majority of tumor DNA alterations are defined as passenger mutations, with few or 

little implicated in carcinogenesis or tumor growth. However, all driver or passenger 

mutations code for mutant proteins. These mutant proteins, like all other cell proteins, are 

recycled through the proteasome pathway. After degradation into 8 - 9 amino acid length 

peptides, these molecules are processed in endoplasmic reticulum and loaded in a HLA class 

I molecules that will be presented on cancer cell surface. When peptides originated from 

mutant proteins have higher affinity for HLA molecules than normal peptides, they will be 

presented by HLA molecules on cancer cells surface, allowing CD8+ T cells to recognize and 

kill cancer cells. Consequently, genetic mutations in cancer cells could be considered as the 

first event driving antitumor immune response. Therefore, tumors which contain a high level 

of mutations will have an increased level of tumor neoantigens and will present a higher 

immunogenicity (Figure 1). The hypothesis put forward implies that high number of 

mutation in somatic exonic region will lead to an increased neoantigen production, which 

then could be recognized by CD8+ T cells, explaining the improved immune response(16). In 

this context, a new promising biomarker emerged recently: the tumor mutational burden 

(TMB) which is classically defined as a number of non-synonymous exonic mutation per 

megabase (Mb). 

A novel biomarker should have an analytic and clinical utility, economic feasibility and a 

biologic rationale(17). In this review, these parameters will be discussed. In addition, we will 
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specially highlight the current clinical results concerning TMB, development of different 

methods to assess it, current limitations and technical issues to use biomarker as a 

diagnostic test and discuss future perspectives beyond TMB. 

 

B. TMB as a potential biomarker of ICI response 

Analytic and clinical utility of TMB as a biomarker was initially tested and validated in several 

retrospective studies showing the potential capacity of a high number of mutations or high 

number of neoantigens to predict ICI efficacy. The first studies supporting this hypothesis 

were published by Snyder et al.(18) and Rizvi et al.(19). These studies showed that higher 

numbers of exonic non-synonymous mutations were associated with higher response rates 

in patients with melanoma treated with anti-CTLA-4, and NSCLC treated with anti-PD-1, 

respectively. Similarly, our group also observed in 77 patients with NSCLC treated in second-

line with nivolumab, that higher exonic nonsynonymous mutations and neoantigens are 

associated with a better outcome(20). More recently, in pan tumor analysis published in 

2017, TMB has been evaluated in TCGA cohort and median TMB value per tumor type shows 

a correlation with the rate of objective response in clinical trials testing ICIs(21). Such data 

suggest that TMB is a pan-cancer genomic biomarker related to checkpoint inhibitors 

efficacy. 

Overall, in several retrospective studies performed in different types of cancer, the 

hypothesis of correlation between high TMB and better response to ICIs seems to be 

validated. TMB appears as a promising predictive biomarker of ICI efficacy, whatever the ICI 

and in numerous cancer types(22). Furthermore, in mismatch repair deficient tumors, TMB 

provides additional information although mismatch repair status seems to be the main 

parameter(23). 

However, the relationship between TMB and ICI response is imperfect both across tumor 

types and within tumor types. For example, Merkel cell carcinoma (MCC), renal cell cancers 

(RCC), and mesothelioma all have higher response rates to ICIs than would be anticipated 

from their TMBs(24) . This may be related to the higher quality of antigens in these tumor 

types, resulting from viral antigens (in MCC), a high number of indel mutations (in RCC), and 

complex chromosomal rearrangements (in mesothelioma). TMB also has poor predictive 
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value within some tumor types such as gliomas and renal cell cancers (25). Concerning clear 

cell renal cancer, Swanton’s group showed that TMB is not a biomarker of efficacy of ICI 

therapy. However, clear cell renal cancers are characterized by high number of 

insertions/deletions in the genome (indel). Neoantigens derived from indel mutations were 

nine times enriched for mutant specific binding, as compared with non-synonymous single 

nuclear variant derived neoantigens, which classically constitute TMB. In contrast to TMB, 

indel or mutant-specific neoantigens were associated with T-cell recruitment. Finally, 

frameshift indel count is significantly associated with ICI therapy efficacy in both renal cancer 

and melanoma(26). 

C. TMB as a biomarker in clinical trials 

In addition, with these retrospective data, TMB was analyzed retrospectively in prospective 

trials and then prospectively to determine its ability to be a predictive biomarker of ICI’s 

response. 

TMB was analyzed in the prospective clinical trial KEYNOTE 158 to assess its ability to be a 

validated clinical biomarker in ten different tumor types (anal, biliary, cervical, endometrial, 

salivary, thyroid, vulvar carcinoma, mesothelioma, neuroendocrine tumor, small cell lung 

cancer) treated by pembrolizumab(27). In this trial, high TMB is defined as more that 10 

mutations per megabase using FoundationOne assay. High TMB, using the selected cutoff, 

concerned 13% of patients. ORR and PFS was improved in patients with high TMB. No 

difference in terms of OS was detected. Accordingly, such data suggest that TMB may be 

predictive of the efficacy of pembrolizumab monotherapy in this multi-organ trial. 

Moreover, in several trials using different combinations of anti-PD-1/PD-L1 and anti-CTLA-4, 

the higher TMB, the higher response rate to ICIs. Nevertheless, it should be noted that some 

contradictory results were observed(21). 

In NSCLC, results of the Checkmate 026 and 227 trials suggest that TMB determined using 

either exome sequencing or FoundationOne assay may become a new diagnostic biomarker 

to predict response to ICI, either alone or in combinatorial regimens(28,29). Indeed, in these 

two studies, ICI alone or in combination, has shown a benefit vs chemotherapy only in 

TMBhigh subgroup (defined as > 243 mutations in exonic sequence or >10mutation per 
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megabase using FoundationOne assay). Studies with pembrolizumab and atezolizumab in 

NSCLC used different cutoffs, but seem to give the same conclusions. Similar results were 

also obtained in small cell lung cancer and melanoma treated with combotherapy nivolumab 

plus ipilimumab (Summary in Table 1)(18,19,24,28,28–35,35–45). 
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Tumor type testing drug TMB method TMB cutoff type of benefit

NSCLC Checkmate 026 Nivolumab WES >243 mut/exome ORR, PFS

Rozenblum et al, 2017 Nivolumab or pembrolizumab FoundationOne > 9,6 mut/Mb ORR

KEYNOTE 001 pembrolizumab WES >178 mut/exome ORR, PFS

POPLAR/OAK Atezolizumab Foundation bTMB > 10 mut/Mb PFS, OS

POPLAR/FIR/BIRCH Atezolizumab FoundationOne
1st line : >13,5mut/Mb

2nd line : >17,1mut/Mb
ORR, PFS, OS

BFAST and BF1RST Atezolizumab Foundation bTMB unknow ORR, PFS, OS

MSKCC, Rizvi et al, 2018 multiagent (alone or combination) WES >8,5mut/Mb ORR, PFS

Checkmate 227 ipilimumab + nivolumab FoundationOne > 10 mut/Mb ORR, PFS

Checkmate 568 ipilimumab + nivolumab FoundationOne > 10 mut/Mb ORR, PFS

Checkmate 012 ipilimumab + nivolumab WES > 158 mut/exome ORR, PFS and clinical benefit

Melanoma checkmate 064 nivolumab WES unknow ORR, OS

Van Allen et al 2015 ipilimumab WES 197 mut/exome Clinical benefit

Snyder et al 2014 ipilimumab WES >100 mut/exome OS

Johnson et al, 2016 multiagent (alone or combination) FoundationOne >23,1 mut/Mb ORR, PFS, OS

Hugo et al, 2016 multiagent (alone or combination) WES >495 mut/exome OS

Chekmate 038 nivolumab WES >100 mut/exome OS

Bladder Checkmate 275 nivolumab WES >167 mut/exome ORR, PFS, OS

Imvigor 210 atezolizumab FoundationOne >16 mut/Mb ORR, OS

Imvigor 211 atezolizumab FoundationOne > median OS

Snyder et al, 2017 atezolizumab WES > median PFS  

SCLC Hellman et al, 2018 Nivolumab + ipilimumab WES >248 mut/exome ORR, PFS, OS

CRC KEYNOTE 012 - 028 pembrolizumab WES unknow ORR, PFS

multiple solid tumors Goodman et al, 2017 multiagent (alone or combination) FoundationOne > 20mut/Mb ORR, PFS, OS

Yarchoan et al, 2017 multiagent (alone or combination) various various ORR
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In contrast, in other tumor types TMB is not associated with ICI therapy efficacy. In 

particular, it should be noted that in germ cell tumors which are known to be less genetic 

instable, TMB median is low and non-predictive of ICI’s response. In the recent ABACUS trial, 

testing atezolizumab as a neoadjuvant monotherapy for localized urothelial cancer, TMB did 

not predict response rate neither survival(46). 

As shown in Table 1, the selected cutoff values change between clinical studies suggesting 

that it could be difficult to find a pan tumor cutoff value. In the recent large MSKCC-IMPACT 

trial association between TMB and ICI efficacy was tested in multiple cancer types. Higher 

TMB is associated with better outcome in most cancer types but the optimal cutoff point 

may vary according to tumor type. Thus raising the hypothesis that it would be suboptimal 

to propose a general cutoff common to all cancers. In addition, TMB is a continuous 

Gaussian variable. It is important to determine if the effect of this biomarker on survival is 

continuous or an ON/OFF effect, thus enforcing the rational to find an optimal cutoff. In this 

study, top 10% TMB seem to have better outcome than top 20%, suggesting a continuous 

dose effect of TMB. Optimal cutoff analysis suggests a continuous effect of TMB with low 

cutoff values and then an ON/OFF effect after 20Mt /base(47). Despite these data, 10 

mut/Mb cutoff seems to become widely used. Based on Yarchoan meta-analysis(24), we 

could confirm in TCGA cohort that the % of patients with more than 10 mut/Mb is strongly 

associated with response rate to immunotherapy (Figure 2A). 

In most clinical studies, PD-L1 expression is associated with high response rate to ICI. Pan 

tumor analysis show a strong correlation between the percentage of tumor tissue expressing 

PD-L1 and response rate to immunotherapy (Figure 2B). Surprisingly TMB and PD-L1 

expression seem to be independent, poorly correlated predictive biomarkers both within 

most tumor types and across tumor types (Figure 2C). These results suggest that these 2 

markers are probably independent and their combination may improve prediction of 

patient’s prognosis. 

Surprisingly, results from two different exploratory analyses of KEYNOTE trials recently 

presented at ESMO 2019 congress showed that TMB failed to prove effective as a biomarker 

in response to chemotherapy plus ICI or chemotherapy alone as first-line treatment in NSCLC 

(48,49). In both analyses, researchers observed no significant association between TMB, 

used as a continuous variable and response rates, progression-free survival, or overall 
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survival. Similar to previous studies, they also found no association between TMB and PD-L1 

expression. It has been suspected that prior chemotherapy, which could generate additional 

somatic mutations, was not associated with a statistically increase of TMB(50). Addition date 

are needed before generating definitive conclusion. 
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D. Technical Issue with TMB usage. 

For initial studies, TMB was determined by whole exome sequencing (WES) carried out on 

tumor DNA and matching normal DNA. Germline DNA sequencing is used to remove 

constitutional variation(51). Using such type of analysis, TMB is estimated as the number of 

somatic non-synonymous mutations and report as a number per Mb. Recent reports also 

demonstrated the feasibility to estimate TMB by targeted panel Next Generation Sequencing 

(NGS). Such strategy may simplify the determination of TMB and could extend its availability, 

since WES could be difficult to upscale to a large population due to its high costs, substantial 

turn-around time for analysis and sequencing. Concerning panel strategy, two competitive 

approaches are available. Some tests are only based in somatic sequencing. To eliminate 

germline variants, a bioinformatics pipeline is developed to filter out potential germline 

variants according to published databases of known germline polymorphisms, like dbSNP 

and ExAC(52,53). Current leader in such technology is Roche Diagnostics with the 

Foundation Medicine (FM) NGS approach (F1CDx) which uses a panel of 0.8 Mb. The main 

problem of technologies using databases for germline subtraction is a trend for race-

dependent increases in TMB scores(54). The other technology available uses panel analysis 

of somatic and germline DNA, similarly to exome sequencing. The MSKCC NGS approach 

(MSK-IMPACT) is the most developed panel and sequences 468 genes covering 1.22 Mb. 

Exome and panels tested (F1CDx and MSK-IMPACT), have demonstrated their ability to 

predict ICI response. Both F1CDx and MSK-IMPACT have been approved by FDA. Comparison 

of WES results and estimation of TMB using different panels based on TCGA data, show a 

strong correlation in tumors where ICIs are clinically developed in monotherapy (Figure 3). 
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Nevertheless, some technological issues must be addressed to correctly use such 

technologies. Firstly, TMB calculation varies between tests. Thus, Exome and MSK-IMPACT 

count only non-synonymous exonic mutations, while F1CDx uses the number of synonymous 

and non-synonymous mutations and also includes insertions, deletions and splicing 

mutations. From an immunological point of view, such TMB sequencing method is not very 

relevant since it considers mutations that won’t be translated into neoantigens, which are 

responsible for driving tumor immunity. This strategy is a technical palliation to artificially 

enhance the number of detected mutations. In practice, panel size influences the sensibility 

and specificity of the test. A cutoff of 10mut/Mbp corresponds to the detection of 306 non-

synonymous mutations in the whole exome, 13 mutations with MSK-IMPACT and 8 using 

F1CDx. Statistical analysis could be performed to estimate precision of TMB estimation with 

panels. For a TMB of 10 mutations/MB, 95% CIs ranged between 3.0–21.8 and 5.5–14.6, for 

panel sizes of 0.533 and 1.942. Such data are important as for a panel (<1 Mb) such as 

F1CDx, we have observed large CIs for TMBs, between 0 and 30 mutations per Mb. These 

data suggest that TMB estimation using small gene panels can be highly imprecise and thus 

clinically suboptimal when used for patient stratification and response prediction. Such 

problem is particularly important in tumors like NSCLC where TMB value is a continuous 

variable. For some other diseases, such as colorectal cancer where TMB has a bimodal 

distribution this problem is less relevant (Figure 3). Consequently, Stenzinger’s group 

recently proposed a mathematical method to estimate accuracy limitations inherent to 

panel TMB and define a new variable called coefficient of variant (CV) to estimate panel TMB 

accuracy and proposed to include a grey zone where panel could not accurately predict 

TMB(55). We provide in Table 2 the major metrics related to main TMB estimation technics. 

TMB calculation included both synonymous and non-synonymous mutations requiring a 

formula to scale results to the number of missense mutations determined by WES (the scale 

factor is = sum (all mutations)/sum (missense mutations). Scaling factors range between 1.44 

and 1.66. Such difference between tumors may artificially elevate TMB. Some tumors 

present mutations not related to neoantigens and may impede TMB to predict checkpoint 

efficacy. 

Bioinformatics algorithms, which could differ between tests, might also have a major impact 

when comparing reproducibility based on different tests. Friends of Cancer Research 
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established a working group to create an universal reference and harmonize these 

methods(56). The most frequently used variation caller is MuTect for somatic variant 

detection. For somatic and constitutional sequencing the most widely pipeline used involves 

the Genome Analysis Toolkit supplementing with GATK-Mutect2, which is based on MuTect 

and GATK-HaplotypeCaller. Applications applied for InDel detection present a wide variety 

and application reliability is difficult to determine(57). Moreover, filtering algorithms for 

putative germline variants, variant allele frequency and FFPE-induced deamination artifacts 

may vary between assays and can strongly impact TMB values. Lastly, subtracting algorithms 

used for tumor only analysis are not adapted for Asian and African people. A trend for race-

dependent TMB scores increase is observed(54). 

Several pre-analytic variables could impact TMB determination and should be standardized 

across platforms: depth of sequencing, length of sequencing reads. Type of fixative agents 

and fixation time, influence the degree of formaldehyde fixed-paraffin embedded (FFPE)-

induced deamination artifacts, which impacts analysis of TMB. Also, low tumor purity, 

resulting from sampling errors may lead to reduced TMB assay sensitivity. A particular 

difference between panel sequencing and WES is the depth of sequencing, around 100X for 

exome and 2000X for panels. Such difference may enhance the capacity of panels to detect 

sub-clonal mutations and artificially increase TMB number with sub-clonal mutations. While 

such mutations are known to be unrelated to ICI efficacy, this issue may limit the clinical 

efficacy of panel analysis(58). 

Altogether, such data support that presently WES should remain the gold standard for TMB 

assessment. Large panels of more that 2-5MB using somatic and germline sequencing could 

be a cost effective alternative solution(59). However, to improve the usage of TMB, 

standardization of pre-analytic procedures, harmonization of bioinformatics pipeline and 

comparison between tests in large patient cohorts, determining scaling factors to be able to 

compare tests are necessary. 
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Main types of TMB assays: 

Type Number 

of genes 

Size (MB) Germline 

analysis 

Variable for TMB 

definition 

Number of 

mutations detected 

for 10m/MB in the 

genome 

CI 95% for a 

TMB 

evaluated at 

10m/MB 

CV 

WES 22 000 30 Yes No. of somatic, 

missense mutations 

306 Gold standard  

MSK-IMPACT 468 1.5 MB Yes No. of somatic, 

missense mutations 

14 [5.1;15.7] 25 

FoundationOne CDx 384 0.8 No synonymous and 

non-synonymous, 

short indel 

8 [4.3;19.7] 35 

True Sight 500 2 No synonymous and 

non-synonymous, 

short indel 

18 [5.3;14.2] 22 

Oncomine 409 1.7 No synonymous and 

non-synonymous, 

short indel 

15 [4.9;14.5] 24 

QIAGEN 

Comprehensive 

Cancer Panel 

160 0.7 No synonymous and 

non-synonymous, 

short indel 

7 [4.0;20.6] 37 
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E. Exome analysis beyond TMB 

TMB is a good surrogate marker of the number of neo-peptides, but looking at additional 

genetic variables could be interesting to predict response to ICI. Recently an editor raised 

questions concerning the quality rather than quantity of neoantigens(60). Authors based 

their argumentation on recent fundamental studies, which underlined that many additional 

parameters could influence the ability of neoantigens to stimulate effective immune 

responses. Expression of mRNA and protein may influence the quantity of antigens 

presented by HLA molecules. Mutation clonality is also important as subclonality and 

intratumoral heterogeneity is frequently associated with the lack of ICI efficacy despite high 

TMB(58). The quality of neoantigens and in particular their hydrophobicity, affinity to HLA 

molecules and resemblance to foreign peptides could influence immunogenicity. Another 

important point is the requirement of peptide presentation by HLA molecules. Mutations in 

the machinery required for optimal peptide presentation to HLA class I molecules, such as 

TAP protein or B2m mutations could easily explain lack of efficacy of ICI therapy despite high 

TMB. Functional diversity of the HLA-I genes could also be involved in ICI efficacy. Recent 

reports underline that loss of HLA locus heterozygosity is associated with lack of ICI 

efficacy(61). In addition, an HLA-I genotype with two alleles with divergent sequences 

enables presentation of an increased diversity neoantigens, suggesting that HLA type may 

also influence ICI efficacy. This divergence could be estimated using a metric called HLA-I 

evolutionary divergence. This metric was recently evaluated in patients treated with ICI and 

was a strong determinant of survival(62). Data connecting divergent HLA allele advantage to 

immunotherapy efficacy, might enhance prediction of TMB efficacy. In agreement with this 

hypothesis, we have shown that complex genomic analysis of WES involving neo-antigens, 

clonality and HLA status could outperform TMB analysis(20). In addition to an elevated TMB, 

whole exome analysis could analyze others parameters allowing a better response 

prediction. In this publication, mutations in DNA repair, TCR clonal restriction and HLA A 01 

phenotype were associated with ICI clinical efficacy. Additionally, prospective studies are 

required to confirm these results and to benchmark these composite biomarkers with TMB 

alone, but we can logically expect that combination of TMB plus HLA typing and addition of 

genomic variables will improve the predictive power of genetic testing. 
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An alternative strategy is to combine TMB with other biomarkers such as RNA signature, PD-

L1 or histological parameters. A meta-analysis published in JAMA oncology showed that each 

individual biomarker show similar predictive capacities concerning response to ICI but a 

combination of multimodal biomarkers improves prediction of response in comparison to a 

unique biomarker(63). Considering these data, validating the presence of many robust 

biomarkers, some publications confirmed the interest of multimodality of biomarkers to 

improve prediction. The association of TMB and T cell-inflamed gene expression profile 

(GEP) has shown interesting results in tissue-agnostic to independently predict response to 

anti-PD-1 therapy in a large cohort of patients treated in prospective clinical trials. Improved 

responses were noted in patients with high TMB and high T cell inflamed GEP signature. TMB 

and GEP signatures are not correlated and bring added value. Furthermore, GEP signature is 

correlated with PD-L1 expression and high TMB and high PD-L1 could also be combined to 

improve prediction of response to ICI(45). These data suggest that using biomarkers of 

inflammation such as PD-L1 or T cell inflamed GEP in combination with TMB may improve 

the identification of patients who will better respond to ICI. In melanoma, a multimodal 

biomarker with high TMB, >50% decrease of cell free DNA and undetectable ctDNA is the 

best combo to predict overall survival under anti PDL1 + anti CTLA4 (64). A recent 

publication has shown that the combination of TMB and copy number alterations can be 

used to stratify different types of metastatic tumors into groups with different prognosis and 

different clinical responses to ICI treatment. Patients with high TMB and low copy number 

alteration (CNA) cancer can be an optimal subgroup for ICI therapy(65). Figure 4 summarizes 

the different strategies to improve ICI efficacy combining TMB and other different 

biomarkers. 

Conclusion 

In this review, we provide an overview of the current evidence supporting the use of TMB as 

a biomarker to predict ICI outcomes. High TMB is correlated with an increased number of 

neoantigens in most cancers, and could provide predictors for the efficacy of ICI treatment. 

Overall, available data suggest that TMB is a good biomarker to identify patients that could 

be treated by ICI alone or in combination, but not for patients treated with chemotherapy 

plus ICI. However, additional data are required before definitively validation of this 

conclusion. Similarly to PD-L1 expression, TMB is also an imperfect biomarker since there are 
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different assays, platforms and cutoffs to characterize TMB. Exploratory studies mostly used 

whole exome sequencing, which is not widely used in clinical practice. Indeed, for many 

practical reasons (high cost, substantial turnaround times, limited availability of fresh 

unfixed tissue,...) gene panel sequencing became a standard to approximately determine 

TMB in routine diagnostics. However, data on parameters influencing panel-based TMB 

estimation are limited. Calibration and estimation of available tests precision is urgently 

needed for clinical development. Along with this line, the recent report published by 

Buchhalter et al(59) has shown that “size does matter” with an optimal panel size being 

reached between 1.5 and 3 Mbp considering the benefit–cost ratio. Probably TMB 

estimation by panel will gain in precision by defining a grey zone with undetermine 

predictive role. In the same way, using both somatic and constitutional analysis reinforces 

the precision of TMB estimation. Additionally, defining an optimal cutoff remains a 

challenge. Indeed, the optimal cutoff for prediction seems to vary between cancer types(47). 

In the future, we may expect that an algorithm using TMB as a continuous variable and other 

markers such as, tumor type, some clinical conditions and PD-L1 testing could improve TMB 

usage. Although pembrolizumab was approved in a MSI agnostic tumor, for the moment it is 

not clear if it will be possible to approve ICIs in TMB high agnostic-tumors. Whether TMB 

performs sufficiently well to be used as a predictive biomarker for ICI response across 

multiple tumor types may be answered by CheckMate 848, on ongoing study of nivolumab 

alone or in combination with ipilimumab in patients with solid tumors with a high TMB as 

determined by the FoundationOne assay. Future perspectives will probably be based on the 

implementation of other WES informative variables such clonality or HLA divergence and 

combination of TMB with transcriptomics and histological parameters such PD-L1 or immune 

infiltrates. 

In conclusion, TMB appears provides clinically valuable and non-redundant information 

when compared with PD-L1 expression. A lack of standardization and paucity of randomized 

clinical trial data has restricted its clinical application. The concurrent use of multiple 

different approaches and technologies may be the most effective way to enrich for patient 

response to ICI therapy, as shown in studies combining WES and RNA or WES and IHC to 

predict patient responses to therapy. 
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Figure 1: Mechanisms of Ag presentation. 

Figure 2: Correlation between TMB, PDL1 expression and response rate to ICIs. 

 Figure 2A: correlation between TMB and overall response rate. 

 Figure 2B: correlation between PD-L1 and overall response rate 

 Figure 2C: correlation between TMB and PD-L1 

Figure 3: Correlation between NGS panels and WES data to predict TMB. 

Figure 4: Different biomarkers that could be combined to predict ICI efficacy. 

Table 1 : Evidence of TMB as a biomarker in clinical trial 

Table 2 : Main types of TMB assays 
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