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MULTIPLE SOLUTIONS FOR A FRACTIONAL ELLIPTIC PROBLEM WITH CRITICAL GROWTH
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The paper focuses on a nonlocal Dirichlet problem with asymmetric nonlinearities. The equation is driven by the fractional Laplacian (-∆) s for s ∈ (0, 1) and exhibits a sublinear term containing a parameter λ, a linear term interfering with the spectrum of (-∆) s and a superlinear term with fractional critical growth. The corresponding local problem governed by the standard Laplacian operator was investigated by F. O. de Paiva and A. E. Presoto. It can be recovered by letting s ↑ 1. The statement given here in the nonlocal setting is also related to extensively studied topics for local elliptic operators as the Brezis-Nirenberg problem and asymmetric nonlinearities. We go beyond the case of the standard Laplacian taking advantage of recent contributions on nonlocal fractional equations. Our main result establishes the existence of at least three nontrivial solutions, with one nonnegative and one nonpositive, provided the parameter λ > 0 is sufficiently small. In order to overcome the difficulties in the nonlocal setting we develop new arguments

Problem Statement and Introduction

Let Ω ⊂ R N , with N ≥ 3, be a bounded domain whose boundary ∂Ω is Lipschitz continuous. In the present paper we focus on the nonlocal elliptic problem

(-∆) s u = -λ|u| q-2 u + au + b(u + ) 2 * s -1 in Ω u = 0 in R N \ Ω (1)
driven by the (negative) fractional Laplacian (-∆) s with some s ∈ (0, 1). We recall that (-∆) s is the integro-differential operator defined pointwise by

(-∆) s u(x) := C(N, s) lim ε↓0 R N \ Bε(x) u(x) -u(y) |x -y| N +2s dy, x ∈ R N ,
where B ε (x) denotes the open ball centered at x and of radius ε > 0, and C(N, s) is the normalization constant

C(N, s) = R N 1 -cos(x 1 ) |x| N +2s dx -1
.

From [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]Proposition 4.4] it is known that lim s→1 (-∆) s u = -∆u for every u ∈ C ∞ 0 (R N ). A comprehensive presentation of nonlinear elliptic equations involving nonlocal diffusion is given in [START_REF] Caffarelli | Non-local diffusions, drifts and games[END_REF] and [START_REF] Bisci | Variational methods for nonlocal fractional problems[END_REF].

In the statement of problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF], the data have the following meaning: λ > 0 is a parameter, q ∈ (1, 2), a > 0 and b > 0 are given constants, and 2 * s = 2N/(N -2s) (the fractional critical exponent). The notation u + stands for the positive part of u, that is, u + = max{u, 0}, while the negative part of u will be denoted u -= max{-u, 0}.

We recall that the Gagliardo seminorm of a measurable function u : R N → R is defined by

[u] s := R 2N |u(x) -u(y)| 2
|x -y| N +2s dx dy

1/2
provided the integral is finite. The fractional Sobolev space H s (R N ) is introduced as H s (R N ) := {u ∈ L 2 (R N ) : [u] s < ∞} endowed with the norm u H s = ( u 2 L 2 + [u] 2 s ) 1/2 making it a Hilbert space. Since statement (1) is subject to the homogeneous Dirichlet boundary condition on Ω, the relevant space associated to this problem is the closed vector subspace of H s (R N ) given by

X s 0 (Ω) := {u ∈ H s (R N ) : u = 0 a.e. in R N \ Ω}, (2) 
which is a Hilbert space with the scalar product (u, v)

X s 0 := R 2N (u(x) -u(y))(v(x) -v(y)) |x -y| N +2s dx dy (3) 
inducing the equivalent norm

• X s 0 = [ • ] s .
In the present paper, the essential condition that we suppose is λ k,s < a < λ k+1,s , where {λ j,s } j≥1 represents the sequence of eigenvalues of (-∆) s on the space X s 0 (Ω). Consequently, there is interaction with the spectrum of ((-∆) s , X s 0 (Ω)) leading eventually to multiple solutions for problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF].

The local problem corresponding to (1) was studied by de Paiva-Presoto [START_REF] De Paiva | Semilinear elliptic problems with asymmetric nonlinearities[END_REF], where the driving operator is the standard Laplacian on the Sobolev space H 1 0 (Ω). We prove for problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF] the nonlocal counterpart of the main result in [START_REF] De Paiva | Semilinear elliptic problems with asymmetric nonlinearities[END_REF] that is recovered letting s ↑ 1. In order to go beyond the case of the ordinary Laplacian on H 1 0 (Ω), here we develop an approach that is to a large extent completely different. This is natural in view of the essential differences in the functional setting related to the underlying spaces (H 1 0 (Ω) versus X s 0 (Ω)) and driving operators (the standard negative Laplacian -∆ versus the integro-differential operator (-∆) s ). Actually, the entire calculus involved in the local and nonlocal arguments are, in most cases, distinct. We illustrate how far are the two frameworks with the following simple hint. A basic tool in [START_REF] De Paiva | Semilinear elliptic problems with asymmetric nonlinearities[END_REF], as well as in other papers in the same area (see, e.g., [START_REF] Calanchi | Elliptic equations with one-sided critical growth[END_REF]), is that any two functions, say u and v, having disjoint supports are orthogonal in H 1 0 (Ω), that is (u, v)

H 1 0 = Ω ∇u • ∇v dx = 0.
This is no longer true in X s 0 (Ω) because, for the functions u and v with supp(u) ∩ supp(v) = ∅, a straightforward calculation of their scalar product in X s 0 (Ω) shows (u, v)

X s 0 = R 2N
(u(x) -u(y))(v(x) -v(y)) |x -y| N +2s dx dy = -Ω×Ω u(x)v(y) |x -y| N +2s dx dy.

We note that in [START_REF] De Paiva | Semilinear elliptic problems with asymmetric nonlinearities[END_REF] was used the approximate eigenfunctions technique developed by Gazzola-Ruf [START_REF] Gazzola | Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations[END_REF] for problems with local operators. In our cases it is not possible to employ any more the same idea, so it was necessary to build new methods that are suitable for the nonlocal framework.

We describe a few more connections of our work with the existing literature. First, we mention some relevant references addressing elliptic equations with critical nonlinearities as occur in problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. A prototype for such equations is the problem of Brezis-Nirenberg [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF]:

-∆u = µu + u|u| 2 * -2 in Ω u = 0 on ∂Ω, (4) 
with a real parameter µ and the critical Sobolev exponent 2 * = 2N/(N -2) if N ≥ 3. The nontrivial solvability of problem (4) for every µ > 0 and N ≥ 5 (N ≥ 4 when µ does not belong to the spectrum of -∆ on H 1 0 (Ω)) was shown in Capozzi-Fortunato-Palmieri [START_REF] Capozzi | An existence result for nonlinear elliptic problems involving critical Sobolev exponent[END_REF]. An existence theorem for a version of (4) on the whole space R N can be found in Chabrowski-Yang [START_REF] Chabrowski | Existence theorems for the Schrödinger equation involving a critical Sobolev exponent[END_REF]. Observe that the critical nonlinearity in our problem (1) is asymmetric being expressed through the positive part u + of the solution u. We mention that, in the local setting, the study of equations with critical exponent and asymmetric nonlinearities was initiated by De Figueiredo-Yang [START_REF] De Figueiredo | Critical superlinear Ambrosetti-Prodi problems[END_REF] to investigate Ambrosetti-Prodi type problems involving critical growth (see also [START_REF] Calanchi | Elliptic equations with one-sided critical growth[END_REF]). The nonlocal counterpart of problem ( 4) is obtained by replacing -∆ with the fractional Laplacian (-∆) s for s ∈ (0, 1) (or likewise nonlocal operator) and substituting the boundary condition u = 0 on ∂Ω with u = 0 on R N \Ω. This was done in Servadei-Valdinoci [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF], and the existence result corresponding to [START_REF] Capozzi | An existence result for nonlinear elliptic problems involving critical Sobolev exponent[END_REF] in the nonlocal setting is due to Servadei [START_REF] Servadei | The Yamabe equation in a non-local setting[END_REF].

Since equation ( 1) contains a sublinear term |u| q-2 u and a (critical) superlinear term (u + ) 2 * s -1 , it belongs to the class of problems with competing nonlinearities, for instance sublinear-superlinear, whose study started with Ambrosetti-Brezis-Cerami [START_REF] Ambrosetti | Combined effects of concave and convex nonlinearities in some elliptic problems[END_REF]. In this direction, for the nonlocal setting we cite Dipierro-Medina-Valdinoci [START_REF] Dipierro | Fractional elliptic problems with critical growth in the whole of R n[END_REF] whose approach relies on Caffarelli-Silvestre [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF], where it is shown that the fractional Laplacian (-∆) s on R N can be constructed through the ordinary Laplacian on R N × [0, +∞).

We point out that our assumption λ k,s < a < λ k+1,s forces eigenvalue crossing for equation [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF] with respect to the spectrum of the fractional Laplacian ((-∆) s , X s 0 (Ω)). Eventually, this gives rise to the existence of multiple solutions. In [START_REF] De Paiva | Semilinear elliptic problems with asymmetric nonlinearities[END_REF], the eigenvalue crossing holds with respect to the spectrum of the ordinary Laplacian (-∆, H 1 0 (Ω)). Our results cover those in [START_REF] De Paiva | Semilinear elliptic problems with asymmetric nonlinearities[END_REF] taking into account that (-∆, H 1 0 (Ω)) is retrieved from ((-∆) s , X s 0 (Ω)) as s ↑ 1. The main result in the paper, which is stated as Theorem 13, establishes under the assumptions N ≥ 4s and λ k,s < a < λ k+1,s that the nonlocal problem (1) admits at least three nontrivial distinct solutions provided the parameter λ > 0 is sufficiently small. The hypothesis N ≥ 4s is in line with the specific character of the critical problems in the local case for low dimensions (see [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF][START_REF] Capozzi | An existence result for nonlinear elliptic problems involving critical Sobolev exponent[END_REF][START_REF] De Figueiredo | Critical superlinear Ambrosetti-Prodi problems[END_REF]). The conclusion can still be obtained for 2s < N < 4s if in addition the integer k in hypothesis λ k,s < a < λ k+1,s is sufficiently large. Moreover, we prove in Theorem 6 that assuming N > 2s and λ k,s < a < λ k+1,s , there exists a nontrivial nonpositive solution for every λ > 0, and if λ > 0 is below a threshold determined by the Palais-Smale condition there exists also a nontrivial nonnegative solution. The existence of a third nontrivial solution different from the two solutions of opposite constant sign arises by further diminishing the parameter λ > 0.

The approach in our results is variational in accordance with the variational structure of problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. As it is common for problems with critical nonlinearities, the lack of compactness implies that the Palais-Smale condition is not generally satisfied. For the Euler functional I λ,s : X s 0 (Ω) → R associated to problem (1) (in the notation it is highlighted the dependence on the parameter λ > 0), we are able to prove that every Palais-Smale sequence is bounded and to find precisely the level below which the Palais-Smale condition is fulfilled. Two solutions of opposite constant sign are obtained by applying Mountain Pass Theorem to appropriately truncated functionals related to I λ,s . The existence of local minimizers needed to have the mountain pas geometry is derived by using the property of H s versus C 0 s minimizers proved in Iannizzotto-Mosconi-Squassina [START_REF] Iannizzotto | H s versus C 0 -weighted minimizers[END_REF].

The third nontrivial solution is shown through a minimax result of Generalized Mountain Pass Theorem type complying with the hypothesis λ k,s < a < λ k+1,s . The underlying minimax structure is based on the finite dimensional space V s k spanned by the eigenfunctions of ((-∆) s , X s 0 (Ω)) corresponding to the the first k eigenvalues {λ 1,s , . . . , λ k,s } and on the orthogonal projection e ε on (V s k ) ⊥ of an element u ε ∈ X s 0 (Ω) depending on ε > 0, which comes from the realization of the best constant for the embedding

H s (R N ) → L 2 *
s (R N ) as obtained by Cotsiolis-Tavoularis [START_REF] Cotsiolis | Best constants for Sobolev inequalities for higher order fractional derivatives[END_REF]. Corresponding to numbers ε, R 1 , R 2 > 0, we produce precise estimates of the values I λ,s (u 1 + re ε ) for u 1 ∈ V s k with u 1 X s 0 ≤ R 1 and for 0 ≤ r ≤ R 2 . The estimates enable us to deduce that the desired linking configuration is achieved provided λ > 0 is sufficiently small (see Proposition 8). These estimates are the result of taking into account the interaction of ε > 0 sufficiently small with R 1 > 0 and R 2 > 0 sufficiently large in the relevant expressions.

Here the condition N ≥ 4s is necessary to be imposed. The remaining case 2s < N < 4s cannot be handled with just ε > 0 sufficiently small as can be managed when N ≥ 4s being necessary to add the condition that the integer k is sufficiently large. For the needs of a rigorous proof, we carefully reduce the analysis to discuss situations as ε < 1/R 1 and ε < R 1 /R 2 . An important tool that we use in this part is a device set up by De Figueiredo-Yang [START_REF] De Figueiredo | Critical superlinear Ambrosetti-Prodi problems[END_REF] for the asymmetric critical nonlinearity settled with the positive part of the solution (see also Chabrowski-Yang [START_REF] Chabrowski | Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent[END_REF] for its utilization).

The next step in the proof is to ensure that the minimax value of I λ,s obtained along the linking theorem is smaller than the admissible threshold for the Palais-Smale condition. It is achieved in Lemma 11 by taking both λ > 0 and ε > 0 sufficiently small. New ideas were necessary to estimate from above the integral

Ω ((u 1 + re ε ) + ) 2 * s dx,
amongst which is the use of an adequate equivalent expression of the vector u 1 + re ε ∈ X s 0 (Ω). In this process, the crucial point is to show a sufficiently small upper bound for the quotient

C(N,s) 2 e ε 2 X s 0 -a e ε 2 L 2 u ε 2 L 2 * s (5) 
whenever ε > 0 is sufficiently small. We emphasize that contrary to all the former works on similar topics, the expression of (5) contains the two vectors u ε and e ε . The study of the dependence of the quotient (5) with respect to ε guaranteeing the desired upper bound for ε > 0 small enough is worked out on the basis of recent formulas in [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF][START_REF] Servadei | The Yamabe equation in a non-local setting[END_REF] that are analogous to the ones proved in the local case in [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF]. Finally, by comparing the minimax values, we conclude that the three nontrivial solutions are distinct in the case where the parameter λ > 0 is sufficiently small.

The rest of the paper is organized as follows. Section 2 contains preliminary material necessary in the sequel. Section 3 sets forth the results regarding the Palais-Smale condition. Section 4 presents the existence of two nontrivial constant sign solutions of opposite sign. Section 5 describes the linking geometry to cast the third nontrivial solution. Section 6 is concerned with the estimate of the minimax value determined by the linking theorem. Section 7 provides our multiplicity result for problem (1).

Preliminaries

For easy reference, we recall a few notions and results that will be used later on. We refer to [1, Proposition 3.6]) for the equality

[u] s = 2C(N, s) -1 R N |(-∆) s 2 u| 2 dx 1/2 , ∀ u ∈ H s (R N ).
Based on it, (2) and (3) imply that for all u, v ∈ X s 0 (Ω) there holds

2C(N, s) -1 R N u(x)(-∆) s v(x) dx = R 2N (u(x) -u(y))(v(x) -v(y)) |x -y| N +2s dx dy. (6) 
In particular, it follows that the linear operator (-∆) s is self-adjoint on X s 0 (Ω). The spectrum of (-∆) s on X s 0 (Ω) consists of a sequence of eigenvalues (λ j,s ) satisfying 0 < λ 1,s < λ 2,s ≤ λ 3,s ≤ . . . ≤ λ j,s ≤ λ j+1,s ≤ . . . , λ j,s → ∞ as j → ∞, where each eigenvalue λ j,s is repeated with its multiplicity. Every eigenfunction ϕ j,s has the regularity ϕ j,s ∈ C 0,σ (Ω) with some σ ∈ (0, 1). For the rest of the paper we fix a sequence (ϕ j,s ) of eigenfunctions forming an orthonormal basis in L 2 (Ω) and an orthogonal basis in X s 0 (Ω). Furthermore, we can choose ϕ 1,s > 0.

The embedding

H s (R N ) → L r (R N ) is continuous for r ∈ [2, 2 * s ]
(see, e.g., [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]Theorem 6.5] or [START_REF] Demengel | Functional spaces for the theory of elliptic partial differential equations[END_REF]Chapter 4]), so the constant

S s := inf u∈H s (R N ), u L 2 * s =1 R 2N |u(x) -u(y)| 2 |x -y| N +2s dx dy (7) is finite. It is known from [17, Theorem 1.1] that S s in (7) is attained by the function (1/ ũ L 2 * s )ũ with ũ(x) = (1 + |x| 2 ) -N -2s 2 , x ∈ R N . (8) 
On the basis of (8), we shall use the family of functions {U ε } ε>0 introduced in [11, p. 91] as

U ε (x) = ε -N -2s 2 1 ũ L 2 * s ũ x εS 1/(2s) s , x ∈ R N . (9) 
The lemma below will be important in our analysis of problem (1).

Lemma 1. Let K > 0 and β ∈ [0, (N -2s)/2) be constants. Then, for every ε > 0, the following inclusion holds

D ε := x ∈ Ω : U ε (x) > K ε β ⊃ B ρ(ε) (0) with ρ(ε) = C(K)ε N -2s+2β 2(N -2s) ,
where C(K) is a positive constant depending on K. Moreover, one has the estimate

Dε U 2 * s ε dx ≥ B ρ(ε) (0) U 2 * s ε dx ≥ S N 2s s 2
for ε > 0 sufficiently small.

Proof. By ( 8) and ( 9)

, if x ∈ D ε , it is seen that x εS 1/(2s) s N -2s ≤ 1 + x εS 1/(2s) s 2 N -2s 2 ≤ C 0 K ε β-N -2s 2 ,
with a constant C 0 > 0. It follows that

D ε ⊂ B ρ(ε) (0) with ρ(ε) = C(K)ε N -2s+2β 2(N -2s) .
On the other hand, D ε is open, and by the choice of β we have that 0 ∈ D ε with ε > 0 small enough. Hence, for a sufficiently small constant C(K) > 0, we achieve the inclusion for D ε given in the statement of the lemma. The first part of the lemma, ( 8), ( 9), formula (4.13) in [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF] and change of variable with polar coordinates imply

Dε U 2 * s ε dx ≥ B ρ(ε) (0) U 2 * s ε dx = R N U 2 * s ε dx - R N \B ρ(ε) (0) U 2 * s ε dx = S N 2s s -C 1 +∞ cε 2(β+s)-N 2(N -2s) r N -1 (1 + r 2 ) N dr → S N 2s
s as ε → 0, with constants C 1 > 0 and c > 0. This proves the second part of the lemma.

In our development we need an auxiliary result that appears in [10, Lemma 2.5] when s = 1. The proof is similar for s ∈ (0, 1).

Lemma 2. Given u, v ∈ L p (Ω) with 2 ≤ p ≤ 2 * s and u + v > 0 a.e. on a measurable subset Σ ⊂ Ω, it holds Σ (u + v) p dx - Σ |u| p dx - Σ |v| p dx ≤ C Σ (|u| p-1 |v| + |u||v| p-1 ) dx,
with a constant C > 0 depending only on p.

Our variational approach for studying problem (1) relies on the linking minimax result in [START_REF] Rabinowitz | Minimax methods in critical point theory with applications to differential equations[END_REF]Theorem 5.3] (see also [START_REF] Willem | Minimax Theorems[END_REF]Theorem 2.12]), which is a generalization of Mountain Pass Theorem. For clarity, we state it.

Theorem 3. Let Y be a real Banach space satisfying Y = V ⊕ W with V finite dimensional. Suppose that the functional I ∈ C 1 (Y, R) fulfills the conditions: (i) there are constants ρ, α > 0 such that I | ∂Bρ∩W ≥ α, where B ρ denotes
the open ball centered at zero and of radius ρ;

(ii) there are constants R 1 , R 2 > ρ, β < α and a nonzero vector e ∈ W such that I | ∂Q ≤ β, with

Q = {v + re : v ∈ B R 1 ∩ V, 0 < r < R 2 }.
Then I possesses a Palais-Smale sequence at the level c ≥ α determined by

c = inf h∈Γ max u∈Q I(h(u)),
where

Γ = {h ∈ C(Q, Y ) : h = id on ∂Q}.
We recall that (u n ) ⊂ Y is a Palais-Smale (in short, (P S)) sequence for the functional

I ∈ C 1 (Y, R) at the level r ∈ R if I(u n ) → r as n → ∞, and | I (u n ), ϕ Y | ≤ ε n ϕ Y for all ϕ ∈ Y , where ε n → 0 as n → ∞.

The (PS) Condition for the Euler Functional

As mentioned in Introduction, the underlying space for problem (1) is X s 0 (Ω). The corresponding Euler functional I λ,s : X s 0 (Ω) → R is given by

I λ,s (u) = C(N, s) 4 R 2N (u(x) -u(y)) 2 |x -y| N +2s dx dy + λ q Ω |u| q dx - a 2 Ω u 2 dx - b 2 * s Ω (u + ) 2 * s dx, (10) 
which is of class C 1 . In this section we study the (P S) sequences of the functional I λ,s and the related (P S) condition.

Lemma 4. Assume that λ > 0, 1 < q < 2, a = λ 1,s , and b > 0. Then every (P S) sequence of I λ,s is bounded.

Proof. If a < λ 1,s , the proof is easier and we omit it. Suppose that a > λ 1,s . Let (u n ) ⊂ X s 0 (Ω) be a (P S) sequence for I λ,s , which means that

|I λ,s (u n )| ≤ C, with a constant C > 0, and | (I λ,s ) (u n ), ϕ X s 0 | ≤ ε n ϕ X s 0 for all ϕ ∈ X s 0 (Ω)
, where ε n → 0 as n → ∞. We have that

I λ,s (u n ) - 1 2 (I λ,s ) (u n ), u n X s 0 = λ 1 q - 1 2 Ω |u n | q dx + b 1 2 - 1 2 * s Ω (u + n ) 2 * s dx, from which we can derive b 1 2 - 1 2 * s Ω (u + n ) 2 * s dx ≤ C + n u n X s 0 . (11) 
We note that

(I λ,s ) (u n ), u - n X s 0 = - C(N, s) 2 u - n 2 X s 0 - C(N, s) 2 R 2N u + n (x)u - n (y) + u + n (y)u - n (x) |x -y| N +2s dx dy -λ Ω (u - n ) q dx + a Ω (u - n ) 2 dx. ( 12 
) Using that |I λ,s (u n )| ≤ C, it holds C(N, s) 4 u n 2 X s 0 + λ q Ω |u n | q dx - a 2 Ω u 2 n dx - b 2 * s Ω (u + n ) 2 * s dx ≤ C + λ 2 Ω |u n | q dx - Ω (u - n ) q dx .
Hence we find that

C(N, s) 2 R 2N u + n (x)u - n (y) + u + n (y)u - n (x) |x -y| N +2s dx dy + C(N, s) 4 u + n 2 X s 0 + C(N, s) 4 u - n 2 X s 0 (Ω) - b 2 * s Ω (u + n ) 2 * s dx ≤ λ 2 Ω |u n | q dx - λ q Ω |u n | q dx - λ 2 Ω (u - n ) q dx + a 2 Ω (u + n ) 2 dx + a 2 Ω (u - n ) 2 dx + C.
Taking into account that λ > 0, 1 < q < 2, as well as ( 12), we get

C(N, s) 4 u + n 2 X s 0 ≤ a 2 Ω (u + n ) 2 dx + b 2 * s Ω (u + n ) 2 * s dx + 1 2 | I λ,s (u n ), u - n X s 0 | + C. Since 2 < 2 * s , there exists a constant C 1 > 0 such that Ω (u + n ) 2 dx ≤ C 1 1 + Ω (u + n ) 2 * s dx , ∀ n.
We infer that

C(N, s) 4 u + n 2 X s 0 ≤ C 2 Ω (u + n ) 2 * s dx + 1 2 | I λ,s (u n ), u - n X s 0 | + C 3 , (13) 
with positive constants C 2 and C 3 . Then [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF] and ( 13) ensure that

1 2 u + n 2 X s 0 ≤ K 1 u n X s 0 + K 2 , (14) 
with constants K 1 > 0 and K 2 > 0.

We are going to prove that the sequence (u

+ n ) is bounded in X s 0 (Ω). Admit by contradiction that up to a subsequence u + n X s 0 → ∞. From (14) it turns out that u - n X s 0 → ∞. Knowing that u n X s 0 → ∞, we can set v n = u n / u n X s 0 . Along a relabeled subsequence, we may assume that v n v in X s 0 (Ω), v n → v a.e x ∈ Ω, v n → v in L 2 (Ω)
, with some v ∈ X s 0 (Ω). We can express [START_REF] Dipierro | Fractional elliptic problems with critical growth in the whole of R n[END_REF] in the form

1 2 ≤ K 1 u + n X s 0 + K 1 u - n X s 0 u + n 2 X s 0 + K 2 u + n 2 X s 0 . Then, since u + n X s 0 → ∞, there exists n 0 ∈ N such that u - n X s 0 ≥ 1 4K 1 u + n 2 X s 0 , ∀ n ≥ n 0 , (15) 
whence, combining with u -

n X s 0 ≥ 1 for n large enough (note u - n X s 0 → ∞), it follows v + n X s 0 = u + n X s 0 u n X s 0 ≤ u + n X s 0 u + n 2 X s 0 + (1/(4K 1 )) 2 u + n 4 X s 0 1/2 ≤ 4K 1 u + n X s 0 . This implies that v + n → 0 in X s 0 (Ω) as n → ∞, so v = -v -≤ 0 because v + n → v + in L 2 (Ω). Furthermore, by (15) one obtains 4K 1 u - n X s 0 + 1 + 2 u - n 2 X s 0 R 2N (u + n (x)u - n (y) + u + n (y)u - n (x)) |x -y| N +2s dx dy -1/2 ≤ v - n X s 0 = u - n X s 0 u n X s 0 ≤ 1. (16) 
Observe from [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] and the Cauchy-Schwarz inequality that

1 u - n 2 X s 0 R 2N (u + n (x)u - n (y) + u + n (y)u - n (x)) |x -y| N +2s dx dy = 1 u - n 2 X s 0 | u + n , u - n X s 0 | ≤ 4K 1 u + n X s 0 → 0 as n → ∞. (17) 
On the basis of ( 17) and that u - n X s 0 → ∞, passing to the limit in ( 16) yields

v - n X s 0 → 1 as n → ∞. ( 18 
)
Notice that ( 12) and ( 18) lead to

v - n 2 L 2 → C(N, s) 2a , which results in v L 2 = C(N, s) 2a = 0.
From ( 6) and the inequality (

I λ,s ) (u n ), ϕ 1,s X s 0 ≤ ε n ϕ 1,s X s 0 we can find (λ 1,s -a) Ω v n ϕ 1,s dx + λ u n 2-q X s 0 Ω |v n | q-2 v n ϕ 1,s dx - b u n X s 0 Ω (u + n ) 2 * s -1 ϕ 1,s dx ≤ ε n ϕ 1,s X s 0 u n X s 0 . ( 19 
)
Using v n → v in L q (Ω) (note that q < 2), u n X s 0 → ∞, and estimate [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF], it is seen that ( 19) entails Ω vϕ 1,s dx = 0. Recalling that v ≤ 0 and ϕ 1,s > 0, we obtain v = 0, which is a contradiction. Therefore the sequence (u

+ n ) is bounded in X s 0 (Ω). Now we show that (u n ) is bounded in X s 0 (Ω). Arguing indirectly, sup- pose that u n X s 0 → ∞ as n → ∞.
On the basis of the boundedness of the sequence (u + n ) in X s 0 (Ω) and thanks to the continuity of the embedding

X s 0 (Ω) → L 2 * s (Ω), we get 1 u n X s 0 Ω (u + n ) 2 * s dx → 0 as n → ∞. (20) 
On account of inequality [START_REF] Rabinowitz | Minimax methods in critical point theory with applications to differential equations[END_REF] and v n v in X s 0 (Ω) we have

| (I λ,s ) (u n ), ϕ | ≤ ε n ϕ X s 0 , through
C(N, s) 2 R 2N (v(x) -v(y))(ϕ(x) -ϕ(y)) |x -y| N +2s
dx dy = a Ω vϕ dx dy for all ϕ ∈ X s 0 (Ω).

According to [START_REF] Gazzola | Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations[END_REF] and since v = 0, we deduce that v is an eigenfunction of (-∆) s corresponding to the eigenvalue a, so a = λ 1,s because v ≤ 0 and the only eigenvalue with constant-sign eigenfunctions is λ 1,s . This comes to a contradiction with the hypothesis a > λ 1,s , which completes the proof.

We are able to indicate precisely the level where the (P S) condition (i.e., every (P S) sequence contains a strongly convergent subsequence) holds true for the functional I λ,s . Proposition 5. Assume that λ > 0, 1 < q < 2, a = λ 1,s , and b > 0. Then the functional I λ,s satisfies the (P S) condition at any level c <

s N C(N,s) 2 S s N 2s b 2s-N 2s .
Proof. Let (u n ) ⊂ X s 0 (Ω) be a (P S) sequence of I λ,s at the level c, thus

I λ,s (u n ) → c and | (I λ,s ) (u n ), ϕ X s 0 | ≤ ε n ϕ X s 0 for all ϕ ∈ X s 0 (Ω), with ε n → 0 as n → ∞.
By Lemma 4 we know that (u n ) is bounded in X s 0 (Ω). Consequently, passing to a subsequence if necessary, we may assume that

u n u in X s 0 (Ω), u n → u in L 2 (Ω), u n → u in L q (Ω) and u n → u for a.e x ∈ Ω, (21) 
with u ∈ X s 0 (Ω). Therefore, along a relabeled subsequence, we have that

u + n u + in L 2 * s (Ω).
Then the linearity of the operator (-∆) s enables us to conclude that u is a weak solution of problem (1), thus u satisfies

I λ,s (u) = λ 1 q - 1 2 Ω |u| q dx + b 1 2 - 1 2 * s Ω (u + ) 2 * s dx ≥ 0. ( 22 
)
Denoting

v n = u n -u, from [22, Theorem 1] we derive lim n→∞ u + n 2 * s L 2 * s -v + n 2 * s L 2 * s = lim n→∞ u + n 2 * s L 2 * s -u + n -u + 2 * s L 2 * s = u + 2 * s L 2 * s .
We note that

I λ,s (u) + I λ,s (v n ) = C(N, s) 2 u 2 X s 0 - C(N, s) 2 R 2N ((u n (x) -u n (y))(u(x) -u(y)) |x -y| N +2s dx dy + C(N, s) 4 u n 2 X s 0 + λ q u q L q + v n q L q - a 2 u 2 L 2 + v n 2 L 2 - b 2 * s u + 2 * s L 2 * s + v + n 2 * s L 2 * s .
Hence the convergence properties in [START_REF] Willem | Minimax Theorems[END_REF] imply

lim n→∞ [I λ,s (u) + I λ,s (v n )] = lim n→∞ I λ,s (u n ) = c. (23) 
From ( 21), [22, Theorem 1] and since u is a solution of problem (1), we get

lim n→∞ C(N, s) 2 v n 2 X s 0 + λ v n q L q -a v n 2 L 2 -b v + n 2 * s L 2 * s = C(N, s) lim n→∞ u 2 X s 0 - R 2N ((u n (x) -u n (y))(u(x) -u(y)) |x -y| N +2s dx dy + lim n→∞ C(N, s) 2 u n 2 X s 0 + λ u n q L q -a u n 2 L 2 -b u + n 2 * s L 2 * s - C(N, s) 2 u 2 X s 0 + λ u q L q -a u 2 L 2 -b u + 2 * s L 2 * s = lim n→∞ (I λ,s ) (u n ), u n X s 0 -(I λ,s ) (u), u X s 0 = 0, whence lim n→∞ C(N, s) 2 v n 2 X s 0 -b v + n 2 * s L 2 * s = 0. ( 24 
)
Fix a relabeled subsequence such that

lim n→∞ v n 2 X s 0 := l. Then (24) ensures lim n→∞ v + n 2 L 2 * s = C(N, s)l 2b 2 2 * s . ( 25 
)
Suppose that l > 0. From [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] we infer that v n

2 X s 0 ≥ S s v + n 2 L 2 * s , thereby through (25) it turns out l ≥ S N 2s s C(N, s) 2b N -2s 2s . (26) 
Now ( 23), ( 22), ( 21) and (25) provide

c = lim n→∞ [I λ,s (u) + I λ,s (v n )] ≥ lim n→∞ I λ,s (v n ) = lim n→∞ C(N, s) 4 v n 2 X s 0 - b 2 * s v + n 2 * s L 2 * s = C(N, s)sl 2N . (27) 
Then ( 26), ( 27) and the assumption on c in the statement generate the contradiction

s N C(N, s) 2 S s N 2s b 2s-N 2s ≤ C(N, s)sl 2N ≤ c < s N C(N, s) 2 S s N 2s b 2s-N 2s .
Therefore we must have l = 0, which proves the strong convergence of a subsequence of (u n ) in X s 0 (Ω). The proof is thus complete.

Two Constant-Sign Solutions

The goal of this section is to investigate the existence of constant-sign solutions to problem (1) with λ > 0. Our result provides the existence of two nontrivial solutions of opposite constant sign. Theorem 6. There exists λ 0 > 0 such that if

0 < λ < λ 0 , (28) 
problem (1) with λ as above possesses a nontrivial nonnegative solution u 1 ∈ X s 0 (Ω). Moreover, for every λ > 0, problem (1) has also a nontrivial nonpositive solution u 2 ∈ X s 0 (Ω). Proof. First, we focus on the existence of a nontrivial nonnegative solution for equation [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. To this end we formulate the auxiliary problem:

(-∆) s u = -λ(u + ) q-1 + au + + b(u + ) 2 * s -1 in Ω u = 0 in R N \ Ω. (29) 
The Euler functional I + λ,s : X s 0 (Ω) → R associated to problem (29) is

I + λ,s (u) : = C(N, s) 4 R 2N (u(x) -u(y)) 2 |x -y| N +2s dx dy + λ q Ω (u + ) q dx - a 2 Ω (u + ) 2 dx - b 2 * s Ω (u + ) 2 * s dx.
It is of class C 1 with the derivative

(I + λ,s ) (u), φ X s 0 = C(N, s) 2 R 2N (u(x) -u(y))(φ(x) -φ(y)) |x -y| N +2s dx dy +λ Ω (u + ) q-1 φ dx -a Ω u + φ dx -b Ω (u + ) 2 * s -1 φ dx (30)
for every φ ∈ X s 0 (Ω). The critical points of I + λ,s coincide with the weak solutions to problem (29). Moreover, every critical point of the functional I + λ,s is a nonnegative solution of problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. Indeed, let u ∈ X s 0 (Ω) satisfy (I + λ,s ) (u), φ X s 0 = 0 for all φ ∈ X s 0 (Ω). Acting with φ = -u -in (30) gives

0 = (I + λ,s ) (u), -u - X s 0 = C(N, s) 2 R 2N (u(x) -u(y))(u -(y) -u -(x)) |x -y| N +2s dx dy ≥ C(N, s) 2 R 2N (u -(x) -u -(y)) 2 |x -y| N +2s dx dy = C(N, s) 2 u -2 X s 0 , so u = u + ≥ 0.
Let us show that there exist positive constants α and ρ > 0 such that

I + λ,s (u) ≥ α whenever u ∈ X s 0 (Ω) with u X s 0 = ρ. (31) 
Towards this, for every u ∈ X s 0 (Ω), we set

J λ,s (u) := I + λ,s (u) - C(N, s) 4 u 2 X s 0 = λ q Ω (u + ) q dx - a 2 Ω (u + ) 2 dx - b 2 * s Ω (u + ) 2 * s dx.
We claim that u ≡ 0 is a strict local minimizer of the functional J λ,s . By [16, Theorem 1.1], it suffices to prove this assertion in the space C 0 s (Ω) ∩ X s 0 (Ω), where

C 0 s (Ω) = w ∈ C 0 (Ω) : w C 0 s := w δ s L ∞ < ∞ , with δ(x) := dist(x, ∂Ω). For any u ∈ C 0 s (Ω) ∩ X s 0 (Ω) we find that Ω (u + ) 2 dx = Ω u + δ s 2-q (δ s ) 2-q (u + ) q dx ≤ C 1 u 2-q C 0 s Ω (u + ) q dx (32)
and

Ω (u + ) 2 * s dx = Ω u + δ s 2 * s -q (δ s ) 2 * s -q (u + ) q dx ≤ C 2 u 2 * s -q C 0 s Ω (u + ) q dx, (33) 
with positive constants C 1 and C 2 . From (32) and (33) we obtain

J λ,s (u) ≥ λ q - aC 1 2 u 2-q C 0 s - bC 2 2 * s u 2 * s -q C 0 s Ω (u + ) q dx.
Since q < 2 < 2 * s and taking into account that

I + λ,s (u) = J λ,s (u) + C(N, s) 4 u 2 X s 0 , the claim in (31) ensues.
Fix Λ > 0. We point out that there exists t 0 = t 0 (Λ) > 0 such that I + λ,s (tϕ 1,s ) ≤ 0 for all t ≥ t 0 and λ < Λ. This follows readily because q < 2 < 2 * s and noticing that, for any large t > 0 and any λ < Λ, it holds

I + λ,s (tϕ 1,s ) ≤ t 2 * s (λ 1,s -a) 2 1 t 2 * s -2 + λ q 1 t 2 * s -q Ω ϕ q 1,s dx - b 2 * s Ω ϕ 2 * s 1,s dx ≤ 0.
The proof of Proposition 5 ensures that the functional I + λ,s satisfies the (P S) condition at any level c < s 

I + λ,s (h(t)),
where

Γ = {h ∈ C([0, 1], X s 0 (Ω)) : h(0) = 0 and h(1) = t 0 ϕ 1,s }.
We infer from the inequalities

c λ ≤ max t∈[0,t 0 ] I + λ,s (tϕ 1,s ) ≤ λt 0 (Λ) q q Ω ϕ q 1,s dx, ( 34 
) that c λ < s N C(N,s) 2 S s N 2s b 2s-N 2s
provided λ ∈ (0, Λ) is chosen even smaller, say λ < λ 0 as indicated in (28). Hence, with such a λ, the functional I + λ,s verifies the (P S) condition at the level c λ . Altogether, the functional I + λ,s satisfies the conditions required in Mountain Pass Theorem, through which we conclude that c λ is a critical value of I + λ,s . According to (31), we have c λ ≥ α > 0, whence there is a nontrivial solution u 1 ∈ X s 0 (Ω) of problem (29). Then, as shown before, u 1 is a nonnegative solution of problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF].

We pass to the existence of a nontrivial nonpositive solution of problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. Consider the auxiliary problem

(-∆) s u = λ(u -) q-1 -au -in Ω u = 0 in R N \ Ω. ( 35 
)
Its associated Euler functional I - λ,s : X s 0 (Ω) → R is given by

I - λ,s (u) := C(N, s) 4 R 2N (u(x) -u(y)) 2 |x -y| N +2s dx dy + λ q Ω (u -) q dx - a 2 Ω (u -) 2 dx
and is of class C 1 with the derivative

(I - λ,s ) (u), φ = C(N, s) 2 R 2N (u(x) -u(y))(φ(x) -φ(y)) |x -y| N +2s dx dy -λ Ω (u -) q-1 φdx + a Ω u -φ dx
for all φ ∈ X s 0 (Ω). The critical points of the functional I - λ,s are exactly the weak solutions of problem (35). In fact, it is straightforward to check that every critical point of I - λ,s is a nonpositive solution of problem (1). We claim that the functional I - λ,s satisfies the (P S) condition (at any level). To this end, let (u n ) ⊂ X s 0 (Ω) be a (P S) sequence for I - λ,s , thus

|I - λ,s (u n )| ≤ C, with a constant C > 0, and | (I - λ,s ) (u n ), ϕ X s 0 | ≤ ε n ϕ X s 0 for all ϕ ∈ X s 0 (Ω), where ε n → 0 as n → ∞. From | (I - λ,s ) (u n ), u + n X s 0 | ≤ ε n u + n X s 0 we deduce that the sequence (u + n ) is bounded in X s 0 (Ω). Using I - λ,s (u n ) - 1 2 (I - λ,s ) (u n ), u - n X s 0 ≤ C + n u - n X s
0 , the boundedness of (u + n ) in X s 0 (Ω) and that q < 2, we are able to get that the sequence (u n ) is bounded in X s 0 (Ω). From here it is standard to confirm that (u n ) contains a strongly convergent subsequence, thus proving the claim.

Next we show that u ≡ 0 is a strict local minimizer of the functional I - λ,s for all λ > 0, which suffices for the application of Mountain Pass Theorem owing to the fact that the (P S) condition holds true (see [START_REF] De Figueiredo | Lectures on the Ekeland variational principle with applications and detours[END_REF]Theorem 5.10]). Moreover, it is sufficient to justify that u ≡ 0 is a strict local minimizer for I - λ,s in the C 0 s topology (see [START_REF] Iannizzotto | H s versus C 0 -weighted minimizers[END_REF]Theorem 1.1]). As in (33), for any u ∈ C 0 s (Ω) ∩ X s 0 (Ω), the following estimate is valid

Ω (u -) 2 dx ≤ C u 2-q C 0 s Ω (u -) q dx,
with a constant C > 0. Thus we obtain

I - λ,s (u) ≥ λ q Ω (u -) q dx - a 2 Ω (u -) 2 dx ≥ λ q - aC 2 u 2-q C 0 s Ω (u -) q dx.
On account of q < 2 and λ > 0, we can assert that u ≡ 0 is a strict local minimizer.

For every t > 0, using that ϕ 1,s is an eigenfunction associated to λ 1,s , we have

I - λ,s (-tϕ 1,s ) = t 2 (λ 1,s -a) 2 Ω ϕ 2 1,s dx + λ q t q Ω ϕ q 1,s dx.
Since a > λ 1,s and q < 2, it holds that I - λ,s (-tϕ 1,s ) ≤ 0 for all t ≥ t 0 , with t 0 = t 0 (λ) > 0 sufficiently large. The preceding facts enable us to apply Mountain Pass Theorem getting that the minimax value

c λ := inf h∈Γ max t∈[0,1] I - λ,s (h(t)),
where

Γ = {h ∈ C([0, 1], X s 0 (Ω)) : h(0) = 0 and h(1) = -t 0 ϕ 1,s }, is a critical value for the functional I - λ,s satisfying c λ ≤ max t∈[0,t 0 ] I - λ,s (-tϕ 1,s ) ≤ λ q Ω ϕ q 1,s dx. ( 36 
)
There is thus a nontrivial critical point u 2 ∈ X s 0 (Ω) for I - λ,s with I - λ,s (u 2 ) = c λ , so u 2 is nontrivial nonpositive solution of (1), completing the proof.

Linking Geometry for Minimax Result

In this section we assume that 0 < s < 1, N > 2s, λ > 0, λ k,s < a < λ k+1,s and b > 0. Recall that I λ,s is the Euler functional associated to problem (1) (see Section 3). Corresponding to the positive integer k postulated above, we consider the following orthogonal decomposition of the Hilbert space X s 0 (Ω):

X s 0 (Ω) = V s k ⊕ W s k , (37) 
where V s k = span{ϕ 1,s , ϕ 2,s . . . , ϕ k,s } and

W s k = (V s k ) ⊥ = {u ∈ X s 0 (Ω) :
(u, ϕ j,s ) X s 0 = 0, j = 1, 2, . . . , k}. Denote by P s -and P s + the orthogonal projections of X s 0 (Ω) onto V s k and W s k , respectively. Proposition 7. There exist constants α, ρ > 0 independent of λ > 0 such that

I λ,s (u) ≥ α for all u ∈ W s k with u X s 0 = ρ. Proof. Let u ∈ W s k . Using that u 2 X s 0 ≥ λ k+1,s u 2 L 2 and the continuity of the embedding X s 0 (Ω) → L 2 * (Ω) results in I λ,s (u) ≥ C(N, s) 4 u 2 X s 0 - a 2 u 2 L 2 - b 2 * s Ω |u| 2 * s dx ≥ C(N, s) 4 1 - a λ k+1,s u 2 X s 0 - b 2 * s C u 2 * s X s 0 ,
with a constant C > 0. The conclusion follows because a < λ k+1,s and 2 * s > 2.

In order to apply Theorem 3 relative to the orthogonal decomposition (37) it is necessary to construct a vector e ∈ W s k with the stated properties. To accomplish this we rely on the family of functions {U } ε>0 introduced in (9). Without loss of generality, we suppose that 0 ∈ Ω. Let us define u ∈ X s 0 (Ω) by

u (x) = η(x)U (x), x ∈ R N , (38) 
with some η ∈ C ∞ c (R N ) whose support is a compact set contained in Ω and satisfying 0 ≤ η ≤ 1 and η = 1 in the ball B δ for a δ > 0. Thanks to (38), the function u is an element of X s 0 (Ω). We pose

e := P s + u ∈ W s k , (39) 
which is a continuous function because e ε = u ε -P s -u ε and P s -u ε is a linear combination of eigenfunctions of (-∆) s

p . An essential fact that will be employed is that for every K > 0 there exists ε(K) > 0 such that 0 ∈ x ∈ Ω : e ε (x) > K (40) whenever 0 < ε ≤ ε(K). This assertion is based on the estimate

P s -u ε L ∞ ≤ Cε N -2s 2 
(41) for all ε > 0 sufficiently small, with a constant C > 0 independent of ε, that can be proved as in [9, p. 286]. By ( 8), ( 9), ( 39) and (41) we find that

e (0) = u (0) -P s -u (0) ≥ 1 u L 2 * s ε -N -2s 2 -Cε N -2s 2 → +∞ (42)
as ε → 0 because N > 2s, which establishes the claim in (40). In particular, (40) yields an ε 0 > 0 such that

e ε = 0 for all 0 < ε ≤ ε 0 . ( 43 
)
Due to (43), we can set e = e ε in Theorem 3.

Corresponding to any numbers ε ∈ (0, ε 0 ] and R 1 , R 2 > 0, by means of the function e in (39) we introduce the set

Q ε,R 1 ,R 2 := {u ∈ X s 0 (Ω) : u = u 1 + re ε , u 1 ∈ V s k ∩ B R 1 (0), 0 ≤ r ≤ R 2 }. (44) 
By ( 43), the construction in (44) is meaningful. Denote by

∂Q ε,R 1 ,R 2 the (relative) boundary of Q ε,R 1 ,R 2 in the underlying finite dimensional space V s k ⊕ Re ε .
The result below is fundamental for the existence of a third nontrivial solution to problem (1). In the sequel, the symbol O(ε ω ) for some ω ≥ 0 designates a function satisfying |O(ε ω )| ≤ Cε ω with a constant C > 0 independent of ε > 0. Such a symbol is not always positive. Its exact value may change from place to place. Proposition 8. There exist R 1 > 0 and R 2 > 0 sufficiently large such that

I λ,s (u) ≤ λ q Ω |u| q dx, ∀ u ∈ ∂Q ε,R 1 ,R 2 , (45) 
for all ε > 0 sufficiently small and all λ > 0.

Proof. We split the boundary ∂Q ε,R 1 ,R 2 into three parts:

∂Q ε,R 1 ,R 2 = Γ 1 ∪ Γ 2 ∪ Γ 3 , (46) with 
Γ 1 = B R 1 ∩ V s k , (47) 
Γ 2 = {u ∈ X s 0 (Ω) : u = u 1 + re ε , u 1 ∈ V s k , u 1 X s 0 = R 1 , 0 ≤ r ≤ R 2 }, (48) 
Γ 3 = {u ∈ X s 0 (Ω); u = u 1 + R 2 e ε u 1 ∈ V s k , u 1 X s 0 ≤ R 1 }. (49) 
We discuss separately the behavior of the functional I λ,s on every part in (46). For u ∈ Γ 1 , by (47) we know that u ∈ V s k . Since λ k,s < a, we infer that

I λ,s (u) ≤ 1 2 C(N, s) 2 u 2 X s 0 -a u 2 L 2 + λ q Ω |u| q dx ≤ λ q Ω |u| q dx.
Let u ∈ Γ 2 , which according to (48) reads as

u = u 1 + re ε with u 1 ∈ V s k and u 1 X s 0 = R 1 .
By virtue of (39) and [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF]Proposition 21] there exists a constant C > 0 such that

e ε 2 X s 0 ≤ u ε 2 X s 0 ≤ S N 2s s + Cε N -2s , (50) 
thus δ := sup 0< ≤ε 0 e X s 0 is finite. In order to comply with the linking condition R 2 > ρ in Theorem 3 we must have R 2 e X s 0 > ρ for ρ > 0 in Proposition 7, whenever 0 < ≤ ε 0 . Consequently, ρ/δ is a lower bound of the admissible R 2 . Set r 0 := max{ρ/δ, 1}. In our analysis we distinguish two cases.

First case: 0 ≤ r ≤ r 0 .

The expression of u provides the estimate

I λ,s (u) ≤ 1 2 1 - a λ k,s R 2 1 + r 2 0 2 δ 2 + λ q Ω |u| q dx.
Taking R 1 > 0 large enough we reach the conclusion because λ k,s < a.

Second case: r > r 0 .

Without loss of generality we may suppose that

R 1 ≥ 1. Choose γ > 0 such that (N -2s) 2 2(N + 2s) > γ (51) 
and denote

K(R 1 ) := 1 r 0 sup u 1 L ∞ : u 1 ∈ V s k , u 1 X s 0 = R 1 ∈ [c 0 R 1 , c 1 R 1 ],
with some constants c 0 > 0 and c 1 > 0, which holds true because the space V s k is finite dimensional. We introduce the open set

Ω ε := x ∈ Ω : e ε (x) > c 1 ε γ . (52) 
From ( 42) and (51) we notice that

ε γ e (0) ≥ 1 u L 2 * s ε -N -2s-2γ 2 -Cε N -2s+2γ 2 → +∞, which guarantees that 0 ∈ Ω ε provided ε ∈ (0, ε 0 ], with some ε 0 > 0. Now we suppose that 0 < ε γ ≤ 1/R 1 in addition to ε ∈ (0, ε 0 ]. Then from (52) there holds Ω ε,R 1 := x ∈ Ω : e ε (x) > K(R 1 ) ⊃ Ω ε . (53) 
Observe that

u 1 (x) r + e ε (x) > 0 (54) 
for all x ∈ Ω ε,R 1 , r > r 0 , and u 1 ∈ V s k with u 1 X s 0 = R 1 . Using (50) and (54), with a constant C 1 > 0 we can derive

I λ,s (u) ≤ 1 2 1 - a λ k,s R 2 1 + r 2 2 (S N 2s s + C 1 ) + λ q Ω |u| q dx (55) - b 2 * s r 2 * s Ω ε,R 1 u 1 r + e ε 2 * s dx.
Then (54) and (53) allow us to apply Lemma 2 choosing u = u 1 /r, v = e ε and Σ = Ω ε . We obtain from ( 55) and (53) that

I λ,s (u) ≤ 1 2 1 - a λ k,s R 2 1 + r 2 2 (S N 2s s + C 1 ) + λ q Ω |u| q dx - b 2 * s r 2 * s Ωε u 1 r + e ε 2 * s dx ≤ 1 2 1 - a λ k,s R 2 1 + r 2 2 (S N 2s s + C 1 ) + λ q Ω |u| q dx - b 2 * s r 2 * s Ωε u 1 r 2 * s dx + Ωε |e ε | 2 * s dx -C 2 Ωε u 1 r 2 * s -1 |e ε | dx + Ωε u 1 r |e ε | 2 * s -1 dx (56) 
with a constant C 2 > 0. By means of r > r 0 and R 1 ≤ ε -γ , (56) provides the estimate

I λ,s (u) ≤ 1 2 1 - a λ k,s R 2 1 + r 2 2 (S N 2s s + C 1 ) + λ q Ω |u| q dx - b 2 * s r 2 * s e ε 2 * s L 2 * s (Ωε) -C 3 e ε L 1 (Ωε) R 2 * s -1 1 + e ε 2 * s -1 L 2 * s -1 (Ωε) R 1 ≤ 1 2 1 - a λ k,s R 2 1 + r 2 2 (S N 2s s + C 1 ) + λ q Ω |u| q dx - b 2 * s r 2 * s e ε 2 * s L 2 * s (Ωε) -C 3 e ε L 1 (Ω) ε -γ(2 * s -1) + e ε 2 * s -1 L 2 * s -1 (Ω) ε -γ
with a constant C 3 > 0. At this point we make use of Lemma 1 (note that (51) ensures γ ∈ [0, (N -2s)/2)) in conjunction with the estimates for e ε L 1 (Ω) and e ε in the classical local case as appeared in [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], to deduce for any sufficiently small ε > 0 that

I λ,s (u) ≤ 1 2 1 - a λ k,s R 2 1 + r 2 2 (S N 2s s + C 1 ) + λ q Ω |u| q dx - b 2 * s r 2 * s S N 2s s 2 + O(ε N ) -O(ε N -2s 2 )ε -γ(2 * s -1) -O(ε N -2s 2 )ε -γ
In view of (51) we have

N -2s 2 -γ > N -2s 2 -γ(2 * s -1) = N -2s 2 -γ N + 2s N -2s > 0.
Consequently, since 2 * s > 2, there is a constant C 4 > 0 independent of ε > 0 sufficiently small such that

I λ,s (u) ≤ 1 2 1 - a λ k,s R 2 1 + λ q Ω |u| q dx + C 4
(see also [START_REF] De Figueiredo | Critical superlinear Ambrosetti-Prodi problems[END_REF]Lemmas 2.4 and 2.6] for an alternate treatment). Therefore, owing to the fact that ε > 0 can be arbitrarily small, R 1 > 0 is allowed by the condition 0 < ε γ ≤ 1/R 1 to be taken arbitrarily large in the inequality above. This leads to the conclusion in the statement of the proposition for u ∈ Γ 2 . Let u ∈ Γ 3 . It can be expressed by (49) as u = u 1 + R 2 e ε with u 1 ∈ V s k and u 1 X s 0 ≤ R 1 . We can write

I λ,s (u) ≤ 1 2 1 - a λ k,s u 1 2 X s 0 (Ω) + R 2 2 2 e 2 X s 0 (Ω) - b 2 * s R 2 * s 2 Ω u 1 R 2 + e + 2 * s dx + λ q Ω |u| q dx. (57) 
Suppose that R 1 and R 2 > 0 are arbitrarily large with 0 < ε ≤ R 1 /R 2 ≤ 1. Then from (57) and (50) we get

I λ,s (u) ≤ R 2 2 2 S N 2s s + C 1 R 1 R 2 N -2s - b 2 * s R 2 * s 2 Ω u 1 R 2 + e ε + 2 * s dx + λ q Ω |u| q dx. (58) 
Taking into account that the space V s k is finite dimensional, there is a constant c 2 > 0 such that

u 1 L ∞ ≤ c 2 u 1 X s 0 ≤ c 2 R 1 for all u 1 ∈ V s k with u 1 X s 0 ≤ R 1 . (59) 
From (40) it is apparent that 59) and (60) we find

Ω ε,R 1 ,R 2 := x ∈ Ω : e ε (x) > c 2 R 1 R 2 + 1 ⊃ x ∈ Ω : e ε (x) > c 2 + 1 =: D ε (60) with the Lebesgue measure |D ε | > 0 provided ε > 0 is sufficiently small, say ε ≤ ε 0 . We emphasize that |D ε | is independent of R 1 and R 2 . For every x ∈ Ω ε,R 1 ,R 2 , by (
u 1 (x) R 2 + e ε (x) > u 1 (x) R 2 + c 2 R 1 R 2 + 1 ≥ u 1 (x) R 2 + u 1 L ∞ R 2 + 1 ≥ 1. ( 61 
)
Returning to (58), we infer through (60) and (61) that

I λ,s (u) ≤ R 2 2 2 S N 2s s + C 1 R 1 R 2 N -2s - b 2 * s R 2 * s 2 Ω ε,R 1 ,R 2 u 1 R 2 + e ε 2 * s dx + λ q Ω |u| q dx ≤ R 2 2 2 S N 2s s + C 1 - b 2 * s R 2 * s 2 |D ε | + λ q Ω |u| q dx (62)
for all u ∈ Γ 3 . From (62) we arrive at the conclusion of the proposition for R 2 > 0 large enough keeping R 1 > 0 to preserve the relation 0 < ε ≤ R 1 /R 2 ≤ 1. This completes the proof.

Remark 9. It is worth noting that R 1 , R 2 and ε in Proposition 8 are independent of λ.

Estimate of Minimax Value

For every ε > 0 sufficiently small and with R 1 , R 2 > 0 sufficiently large complying with Propositions 7 and 8, we focus on the set Q ε,R 1 ,R 2 constructed in (44). Our purpose in the present section is to show that we can maintain the values of the functional I λ,s along Q ε,R 1 ,R 2 below the admissible level for the (P S) condition exhibited in Proposition 5. The idea is to take ε > 0 and λ > 0 as small as necessary. The lemma below is the main step in this direction.

Lemma 10. Assume that N > 2s. If ε > 0 is sufficiently small, there holds the estimate

I λ,s (u) ≤ s N 1 b N -2s 2s C(N,s) 2 e ε 2 X s 0 -a e ε 2 L 2 u ε 2 L 2 * s N 2s + Cε N N -2s + λ q Ω |u| q dx. ( 63 
)
for all u ∈ Q ε,R 1 ,R 2 , with a constant C > 0 independent of ε. Proof. Let u = u 1 + re ε ∈ Q ε,R 1 ,R 2 , hence u 1 ∈ V s k with u 1 X s 0 (Ω) ≤ R 1 and 0 ≤ r ≤ R 2 .
The orthogonality between u 1 and e ε in X s 0 (Ω) and L 2 (Ω) ensures

I λ,s (u) = 1 2 C(N, s) 2 u 1 2 X s 0 -a u 1 2 L 2 + r 2 2 C(N, s) 2 e ε 2 X s 0 -a e ε 2 L 2 - b 2 * s Ω (u + ) 2 * s dx + λ q Ω |u| q dx. (64) 
Since a > λ k , we have 1 2

C(N, s) 2 u 1 2 X s 0 -a u 1 2 L 2 ≤ 0. ( 65 
)
In order to estimate the term

-(b/2 * s ) u + 2 * s L 2 * s , it is convenient to express u ∈ Q ε,R 1 ,R 2 as follows u = u 1 + re ε = ũ1 + ru ε , with ũ1 = u 1 -rP s -u ε . (66) 
This is a consequence of (39). Then (66), the absolute continuity of the Lipschitz continuous function t → (tu 1 (x) + re ε (x)) + ) 2 * s on [0, 1] with a fixed x ∈ Ω and Fubini theorem on Ω × (0, 1) render

Ω ((ũ 1 + ru ε ) + ) 2 * s dx - Ω (ũ + 1 ) 2 * s dx - Ω (ru ε ) 2 * s dx = Ω 1 0 d dt ((tũ 1 + ru ε ) + ) 2 * s -(tũ + 1 ) 2 * s dt dx = 2 * s Ω 1 0 ((tũ 1 + ru ε ) + ) 2 * s -1 d dt ((tũ 1 + ru ε ) + ) -(ũ + 1 ) 2 * s t 2 * s -1 dt dx = 2 * s 1 0 Ω ((tũ 1 + ru ε ) + ) 2 * s -1 -(tũ + 1 ) 2 * s -1 ũ1 dx dt. (67) 
Here we have also used that u ε ≥ 0 and the expression of the derivative in t a.e. d dt ((tũ

1 (x) + ru ε (x)) + ) = ũ1 (x) if tũ 1 (x) + ru ε (x) > 0 0 if tũ 1 (x) + ru ε (x) < 0.
By the mean value theorem applied to the function ξ → ξ 2 * s -1 on (0, +∞), the last equality in (67) takes the form

Ω ((ũ 1 + ru ε ) + ) 2 * s dx - Ω (ũ + 1 ) 2 * s dx - Ω (ru ε ) 2 * s dx = 2 * s (2 * s -1) 1 0 Ω tũ + 1 (x) + θ(t, x) (tũ 1 (x) + ru ε (x)) + -tũ + 1 (x) 2 * s -2 × (tũ 1 (x) + ru ε (x)) + -tũ + 1 (x) ũ1 (x) dx dt, (68) 
with θ(t, x) ∈ (0, 1). We note that

|tũ + 1 (x) + θ(t, x)((tũ 1 (x) + ru ε (x)) + -tũ + 1 (x))| ≤ max{tũ + 1 (x), (tũ 1 (x) + ru ε (x)) + } ≤ tũ + 1 (x) + ru ε (x).
Taking into account that the function ξ → ξ + on R is a contraction, we also have

|(tũ 1 (x) + ru ε (x)) + -tũ + 1 (x)| ≤ ru ε (x). Consequently, (68) implies Ω ((ũ 1 + ru ε ) + ) 2 * s dx - Ω (ũ + 1 ) 2 * s dx - Ω (ru ε ) 2 * s dx ≤ 2 * s (2 * s -1) 1 0 Ω (tũ + 1 (x) + ru ε (x)) 2 * s -2 ru ε (x)|ũ 1 (x)| dx dt ≤ C Ω ru ε (x)(ũ + 1 (x)) 2 * s -1 + (ru ε (x)) 2 * s -1 |ũ 1 (x)| dx, (69) 
with a constant C > 0. The equivalence of the norms on the finite dimensional space V k s , the boundedness of ũ1 (that is due to the boundedness of u 1 and r) and Young's inequality enable us to deduce from (69) that

Ω ((ũ 1 + ru ε ) + ) 2 * s dx - Ω (ũ + 1 ) 2 * s dx - Ω (ru ε ) 2 * s dx ≤ C u ε L 1 r ũ+ 1 2 * s -1 L 2 * s + ũ1 L ∞ u ε 2 * s -1 L 2 * s -1 r 2 * s -1 ≤ 1 2 ũ+ 1 2 * s L 2 * s + c 0 u ε 2 * s L 1 r 2 * s + C ũ1 L ∞ u ε 2 * s -1 L 2 * s -1 r 2 * s -1 , (70) 
The next estimate of the minimax value of the functional I λ,s on Q ε,R 1 ,R 2 in connection with the threshold level in Proposition 5 for the (P S) condition is crucial to apply the abstract linking result in Theorem 3.

Lemma 11. If N ≥ 4s, there holds the estimate

c s := inf h∈Γ max u∈Q ε,R 1 ,R 2 I λ,s (h(u)) < s N 1 b N -2s 2s C(N, s) 2 S s N 2s , (73) 
with

Γ = {h ∈ C(Q ε,R 1 ,R 2 , X s 0 (Ω)) : h = id on ∂Q ε,R 1 ,R 2 },
provided ε > 0 and λ > 0 are sufficiently small. If 2s < N < 4s, estimate (73) holds true provided ε > 0 and λ > 0 are sufficiently small, and k given in the hypothesis λ k,s < a < λ k+1,s is sufficiently large.

Proof. It is clear that

h = id Q ε,R 1 ,R 2 ∈ Γ, so the definition of c s in (73) ensures c s ≤ max u∈Q ε,R 1 ,R 2 I λ,s (u).
Therefore, by the compactness of Q ε,R 1 ,R 2 , for proving the strict inequality (73) it suffices to show that

I λ,s (u) < s N 1 b N -2s 2s C(N, s) 2 S s N 2s , ∀ u ∈ Q ε,R 1 ,R 2 . (74) 
Suppose that N > 4s. This implies through (39), [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF]Proposition 22] and (41) that

e ε 2 L 2 = u ε 2 L 2 -P s -u ε 2 L 2 ≥ C s 2s + O(ε N -2s ), (75) 
with a constant C s > 0, as well as

u ε 2 * s L 2 * s = S N 2s s + O(ε N ). ( 76 
)
In view of (75), ( 76), (50), and by using the mean value theorem for the function (1 + t)

N -2s

N , we find that

C(N,s) 2 e ε 2 X s 0 -a e ε 2 L 2 u ε 2 L 2 * s ≤ C(N,s) 2 (S N 2s s + O(ε N -2s )) -a(C s 2s + O(ε N -2s )) (S N 2s s + O(ε N )) N -2s N = C(N, s) 2 S s + C(N,s) 2 S N 2s s 1 -1 + S -N 2s s O(ε N ) N -2s N + C(N,s) 2 O(ε N -2s ) (S N 2s s + O(ε N )) N -2s N -ε 2s a(C s + O(ε N -4s )) (S N 2s s + O(ε N )) N -2s N = C(N, s) 2 S s + C(N,s) 2 O(ε N ) + C(N,s) 2 O(ε N -2s ) (S N 2s s + O(ε N )) N -2s N -ε 2s a(C s + O(ε N -4s )) (S N 2s s + O(ε N )) N -2s N < C(N, s) 2 S s (77) 
with ε > 0 sufficiently small. This is fulfilled as we supposed that N > 4s.

Here we invoke Lemma 10. Specifically, from (63), (77) and the boundedness of the set Q ε,R 1 ,R 2 in X s 0 (Ω), we infer that (74) holds true provided that both ε > 0 and λ > 0 are sufficiently small. Now we suppose that N = 4s. In this case, by (39), [START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF]Proposition 22] and (41), it results

e ε 2 L 2 (Ω) = u ε 2 L 2 (Ω) -P s -u ε 2 L 2 (Ω) ≥ C s 2s | log ε| + O(ε 2s ). (78) 
We can proceed along the same lines as in the case N > 2s, this time on the basis of (50), ( 76) and (78), to obtain under the requirement that k (related to the hypothesis λ k,s < a < λ k+1,s ) is sufficiently large. The proof is thus complete.

C(4s,s) 2 e ε 2 X s 0 (Ω) -a e ε 2 L 2 (Ω) u ε 2
Remark 12. It is seen from the strict inequality in (80) that k postulated in the statement of Lemma 11 does not depend on ε > 0 and λ > 0 small enough. Taking advantage that λ n,s → +∞ as n → ∞ it is meaningful to consider k sufficiently large combined with the assumption λ k,s < a < λ k+1,s .

Multiplicity Result

Our main result establishes the existence of three distinct nontrivial solutions to problem (1).

Theorem 13. Assume that 1 < q < 2, λ k,s < a < λ k+1,s , b > 0, s ∈ (0, 1) and N ≥ 4s. Then there exists λ > 0 such that if 0 < λ < λ, problem (1) possesses at least three nontrivial solutions with one nonnegative and one nonpositive. The same conclusion holds for 2s < N < 4s too if the hypothesis λ k,s < a < λ k+1,s is met with an integer k so large as required in Lemma 11.

Proof. Theorem 6 provides a nontrivial nonnegative solution u 1 ∈ X s 0 (Ω) of problem (1) for every λ > 0 sufficiently small (see (28)) and a nontrivial nonpositive solution u 2 ∈ X s 0 (Ω) of problem (1) for each λ > 0. Obviously, these two solutions are distinct.

In order to find a third nontrivial solution of problem (1) whose existence will depend on a threshold λ, we apply the abstract minimax result in 32 Theorem 3 to the functional I λ,s : X s 0 (Ω) → R defined in [START_REF] De Figueiredo | Critical superlinear Ambrosetti-Prodi problems[END_REF] and with the orthogonal decomposition (37). Proposition 7 renders that assumption (i) in Theorem 3 is fulfilled with some α > 0 independent of λ. Regarding the verification of condition (ii) in Theorem 3, set Q := Q ε,R 1 ,R 2 as introduced in (44) and c := c s given in (73). With some R 1 > 0 and R 2 > 0 sufficiently large and for all ε > 0 sufficiently small, Proposition 8 guarantees the estimate (45), from which it is seen that there is λ > 0 such that if 0 < λ < λ one has that condition (ii) required in Theorem 3 is satisfied. This can be done addressing Remark 9. Therefore Theorem 3 may be applied supplying a (P S) sequence for the functional I λ,s , with 0 < λ < λ, at the level c s . By Lemma 11 with every positive λ < λ, for a possibly smaller λ > 0, and by Proposition 5, we know that I λ,s satisfies the (P S) condition at the level c s . Then there is a limit point of the obtained (P S) sequence at the level c s , which is a nontrivial critical point of the functional I λ,s , thus a nontrivial solution u 3 ∈ X s 0 (Ω) of problem [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]. It remains to show that u 3 = u 1 and u 3 = u 2 , so resulting in the existence of three distinct nontrivial solutions. This will be done by proving that I λ,s (u 3 ) = I λ,s (u 1 ) and I λ,s (u 3 ) = I λ,s (u 2 ) with any λ > 0 small enough. Using that the solution u 1 is nonnegative, the definitions of the minimax values c λ and c s in (34) and (73), respectively, in conjunction with Proposition 7, entail I λ,s (u 1 ) = I + λ,s (u 1 ) = c λ ≤ λ q Ω ϕ q 1,s dx < α ≤ c s = I λ,s (u 3 ) (81) provided λ > 0 is so small to satisfy the strict inequality in (81). Proceeding analogously with the nonpositive solution u 2 , we find from (36) and Proposition 7 that I λ,s (u 2 ) = I - λ,s (u 2 ) = c λ ≤ λ q Ω ϕ q 1,s dx < α ≤ c s = I λ,s (u 3 ) (82) provided λ > 0 is taken so small to fulfill the strict unequality in (82). This completes the proof.

Remark 14. From (81) and (82) it is clear that, if 0 < λ < qα/ Ω ϕ q 1,s dx, the solutions u i , with i = 1, 2, 3, obtained in Theorem 13 are distinct, where α > 0 is given in Proposition 7 and does not depend on λ.

L 2 *C(4s,s) 2 (S 2 s 2 (ε 2 L 2 (Ω) = u ε 2 L 2 (Ω) -P s -u ε 2 L 2 ( 2 O 2 O

 222222222222 s (Ω) ≤ + O(ε 2s )) -a(C s 2s | log ε| + O(ε 2s )) O(ε 2s ) + O(1)) -a(C s | log ε| + O(1)) 0 is small enough, since | log ε| → +∞ as ε → 0. Likewise in the case N > 4s we can conclude that (74) is verified when ε > 0 and λ > 0 are sufficiently small. If 2s < N < 4s, from (39),[START_REF] Servadei | The Brezis-Nirenberg result for the fractional Laplacian[END_REF] Proposition 22] and (41) it holdse Ω) ≥ C s N -2s + O(ε 2s ). (ε N ) + C(N,s) (ε N -2s ) (S N 2s s + O(ε N )) N -2s N -ε N -2s a(C s + O(ε 4s-N )) (S N 2s s + O(ε N ))

* s -1 L 2 * s -1 (Ω) in [12,Proposition 12], which are similar to those
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