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Introduction

The analysis and simulation of the draping of textile composite reinforcements has given rise to a great deal of research work over the past decades. Most approaches are carried out on a macroscopic scale and consider the woven fabric as a continuous medium [START_REF] Gereke | Experimental and computational composite textile reinforcement forming: A review[END_REF][START_REF] Bussetta | Numerical forming of continuous fibre reinforced composite material: A review[END_REF]. The mechanical behaviour of this continuous medium must reflect the specificities textile reinforcement during draping. These macroscopic approaches can predict the global wrinkling of the woven fabric, which is the major defect that can occur during draping [START_REF] Skordos | A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites[END_REF][START_REF] Boisse | Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[END_REF][START_REF] Dangora | Predictive model for the detection of outof-plane defects formed during textile-composite manufacture[END_REF][START_REF] Sjölander | Forming induced wrinkling of composite laminates: a numerical study on wrinkling mechanisms[END_REF]. Nevertheless, some important phenomena take place on a smaller scale during the draping process. On a mesoscopic scale, the woven fabric is considered as a set of yarns in contact with their neighbours. Defects such as gaping (gap between two yarns) [START_REF] Gatouillat | Meso modelling for composite preform shaping-simulation of the loss of cohesion of the woven fibre network[END_REF][START_REF] Allaoui | Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement[END_REF][START_REF] Schirmaier | A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF)[END_REF][START_REF] Schirmaier | Characterisation of the draping behaviour of unidirectional non-crimp fabrics (UD-NCF)[END_REF], local buckling of yarns [START_REF] Allaoui | Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement[END_REF][START_REF] Tephany | Development of an experimental bench to reproduce the tow buckling defect appearing during the complex shape forming of structural flax based woven composite reinforcements[END_REF][START_REF] Salem | Experimental, analytical and numerical investigation to prevent the tow buckling defect during fabric forming[END_REF] can be analyzed at the mesoscopic scale. Beyond the defects, the architecture of yarns on a mesoscopic scale makes it possible to calculate the permeability of the textile reinforcement by simulating a flow of resin in the fabric [START_REF] Bréard | Analysis of dynamic flows through porous media. Part I: Comparison between saturated and unsaturated flows in fibrous reinforcements[END_REF][START_REF] Loix | Woven fabric permeability: From textile deformation to fluid flow mesoscale simulations[END_REF][START_REF] Tran | Unified microporomechanical approach for mechanical behavior and permeability of misaligned unidirectional fiber reinforcement[END_REF][START_REF] Gangloff | A process model for the compaction and saturation of partially impregnated thermoset prepreg tapes[END_REF][START_REF] Zeng | Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation[END_REF]. The mesoscopic analysis provides the direction and the volume fraction of the fibres in the yarns that conditions the mechanical properties of the cured 2 composite [START_REF] Whitcomb | Evaluation of homogenization for global/local stress analysis of textile composites[END_REF][START_REF] Carvelli | A homogenization procedure for the numerical analysis of woven fabric composites[END_REF][START_REF] Lomov | Meso-FE modelling of textile composites: Road map, data flow and algorithms[END_REF][START_REF] Obert | Micro and meso modeling of woven composites: Transverse cracking kinetics and homogenization[END_REF][START_REF] El Said | Multiscale surrogate modelling of the elastic response of thick composite structures with embedded defects and features[END_REF][START_REF] Liang | Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation[END_REF]. Simulations of the entire preform draping using mesoscopic models have been developed [START_REF] Gatouillat | Meso modelling for composite preform shaping-simulation of the loss of cohesion of the woven fibre network[END_REF][START_REF] Creech | Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis[END_REF][START_REF] Pickett | Braiding simulation and prediction of mechanical properties[END_REF][START_REF] Bayraktar | Forming and performance analysis of a 3D-woven composite curved beam using meso-scale FEA[END_REF][START_REF] Daelemans | Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[END_REF][START_REF] Thompson | Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scale[END_REF][START_REF] Iwata | Coupled meso-macro simulation of woven fabric local deformation during draping[END_REF]. These meso-models of the entire preform require very large computing power because of the high number of yarns and their contacts.

The objective of this paper is to propose a simulation approach on the mesoscopic scale with low numerical cost based on macroscopic simulation. Approach of the same nature have been proposed in a more general framework of solid mechanics [START_REF] Whitcomb | Iterative global/local finite element analysis[END_REF][START_REF] Dureisseix | A numerically scalable domain decomposition method for the solution of frictionless contact problems[END_REF][START_REF] Dhia | The Arlequin method as a flexible engineering design tool[END_REF][START_REF] Amini | Multi-scale domain decomposition method for large-scale structural analysis with a zooming technique: Application to plate assembly[END_REF][START_REF] Gendre | A two-scale approximation of the Schur complement and its use for non-intrusive coupling[END_REF] and for the analyses of composite structures [START_REF] Llorca | Multiscale modeling of composite materials: a roadmap towards virtual testing[END_REF].

In the present article, the embedded mesoscopic geometry is derived from the macroscopic deformation.

This may be sufficient for some mesocopic scale analyses (e.g. permeability calculations). Nevertheless, as will be shown, it generally has drawbacks, in particular excessive yarn extensions. A local mesoscopic analysis avoids these problems. This local analysis is performed from the embedded mescopic geometry and only in areas where mesocopic simulation is required. As a result, the numerical cost is moderate.

Two examples are presented: three-point bending and hemispherical forming of a 3D non crimp woven fabric. Experimental analyses, macroscopic, embedded mesoscopic and local mesoscopic simulations are presented and compared.

The mesoscopic analyses are performed locally as downstream simulations after the macroscopic analysis. The aim is to obtain a local solution on a mesoscopic scale. The accuracy of the macroscopic simulation is essential for the quality of the analyses.

After a macroscopic simulation, the presented mesoscopic analyses are done, in two steps. An embedded mesoscopic analysis (without mechanical resolution), then a local mesoscopic analysis which aims to avoid some of the defects of the previous calculation, in particular excessive extensions. The two mesoscopic steps can be considered as two approaches and the results compared.

Macroscopic simulation of the forming with a hyperelastic constitutive law

Because of possible slippage between constituting fibers and yarns, the mechanical behavior of textile reinforcements is very specific compared with traditional materials, such as metals. It leads to a strong tensile stiffness in the fiber directions in comparison to the other rigidities. In the case of thick textile reinforcement, 3D constitutive law is needed. To model the large deformations of these textile reinforcements, hyperelastic constitutive laws for orthotropic materials have been proposed [START_REF] Criscione | Physically based strain invariant set for materials exhibiting transversely isotropic behavior[END_REF][START_REF] Itskov | A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function[END_REF][START_REF] Balzani | A polyconvex framework for soft biological tissues. Adjustment to experimental data[END_REF][START_REF] Ten Thije | Large deformation simulation of anisotropic material using an updated Lagrangian finite element method[END_REF][START_REF] Aimène | A hyperelastic approach for composite reinforcement large deformation analysis[END_REF]. In particular the model developed in [START_REF] Charmetant | Hyperelastic model for large deformation analyses of 3D interlock composite preforms[END_REF] is adapted for the analysis of the deformation of 3D textile reinforcements. Nevertheless, when using this type of model, some discrepancies can be identified because of the limitation of the standard continuum mechanics of Cauchy framework in which these models are formulated. Such models are not able to simultaneously take into account the low transverse shear property (due to possible slippage between the fibres) and the local bending stiffness of the fibres [START_REF] Boisse | The difficulties in modeling the mechanical behavior of textile composite reinforcements with standard continuum mechanics of Cauchy. Some possible remedies[END_REF]. Afterwards, Mathieu et al. [START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF] has improved the 3D hyperelastic model by taking into account the local curvature in 3D hexahedral finite elements. This approach has proven to be effective as shown by the comparison between simulations and experimental results. For the same objective, other models have been developed using second gradient approaches [START_REF] Dell'isola | A two-dimensional gradient-elasticity theory for woven fabrics[END_REF][START_REF] Madeo | Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3D interlocks[END_REF][START_REF] Agostino | Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements[END_REF]. In this paper, the enhanced hyperelastic model [START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF] is used to carry out the macroscopic simulations. The material parameters of this constitutive model are identified by different experiments using direct or inverse methods.

Studied textile reinforcement

The fabric analyzed in this paper is an E-glass 3D non-crimp orthogonal woven fabric (Fig. 1).

Tab.1 shows the geometric and physical characteristics of the woven reinforcement. The warp and weft yarns are not interlaced. The binder yarns are present through the thickness of the reinforcement. Thus, mechanical properties in the transverse direction are improved, particularly for the resistance to delamination. Fig. 1 shows the structure of this 3D orthogonal woven reinforcement and its architecture obtained by X-ray tomography. This reinforcement is taken as an example to show the different steps of the proposed multi-scale method. The considered hyperelastic constitutive law models the deformation of thick 3D composites reinforcements. Six deformation modes are considered (Fig. 2). Thick textile reinforcements have three privileged directions: the warp direction 1 M ; the weft direction 2 M and the direction of thickness 3

M

that is perpendicular to the plane ( )

1 2
, M M . According to the representation theorems [START_REF] Boehler | Applications of tensor functions in solid mechanics[END_REF], the strain energy density function of an orthotropic material can be written as:

( ) (2)

1
and the mixed invariants are defined by the direction vectors i M (i=1,3): , and

= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ i i i j i i i ij i I M C M I M C M I M C M (3)
For each deformation mode of Fig. 2, a corresponding physical invariant is defined in Equation ( 4) by combination of the invariants defined in Equation ( 2) and (3) [START_REF] Charmetant | Hyperelastic model for large deformation analyses of 3D interlock composite preforms[END_REF]. been shown [START_REF] Mitchell | Investigation into the changes in bending stiffness of a textile reinforced composite due to in-plane fabric shear: Part 2-Numerical analysis[END_REF][START_REF] Yao | Influence of tension-shear coupling on draping of plain weave fabrics[END_REF][START_REF] Alshahrani | Characterization and finite element modeling of coupled properties during polymer composites forming processes[END_REF], it is assumed, for the purpose of simplicity, that the contribution to the strain energy potential of each deformation mode is independent from the others. Therefore, the strain energy density is the sum of 6 terms:
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The form of each strain energy density can be written in polynomial form [START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF]:
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where I is the physical invariant related to the concerning strain energy. The coefficients i k need to be determined by appropriate experiments. Then, the second Piola-Kirchhoff stress tensor S and Cauchy stress tensor σ can be calculated by derivation:
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Taking into account the curvature of the fibers

The presented anisotropic hyperelastic model used in hexahedral finite element is based on the standard continuum mechanics of Cauchy. It has been shown that beyond this approach, the fiber bending stiffness associated to the curvature is significant to depict correctly the mechanical behavior of fabrics [START_REF] Boisse | The difficulties in modeling the mechanical behavior of textile composite reinforcements with standard continuum mechanics of Cauchy. Some possible remedies[END_REF][START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF]. An independent bending stiffness of fibers has been added into the 3D hexahedral finite element [START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF]. The curvature in the hexahedral element is calculated from the geometrical position of neighboring elements (Fig. 3) [START_REF] Onate | Rotation-free triangular plate and shell elements[END_REF]. Then, a nonlinear constitutive law is defined by Equation ( 9) and this fiber bending stiffness is added to the others. Mbend is the bending moment, χ is the curvature and D0 and D1 are parameters determined by inverse identification: 
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Identifications of material parameters

The identification of material parameters i k of Eq. ( 6) were carried out by the following tests:

tensile tests in the warp and weft directions, transverse compaction test, in-plane shear test, and transverse shear tests. In addition, the two parameters 0 D and 1 D were determined by a bending test.

The main interest of the physical invariants used in the strain energy densities (Eq. ( 5)) is that they correspond to the deformations of the elementary tests and make possible a simple identification of the potentials, and thus of the ki of equation [START_REF] Sjölander | Forming induced wrinkling of composite laminates: a numerical study on wrinkling mechanisms[END_REF]. Each test contributes to a specific energy density.

These tests are briefly described below and the identified parameters are given in Tab.A1 in Appendix A.

Elongations in warp and weft directions

Textile materials have a high stiffness in tension with respect to other stiffnesses. This results in small tensile strains in the yarns (a few percent before rupture). The hyperelastic tensile potential parameters are given in Tab. A1 in the case of the studied textile reinforcement. The specimen with dimensions of 70 × 20 mm 2 is fixed on the jaw surfaces (Fig. 6). This studied reinforcement is not balanced and the transverse shear behaviour in the direction warp and weft is different and transverse shear potentials are identified in the warp and weft directions.

Additional bending behaviour of fibres

The aim here is to complete the 3D hyperelastic behaviour with an additional stiffness linked to the curvature of the fibres [START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF]. A three-point bending test is carried out for this identification analysis. A

Levenberg-Marquardt algorithm is used for an inverse identification of the coefficients D0 and D1 of Equation ( 9). 

Macroscopic textile reinforcement forming simulations

The macroscopic simulations (i.e. the simulations at the scale of the textile preform) carried out in this paper use the in-house software PlasFib [START_REF]Inter Deposit Certification[END_REF][START_REF] Hamila | A meso-macro three node finite element for draping of textile composite preforms[END_REF][START_REF] Hamila | A semi-discrete shell finite element for textile composite reinforcement forming simulation[END_REF]. This finite element code uses an explicit dynamic scheme as is the case with most software for forming simulation. Macroscopic simulations of three points bending and hemispherical stamping of are carried out using the above hyperelastic behavior and the parameters identified for the 3D non-crimp orthogonal woven fabric. The macroscopic results serve as a basis for mesoscopic modelling in the macro-meso method developed.

Three point bending

A 200×30 mm 2 strip of 3D non-crimp woven fabric is loaded in three point bending with a 30 mm deflection imposed at a speed of 10 mm/min (Fig. 7). The paper focuses on the bending in the warp direction with which the binder yarns are aligned (Fig. 8). Fig. 9 shows the comparison of the deformed middle line obtained by simulation and experiment.

They are in correct agreement. 

Mesoscopic analyses based on macroscopic simulations (embedded mesoscopic geometries)

Mesoscopic analyses consider the deformation of each yarn in contact with their neighbours..

Analyses of the entire preform at the mesoscopic scale have been carried out [START_REF] Gatouillat | Meso modelling for composite preform shaping-simulation of the loss of cohesion of the woven fibre network[END_REF][START_REF] Creech | Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis[END_REF][START_REF] Pickett | Braiding simulation and prediction of mechanical properties[END_REF][START_REF] Bayraktar | Forming and performance analysis of a 3D-woven composite curved beam using meso-scale FEA[END_REF][START_REF] Daelemans | Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[END_REF][START_REF] Thompson | Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scale[END_REF][START_REF] Iwata | Coupled meso-macro simulation of woven fabric local deformation during draping[END_REF], but the size of the numerical model and the computation time are very important. In this paper, with the aim of analyzing mesoscopic deformations of the woven reinforcement during the forming process, the developed macro-meso method proposes to carry out mesoscopic analyses by using, as a first step, the information obtained at the macroscopic scale. If macroscopic information is pertinent, it should be able to provide certain basic elements at the mesoscopic scale. In a first step, the embedded mesoscopic geometry is determined from the macroscopic simulation.

Mesoscopic geometry of the undeformed RVE

In this work the 3D textile reinforcement in its initial configuration is considered to be periodic. In a mesoscopic modelling, the Representative Volume Element (RVE) is the smallest elementary pattern, which allows reconstituting the entire fabric by repetitions and translations [START_REF] Miehe | A framework for micro-macro transitions in periodic particle aggregates of granular materials[END_REF]. The geometry of the RVE of the 3D non-crimp woven fabric studied in the present paper is obtained using X-ray micro tomography (Fig. 12) [START_REF] Naouar | 3D composite reinforcement meso FE analyses based on X-ray computed tomography[END_REF]. A mesh composed of prismatic elements is generated from this geometry.

The finite element model constructed has no interpenetrations as can occur using software packages for 3D modelling of textiles [START_REF] Long | Modelling the geometry of textile reinforcements for composites: TexGen[END_REF]. To obtain a first mesoscopic model, the woven elementary cells (RVE) embedded in the macroscopic reinforcement are considered. The initial configuration of the RVE is given by the X-ray tomography analysis and the associated mesh (Fig. 13).

Fig. 13 Initial state: mesoscopic RVEs embedded in a macroscopic mesh of the fabric

Deformed geometry of the embedded mesoscopic model

Each node of the mesoscopic model can be located (embedded) in a macroscopic element (Fig. 14).

An embedded mesoscopic element is deformed together with the macroscopic element and its nodes have constant coordinates in the macroscopic reference element. In the initial and deformed configuration, the naturel coordinates ( , , ) ξ η ζ of a mesoscopic node in the corresponding macroscopic element remain constant and the position of a mesoscopic embedded element remains constant within the macroscopic element. Consequently, the deformation obtained by the macroscopic simulation can provide a first deformed geometry of the RVEs at the mesoscopic scale in the deformed configuration that is called embedded meso model.

Analysis of deformations on a mesoscopic scale

To analyze the deformations of the meso-FE model, strain invariants corresponding to deformation modes at the mesoscopic scale are calculated from the initial and deformed geometries of the yarns (Fig. 15). The yarns are assumed to be transversely isotropic. For this type of material, a hyperelastic strain energy potential in the following form can be defined [START_REF] Boehler | Applications of tensor functions in solid mechanics[END_REF]: 
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The physical invariants that correspond to the deformation modes are introduced [67] (Fig. 15).

They are linked to the above invariants and are used to quantify the deformation at the mesoscopic scale. 
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where elong I is the stretch invariant in the fiber direction; comp I is the transverse compression invariant; dis I is the transverse distortion invariant and sh I is the longitudinal shear invariants of the yarn.

Embedded mesoscopic analyses: three points bending

The geometry of the reinforcement at mesocopic scale (Fig. 12), positioned in the undeformed (flat) configuration of the bending specimen defines the embedded mescoscopic elements (Fig. 16a). They are fixed in the macroscopic model and follow it in its deformation (Fig. 16b and17). From the macroscopic simulation presented in section 2.5.1, the embedded mesoscopic analysis of three points bending provides the deformations of the yarns, their final orientations and then the voids in the unit 13 cell. These results can be used for the calculation of permeability in the following resin injection stage.

Fig. 16 presents the initial and deformed geometries of the textile reinforcement in three point bending. 

Embedded mesoscopic analyses: hemispherical stamping

This embedded mesoscopic analysis is based on the macroscopic simulation of the hemispherical forming presented in section 2.5.2. The mesoscopic embedded elements are defined from the mesoscopic geometry of the reinforcement (Fig. 12) positioned in the initial macroscopic reinforcement. These mesoscopic embedded mesoscopic elements deform with the macroscopic model. The embedded mesoscopic analysis of the hemispherical stamping provides the orientations and deformation of each (c) yarn (Fig. 18). This deformed preform with a double curved shape can be achieved thanks to in-plane shear. 

Local mesoscopic simulations from the embedded analyses

The macro-meso embedded analysis described in section 3 can provide a solution at the mesoscopic scale in forming analysis. It is very fast and may be enough to determine some quantities such as permeability. However, the equations of mechanics at the mesoscopic scale are not strictly verified. The deformed mesocopic embedded configuration is not obtained by solving a mechanical problem but is directly deduced from the macroscopic analysis, itself approximated given the assumptions on the continuous medium and the finite element approach. The embedded mesoscopic analysis provides displacements and deformations in the yarns. Given the constitutive law, the stresses do not check the local equilibrium. In particular, this approach can lead to excessive elongations of yarns because it does not take into account the local slippage between the yarns. This point is first highlighted. To overcome this difficulty, a local mesoscopic simulation based on the macroscopic analysis and the embedded mesoscopic analysis is proposed. Finally, the mesoscopic numerical results are compared with the experiment.

Excessive elongations

In the results obtained by the macro-meso embedded analysis, some excessive elongation may occur. For instance in Fig. 17c, the elongations of the binder yarn reach 11%, which is excessive. This ??=41°

is because the approach is based on the macroscopic analysis and does not take into account the local slippage between the yarns. For intermediate yarns such as those considered in Fig. 19, the elongation is important and much larger than effective stretching of yarns in the fabric. In particular, the elongations of the binder yarns are large (Fig. 17c). 

Local mesoscopic simulation

The macro-meso embedded analysis avoids having to carry out a mesoscopic scale simulation for the entire textile reinforcement that is numerically very expensive and it is not always possible to carry out. In order to use this method and avoid the spurious yarn elongations highlighted in the previous section, a mesoscopic simulation is carried out on a local zone (for example a RVE) from the results of the macro-meso embedded simulations. The deformed configuration obtained by the embedded mesoscopic simulation constitutes the initial state of the local mesoscopic calculation.This configuration has some drawbacks, in particular excessive yarn elongations, but nevertheless it constitutes an initial state close to the solution and interesting for the local mesoscopic simulation.

Mesoscopic simulation

A hyperelastic transverse isotropic (Neo-Hookean) constitutive law is used to describe the mechanical behaviors of yarns. The strain energy potential is divided into two parts [START_REF] Bonet | A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations[END_REF]: 

The isotropic potential iso w describes the longitudinal behaviour of a yarn, and the potential trans w corresponds to the deformations of a yarn in the transverse plane. Table B2 in Appendix B shows the four material parameters used in the mesoscopic simulation [START_REF] Florimond | Contribution à la modélisation mécanique du comportement de mèches de renforts tissés à l'aide d'un schéma éléments finis implicite[END_REF]. This hyperelastic law is implemented in Abaqus/Explicit, by a VUMAT user subroutine. Contact with friction between yarns is controlled by a penalty method and a Coulomb friction model with a coefficient of 0.21 [START_REF] Hivet | Design and potentiality of an apparatus for measuring yarn/yarn and fabric/fabric friction[END_REF]. During hemispherical stamping, in-plane shear is the main deformation mode because it is necessary to obtain the spherical geometry which is double curved. A RVE in the high-shear zone is analyzed (Fig. 22). A macro-meso embedded analysis of the entire textile reinforcement is first carried out. It leads to spurious elongations of the yarns (Fig. 22a). In the local mesoscopic calculation, all the displacements of the macro-meso embedded analysis inside the cell are relaxed. On the edges, the displacements in the plane of the cell are retained for the yarns oriented by the edge. For the other yarns the displacements in the cell plane are retained in the center of the yarn. Relative slippage between the yarns in contact is possible. The comparison before and after this simulation (Fig. 22) shows the excessive elongation phenomenon have been avoided. Because this RVE is subjected to a high shear stress, the sections of the ends of yarns no longer remain parallel with the yarns in the other direction. 

Comparisons of numerical and experimental results at the mesoscale

To demonstrate the correctness of the proposed approach, the numerical and experimental results are compared in the case of three points bending. The bending experiment is performed under the same condition as described in section 2.5.1. After the bending, a resin is injected into the deformed fabric.

Then, the fabric fixed by the resin is cut on the section of binder yarn. This makes it possible to observe the deformed geometry of the yarns (Fig. 24). 

Conclusion

Analyses on a mesoscopic scale give the internal geometry and therefore the deformations and internal defects of textile reinforcements during forming. Draping of woven fabrics can be simulated by mesoscopic analysis of the entire preform, but these simulations lead to generally prohibitive computation times. An approach based on the macroscopic simulation of the forming process and the embedded mesoscopic model was presented. It provides a solution at the mesoscopic scale by a local analysis based on the embedded geometry. The local mesoscopic model is linked to the macroscopic model at its edges, but is relaxed enough to avoid spurious extensions. This local mesoscopic calculation is only carried out in areas where this analysis is necessary, e.g. maximum shear zones or regions of high curvature. It has been shown that the approach achieves the mesoscopic deformation of a woven cell in the case of three-point bending of the textile reinforcement and in the case of a hemispherical forming. In the latter case, local deformation of a sheared woven cell was obtained.

The deformed geometries obtained by the mesoscopic analysis can be used to determine the change in fibre volume fraction of the yarns during draping and their consequences on the mechanical properties of the cured composite. In addition, the voids obtained between the deformed yarns can change the permeability of the textile reinforcement. 

Appendix B. Hyperelastic transverse isotropic constitutive law for the mesoscopic simulation

The hyperelastic transverse isotropic (Neo-Hookean) constitutive law is made up of a sum of two potentials [START_REF] Bonet | A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations[END_REF]: the isotropic potential iso w describes the longitudinal behaviour of a yarn, and the potential trans w corresponds to the deformations of a yarn in the transverse plane.

[ ] 
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The parameters λ , µ , α , β and γ are defined in Equation (B2) according to the four material parameters: transverse modulus of elasticity E, longitudinal modulus of elasticity A E , Poisson's ratio ν and longitudinal shear modulus A G . Then the material parameters used in the mesoscopic simulation are given in Table B2 [START_REF] Florimond | Contribution à la modélisation mécanique du comportement de mèches de renforts tissés à l'aide d'un schéma éléments finis implicite[END_REF]. 
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 12 Fig.1Structure of the 3D non-crimp orthogonal woven fabric and its 3D architecture by X-ray tomography Tab.1 Geometric characteristics of the woven reinforcement[START_REF] Vilfayeau | Modélisation numérique du procédé de tissage des renforts fibreux pour matériaux composites[END_REF] Linear mass, ±6% (g/km)
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 2 Fig.2Six deformation modes of a 3D woven reinforcement[START_REF] Charmetant | Hyperelastic model for large deformation analyses of 3D interlock composite preforms[END_REF] 

  are the classical invariants of the right Cauchy-green tensor

  are the stretch invariants in warp and weft directions; comp I is the compression invariant in the thickness direction; cp I is the in-plane shear invariant and ct I α are the transverse shear invariants in warp and weft directions. In this hyperelastic model, a strain energy potential is a function of the right Cauchy Green physical invariants. Although couplings between the different properties have
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 3 Fig.3 a) Integration areas in the hexahedral element b) Computation of curvatures from neighbouring elements[START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF] 
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 42 Fig.4 a) Experimental device and b) experimental and numerical identification curves 2.4.3 In-plane shearThe Bias Extension Test (BET) is used to realize the identification of material parameters of inplane shear mode[START_REF] Lebrun | Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics[END_REF][START_REF] Cao | Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results[END_REF][START_REF] Na | Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear rate[END_REF][START_REF] Boisse | The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review[END_REF]. In order to obtain an in-plane shear deformation, the yarns of a specimen with dimensions 210×70 mm are oriented at 45° with respect to the direction of traction.
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 6 Fig. 6 a) Experimental device and identification curves for transverse shear in the b) warp and c) weft directions
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 7 Fig. 7 Three points bending
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 89 Fig. 8 Transverse shear angle of the initial and deformed preform in bending

Fig. 11

 11 Fig.11 Top view of the deformed preform: simulation (left) and experiment (right)

Fig. 12 a

 12 Fig.12 a) Geometry obtained by X-ray tomography of the 3D non-crimp woven reinforcement, b) Corresponding prism mesh

  are the reference coordinates in the macro element, meso X and macro X the spatial coordinates of the mesoscopic and macroscopic node.

Fig. 14

 14 Fig.14 Embedded meso model in a macro element. Real and reference frames.

Fig. 15

 15 Fig.15 Deformation modes of a yarn: (a) elongation compaction (c) distortion (d) longitudinal shear

5 ,

 5 are classic invariants defined in Equation (2), and 4 II II are mixed invariants defined by the direction of the fibers M :

Fig. 17

 17 Fig.17 displays the mesoscopic elongation and transverse compaction invariants of yarns in the bending test.

Fig. 16 .Fig. 17 .

 1617 Fig.16. Three point bending: Transverse sections of the initial (a) and deformed (b) geometries

Fig. 18 .

 18 Fig. 18. Hemispherical forming. Embedded mesoscopic analysis. Deformations of yarns in compaction (Invariant Icomp).

Fig. 19 considers 1 M diag and 2 M

 1912 Fig.19considers the case of a shear deformation of a macroscopic finite element. This deformation is frequent in the forming of textile materials. The two blue lines represent two yarns in the undeformed macroscopic element. Besides, the two red lines represent the same two yarns in the deformed macroscopic element. In this element, the diagonals

Fig. 19 .

 19 Fig.19. Elongation of yarns in a sheared macroscopic element

4. 2 . 2

 22 Three points bending: local mesoscopic simulation The local mesoscopic simulation must be linked to the macroscopic simulation. In the case of threepoint bending, the displacements of all nodes of the meso embedded analysis are relaxed except for the nodes of the right and left sections of the RVE for which the components of displacement in the direction of the beam are set equal to those of the macroscopic calculation. The results of the extensions obtained by the embedded mesoscopic analysis and by the local mesoscopic analysis are shown in Fig.20.

Fig. 20 .

 20 Fig. 20. Three points bending: mesoscopic simulations of a RVE. a) Elongation in macro-meso embedded analysis b) Elongation in local mesoscopic simulation analysisThe elongation of ten elements located in different areas of this RVE are displayed in Fig.21. Thisshows that the spurious elongations obtained in the macro-meso embedded analysis are mostly removed by the local mesoscopic simulation.

Fig. 21

 21 Fig.21 Elongation at different points obtained by the macro-meso embedded analysis and the local mesoscopic simulation in a RVE of the reinforcement in three points bending 4.2.3 Hemispherical forming: local mesoscopic simulation

Fig. 22

 22 Fig.22 Hemispherical stamping: mesoscopic simulations of a RVE. a) Elongation in macro-meso embedded analysis b) Elongation in local mesoscopic simulation analysis

Fig. 23 .

 23 Fig.23. Elongation at different points obtained by the macro-meso embedded analysis and the local mesoscopic simulation in a RVE in hemispherical stamping

Fig. 24 .

 24 Fig. 24. Observation of mesoscopic geometry of the deformed reinforcement by microscope A comparison between the experimental and simulated geometry of a deformed RVE is presented in Fig. 25. They are in good agreement. In both cases, slippage occurs between the yarns during the bending deformation of the reinforcement.

Fig. 25 .

 25 Fig. 25. Woven unit cells in the same position obtained by: a) Local mesoscopique simulation b) experiment c) comparison

Table A1 .

 A1 Material parameters used for macroscopic simulations (ki in MPa, D0 in Nmm, D1 in Nmm2)

		k1	k2	k3	k4	k5	k6
	welong1/2	8.692 k7	4.816e3 k8	-1.002e6 k9	8.275e7 k10	-2.419e9 k11	2.442e10 k12
		8.692	-5.056e2	1.073e5	-2.687e6	0	0
	wcomp	k1/ k7 9.69e-2	k2/ k8 7.009e-1	k3/ k9 6.426e-2	k4/ k10 -1.339e0	k5/ k11 8.777e-1	k6/ k12 2.855e-2
	wsh	k1/ k7 3.441e-1	k2/ k8 -2.019e0	k3/ k9 7.416e0	k4/ k10 -1.401e1	k5/ k11 1.401e1	k6/ k12 -5.444e0
	wshT1	k1/ k7 3.721e-2	k2/ k8 3.844e-2	k3/ k9 -5.21e-1	k4/ k10 1.877e0	k5/ k11 -2.78e0	k6/ k12 1.572e0
	wshT2	k1/ k7 3.473e2	k2/ k8 -5.674e-2	k3/ k9 -1.46e-2	k4/ k10 5.835e-1	k5/ k11 -1.201e0	k6/ k12 8.084e-1
			D0 (warp)	D1 (warp)	D0 (weft)	D1 (weft)	
			3.6	117.9	3.748	123.6	

Table B2 .

 B2 Material parameters used in Neo-Hookean constitutive law

				E (MPa)	EA (MPa) elongation		EA (MPa) compression		ν				GA ( MPa)
								3200	45516				100		0					1600
	λ	=	2 (1 ) + + n ν ν ( m E ν	)	µ	=	2(1 ) + E ν	= -α µ	G	A	β	=	2 4 (1 ) (1 ) -+ E n m ν ν	γ	=	E	A	(1 ) 8 -m ν	-	2 8 + λ µ α 2 + -	β	(B2)
	m	1 = --ν	2	n ν	2	/ n E E = A												
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