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One-dimensional model for heat and mass transfer within a cake during a one-sided baking process is presented. Thermophysical properties from literature do not simulate temperature and mean moisture content trends close enough to experimental measurements. This makes reliable estimation of these properties extremely important. Hence, thermophysical properties are approximated as effective constant parameters using an inverse procedure. To ease parameter estimation, a coupled mathematical model is derived in nondimensional form showing up the key parameters driving the baking process. Complex step differentiation method is utilized to compute sensitivities in order to improve their precision. Optimal location and minimum number of temperature sensors are picked from D-optimality criterion. Effect of deformation is neglected in this study.

Sensitivity analysis shows that the parameter derived from Darcy law representing a ratio of permeability to dynamic viscosity of gas seems to perturb the temperature and mean moisture content minutely. Weighted least square method with significant weight given to temperature measurements results in better approximation than ordinary and scaled least square objective functions. Inverse procedure is unable to estimate temperature profile with expected precision at boundary where heat flux enters above 100 o C as the model fails to address dough transformation.

Introduction

Bakery is one of the leading sectors in the food industry that requires a significant amount of energy. The quality of baked products is determined by interplay of heat and mass transfer that drive the leavening of gases like carbon dioxide and water vapor formed due to yeast fermentation and moisture present in the dough, respectively. The variations in temperature across the dough and expulsion of fluids from it result in its structural deformation along with enlargement of pore volume. These phenomena influence the sensory properties such as texture and brownness of the product. In the current scenario of energy crisis against the increasing demand for bakery edibles, a process that minimizes operational energy input without compromising the product quality is economically important. Foundation of such process development lies in insights from fundamental physics of the strongly interlinked heat and mass transport phenomena.

Efforts to precisely simulate the baking process began in the early nineties with the estimation of thermal properties [START_REF] Rask | Thermal properties of dough and bakery products: A review of published data[END_REF]. Later, transport properties like thermal conductivity [START_REF] Zanoni | Determination of the thermal diffusivity of bread as a function of porosity[END_REF][START_REF] Jury | Determination and prediction of thermal conductivity of frozen part baked bread during thawing and baking[END_REF][START_REF] Unklesbay | Thermal conductivity of white bread during convective heat processing[END_REF][START_REF] Unklesbay | Thermal conductivity of white bread during convective heat processing[END_REF][START_REF] Omid | Modeling thermal conductivity of iranian flat bread using artificial neural networks[END_REF][START_REF] Purlis | Bread baking as a moving boundary problem. part 2: Model validation and numerical simulation[END_REF][START_REF] Hailu Feyissa | Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process[END_REF], mass diffusivity [START_REF] Cevoli | Estimation of the effective moisture diffusivity in cake baking by the inversion of a finite element model[END_REF][START_REF] Thorvaldsson | Water diffusion in bread during baking[END_REF][START_REF] Fabbri | Moisture diffusivity coefficient estimation in solid food by inversion of a numerical model[END_REF] and others were either measured or estimated to fortify the accuracy of mathematical models. More complete models incorporating almost every phenomenon at macroscopic scale are available now. These models are capable of producing temperature, moisture and pressure evolution along with certain sensory properties like browning index sufficiently accurate to measurements [START_REF] Purlis | Bread baking as a moving boundary problem. part 2: Model validation and numerical simulation[END_REF][START_REF] Nicolas | Modeling heat and mass transfer in deformable porous media: Application to bread making[END_REF]12,[START_REF] Ousegui | Porous multiphase apporach for baking process -explicit formulation of evaporation rate[END_REF][START_REF] Purlis | A moving boundary problem in a food material undergoing volume change -simulation of bread baking[END_REF][START_REF] Chhanwal | Computational fluid dynamics modeling of bread baking process[END_REF]. Hitherto, even microscopic variations like local porosity evolution during baking are also possible to compute [START_REF] Nicolas | Modeling bread baking with focus on overall deformation and local porosity evolution[END_REF]. These improvements from time to time laid the foundation for optimal input heat flux for bread baking while maintaining the product quality [START_REF] Hadiyanto | Control vector parameterization with sensitivity based refinement applied to baking optimization[END_REF][START_REF] Hadiyanto | Product quality driven design of bakery operations using dynamic optimization[END_REF][START_REF] Hadiyanto | Quality prediction of bakery products in the initial phase of process design[END_REF][START_REF] Ousegui | Optimal control and cfd modeling for heat flux estimation of a baking process[END_REF].

Such studies are being extended to other products like sponge cake [START_REF] Cevoli | Estimation of the effective moisture diffusivity in cake baking by the inversion of a finite element model[END_REF][START_REF] Mathieu Lostie | Study of sponge cake batter baking process. ii. modeling and parameter estimation[END_REF], pizza [START_REF] Dumas | Heat and mass transfer properties of pizza during baking[END_REF] etc.

This work focuses on one-sided contact baking of cake. It differs from bread baking in terms of composition and ingredients, no carbon dioxide generation, high moisture content, smaller crust and larger crumb portions. In one sided contact baking, deformation is mainly due to evaporation of water with variations up to 125% during the first few minutes of baking. Condensation of migrated water vapor is predominant towards the core making it soft. It slightly deviates from conventional oven baking, but is analogous to baking of dough on a hot pan. This approach of cake baking fails to simulate temperature and moisture content close enough to measurements from the available transport properties. Hence, a reliable set of significant transport properties is compulsory to fit simulated profiles.

Nondimensional approach is a good tool to generalize transport or thermophysical properties. For one-sided contact baking, estimation of thermophysical properties and boundary conditions as constant nondimensional numbers is done simultaneously using experimental measurements of two variables: temperature and mean moisture loss. In order to achieve a better approximation of the parameters, an elementary optimal design of experiment is used to obtain minimum number and location of thermal sensors. Sensitivity coefficients needed in the estimation procedure and design analysis are computed by complex step differentiation methods. These coefficients are the first derivatives of temperature and mean moisture content with respect to parameters which are being estimated.

Structure of the paper is as followed: section 2 presents experimental set-up, section 3 displays governing equations, section 4 details inverse procedure and finally section 5 presents main results followed by conclusive remarks.

Experimental setup

Temperature at discrete locations and mean moisture content were measured during one-sided baking process of cake using an experimental setup shown in figure 1a. Total mass of the dough was obtained by weighing the entire setup (i.e. bottomless mold with dough) placed over cast iron floor of 23 cm in diameter and 2 cm in height which was suspended in air at a distance of 1 cm from heating spiral coil by means of strings attached to weighing balance (Manufacturer: Radwag, model: PS6000 R2). The heat energy was transferred from hot spiral coil at set temperature to cast iron floor via radiation and further transferred to dough via conduction through latter. The circumference of the cast iron floor, heater and bottom of the heater were insulated. The baked dough was dried for 1 day at 105 o C and then weighed to get solid mass which is used for calculation of mean moisture content (dry basis).

Figure 1b gives the overview of temperature sensor locations. Temperature variations inside the dough were recorded using K-type thermocouples (indigenous made) placed at three different locations (T4, T5, T6). Surface temperature was recorded by optical pyrometer (Manufacturer: Optris, model: CS LT) by setting dough surface emissivity to 0.9. Since there is volume deformation during the baking process, the firmness in positions of thermocouples were ensured by passing it through cross-section of the bottomless mold at required locations. The incoming heat flux from cast iron floor to dough was estimated using inverse technique with temperature measured by aid of flux-meter [START_REF] Bideau | Heat flux estimation in an infrared experimental furnace using an inverse method[END_REF][START_REF] Marc | Transient heat flux estimation during the baking of cereal batter by contact heating[END_REF]. A cylindrical block of diameter 3 cm was drilled out of the cast iron floor. Three thermocouples (T1, T2 and T3) at desired isothermal locations were fixed in pre-drilled holes by means of high temperature polymer glue in that cylinder block. This cylindrical block which acts as the flux-meter was inserted back in cast iron floor. Heat flux was approximated by an exponential expression as a function of baking time and exhibited in table 2.

The dough for baking was prepared by manually stirring the industrial mix (Manufacturer: Francine , product: Ma pâte à crêpes) for a couple of minutes. The prepared dough consists of industrial mix of wheat flour, corn flour and eggs added to milk in mass ratio of 3:5. The bottomless mold with stretched thermocouples across its cross-section was placed over cast iron after setting the regulator for the heating coil at desired temperature. Then the prepared dough was poured inside the mold and baked for approximately 20 minutes. The bottomless mold served different purposes such as support for thermocouples and dough, provided insulation for heat and mass transfer on lateral sides. The temperature and mass measurements were recorded using a data acquisition system (Manufacturer: HBM, model: QuantumX MX1609) with frequency of 50 Hz (i.e. sampling interval of 0.02 s).

[Figure 1 about here.]

Governing equations

The heat and mass transfer phenomena during baking are mathematically described by mechanistic approach [START_REF] Datta | Porous media approaches to studying simultaneous heat and mass transfer in food processes i : Problem formulations[END_REF].

Due to use of mold and the thickness of baked product, heat and mass variations along the lateral sides were negligible paving way for simplifying two dimensional problem to one dimensional. Continuum approach is used for formulating the governing equations based on energy and mass conservation as it is difficult to track the movement of individual phases inside the tortuous geometry [START_REF] Datta | Porous media approaches to studying simultaneous heat and mass transfer in food processes i : Problem formulations[END_REF]. Evaporation rate is computed from mass conservation of water vapor with the aid of known sorption isotherm and saturated vapor pressure. Total gas pressure is obtained from Dalton's law of partial pressure (P g = P v +P a ) using mass conservation of trapped air. More details about the determination of total gas pressure equation are provided in the appendix A. The effect of deformation is neglected and not considered in the present work. These governing equations are written as,

Temperature ρ C p ∂T ∂t = ∇(k ef f ∇T ) -λI v (1)
Moisture content

ρ a s ∂U ∂t -πρ v ∂S ∂t - P v π(1 -S) R v T 2 ∂T ∂t + π(1 -S) R v T ∂P v ∂t = ∇Γ
where Γ = ρ a s D l ∇U mass flux of liquid water 

+ ρ v k g µ g ∇P g Darcy's flow + ρ g D v ∇ ρ v ρ g
Total pressure

π(1 -S) R a T ∂P g ∂t - π(1 -S) R a T ∂P v ∂t - π(1 -S)(P g -P v ) R a T 2 ∂T ∂t - (P g -P v )π R a T ∂S ∂t = ∇Φ where Φ = (P g -P v ) R a T k g µ g ∇P g - P v R v + P g -P v R a D v T ∇ 1 1 + (P g -P v )R v /(P v R a ) (3)
Evaporation rate

I v = ∂(π(1 -S)P v )/(R v T ) ∂t -∇ ρ v k g µ g ∇P g -∇ ρ g D v ∇ ρ v ρ g where P v = a w × P sat v (4) 
The mass flux of water vapor and remaining air is derived from Darcy's law and Fick's law of binary diffusion [START_REF] Bird | Transport Phenomena[END_REF]. The bonding between solid dough and liquid water is strong so that liquid water is transported only by concentration gradient [START_REF] Nicolas | Modeling heat and mass transfer in deformable porous media: Application to bread making[END_REF]. Regarding heat transfer, the amount of heat flux coming out of the cast iron floor as the function of time is known (see table 2) and on the top surface heat transfer takes place by convection. The mass transfer of fluids from product to ambient happens on the top surface via convection while the bottom surface is insulated.

Boundary conditions:

Energy transfer

-

k ef f ∇ T (x, t) =    q(t) : x = 0 h q (T (L, t) -T ∞ ) : x = L Mass transfer -liquid (6) 
Γ =    0 : x = 0 h m (ρ v -ρ ∞ v ) : x = L Mass transfer -gas (7) Φ =    0 : x = 0 P g = P atm : x = L
These governing equations are then obtained in non-dimensional form and presented as,

Temperature ∂θ ∂t = ∇ a q ∇ θ -R 1 I v (8) ∂U ∂t - πρ ref D v R v (θ + 1) ∂S ∂t - π(1 -S)ρ ref P v (θ + 1) 2 R v ∂θ ∂t + π(1 -S)ρ ref R v (θ + 1) ∂P v ∂t = ∇Γ where Γ = D l ∂U ∂X + V π(1 -S) a p ∇ P g + ρ ref (P g -P v (1 -1/R v )) D v θ + 1 ∇ 1 1 + (P g /P v -1)R v (9) Total Pressure π(1 -S)ρ ref (θ + 1) ∂P g ∂t - π(1 -S)ρ ref (θ + 1) 2 (P g -P v ) ∂θ ∂t - πρ ref θ + 1 (P g -P v ) ∂S ∂t - π(1 -S)ρ ref θ + 1 ∂P v ∂t = ∇Φ where Φ = ρ ref (P g -P v ) θ + 1 a p ∇P g - ρ ref θ + 1 P g -P v (1 -1/R v ) D v ∇ 1 1 + R v (P g /P v -1) (10)
Evaporation rate

I v =ρ ref ∂ ∂t π(1 -S) P v R v (θ + 1) - ∂ ∂X ρ ref P v R v (θ + 1) a p ∂P g ∂X - ∂ ∂X ρ ref (P g -P v (1 -1/R v )) D v θ + 1 ∇ 1 1 + (P g /P v -1)R v where P v = a w × P sat v /P int (11) 
The boundary conditions in non-dimensional form are as follows,

Energy (12) -∇ θ(x, t) =    Q(t )k : x = 0 Bik (θ -θ ∞ ) : x = L Mass transfer -liquid (13) 
Γ =    0 : x = 0 Bi m (V -V ∞ ) : x = L Mass transfer -gas (14) 
Φ =    0 : x = 0 P g = 0 : x = L
The non-dimensional numbers appearing in those equations are defines as follows,

[Table 1 about here.]

Inverse problem

The parameter vector Ω = [a q , D l , D v , a p , Bi, k ] is considered for estimation using an inverse problem approach.

These unknown parameters are approximated from experimental data with the aid of gradient based optimization algorithm. Trust-region algorithm is implemented in Matlab environment [START_REF]MATLAB R[END_REF] using lsqnonlin function with bounds [START_REF] Geletu | Solving optimization problems using the matlab optimization toolbox-a tutorial, tu -ilmenau[END_REF]. The goal of optimization problem is to minimize (sometimes maximize) objective or cost function which is generally the Euclidean distance between experimental data and estimated profiles. This work looks at three different ways for formulating the objective function which ensures efficiency of the inverse solution. In general, the objective function is represented by ordinary least square (OLS) form as,

S OLS = [M -E(Ω)] × [M -E(Ω)] ( 15 
)
where S is the objective function, M and E are measurement and estimation respectively. M is a column matrix with temperature measurement followed by mean moisture content and similarly the elements are arranged for E.

Since temperature and moisture content are dimensionless, these variables can be combined together in objective function.

E = [θ 1 1 , θ 1 2 , • • • , θ 1 nt , • • • , θ nθ 1 , θ nθ 2 , • • • , θ nθ nt , Ū1 , Ū2 , • • • , Ūnt ] (16) 
Here nt refers to the number of transient measurements, nθ represents the number of temperature sensors. In this study, there is plenty of information about temperature that is obtained from the four thermocouples but for moisture content only average value is feasible. Moreover, the magnitude of temperature and moisture content in dimensionless form is not of same order. In fact the magnitude of temperature is approximately one tenth of mean moisture content. With these discrepancies, the inverse solution from optimization of objective function S OLS may not results in reliable comparison with measured values of either temperature or moisture content. To overcome this, utilization of weighted least square (WLS), scaled least square (SLS) in objective function are preferred [START_REF] Xiujuan | Overview of multi-objective optimization methods[END_REF].

Weighted least square is simple transformation of objective functions with some weights added to their elements as,

S W LS = φ θ [M θ -E θ (Ω)] × [M θ -E θ (Ω)] + φ U [M U -E U (Ω)] × [M U -E U (Ω)] (17) 
Equation ( 17) is an objective function using a weighted least square method with condition φ θ + φ U = 1. Another transformation of objective function is the scaled form in which individual elements of functions are scaled so that eventually all the elements are approximately in the same order of magnitude :

S SLS = M θ -E θ (Ω) max(M θ ) × M θ -E θ (Ω) max(M θ ) + M U -E U (Ω) max(M U ) × M U -E U (Ω) max(M U ) (18) 
The elements E θ , M θ represent temperature measurements in sequential order of sensor locations and E U , M U have mean moisture content. Since the optimization procedure is gradient based method, any modification in objective function should be also carried out in Jacobian matrix before processing in Matlab.

The computation of the Jacobian matrix was predominantly aided by conventional finite difference method (FDM) as it is simple to implement. FDM suffers from truncation error, round-off error and also subtractive cancellation error if the step size (h) is chosen to be very small. In order to bypass these errors, a simpler and efficient complex step differentiation (CSD) method is used in this paper [START_REF] Lyness | Numerical differentiation of analytic functions[END_REF][START_REF] Squire | Using complex variables to estimate derivatives of real functions[END_REF][START_REF] Jayapragasam | Computing sensitivity coefficients by using complex differentiation: Application to heat conduction problem[END_REF]. CSD for Jacobian matrix elements with np number of parameters can be formulated as

J Ω(i) = ∂f (Ω(i)) ∂Ω(i) = Im[f (Ω(1), . . . Ω(i) + ih, Ω(i + 1) . . . Ω(np))] h ( 19 
)
Where Im is a function returning imaginary part of complex variable, h is step size (in range 10 -6 to 10 -8 ) and f can be either θ or Ū .

Statistical analysis

A confidence region for the estimated parameters can be evaluated after successful minimization of the objective function with 95% confidence level using following expression [START_REF] Beck | Parameter Estimation in Engineering and Science[END_REF],

Ω e ± Zσ Ωe ; σ Ωe = diag (J J) -1 S S n (20) 
Where Z = 1.96 for 95% confidence level, J is Jacobian matrix computed previously, S is [M -E] of length n. In view of increasing accuracy of the inverse problem, the hypervolume of estimation must be minimized and it can be achieved by design of experiments.

Frequently, Design of experiments is defined by D-optimality which gives optimal number and location of sensors by help of the information matrix (known also Fisher matrix) as specified in equation ( 21) [START_REF] Beck | Parameter Estimation in Engineering and Science[END_REF][START_REF] Atkinson | Optimal Experimental Design,with SAS[END_REF][START_REF] Taktak | Optimal experimental design for estimating thermal properties of composite materials[END_REF]. The determinant of matrix information ∆ for combined temperature and mean moisture content matrix shall be given as,

∆ = 1 t f (nθ + 1) t f 0 det(Sen θ (t) × Sen θ (t) ) + det(Sen U (t) × Sen U (t) ) dt (21) 
where det( ) refers to determinant of the matrix and Sen θ and Sen U are the scaled Jacobian matrix with respect to temperature and mean moisture content at a particular experimental time given by 1) 1)

Sen θ (t) =            Ω(1) ∂θ 1 t ∂Ω ( 
Ω(2) ∂θ nθ t ∂Ω(2) • • • Ω(np) ∂θ nθ t ∂Ω(np)            ; Sen U (t) =            Ω(1) ∂ Ūt ∂Ω(
Ω(2) ∂ Ūt ∂Ω(2) . . . Ω(np) ∂ Ūt ∂Ω(np)           
here θ 1 t corresponds to temperature measured at first sensor location (T4) at any given time t . The determinant is divided by total number of sensor used for measurement (nθ + 1).

Results and discussions

[Table 2 about here.]

The forward problem (i.e. solving the governing equations ( 8)-( 11 Ū Ω ) analysis of physical parameters has been performed (see figure 4) using equation [START_REF] Hadiyanto | Quality prediction of bakery products in the initial phase of process design[END_REF] and it is found that both temperature and moisture content were least sensitive to variation in capillary diffusivity (a p ). This might be due to ignorance of the deformation effect in the process. Hence, capillary diffusivity is assumed to be known (same as initial guess) and remaining parameters are approximated using inverse problem. Along with capillary diffusivity (a p ), some other parameters required for simulation are either calculated or taken from literature. All the required parameters are tabulated in table 2.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Design of Experiments

Optimal number and location of sensors are selected from their corresponding cases returning maximum determinant ∆ as given by equation [START_REF] Mathieu Lostie | Study of sponge cake batter baking process. ii. modeling and parameter estimation[END_REF]. In this study, the determinant is computed as individual form for finding optimal location of sensors and combined form for finding optimal number of sensors. Individual form Determinant is calculated individually for temperature, local moisture content and also pressure. This would help in placement of respective sensors for temperature, moisture content and pressure at particular locations where its sensitivity is more significant with respect to the parameters being estimated. Determinants of each state variable are calculated based on information matrix built on a certain set of parameters. Determinant for temperature is calculated from Fisher matrix built on thermal conductivity (k ), thermal diffusivity (a q ) and Biot number (Bi). Determinant for moisture content is based on mass diffusivities (D l , D v ) and determinant for pressure on capillary diffusivity (a p ). This is done only for theoretical point of view and cannot be used as local moisture content measurement is not [Figure 5 about here.]

From the figure 5, the following things can be inferred,

• From individual form, the optimal sensor location for pressure is at bottom (x = 0) with maximum normalized determinant. Local moisture content exhibits maxima at x = 0.1 and on the top surface (x = 1) and temperature at bottom and x = 0.8.

• From combined form, case 5 seems to have maximum determinant i.e. using information from all sensors.

There is not much variation among cases 1, 2 and 4. Case 3 has the lowest determinant which consists of information from x = [0.625, 1]. Since sensor location x = 1 is common for all the cases, it can be inferred that information from sensor at x = 0.625 is not significant. Therefore, considering case 5 with all sensor locations would be redundant.

Spectral properties of Information matrix:

Spectral properties of the information matrix reveal that major uncertainty would be caused by parameter a q which has the least eigenvalue. For above mentioned combinations of temperature sensors with mean moisture content measurement, there is a slight increase in eigenvalues as the number of temperature sensors are increased. The eigenvalues for the first three cases (case 1, 2 and 3) are found with eigenvalues λ = [0.53, 22.6, 9.97×10 5 , 9.13×10 7 , 7.41×10 13 ]. The difference between the smallest eigenvalue for case 4 and 5 is minute and found to be approximately 0.05 but difference between case 4 and earlier case (let's say case 3) is approximately 0.2. This shows that there is not dramatic improvement over design considered for cases 4 and 5. Hence case 4 is considered for solving the inverse problem in this study. When local moisture content measurement is employed, the spectral properties behave completely different and show optimal locations of sensors for temperature and moisture content are at x = [0, 0.8, 1]. Conclusively, design should settle with mean moisture content measurement.

Inverse solution

Experimental data is collected from sensor locations for temperature as per case 4 along with mean moisture content. Table 3 shows the comparison of RMS (root mean square) between experimental data and simulated data based on inverse solutions with different objective functions (S OLS , S W LS , S SLS ). Irrespective of objective functions, the RMS for temperature at x = 0 has maximum deviation from the experimental measurement which will be explained below. The objective function S W LS with φ θ = 0.6 is cherry picked from them since its all RMS values seem to be relatively minimal. This proves that major thermophysical parameters despite being assumed as constants, are temperature dependent with 60 percent weightage on temperature information .

[Table 3 about here.]

The inverse solution for objective function S W LS for φ θ = 0.6 is showcased in table 4. The final estimated parameters are presented in both dimensional and non-dimensional form. The estimated thermal properties lie within the range reported in literature [START_REF] Rask | Thermal properties of dough and bakery products: A review of published data[END_REF][START_REF] Omid | Modeling thermal conductivity of iranian flat bread using artificial neural networks[END_REF] and mass transfer properties for contact baking lie within the range of nominal values as mentioned in literature [START_REF] Hailu Feyissa | Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process[END_REF] which further ensures the confidence on estimated parameters.

[Table 4 about here.]

The graphical comparison of temperature and mean moisture profiles between experimental and computed data are visualized in figure 6. The estimated mean moisture content seems to have good agreement with experimental value but temperature especially at bottom (x = 0, T4) shows larger discrepancies. This might be due to assumption of effective thermal properties as constant parameters which does not take into account the transformation of dough into crust-crumb.

[Figure 6 about here.]

The results discussed above are for baking when the regulator for the heating coil is set at 200 o C. The study is extended to another regulator temperature of 170 o C. The only major difference between these two baking conditions is coil temperature which alters the incoming heat flux at bottom of the dough. With corrected heat flux and estimated thermophysical properties from table 4, simulated profiles are graphically compared to experimental data in figure 7. The deviations between measured and simulated profiles for both temperature and moisture are in the same league as previously presented. Mean moisture content shows good agreement but temperature especially at bottom (x = 0,T4) needs great improvement as the effective process properties fail to take into account the physical phenomena as explained before.

[Figure 7 about here.]

Concluding remarks

A mathematical model describing contact baking of dough without deformation is presented in dimensional form and then transformed in nondimensional form. Design of experiments using D-optimality has been calculated as individual form for theoretical aspect and combined form for the experimental setup. Theoretically, sensor locations for temperature at x = 0 and = 0.8, moisture content at x ≈ 0.1 and 1 and pressure at x = 0 are sufficient for simultaneous estimation of all physical parameters. However, experimentally mean moisture content is measured since local moisture content measurement is not feasible along with temperature at x = 0, 0.5 and 1. Objective functions using ordinary least square (S OLS ), weighted least square (S W LS ) and scaled least square (S SLS ) are utilized for inverse problem. Weighted objective function (S W LS ) with balancing factor φ θ = 0.6 was more efficient and provided better inverse solution using experimental data.

While looking at the simulated profiles from estimated physical parameters (table 4) against experimental data, mean moisture content is seen to be in good agreement. The simulated temperature at top surface (x = 1, T7) is close to measured values but at bottom (x = 0, T4) shows maximum discrepancy with measurement.

This discrepancy might be due to usage of effective thermal properties in place of properties as function of state variables. It is evident that the usage of effective thermal properties as constants in mathematical model describing the baking process will exhibit some deviation from experimental measurements especially at the surface where heat flux enters. All the required physical properties in the mathematical model describing the baking process are estimated successfully in nondimensional form except the capillary diffusivity (a p ).

A Derivation for total gas pressure equation Total gas equation is derived from mass balance of air present in the medium using Dalton's law of partial pressure (P g = P a + P v ) and taking advantage of binary diffusion between gases.

∂ ∂t {π(1 -S)ρ a } - ∂ ∂x ρ a k g µ g ∇P g -ρ g D v ∇ ρ v ρ g = 0
Using Ideal gas law,

∂ ∂t π(1 -S)P a R a T - ∂ ∂x P a R a T k g µ g ∂P g ∂x + ∂ ∂x        P a R a T + P v R v T D v ∇     P v R v P a R a + P v R v            = 0
Using Dalton's law of partial pressure,

∂ ∂t π(1 -S)(P g -P v ) R a T - ∂ ∂x P g -P v R a T k g µ g ∇P g + ∂ ∂x        P g -P v R a T + P v R v T D v ∇     1 1 + P g -P v R a × R v P v            = 0

Nomenclature

Latin Letters 

= T -T 0 T 0 Temperature a q = a q t f L 2 Thermal diffusivity R 1 = ρ a s ρ ef f λ C p ef f T 0
ratio of densities and Jakob's number

I v = I v t f ρ a s Evaporation rate Q = qL k ref T 0 Heat flux k = k ref k Thermal conductivity Bi = h q L k ref Biot number -thermal θ ∞ = T ∞ -T 0 T 0 Surrounding temperature U = ρ a l ρ a s Moisture content on dry basis D l = D l t f L 2
Mass diffusivity -liquid water

ρ ref = P 0 R a T 0 ρ a s Reference density R v = R v
R a ratio of specific gas constants

P v = P v P 0 Vapor pressure V = ρ a v ρ a s
Vapor density

a p = k g t f P 0 µ g L 2
Darcy term P g = P g P 0 Total gas pressure 

D v = D v t f L 2 Mass diffusivity -water vapor Bi m = h m t f L Biot number -mass V ∞ = ρ ∞ v ρ a s Ambient vapor density t = t t f time ∇ = ∂ ∂(x/L) Spatial gradient

Fick's flow mass flux of water vapor

  

  )) and inverse problem (optimization algorithm) are carried out in Comsol-Matlab environment. The sensitivity analysis and validation of forward problem are performed with parameters a q = 1.4, k = 3.2, Bi = 0.08, D l = 0.0093, D v = 23.125 and a p = 1284 which have been averaged over values reported in literature[START_REF] Nicolas | Modeling heat and mass transfer in deformable porous media: Application to bread making[END_REF][START_REF] Zhang | Mathematical modeling of bread baking process[END_REF]. The experimental measurements have been performed at regulator temperature of 200 o C with several repetitions (four times) to ensure precision. The error bar on the measurements has been calculated by means of Student-T distribution. Experimental temperature and mean moisture content are plotted in figure2along with simulated profiles. Water activity is expressed by Ferro-Fontan relation[START_REF] Furmaniak | Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity[END_REF] and its coefficients have been evaluated by fitting against experimental measurement at temperature 70 o C (figure3). Scaled sensitivity (ΩJ θ,

feasible.

  Combined form Determinant in this case is calculated from Fisher matrix which comprises temperature and mean moisture content. Five different combinations of temperature sensor locations that are significant in the design of mold are used. These combinations are tagged as case 1 with x = [0, 1], case 2 with x = [0.5, 1], case 3 with x = [0.625, 1], case 4 with x = [0, 0.5, 1] and case 5 with x = [0, 0.5, 0.625, 1]. x indicates sensor location in non-dimensional space.

  Abbreviations

Figure 1 :

 1 Figure 1: Schematic representation of experimental set-up

Figure 2 :Figure 3 :Figure 4 :

 234 Figure 2: Experimental measurements and simulated results of temperature (a) and mean moisture content (b) (where exp -experimental measurements, sim -simulated results)

Figure 5 :

 5 Figure 5: Determinant at various number of sensors in individual (a) and combined (b) form

Figure 6 :

 6 Figure 6: Comparison of estimated and experimental data for Temperature(a) and mean moisture content(b) for weighted objective function φ θ = 0.6 (where exp is experimental data and est is estimated data)

Figure 7 :

 7 Figure 7: Experimental measurements and simulated results of temperature (a) and mean moisture content (b) for regulator temperature 170 o C (where exp is experimental data and sim is simulated results)

Table 1 :

 1 Non-dimensional parameters and variables

	Parameters Expression/Values	Units	Descriptions
	Bi m	Bi p Le 2/3 (L 2 /k ref t f ) ρC air	-	From boundary layer theory [38].
	R 1	λ ρC p	ρ a s T int	-	Calculated from known variables
	ρC p	k ref k a q	t f L 2	J/(m 3 K) Calculated from known variables
	a w	0.99 exp(0.042U -1.11 )	-	Water activity
	λ	2.5 10 6	J/kg	Latent heat of vaporization
	q	31000t -0.33	W/m 2	Applied heat flux [39]
	µ g	1.8 10 -5	Pa.s	Dynamic viscosity for gas
	k g	1.2 10 -14	m 2	Calculated as average from function k i g × k r g
	a p	1284		-	Capillarity diffusivity
	π	0.76		-	Porosity (calculated)
	S int	0.9		-	Liquid Saturation initial (calculated)
	U int	1.6		-	Moisture content initial
	T inf	294		K	Ambient temperature
	k ref	1		W/(mK) reference thermal conductivity
	L	0.008	m	Overall length
	t f inal	1200		s	end time
	ρ a s	436		kg/m 3	Apparent solid density (calculated)
			Table 2: Imposed parameters

Table 3 :

 3 RMS comparison overview for different objective functions

		Initial guess Estimated		Parameter	Values
	a q	0.082780	1.365 ± 0.035	k ef f	[W/(mK)]	0.295
	k	0.5844	3.389 ± 0.074	ρ C p ef f [kJ/(m 3 K)] 4052.09
	Bi	0.0320	0.068 ± 0.0008 h q	[W/(m 2 K)] 8.48
	D l D v	0.009375 9.3725	0.012 ± 0.0005 D w 19.414 ± 1.08 D v	[m 2 /s] [m 2 /s]	6.646 ×10 -10 1.035 ×10 -6

Table 4 :

 4 Inverse solution in non-dimensional and dimensional form

	Weighing scale
	String
	Pyrometer
	String
	Dough
	Cast iron
	Heating Coil
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