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Abstract 16 

The human spleen is an immune sentinel and controls red blood cell (RBC) quality. By 17 

mechanically retaining subsets of infected RBC, the spleen may reduce the pace at which the 18 

parasite biomass increases before the adaptive immune response operates. Conversely, the 19 

spleen may contribute to malaria pathogenesis, particularly anemia that is associated with 20 

splenomegaly. Large spleens may also shelter parasites in chronic carriers. Upon treatment 21 

with artemisinins, the spleen clears circulating parasites by pitting and releases “once-22 

infected” RBC in circulation. This triggers post-artesunate delayed hemolysis and explains the 23 

long post-treatment positivity of HRP2-based dipsticks. Importantly, splenic retention of RBC 24 

also applies to gametocytes, the clearance of which may be enhanced by stiffening them with 25 

drugs, a potential way to block malaria transmission.  26 
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Major importance of red blood cells-spleen interactions in the pathogenesis of human 27 

malaria 28 

Malaria is the most prevalent severe parasitic disease affecting humans. The causal 29 

microorganism, Plasmodium spp., develops in hepatocytes then in red blood cells (RBC), but 30 

only the asexual multiplication in RBC causes clinical manifestations. Invasion of RBC by 31 

Plasmodium triggers major alterations in this host cell. P. falciparum, the human-infecting 32 

Plasmodium specie that has been studied in greatest details, expresses parasitic proteins at the 33 

RBC surface, and modifies its deformability and adhesiveness. Adhesion of parasitized RBC 34 

to endothelial cells (and to other infected or uninfected RBC) is central in malaria 35 

pathogenesis but parasite-induced alterations of RBC deformability have also been associated 36 

with the severity of malaria [1–3]. 37 

White and red pulp structures (See Glossary) have specific functions in the human spleen. 38 

The white pulp is a major operator of the humoral immune response, especially to circulating 39 

antigens. The red pulp exerts a unique and subtle control on the surface integrity and 40 

biomechanical properties of RBC. To be left in circulation, RBC must be fit enough to cross a 41 

very specific structure of red pulp sinuses, the inter-endothelial slit (IES; Figure 1). Older 42 

RBC, or RBC modified by innate or acquired conditions are eventually retained in the splenic 43 

red pulp and processed by red pulp macrophages (RPM) [4].  44 

The major modifications of RBC biomechanical properties induced by Plasmodium infection, 45 

point to the spleen as an important player in the pathogenesis of human malaria. The 46 

proportion of subjects with splenomegaly (the splenic index) has long been a defining marker 47 

of malaria endemicity. Although knowledge has progressed slowly due to the risk associated 48 

with splenic puncture or biopsy and limited access to imaging in endemic areas, significant 49 

advances have been made on the role of the spleen in malaria over the last few decades, 50 
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especially regarding the innate control of infection and transmission [4,5] (Box 1). Ex vivo 51 

perfusion of human spleens [6] and the development of biomimetic tools [7–9] have generated 52 

new insights. The role of cell-mediated immunity has been extensively studied in murine 53 

models of malaria, and in malaria-infected or exposed humans through the analysis of 54 

circulating cell populations. However, the aforementioned constraints have hampered 55 

progress in the understanding of intra-splenic immune responses to malaria in humans. If the 56 

important role of platelets in malaria pathogenesis is likely [10], contribution of intra-splenic 57 

platelets, which represent a third of the total human pool, remains largely unexplored. In 58 

addition, substantial anatomic differences exist between human and murine spleens, 59 

especially regarding the red pulp which is devoid of bona fide IES in mice [11] (although 60 

mechanical filtration exists), and between human and murine Plasmodium species. Whether 61 

mouse models of malaria are relevant to explore the pathogenesis of human malaria is still a 62 

matter of controversy [12]. Unlike the spleen of humans and rats, the mouse spleen is devoid 63 

of sinuses. The mechanical sensing of RBC thus depends on holes in venules rather than on 64 

inter-endothelial slits in sinus walls [13]. It is unclear whether these markedly different 65 

microanatomic structures display a close or loose functional convergence, and whether the 66 

mouse spleen can pit RBC containing undeformable bodies, a major parasite clearance 67 

process in humans (please see section “Role of the spleen in parasite clearance following 68 

antimalarial therapy”). Whether the splenic function is preserved in humanized mice 69 

infected with P. falciparum is also questionable as stiff immature gametocyte and mature 70 

asexual stages – which should be filtered out by the spleen – are observed in the circulation of 71 

these mice [14]. We have therefore limited this review to observations in humans. 72 

 73 

Functional anatomy of the human spleen 74 
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General features  75 

The spleen is an oval retroperitoneal organ of 10 to 12 cm in its major axis, weighing 100 to 76 

200 grams in adults, surrounded by a collagenous, poorly extensible capsule. It is considered 77 

poorly contractile in humans compared to diving or fast-running other animal species (seals, 78 

whales, dogs, horses) which harbor large “storage spleens”. Splenic parenchyma is composed 79 

of 2 specific tissues, the red pulp and the white pulp. The white pulp is made of immune 80 

cells, organized in periarterial lymphoid sheaths containing mostly T cells, and lymphoid 81 

follicles containing mostly B cells. Follicles are surrounded by the marginal and perifollicular 82 

zones. The red pulp accounts for 75% of splenic volume and is composed of a unique 83 

association of cords and venous sinuses. Cords are circulatory structures that contain 84 

fibroblasts and, very predominantly, specific macrophages (RPM). Venous sinuses which 85 

collect blood from the cords, are made of endothelial cells, which are parallel to the blood 86 

flow, and are surrounded by a helicoid basal fiber (i.e., highly discontinuous) which leaves 87 

room for narrow spaces between endothelial cells (0.2 to 2 µm), named inter-endothelial slits 88 

[13]. Rare plasma cells, mastocytes and other white blood cells are also observed in the red 89 

pulp.  90 

 91 

Microcirculation in the human spleen 92 

Overall, about 5% of arterial flow enters the spleen through the splenic artery, and is divided 93 

into 2 paths: approximately 85% of splenic flow enters a fast, closed circulation, which 94 

navigates around white pulp structures and follows a specific microcirculation from arterioles 95 

to venules delimited by specific MAdCAM1-positive cells in the perifollicular zone; 15% 96 

engage into the open and slow circulation in the red pulp, through the cords, then cross the 97 

unique structure of IES, to join venous sinuses upstream from venules. Crossing the IES is the 98 
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most stringent biomechanical challenge for circulating RBC. RBC altered by heat [15], 99 

stiffening chemicals [16], genetic defects [17], possibly pretransfusion storage [18], and P. 100 

falciparum [19,20] are retained in the cords, where RPM can process them.   101 

 102 

Variable definitions of the human marginal zone 103 

In rodents, a marginal zone (MZ), containing fibroblasts, dendritic cells, lymphocytes and 104 

specific macrophages (“metallophilic macrophages” and “MZ macrophages”) has been 105 

described in the surroundings of lymphoid follicles, and is separated from the white pulp by 106 

the marginal sinus [13]. Such a structure is not present in humans, although an important 107 

population of B cells is found in this area, the MZ B cells, which have a major role in the 108 

early, T-independent antibody response to circulating antigens. Hence, the “human equivalent 109 

of MZ” is sometimes renamed peri-follicular zone, or as recently proposed, superficial zone 110 

[11]. 111 

 112 

Malaria in splenectomized subjects: a more severe disease? 113 

From 1931 through 2019, 133 malaria attacks were reported in splenectomized patients, 114 

among which 69 were due to P. falciparum, 26 to P. vivax, 6 to P. knowlesi, and 3 to P. 115 

malariae. Infection was mixed in 1 case and in 28 cases, Plasmodium species was not 116 

reported [4] (supplemental Table S1). Only 2 cohorts assessing the risk of malaria in 117 

splenectomized subjects (33 in Malawi, 11 in Indonesia) have been prospectively followed 118 

and compared to controls. In both cohorts, acute malaria attacks were significantly more 119 

frequent in splenectomized patients [21,22]. In this population, severe attacks are also more 120 

frequent, mature forms of P. falciparum - which are normally sequestered by adherence to the 121 
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endothelium - are observed in circulation, and post-treatment parasite clearance is delayed 122 

[23,24]. However, the over-incidence of severe forms and mortality has not been confirmed 123 

by prospective controlled studies and its high frequency in published case reports or series 124 

may either reflect a genuine over-susceptibility or result from a publication bias. An increased 125 

risk of acute P. vivax attacks after splenectomy has been recently reported, and outweighs the 126 

risk of P. falciparum attacks (hazard ratio 7.7 vs 2.3) [22], without evidence for an increased 127 

risk of severe forms in this immune population. One case of acute malaria due to P. knowlesi 128 

has been described in an asplenic patient [25], and in another case a prolonged parasite 129 

clearance has been reported [26]. In summary, the increased risk of malaria has been robustly 130 

described in immune or semi-immune subjects, and is strongly suspected in non-immune 131 

travelers [27]. Non-immune splenectomized hosts should be very cautious when travelling to 132 

malaria-endemic areas. If these patients must travel to endemic areas, strict compliance to 133 

antimalarial prophylactic measures is warranted. 134 

 135 

The spleen in acute malaria  136 

Protective role 137 

The human spleen senses subtle alterations in RBC deformability. This decreased 138 

deformability of Plasmodium-infected RBC (asexual stages), first observed with P. knowlesi 139 

[3], then with P. falciparum [1] is intense in RBC infected by mature forms, but already 140 

present, albeit moderately, at the ring stage [1,7,19,20,28]. Mechanisms include alterations of 141 

surface-to-volume ratio [20], and interactions between parasite proteins and the RBC 142 

cytoskeleton [29,30] which induce membrane rigidification. Importantly, ektacytometry - a 143 

reference technique to quantify RBC deformability [31] - and microfluidics have also 144 
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demonstrated that during acute malaria attacks, even non-infected RBC are less deformable 145 

than normal control RBC [2,28,32].  146 

As evidenced by ex vivo perfusions of human spleens with P. falciparum-infected RBC, the 147 

spleen retains a proportion (approximatively half) of ring-infected RBC, in addition to the 148 

expected, almost complete, retention of schizont-infected RBC [19]. The mechanical retention 149 

of schizont-infected RBC is expected to display a small pathogenic impact in vivo, as the 150 

majority of mature forms cytoadhere in other organs, which prevents them from being filtered 151 

by the spleen. Retention of rings which affects a predominantly circulating component of the 152 

parasite biomass, takes place in the red pulp. This mechanism, which is difficult to explore 153 

directly in human subjects, is expected to reduce the circulating parasitic load, thereby also 154 

reducing the parasite biomass amenable to sequester in other organs [19].  155 

The increased clearance of all RBC (infected and uninfected) by the spleen after acute malaria 156 

has been demonstrated through the autotransfusion of radiolabeled RBC. Thai patients with 157 

acute malaria had indeed an enhanced clearance of heat-stiffened RBC when splenomegaly 158 

was present [15] that also affected labeled normal RBC in a similar post-malarial context [33]. 159 

This enhanced splenic clearance of abnormal and normal RBC, which last several weeks, may 160 

contribute to the partial control of parasite loads. When comparing cerebral malaria with other 161 

severe forms (anemia, respiratory distress, acute renal and/or liver failure, shock), post-162 

mortem studies also showed that intra-splenic erythrophagocytosis was more frequent in the 163 

latter [34]. Splenomegaly is also less frequent in cerebral malaria than in severe malarial 164 

anemia, as demonstrated by field studies performed in Uganda and Sudan, and including a 165 

total of 1108 children [35–37]. In one of these studies, splenomegaly was also associated with 166 

a survival advantage [37]. The human spleen can thus retain part of the parasite biomass, 167 

which may partially control the course of infection, potentially reducing the risk of cerebral 168 

malaria. This would, however, come at the expense of an increased retention and clearance of 169 
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non-infected RBC, leading to splenomegaly and anemia (Figure 1). Exploration of the innate 170 

retention of (dead or live) rings in the controlled human infection model [38] would be the 171 

most direct and relevant way to assess whether this potentially powerful protective process 172 

indeed exists, in a context of limited splenic activation at early steps of human infection, when 173 

splenomegaly is not yet present [15]. 174 

 175 

Detrimental role 176 

The pathogenesis of acute malarial anemia is complex and only partially understood. It is 177 

associated with intra- and extra-vascular hemolysis, dyserythropoiesis, and the clearance of 178 

larger proportions of uninfected than infected RBC [39]. Several observations point to a 179 

splenic contribution to the pathogenesis of acute malarial anemia. Congestion of the red pulp 180 

is a key post-mortem feature in fatal malaria [40,41]. Decreased RBC deformability, which 181 

triggers intrasplenic retention ex-vivo (see above), correlates with hemoglobin nadir [32]. As 182 

stated above, splenomegaly is more prevalent in patients with severe malarial anemia than in 183 

other severe forms, and splenic clearance of RBC is increased after malarial attacks. Not least, 184 

erythrophagocytosis is enhanced in acute malaria and alterations of infected RBC render them 185 

prone to phagocytosis [42]. The phagocytic function of monocytes is also activated in malaria 186 

[43]. That erythrophagocytosis in malaria predominantly takes place in the macrophage-rich 187 

spleen remains to be directly demonstrated in humans.    188 

Very rarely, splenic-specific complications of malarial infection occur: pathologic splenic 189 

rupture, intra-splenic hematoma and splenic infarction. These complications have received 190 

little attention so far, and their precise mechanisms remain elusive [44]. In summary, multiple 191 

observations suggest a protective role for the spleen in acute malaria, even if definitive 192 

evidence from controlled studies is lacking. The innate retention of rings can prevent the rise 193 
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of peripheral parasite load thereby decreasing the risk of cytoadherence and sequestration of 194 

parasitized RBC in vital organs [45]. The potential down-side of this phenomenon is a splenic 195 

contribution to malarial anemia.  196 

 197 

Role of the spleen in parasite clearance following antimalarial therapy 198 

The pitting process 199 

In patients recently cured from malaria by artemisinin derivatives, a proportion of circulating 200 

RBC display parasite proteins at the internal layer of their plasma membrane [46]. These 201 

“once-infected” RBC do not contain parasites [23,46,47] and their presence results from a 202 

spleen-specific physiological process called pitting, whereby an intra-erythrocytic body is 203 

extracted from the RBC without cell lysis [48]. Pitting clears physiological intra-erythrocytic 204 

items such as Howell-Jolly or Pappenheimer bodies. Malaria-related pitting can be quantified 205 

in the peripheral blood of patients through the double-staining of RBC with a nucleic acid 206 

marker and an antibody against parasite proteins like RESA (Ring-infected Erythrocyte 207 

Surface Antigen). Pitted RBC are parasite-negative and parasite membrane protein-positive. 208 

Pitting is not observed in splenectomized subjects [23], and has been replicated in human 209 

spleens perfused ex vivo with parasitized RBC pre-exposed to artemisinin derivatives [6]. 210 

Pitting does not occur (or to a very low level) with RBC containing live parasites, and has 211 

been so far explored only in P. falciparum infections.   212 

 213 

Contribution of pitting to parasite clearance 214 

In non-immune travelers treated with artemisinins, pitting is a major mechanism of parasite 215 

clearance [49]. In artemisinin-treated children living in malaria-endemic Mali, clearance 216 
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mechanisms may be more complex and influenced by the immune status of the host. Pitting 217 

appears to be an important contributor to clearance in infants, who are expected to have low 218 

anti-parasite humoral immunity; however in older children, immunity correlates with an even 219 

faster parasite clearance, likely through immune-mediated phagocytosis, and possibly through 220 

splenic retention without pitting [50]. Pitting is marked in patients treated with intravenous 221 

artesunate or oral artemisinin derivatives, and much lower after treatment with quinine, 222 

mefloquine or atovaquone-proguanil [51].  223 

 224 

Contribution of pitting to post-artesunate hemolysis 225 

In Japanese then in German travelers treated with artesunate for hyperparasitemic severe 226 

malaria [52,53], acute hemolysis was observed 1 to 2 weeks after therapy. These hemolytic 227 

episodes were moderately intense and affected 5-27% of travelers [54,55]. Transfusion was 228 

required in 5 to 50% of cases [56] and no conventional cause of hemolysis was found. Initial 229 

observations in Southeast Asia had shown that once-infected RBC have a shorter lifespan than 230 

normal RBC [47]. In travelers, these hemolytic episodes (named Post-Artesunate Delayed 231 

Hemolysis, PADH) and the disappearance of once-infected RBC from the circulation were 232 

simultaneous. PADH is thus likely triggered by the clearance of once-infected RBC [57]. The 233 

peak concentration of once-infected RBC quantified by flow cytometry, 2-7 days after 234 

treatment initiation, is predictive of PADH [57,58]. Predicting PADH in resource-limited 235 

settings is important, as weekly follow-up of all patients recovering from severe malaria and 236 

preparation of transfusion are logistically demanding. Like RESA, the parasitic Histidin-Rich 237 

Protein 2 (HRP-2) is left as an imprint at the membrane of pitted RBC [58]. HRP-2 is the 238 

antigen used in many immunochromatographic malaria rapid diagnostic tests. The persistent 239 

positivity of the diagnostic dipstick, performed on diluted whole blood 3 to 7 days after 240 
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initiation of artesunate accurately predicted PADH [58]. Whether PADH is a significant 241 

problem in endemic areas has been a subject of debate; a prospective study following 217 242 

Congolese children with acute malaria, treated with quinine or IV artesunate, and followed 243 

until 42 days after treatment only showed PADH in less than 1% of cases [59]. These patients, 244 

however, had parasitemia below the conventional 10% threshold for hyperparasitemia and 245 

had uncomplicated malaria. Loosely defined delayed hemolysis has been observed in 7% of 246 

African children treated with artesunate for severe malaria [60]. Further prospective studies in 247 

African children are ongoing. Interestingly, this approach also explains why HRP2-based 248 

dipsticks remain positive days to weeks after treatment of a malaria-attack with artemisinins. 249 

HRP2 persists in circulation not as soluble protein in plasma but as a cytoskeleton-associated 250 

protein in once-infected RBC. 251 

      252 

The spleen in chronic parasite carriage. 253 

A splenic contribution to chronic malarial anemia? 254 

The mechanisms of malarial anemia are influenced by the infecting Plasmodium species, age 255 

and transmission intensity, amongst others factors. Excellent reviews have dissected these 256 

complex parameters [39,61]. Briefly, most important contributors are intra- and extra-vascular 257 

hemolysis, erythrophagocytosis, dyserythropoiesis (favored by frequent comorbidities such as 258 

iron or vitamin B12 deficiency, or malnutrition), some degree of bone marrow insufficiency, 259 

and possibly splenic clearance. The role of the spleen in chronic parasite carriage is complex 260 

and very difficult to explore. One study carried in Ghana [62] found a relationship between 261 

chronic parasite carriage, anemia and splenomegaly, as observed in multiple other populations 262 

and settings. This may reflect any combination of long-lasting RBC trapping in the spleen, 263 

enhanced erythrophagocytosis or increased immune reactivity. 264 
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 265 

Parasite biomass in the spleen 266 

Recently, comprehensive pathological and molecular examinations of spleens (and 267 

concomitantly of peripheral blood) in mostly untreated patients undergoing splenectomy in a 268 

highly P. falciparum and P. vivax-endemic area of Indonesia have shown that, compared to 269 

peripheral blood, non-phagocytosed parasitized RBC concentrate into the spleen by several 270 

orders of magnitude [63]. Concentration of parasitized RBC was greatest in the splenic red 271 

pulp of P. vivax-infected patients. Red pulp congestion by infected and uninfected RBC was 272 

proportional to spleen weight. These major observations not only bring some substance to the 273 

protective role of the spleen filter in parasite clearance but also suggest that the spleen may be 274 

a parasite shelter, possibly supporting a cryptic intrasplenic parasitic cycle [4,64].   275 

 276 

Hyper-reactive malarial splenomegaly 277 

This condition, initially named tropical splenomegaly syndrome, then more precisely 278 

described in 1957, has been progressively deciphered over the last decades, the name hyper-279 

reactive malarial splenomegaly (HMS) being proposed in 1983 [65]. The currently accepted 280 

diagnostic criteria for HMS associate marked splenomegaly, total plasma IgM above 2 times 281 

the local standard deviation, clinical response after antimalarials, and polyclonal lymphocytic 282 

response [66]. HMS is believed to account for an important proportion (40%) of massive 283 

splenomegaly in malaria-endemic areas [67], but recent and precise epidemiological data 284 

regarding its prevalence in general population are scarce. In the Gambia, 3 decades ago, the 285 

prevalence of HMS was estimated at 0.16% [68]. HMS has essentially been described in 286 

subjects chronically exposed to the parasite and is very rare in travelers. Typically, patients 287 

present with a gross and constant splenomegaly, sometimes clinically patent (abdominal 288 
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discomfort) and inconstantly associated with hepatomegaly. Total IgM are markedly elevated, 289 

with a polyclonal pattern. This elevation usually precedes splenomegaly. Cytopenia of 290 

variable importance can be present, usually attributed to hypersplenism. Positive diagnosis of 291 

malaria is difficult in HMS, as parasite load is usually very low, and only detected by 292 

molecular methods. Biological features of autoimmunity (cryoglobulinemia, rheumatoid 293 

factor, anti-nuclear antibodies) have been associated with HMS. Recently, a relatively specific 294 

pattern of anti-nuclear antibodies has been associated with chronic malaria [69].  295 

A genetic component of HMS is suspected, based on familial studies [70], but its precise basis 296 

remains unknown (although certainly not Mendelian). Pathologic examination of the spleen in 297 

HMS has been rarely reported; published cases described essentially red pulp congestion and 298 

erythrophagocytosis, with only brief descriptions of the white pulp [71–73]. The pathogenesis 299 

of HMS is poorly understood, the most commonly accepted hypothesis involving a defect in 300 

regulatory T cells, leading to a B cell expansion after malaria infection, production of immune 301 

complexes which would be eventually phagocytosed by splenic macrophages. If this 302 

hypothesis is in line with splenomegaly and the enhanced immune response observed in 303 

HMS, it however falls short in providing an explanation for anemia and lower parasitic load. 304 

The evolution of HMS in endemic areas remains largely unknown. Historical data pointing a 305 

very important mortality (>50%) might be biased by the imprecision regarding the causes of 306 

death [74]. Scarce data have been collected in travelers, showing that regression of hyper IgM 307 

and splenomegaly are slow, over several months [75]. Travelers or expatriates affected by 308 

HMS exhibit a tendency to suffer from similar episodes of HMS upon re-exposure to the 309 

parasite, consistent with an innate pathogenic component and genetic  susceptibility [76]. A 310 

major issue is the risk of evolution towards a low-grade marginal-zone splenic lymphoma 311 

(MZSL). This association, suspected 50 years ago has been essentially observed in West 312 

Africa. MZSL shares many features with HMS. In one study, B cell receptor clonality was 313 
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assessed in Ghanaian patients with HMS separated according to their response to 314 

antimalarials: clonality was absent in responders, constant in non-responders and observed in 315 

2 out of 13 partial responders [77]. These findings, along with others, led to the hypothesis 316 

that splenic lymphoma represents an ultimate evolution of untreated HMS [78], but this risk 317 

has not been precisely quantified. 318 

Antimalarial treatment of HMS relied on prolonged courses of primaquine, proguanil, 319 

mefloquine or chloroquine. In travelers not returning to malaria-endemic areas, a short 320 

regimen is as effective as prolonged treatments [76]. The value of such short courses remains 321 

unknown in endemic areas and the usual policy is to administer an intermittent prophylaxis to 322 

HMS patients persistently exposed to the parasite [79]. Splenectomy may prove dangerous in 323 

HMS patients, as it carries a risk of post-operative acute malaria [64,80,81] and exposes to the 324 

long-term risks associated with splenectomy [82].  325 

 326 

The Fulani enigma 327 

Fulani subjects, present across Sahelian Africa (from Southern Sudan to Eastern Senegal) 328 

used to be nomad pastoralists. In Mali and Burkina Faso, compared to other sympatric 329 

subjects, Fulani exposed to Plasmodium display a distinguishable phenotype, with frequent 330 

splenomegaly, enhanced anti-plasmodial humoral response, lower body temperature, lower 331 

hemoglobin and lower parasitic load. For these reasons, Fulani have been considered as 332 

protected from malaria. This phenotype is however neither complete nor constant 333 

(Supplemental Table S2), the most constant feature being palpable splenomegaly. The 334 

determinants of the “Fulani phenotype” have been mostly studied from an immunological 335 

standpoint, showing, in Fulani, an activated state of monocytes [83], enhanced 336 

proinflammatory cytokines production [84], strong response of dendritic cells to toll-like 337 
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receptors agonists [85], and a defect in regulatory T cells [86]. The genetic basis of this 338 

phenotype remains unclear, as the conventional RBC polymorphisms associated with malaria 339 

protection have not been found to be more frequent in Fulani [87]. The Fulani phenotype is in 340 

many aspects reminiscent of HMS, and HMS is over-prevalent in Fulani [68]. 341 

Comprehensive, multidisciplinary field studies are underway to decipher the determinants of 342 

this phenotype and deconvolute the relative contributions of RBC-spleen interactions and 343 

genetics [88]. 344 

 345 

Role of the spleen in the transmission of P. falciparum 346 

Gametocytes, initial sexual forms of Plasmodium in RBC, are generated in a small proportion 347 

(0.1 to 5%) at each asexual replication stage. They progressively mature from stage I to IV 348 

(immature gametocytes) to stage V (mature forms) over 14 days, under the influence of 349 

external factors (reviewed in [89]) and the transcription factor PfAP2-G. The deformability of 350 

gametocytes is markedly reduced from stages I to IV, then drastically improves [90]. 351 

Immature stages accumulate in the spleen and in extra vascular spaces of the bone marrow 352 

[91,92] and are generally absent from the peripheral circulation, unlike mature stages. 353 

Circulation of mature gametocytes is a prerequisite for the parasite to be ingested by 354 

Anopheles and to maintain the parasite transmission cycle. The deformability of immature 355 

gametocytes is regulated in part by the parasite protein STEVOR, kinase A and AMPc [93]. A 356 

pharmacological approach aiming at artificially stiffening mature gametocytes has been 357 

developed, with the aim to induce their mechanical retention in the spleen, which would 358 

subsequently prevent their circulation and make them unavailable to Anopheles, hence 359 

blocking transmission. This approach has benefited from the technological improvements of 360 
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microsphiltration (Box 1). A large, high-throughput screening campaign to discover stiffening 361 

compounds is ongoing [8].     362 

 363 

Concluding remarks 364 

The spleen has been extensively investigated, in animal models and later in humans, from an 365 

immunological perspective. The exploration of how the spleen innately filters normal and 366 

altered RBC and eventually eliminates them (predominantly in the red pulp) has received 367 

attention from researchers half a century ago. New tools have enabled progress in this field 368 

over the last decade. A better understanding of human splenic physiology has shed light on 369 

the dual role “Dr. Jekyll and Mr. Hyde-like” of the spleen in human malaria (Table 1, Key 370 

Table). The spleen limits the increase in parasite biomass, therefore reducing sequestration 371 

and microvascular dysfunction in major target organs like the brain, but concomitantly likely 372 

contributes to malarial anemia. Similarly, the spleen-related production of once-infected RBC 373 

after treatment with artemisinins reduces RBC loss during therapy but sometimes induces 374 

delayed and clinically significant hemolysis. Current and further lines of research (see 375 

Outstanding Questions) will investigate the promising field of induction of splenic retention 376 

of Plasmodium gametocytes, a potentially important contributor to malaria elimination 377 

attempts. Not least, new exploratory tools (Box 1) will be of importance to investigate the role 378 

of cellular immunity antimalarial defense, a process essentially studied through in vitro 379 

studies and animal models so far. 380 
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 596 

 597 

Glossary 598 

Cords: Circulatory structures specific of the splenic red pulp devoid of endothelial lining. In 599 

the cords, circulation of red blood cells is slow, favoring close and prolonged interactions 600 

with splenic macrophages which are very abundant in this unique environment. CD34+-601 

positive conventional arterioles traverse the red pulp but are not considered a component of 602 

the slow and open pathway of the red pulp.  603 

Ektacytometry: Method to measure RBC deformability. Gradually increasing shear stress is 604 

applied to a solution of RBC diluted in a viscous, iso-osmolar medium. Measurement of RBC 605 

diffraction pattern enables the calculation of the elongation index, a correlate for RBC 606 

deformability. 607 

Erythrophagocytosis: Phagocytosis of generally altered RBC by effector cells, a process 608 

taking place predominantly in the splenic red pulp and operated by red pulp macrophages.  609 

Hyper-reactive malarial splenomegaly (HMS): Rare form of chronic malaria, occurring in 610 

persistently exposed subjects, defined by a gross splenomegaly, elevated total IgM, high titers 611 

of anti-Plasmodium antibody with a polyclonal immune response pattern, and clinical 612 

response to antimalarials.  613 

Inter-endothelial slits (IES): Narrow spaces (0.2 to 2 microns) between adjacent elongated 614 

endothelial cells of sinuses of the splenic red pulp. Venous sinuses do not have a basal 615 
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membrane but a highly discontinuous helicoid basal fiber. RBC must cross inter-endothelial 616 

slits as they navigate from the cords back to the general circulation, which challenges their 617 

deformability. Inter-endothelial slits are 2 – 10 times narrower than the smallest capillaries. 618 

Pitting: Spleen–specific mechanism by which an intraerythrocytic body is extracted from the 619 

RBC. The RBC is not lysed by the pitting process and returns to the circulation. Pitting plays 620 

a major role in parasite clearance following therapy with artemisinins (but not following 621 

treatment with other antimalarial agents). 622 

Post-artesunate delayed hemolysis: Acute hemolytic anemia, occurring 1 to 2 weeks after 623 

treatment with artemisinin derivatives for severe, generally hyper-parasitemic malaria. This 624 

adverse event is triggered by the relatively synchronous clearance of pitted RBC. 625 

Rapid diagnostic tests: Immunochromatographic tests for the diagnosis of Plasmodium 626 

parasitemia. These tests are performed on capillary blood collected by finger prick and detect 627 

the presence of plasmodial antigens, either pan-specific (such as lactico-deshydrogenase), or 628 

species-specific (such as the histidine-rich protein-2).  629 

Red pulp: Part of splenic parenchyma involved in the control of RBC biomechanical and 630 

surface properties, erythrophagocytosis and reaction to circulating antigens. It includes cords 631 

and venous sinuses. 632 

Venous sinuses: Circulatory structures collecting blood downstream from the splenic cords 633 

and from the closed and fast perifollicular circulation of the spleen. The endothelial lining of 634 

venous sinuses is made of parallel, elongated cells lying on discontinuous basal fibers. 635 

White pulp: Part of splenic parenchyma involved in immune responses, especially against 636 

circulating antigens and encapsulated bacteria. It comprises periarteriolar lymphoid sheaths 637 

and lymphoid nodules. 638 

 639 

Box 1. Available tools to assess the human spleen 640 

Spleen palpation is the first and the only available assessment in most malaria-endemic 641 

settings. Spleen size is best quantified using Hackett’s classification. The prevalence of 642 

splenomegaly correlates positively with malaria endemicity but lacks specificity. 643 
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Splenomegaly is frequent in children with malarial anemia in endemic areas, but rare in 644 

travelers with acute attacks. 645 

Medical imaging assesses the size and structure of the spleen, and visualizes splenic 646 

abnormalities. Ultrasound coupled with Doppler is the most widely available technique. 647 

Splenic contrast-enhanced ultrasonography using microbubbles [94] fine-tunes splenic 648 

evaluation and enables the relative quantification of flow in the fast and slow circulations. 649 

Scintigraphy using radiolabeled tracers provides a functional assessment: sulphur colloids and 650 

sensitized RBC assess macrophage function while heat-stiffened RBC assess the mechanical 651 

filtering function [95]. Splenic function can be inferred from the clearance kinetics of labelled 652 

RBC, and from the intensity of radioactivity in the splenic area compared to the hepatic or 653 

cardiac area. 654 

RBC-related markers of splenic function. When the filtering and pitting functions are 655 

impaired, RBC containing Howell-Jolly bodies (small Giemsa-positive spheres) appear in 656 

circulation and can be observed on peripheral blood smears). Pocked RBC contain small 657 

intracytoplasmic vesicles, visible using differential interference contrast microscopy. Their 658 

proportion in the peripheral blood increases above 2-3% in cases of chronic splenic 659 

dysfunction. This accurate marker [96] requires a specific equipment and trained personnel.  660 

Circulating populations of immune cells, especially IgM memory B cells, have been linked to 661 

splenic function. This subpopulation is significantly reduced in splenectomized subjects 662 

[97,98]. 663 

Ex vivo perfusion of human spleens retrieved following left pancreatosplenectomy preserves 664 

the filtering and phagocytic functions during a few hours [6]. This approach has uncovered  665 

the innate, mechanical retention of a proportion of ring-infected RBC [19], a process later 666 

confirmed through filtration in vitro [7,20] and which may contribute to the intense 667 

accumulation of infected RBC in the spleen of chronic carriers.  668 

Some Biomimetic tools attempt to reproduce splenic function; microsphiltration evaluates the 669 

ability of RBC to squeeze through narrow slits between metallic beads, and accurately reflects 670 

mechanical retention of RBC in the human spleen  [7,8,99]. The initial experimental set-up 671 

[7] has been adapted to 96 or 384-wells microplates, enabling the parallel analysis of 672 

hundreds of samples [8]. Spleen-mimetic microfluidics chips have been recently developed 673 

[9,100]. A stage-dependent retention in when chips were infused with infected, labeled RBC. 674 
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Table 1, Key Table. Dual role of the spleen in human malaria. 676 
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Figure 1. Interactions between parasitized and unparasitized RBC, macrophages, 678 

endothelial cells in the splenic red pulp, across different physiologic and pathologic 679 

conditions. (A): schematic view of the splenic microanatomy. PALS: periarteriolar lymphoid 680 

sheath. (B): Representation of the endothelial lining between splenic cords and venous sinus 681 

lumens. Normal RBC must squeeze through inter-endothelial slits (IES) to join venous 682 

circulation. Co: cords of Billroth. SL: sinus lumen. (C): during acute attacks of malaria, 683 

splenomegaly can be observed, and very rarely splenic rupture can occur. RBC infected with 684 

mature forms are retained in the spleen and processed by RPM. A proportion of ring-infected 685 

RBC crosses IES. Some uninfected RBC become also stiffer and might also be retained. (D): 686 

in the case of malarial infection in a splenectomized host, parasitemia is higher and mature 687 

forms, mostly sequestered in peripheral tissues and sometimes retained in the spleen, appear 688 

in the peripheral circulation. (E): during chronic parasite carriage, splenomegaly can 689 

inconstantly be observed and in rare cases, evolves towards hyper-reactive malarial 690 

splenomegaly. Infected RBC might be retained in a similar way as they are in acute attacks, as 691 

well as part of uninfected RBC. An intense intrasplenic retention of infected RBC might lead 692 

to a fully intrasplenic replication cycle of the parasite. (F): during acute malaria attacks 693 

treated with artemisinin derivatives, the pitting process occurs in the spleen: dead parasite 694 

remnants are expelled from the RBC without lysing it. “Once-infected” RBC harbor parasite 695 

proteins (green dotted line) at the inner side of their membrane, allowing them to be identified 696 

in the peripheral blood. In some cases, 1 to 2 weeks after acute attacks, synchronous 697 

hemolysis of once-infected RBC is responsible for post-artesunate delayed hemolysis 698 

(PADH). (G): in subjects carrying gametocytes, retention of immature forms (stages I to IV) 699 

occurs in the spleen due to their low deformability. After evolution towards mature stages, 700 

RBC infected with gametocytes are able to cross IES and therefore circulate in peripheral 701 

blood. 702 






