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On the importance of similarity characteristics of curve clustering and its applications

Literature of curve clustering is classified by similarity characteristics

• A new nomenclature is suggested in hope of easing the understanding of practitioners

• Good perspective of curve clustering problem by focusing on similarity characteristic

• Better insight on which method to use depending on the similarity characteristics

Introduction

Categories, or conceptually meaningful groups of objects that share similar characteristics, play a fundamental role in how people analyze and describe things. Indeed, human beings are naturally skilled at dividing objects into classes (clustering) and assigning particular objects to these classes (classification). Informally speaking, the term clustering refers to methods for grouping finite unlabeled observations into homogeneous subgroups. In other words, the main goal is to separate data into meaningful groups, often where the similarity within groups and the dissimilarity between groups are maximized. Due to its usefulness, there is no doubt that cluster analysis has gained tremendous popularity in several different fields with diverse applications [START_REF] Cheifetz | Modeling and clustering water demand patterns from real-world smart meter data[END_REF][START_REF] Teeraratkul | Shape-based approach to household electric load curve clustering and prediction[END_REF][START_REF] Gianniou | Clustering-based analysis for residential district heating data[END_REF][START_REF] Martino | A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data[END_REF][START_REF] Teichgraeber | Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison[END_REF].

With the remarkable development of computer power and the availability of inexpensive sensor devices, the problem of largescale data arises. In this paper, data is represented by curves, i.e. functional data which is continuous in an infinite dimensional observational space, instead of discrete data points. Functional data can be encountered, for example, in medicine (the electrocardiogram, electroencephalogram of patients), business and socio-economics (sales from different departments, the energy consumption of households), engineering (velocity flows from a wind tunnel), and many more. On its own, data is fairly usee-mail: amay.cheam@hec.ca (Amay S.M. Cheam) less, but it becomes valuable when information can be extracted from it. Thus curve clustering, also called functional data clustering, has become a very active topic. Clustering functional data can become challenging because of the dimensionality of space which the data belong to. The lack of a definition for the probability density of a functional random variable and the difficulty to define distances are some examples of such challenges. Over the years, a wealthy suite of methods have been proposed to address these issues. For a sterling overview of other challenges surrounding functional data clustering and its methods, the reader is referred to Jacques and Preda (2014a).

With a collection of clustering methods in the literature, a rigid definition is fundamental. Several authors have cleverly reflected on the definition and meaning of a cluster [START_REF] Wolfe | Object cluster analysis of social areas[END_REF][START_REF] Everitt | Cluster analysis. Probability and Statistics[END_REF][START_REF] Hennig | What are the true clusters?[END_REF]. Nonetheless, the most popular remains the one based upon similarity given by [START_REF] Wolfe | Object cluster analysis of social areas[END_REF]. The ultimate recurring expression in any definition is similarity, or homogeneous subgroups, which becomes a key element. Surprisingly, being a crucial requirement, one will expect further characterizations on similarity such as how to judge whether a curve is similar or not, or determining what are the criteria or characteristics that define the similarities of curve within groups. Unfortunately, definitions of curve similarity are rather non-rigorous. There are only a few papers that explicitly defined the cluster similarity characteristics that they were seeking [START_REF] Wakefield | Modelling gene expression data over time: curve clustering with informative prior distributions[END_REF][START_REF] Sangalli | K-mean alignment for curve clustering[END_REF][START_REF] Marron | Functional data analysis of amplitude and phase variation[END_REF]. The need of formal and explicit criteria is even more essential on a practical level as the clustering task may heavily depend on it. For instance, for a set of curves, one may de-fine two curves to be similar if they follow the same curvature whether scale-invariant or not. Another may be based on the concept of distance rather than resemblance, i.e. two curves are considered similar if they have a close value at each time point. Upon application, clustering is used with different objectives and thus, the practitioners have different criteria of what similar curves should be. For this reason, there is no unequivocal criteria to identify similitude within curves. However, if the similarity characteristics are properly defined at an early stage, one may gain a better understanding of preceding clustering methods and its applications, or constructing efficient algorithms. Moreover by clearly stating the expected results, the interpretation of the resulting clusters becomes a straightforward task.

The aim of this paper is to propose a review on similarity characteristics of the curves while focusing on existing curve clustering approaches. The remainder of the paper is organized as follows. In Section 2, we provide a brief introduction and motivation for curve clustering. Unlike previous review papers that focused on the curve clustering approaches [START_REF] Zhong | A unified framework for model-based clustering[END_REF][START_REF] García-Escudero | A review of robust clustering methods[END_REF][START_REF] Ullah | Applications of functional data analysis: A Systematic review[END_REF]Jacques and Preda, 2014a;[START_REF] Gong | Profile clustering in clinical trials with longitudinal and functional data methods[END_REF], we introduce a novel classification that emphasizes the similarity characteristics. With this new nomenclature, our aim is to ease the understanding of practitioners interested in applying curve clustering in their respective fields, to evaluate their needs and to provide useful advice and references. Then we list a number of applications for curve clustering found in the literature while highlighting the curve similarity characteristics. Afterwards, we address open issues in curve clustering specific to certain similarity characteristics. Finally, the last section summarizes our perspective on the characterization of similitude within curves.

Curve clustering

Basic concepts

Clustering is a useful tool for explanatory pattern analysis, grouping, decision making and machine learning such as data mining, document retrieval, image segmentation and pattern classification [START_REF] Ramsay | Functional data analysis[END_REF]. Traditionally, clustering focuses on points or feature vectors of fixeddimensional size and its algorithms are tailored to operate on points as a unit, while curve clustering are conducted on curves as a unit. Nowadays, curve-type datasets are of interest because of their pervasiveness in diverse fields ranging from medicine [START_REF] Genolini | kmlShape: An efficient method to cluster longitudinal data (timeseries) according to their shapes[END_REF], atmospheric science [START_REF] Gaffney | Curve clustering with random effects regression mixtures[END_REF] to others [START_REF] Ramsay | Functional data analysis[END_REF]. Just like static data clustering, curve clustering requires a clustering method to construct clusters given a set of unlabeled curves and the choice of clustering method depends both on the type of dataset and on the particular purpose and application. Works dedicated to curve clustering are relatively scant compared to those focusing on static data.

Based on [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], functional data is defined as a set of curves belonging to an infinite dimensional space; say X is a functional random variable with values in infinite dimension. Generally, the underlying model for the X i 's is an independent and identically distributed sample of random variables drawn from the same distribution as X. When dealing with such data, the major challenge revolves around the fact that observations are expected to come from an infinite dimensional space. However, in practice, curves are observed at discrete observation points. Therefore, the first step consists of reducing the infinite dimensional problem to a finite one, i.e. reconstructing the functional form of the discrete observations X i j of each sample path X i (k) to a finite set of knots {k i j : j = 1, . . . , s i }.

To circumvent this problem, one may either choose to define a finite dimensional space spanned by some functional basis for the sample paths or to use non-parametric smoothing methods [START_REF] Ferraty | Nonparametric functional data analysis[END_REF]. Possible choices of functional basis include Fourier, splines, wavelets, polynomial and more [START_REF] Ramsay | Functional data analysis[END_REF]. Although the choice of functional basis is arbitrary, it greatly influences the end results because, when using the same model to cluster, two different bases can obtain different groups.

Following the reconstruction step is the curve registration or curve alignment. Another challenge in exploring functional data comes from the source of variation. If we think that any set of curves can be decomposed into amplitude functions, which measure differences in the y-axis, and phase functions, which measure differences in the x-axis, then curve registration consists of centering and scaling the curves in order to minimize or eliminate any differences.

Unlike the first step which is a prerequisite, the choice of whether or not to perform a curve registration depends on the practitioners. Perhaps, the amplitude and phase variability of the curves can be compelling similarity characteristics by which to define clusters. To illustrate this, we refer to the extensively used example, the Berkeley Growth Study [START_REF] Ramsay | Functional data analysis[END_REF]. The study recorded the heights of 54 girls and 39 boys in centimeters from 1 to 18 years old. If the aim is to determine whether the resulting clusters reflect the heterogeneity of gender, performing curve registration will diverge from it. The phase and amplitude variations between curves play a important role if one suspects that gender is the main factor of growth mechanisms. On the other hand, parents who witness children reaching puberty over a wide range of ages may wonder if there is some relation between the timing of the pubertal growth spurt and adult height, see Figure 1. Hence, by focusing on one gender and performing curve registration, the researchers can explore other explanatory variables for the amplitude dissimilarities. Therefore, having a thorough and detailed definition of similarity characteristics will greatly impact whether or not the curve registration step is a necessity. Without proper adjustment, the analysis as well as its interpretation could be misleading. Note that curve registration can be performed before or simultaneously with clustering methods using alignment, normalization or warping tools. Thus, the resulting clusters are not affected by phase and/or amplitude variations.

Curve clustering methods

The fundamental paradigm of functional data involves treating the entire curve as the unit of observation rather than the individual measurements from the curve. These types of data have become very accessible in many scientific fields, leading to the development of different approaches in curve clustering. Recently, Jacques and Preda (2014a) noted that most clustering approaches fall within four broad categories. Raw-data clustering, as its name suggests, is performed directly on the observational points of the curves without any use of approximation or dimension reduction techniques, since the functions are formerly observed at instances of time. Therefore, the reconstruction step can be omitted. Despite being considered the simplest methods, they are the least appealing for their lack in mathematical rigour, such as not taking into account the functional feature of data. When discussing high-dimensional data, the term curse of dimensionality often emerges as well to evoke possible problems faced during the analysis of highdimensional data. Instead, [START_REF] Bouveyron | Model-based clustering of highdimensional data: A review[END_REF] introduced the term blessing of dimensionality to regard this construct not as an obstacle, but as a utility. When the size of the observational points is relatively large, the authors presented different clustering methods; instead of preprocessing the data with dimension reduction by recalling highdimensional space characteristics. The second class is filtering methods, which consists of two steps: 1) approximate the curves into some known finite basis of functions to reduce the dimension of the data, and 2) perform clustering using the coefficients obtained from the basis expansion or the functional principle component scores. The approximation via a finite basis expansion in the first step, also called the filtering step, can be achieved using a spline basis such as B-splines. Spline basis is the most favourable choice due to their optimal properties [START_REF] Wahba | Spline models for observational data[END_REF]. The other commonly used tool is the functional principle components analysis (FPCA) which requires reconstructing the functional nature of the curves by approximating them using a finite number of their principal component scores. For instance, [START_REF] Abraham | Unsupervised curve clustering using B-splines[END_REF] performed k-means algorithm on B-splines coefficients. Next is adaptive methods which consist of methods whose functional representation of data depends on clusters, and simultaneously performing the dimensionality reduction and the clustering. The disparity between filtering methods and adaptive methods is that the latter considers the basis expansion coefficients and the FPCA scores to be random variables instead of parameters. Furthermore, the adaptive methods assume that these random variables have a cluster-specific probability distribution Jacques and Preda (2014a). Like filtering methods, one can choose to use basis expansion coefficients or FPCA scores as probabilistic model-based techniques. Several works have been proposed for either choice [START_REF] James | Clustering for sparsely sampled functional data[END_REF][START_REF] Chiou | Functional clustering and identifying substructures of longitudinal data[END_REF]Jacques and Preda, 2014b;[START_REF] Cheam | Model-based clustering for spatio-temporal data on air quality monitoring[END_REF]. The last class of curve clustering methods is distance-based methods. One can guess from its name that these methods use methods based on some dissimilarity or distance measures between curves. The idea is to define a distance between the functional observations without assumptions on the form of the curves. Jacques and Preda (2014a) pointed out that depending on the use of these distances, distance-based methods can be related to either raw data or filtering methods.

As we witnessed, different approaches have been proposed throughout the years. Most of the review papers on curve clustering focused on the classification of these methods. Instead, we give an additional perspective by focusing on similarity characteristics with respect to the appropriate methods to be used.

Cluster similarity characteristics

The purpose of clustering is to identify the inner structure of clustered data when no prior information except the observed values are available. Since similarity is fundamental to the definition of a cluster, a characteristic of the similarity between two curves drawn from the same distribution is essential to most clustering methods. As mentioned previously, different approaches serve different purposes. Nevertheless, the availability of such a vast collection of clustering approaches in the literature can easily confound a practitioner attempting to choose an approach appropriate for the problem in hand. Because of this, we suggest a classification of cluster similarity characteristics in hope to ease the practitioner clustering approaches choice.

The variability among two or more curves can be characterized by two components: phase variability and amplitude variability. The phase variability can be observed by the data misalignment whereas amplitude variability is due to the shape. When constructing clusters, these variations can be static (i.e. minimal variation within a cluster) or dynamic (i.e. allowed to vary in the same cluster).

In the following, we describe the four types of cluster similarity characteristics for functional data, see Table 1. To draw a clear distinction between each type, we illustrate with the temperature in Montreal (Government of Canada, 2019). Suppose the temperature is recorded daily in Montreal for the month of January for the past ten years, 2010-2019, see Figure 2. Each curve represents the data collected for a given year. Type I cluster, called cluster by phase-amplitude static, is when clusters are constructed based on similarity in phase and amplitude. In other words, constructing clusters among curves involves discovering groups that lie close in both axes. Therefore the dissimilarity between cluster is characterized by the phase and amplitude variation of an observed event. In our weather example, we would be grouping years with similar temperature around the same time points. Due to all the variation between the years, we would acquire ten different clusters with no two years falling in the same cluster. For clarity, only three clusters are plotted, see Figure 3. Type II cluster, named cluster by phase variation, is when clusters are constructed based on similarity in phase while amplitude is allowed to vary. This implies that the dissimilarity between cluster is outlined by the phase variation of some phenomenon. To underline the phase variation, the amplitude variation needs to be standardized during the data registration. With respect to our illustration, we are looking for years with high and low temperatures at the same time. In Figure 3, the years 2015 and 2019 would fall in the same group as they achieve highs and lows around the same times, but to different degrees. Type III cluster, referred to as cluster by amplitude variation, is when clusters are constructed based on similarity in amplitude while phase is allowed to vary. In other words, the dissimilarity between cluster is characterized by the amplitude variation of some phenomenon. We denote the phase being dynamic and the amplitude static within a cluster. Note that often in practice, the x-axis may be misaligned. To target only the amplitude variation, the phase variation needs to be regulated during the data registration. This similarity characteristic is the most commonly found in the literature. From the example, years with similar peak temperatures would be grouped into the same cluster, even if those highs/lows occur on different days. This can be seen with the years 2014 and 2017. The amplitudes of the functions for each year are about the same, but appear to be shifted over. This is best seen when the days are re-aligned, see Figure 4. Type IV cluster, termed cluster by phase-amplitude dynamic, is when clusters are allowed to vary in phase and amplitude, but curves in the same cluster have the same underlying structure. Indeed, we might wish to include phase and amplitude variability within a cluster as an interesting characteristic to consider. It is important to note that if one decides to perform a registration step, i.e. realignment on 1) both axes, the clustering similarity characteristic resumes to a phase-amplitude static; or 2) one of the axes, it becomes either phase variation or amplitude variation. In regards to the example, Type IV clusters years with the same functional patterns of the temperature, irrespective of the day and magnitude of the peaks/valleys. We can observe this in the years 2018 and 2019, where shifting the days matches the peaks/valleys, but there remains variability in the amplitudes, see Figure 5.

The four types listed previously present different strengths and weaknesses. The advantage of Type I is that it distinguishes any plausible variability as separate groups, allowing for greater precision in the clusters. However, a drawback is that the number of clusters may increase with greater diversity of observations. On the other hand, by using the Type IV cluster, we can focus on groups with the same overall structure without emphasizing variability of phase or amplitude. While this allows you to focus on the complete dissimilarity between groups, this method loses information and may make mistakes when there is much variability within a single cluster. In Type II cluster, we are able to visualize the variability of the amplitude at certain points in the x-axis and group other curves that behave similarly in the same time frame. For Type III, we are able to extract information about the times at which a certain degree of amplitude variation is observed; in contrast, phase variation is more informative of what curves exhibit amplitude variation at the same time. As a practitioner, choosing the appropriate method is dependent on what the goals for clustering are. Therefore, for any given curve clustering application, the key is to precisely outline the similarity characteristics and then to choose or develop a method accordingly.

Curve clustering methods by similarity characteristics

There is no singular or universal characteristic that defines similarity between curves. Depending on the context, different resulting clusters are obtained, and there is no unique clustering method. Still, explicitly stating the desired similarity characteristics has important benefits. It gives transparency of the specific clustering problem, and allows one to choose or compare appropriate existing methods. In some cases, it yields new issues which may stimulate the development of new methods. By clearly defining the similarity characteristics, we come to determine which methods work adequately with which specific need. In the following section, only a few contributions with real data examples are reviewed, but the readers are welcomed to explore further materials, if necessary, to answer their needs.

Methods for phase-amplitude static

The first cluster similarity characteristic is phase-amplitude static (Type I). As its name suggests, a cluster is defined by the closeness of its curves along the abscissa and the ordinate axes. Here, clustering can be used to detect groups of observations that behave in an analogous way, such as by following similar paths, by moving consistently together, i.e. keeping close to each other along the x-axis, and by sharing other properties of curvature. [START_REF] Wakefield | Modelling gene expression data over time: curve clustering with informative prior distributions[END_REF] proposed a fully Bayesian hierarchical model for the analysis of cell-cycle gene expression data using a parametric model based on trigonometric functions. They applied their model on expression data that were collected on fission yeast genes over time. To successfully employ their model, it is required that: 1) the experiments are indexed by an ordered variable, such as time, and 2) the functional form of the trajectories is known. When the second criterion is not satisfied, as presented in their first data set, the authors assumed a random walk model. The authors cited their aim is to determine genes that follow common trajectories over time. In other words, one belongs to the same group if the curve follows closely along both axes. Thus, the clustering membership highly depends on the positioning and alignment of both axes. [START_REF] Sun | A Dirichlet process mixture model for clustering longitudinal gene expression data[END_REF] took a different approach by proposing a non-parametric Bayesian method for gene expression profiles using a linear model to approximate the trajectories of genes. The clustering is carried out based on the regression coefficients which were assumed to have a Dirichlet process prior. The clustering was done using the classical agglomerative hierarchical clustering method. Instead of clustering the gene expressions, they want to employ the gene expression profiles to cluster the patients based on their injury. Meanwhile [START_REF] Tzeng | Dissimilarity for functional data clustering based on smoothing parameter commutation[END_REF] opted for a distance-based method with filtering, utilizing the smoothing spline to estimate curves and proposed a new dissimilarity measure, named Smoothing Parameter Commutation dissimilarity, to apply on methadone maintenance therapy dataset. While [START_REF] Wakefield | Modelling gene expression data over time: curve clustering with informative prior distributions[END_REF] adopted an adaptive method, [START_REF] Abraham | Unsupervised curve clustering using B-splines[END_REF] opted for a filtering method using B-splines as the basis function in conjunction with a kmeans algorithm. Their main goal is to acquire a better understanding of the process of cheese-making through the evolution of pH. In the same fashion, [START_REF] Jank | Profiling price dynamics in online auctions using curve clustering[END_REF] and Ignaccolo et al. ( 2008) used the k-medoids algorithm, available in R package cluster [START_REF] Jank | Profiling price dynamics in online auctions using curve clustering[END_REF] implemented their method on price in online auction in hopes to discover and characterize different types of auctions. [START_REF] Ignaccolo | Analysis of air quality monitoring networks by functional clustering[END_REF] applied their methods on air quality monitoring data where they carefully fixed equally spaced knots, such that they are apt to group according to concentration levels of pollutant and the temporal patterns throughout the year.

Methods for phase variation

When it is possible to observe the evolution in the x-axis, for instance time, of some phenomena while maintaining the y-axis fixed, we have what we call a phase variation, i.e. timechanging value of some observed property. In this case, clustering a set of observations requires comparing the way they evolve in time and relating that to their y-axis measure. One way to solve this puzzle is to simply standardize the curves, during the curve registration, see Section 2.1. [START_REF] Blender | Identification of cyclone-track regimes in the North Atlantic[END_REF] performed a classical k-means algorithm, based of Hartigan and Wong (1979), using the numerical IMSL-library to identify storm-track regimes which outline cyclones of similar velocity and direction. Note the authors did not employ a specific package but a classical k-means algorithm can be performed using kmeans in the R package stats. An individual cyclone j represents a sequence of cyclone coordinates for successive time-steps observed at 6-hourly time-intervals, i.e. (x j (t), y j (t)). To perform the clustering, they converted the trajectory data into a vector space, i.e. they forced all cyclones to be of the same length in time (implying the velocity is fixed). Thus, dx j and dy j represent the relative normalized coordinates on the axes. The authors found three clusters with respect to the propagation direction, i.e. stationary, north-eastward and zonal cyclones. [START_REF] Park | Clustering multivariate functional data with phase variation[END_REF] proposed a method of multivariate functional data clustering with phase variation by focusing on finding subject-specific warping functions to extract common features among multivariate growth traits. They applied their proposed method on the growth data where their goal is to identify subgroups with similar patterns of phase variation. Note they were not looking to group by gender. Thus, for girls, they found two meaningful clusters; none were found within the boys. In the first cluster, the girls' legs grow rapidly at the earlier ages while the growth of legs of the second cluster is relatively constant and longer lasting. They also acknowledged the importance and utility of proper consideration of the phase variation, insisting practitioners give more thought into incorporating this form of variation into the analysis. Although phase variation is often seen in practice, it is rarely the main focus of analysis as methods are still fairly limited.

Methods for amplitude variation

Without curve registration

Amplitude variation is the similarity characteristic that is the most prevalent in the literature. It requires the x-axis to be fixed while monitoring the variation in the amplitude of some phenomenon. A trivial type of dataset is time series or spatiotemporal data where the x-axis often represents time, divided into an equally spaced grid. [START_REF] Gianniou | Clustering-based analysis for residential district heating data[END_REF] used a kmeans algorithm on residential heating consumption data. [START_REF] Antoniadis | Clustering functional data using wavelets[END_REF] proposed to use a wavelets basis with k-means algorithm on electricity power demand. The authors explicitly stated that their goal is to cluster daily load curves for a commercial year (September to August). In Figure 6, we observe the visible amplitude variation between the top and bottom graph. An alternative basis for the same framework is to use P-splines, as proposed by [START_REF] Iorio | Parsimonious time series clustering using p-splines[END_REF]. With a similar objective, Cheam et al. ( 2017) introduced a modelbased clustering technique using an autoregressive polynomial regression mixture on air quality monitoring data in some areas in Paris. The model is implemented in R package, called SpaTimeClust. Besides illustrating the performance of their method, their cluster represents days with similar curvature with respect to the variation in the quantities of nitrogen dioxide on a pre-specified time. Along the same line of thought, [START_REF] Cheifetz | Modeling and clustering water demand patterns from real-world smart meter data[END_REF] proposed a functional variant of the kmeans algorithm conjointly with a specific EM algorithm based on a Fourier regression mixture model applied on water consumption data. [START_REF] Leroy | Functional data analysis in sport science: Example of swimmers' progression curves clustering[END_REF] used the funHDDC algorithm, a Gaussian mixture model-based algorithm, implemented by [START_REF] Bouveyron | Model-based clustering of time series in group-specific functional subspaces[END_REF] in R, on swimmers progression data. The authors aimed to provide a broader conception of the progression phenomenon using its continuous nature. Thus, after discussing with swimming experts, they found that the dissimilarity between each cluster is induced by the level of performance. Thus, the interpretation of the clusters is explained through age, i.e. a swimmer's level of performance is increased or decreased at a certain age.

The nature of some data does not allow the variable to be equally spaced, for example the life cycle gene expression profile data [START_REF] Chiou | Functional clustering and identifying substructures of longitudinal data[END_REF]. However, the authors decided to neglect this detail and treated times as equally spaced time units by justifying the measurement errors already contained in the gene expression trajectories. They introduced a modified k-means algorithm, the k-centres, based on the L 2 distance between truncation of the Karhunen-Loéve expansions at a given order. Unfortunately, they did not explicitly state the clustering objectives but rather relied on the mathematical aspects for the gene expression data set. For the growth curve data, their ultimate goal is to validate their proposed model by anticipating to discriminate gender. An alternative use of a truncation of the Karhunen-Loéve expansion [START_REF] Loéve | Probability theory I[END_REF] in clustering algorithms is suggested by [START_REF] Jacques | Funclust: A curves clustering method using functional random variables density approximation[END_REF]. Instead of using the truncation as a distance metric between functions, the authors used it to approximate the density of functional random variable, X. The model, called funclust available in the R package Funclustering, assumed a Gaussian distribution of the principal component. The parameter estimation is performed via expectation-maximization (EM) algorithm which allows the computation of the principal component scores to be cluster-specific. For growth curve data, the authors obtained similar results as [START_REF] Chiou | Functional clustering and identifying substructures of longitudinal data[END_REF] where the clusters clearly separate gender. Here, the x-axis of all three data sets is recorded at the exact moment.

With curve registration

The approaches discussed previously perform efficiently under the condition that the x-axis is equally spaced. However, often in practice the data is not always recorded at equally spaced units since the phenomenon may occur at different moments from one observation to another. When that condition is not satisfied, curve registration is necessary. As mentioned in Section 2.1, there are two possible ways to integrate curve registration in clustering: 1) before the clustering methods or 2) simultaneously. [START_REF] Sangalli | K-mean alignment for curve clustering[END_REF] presented an algorithm called k-mean alignment, available in the R package fdakma, which jointly clusters and align a set of functional data. The core idea is to integrate the cluster assignment step of the kmeans algorithm with an alignment step, using a warping function. Thus, the problem comes down to an optimization problem. Their main goal is to detect amplitude clusters for the growth curve, which allowed them to successfully separate gender. [START_REF] Abramowicz | Clustering misaligned dependent curves applied to varved lake sediment for climate reconstruction[END_REF] proposed the bagging Voronoi kmedoid alignment algorithm, which combined two functional clustering methods, the k-medoids alignment, introduced by [START_REF] Sangalli | K-mean alignment for curve clustering[END_REF], and the bagging Voronoi k-medoid strategy. Their concern for climate change motivated them to apply their method on varved lake sediments which may potentially provide insight on past seasonal climate with their inherent annual time resolution and within-year seasonal patterns. [START_REF] Liu | Simultaneous curve registration and clustering for functional data[END_REF] proposed the SACK model, which is a modelbased clustering using a finite mixture of simple shape-invariant models with cluster specific base shape. The authors integrated the time-shifting in the B-spline basis functions. Then, by applying the first order Taylor expansion to the shifted B-spline basis, they obtained a standard time scale for each individual. The parameter estimation is performed via EM algorithm. Unlike [START_REF] Sangalli | K-mean alignment for curve clustering[END_REF], the authors failed to retrieve gender of subjects as they found three clusters. The third cluster is a mixture of boys and girls experiencing early and late puberty growth spurt, respectively. By performing time warping, the result suggested that gender is not the only contribution to growth. [START_REF] Wu | A Bayesian method for simultaneous registration and clustering of functional observations[END_REF] also modeled the curves using B-spline basis functions but instead approximated the time warping functions by the cumulative sum of realizations from a Dirichlet distribution. The posterior cluster memberships followed a multinomial distribution. They managed to differentiate gender in the growth data. Recently, [START_REF] Teeraratkul | Shape-based approach to household electric load curve clustering and prediction[END_REF] presented a shape-based approach using dynamic time warping (DTW) as a similarity measure on household energy consumption. This distance-based method allows them to cluster residential electricity load curves with similar shape regardless of the time axis. A generalized shape distancebased method is proposed by [START_REF] Genolini | kmlShape: An efficient method to cluster longitudinal data (timeseries) according to their shapes[END_REF] using the generalized Fréchet distance, implemented in the R package kmlShape. Note that when the time-scale parameter is equal to zero, i.e. λ = 0, the generalized Fréchet distance resumes to the DTW distance. The method is then applied to Alzheimer disease data to uncover patients with similar cognitive decline mechanism.

Methods for phase-amplitude dynamic

The last similarity characteristic introduced in Section 2.3 is phase-amplitude dynamic. For this particular similarity characteristic, the curve registration can be omitted since we need to consider both variations. [START_REF] Gaffney | Curve clustering with random effects regression mixtures[END_REF] proposed a regressionbased mixture with integration of linear random effects models that focuses on learning individual models for each curve during the clustering. Their method is applied to the extra-tropical cyclone tracks from meteorological data with the goal to cluster cyclones sharing common velocities while moving in the same latitude-longitude direction, unlike [START_REF] Blender | Identification of cyclone-track regimes in the North Atlantic[END_REF] whose clusters revealed directional displacements.

Discussion/Conclusion

This paper has presented a review of some classical and stateof-the-art methods for curve clustering with a focus on the cluster similarity characteristics. A classification of these similarities characteristics into four main types has been proposed. For each type, different clustering methods along with their application were briefly discussed, highlighting the critical importance of meticulously defining similarity characteristics. Hence it is safe to mention that before the reader embarks in existing curve clustering methods library, they are invited to question the characteristics of the expected obtained cluster, more specifically the similarity characteristics.

A number of findings concerning curve clustering have been published in order to analyze functional data. Such importance is given to clustering because by exploring which observations are in each cluster, we may be able to explain and interpret the source of the variation in the data by searching for common characteristics. In turn by identifying these characteristics as potential explanatory factors, we can, for future reference, collect new data with such factors in mind or apply cluster analysis on new data to look for similarities. In addition, it is also a powerful way to synthesize information; for example, instead of describing all the participants, we simply described the clusters to which they belong.

From Section 3, we noticed the common mistake authors made is the lack of transparency in their goal statement. We can practically identify two types of authors, the ones proposing novel curve clustering methods or using existing methods to find meaningful clusters. Nevertheless, both rely on the statistical similarity, like the distance measure, rather than the cluster similarity characteristics to produce relevant clusters. The necessity of a curve registration and an appropriate clustering method can be determined by specifying the desired type of cluster similarity characteristics. [START_REF] Sangalli | K-mean alignment for curve clustering[END_REF] are some of the few authors that explicitly stated their similarity characteristics. They succeed to identify different morphological shapes on the cerebral vascular geometries unlike the simple k-means without alignment which seems to be influenced by phase variability. This example highlights the importance of properly defining the similarity characteristics to serve better judgment whether a curve registration is needed, and to obtain meaningful clusters and not associate meanings to the resulting clusters.

It seems studies have neglected the capability of phase variation (Type II) to provide insightful information as well. For example, in marketing, it might be of interest to cluster individuals based on similar reactions to certain stimuli. Consider different stimuli being shown over a period of time, such as in a filmed advertisement: we may wish to group individuals with reactions occurring around the same time, regardless of those magnitudes. By understanding what garners a reaction in certain audiences, a marketing company can better cater to their target demographics. [START_REF] Marron | Functional data analysis of amplitude and phase variation[END_REF] discussed further about the concept of phase variability in curve clustering and the consequences of ignoring it during the analysis. Another overlooked similarity characteristics is cluster by phaseamplitude dynamic (Type IV) due to its complex nature. An instance where it might be used could be for medical disorders such as cardiovascular disease. When measuring heart rate, we might wish to group individuals whose symptoms follow the same general pattern even if the periods and magnitude of their symptoms vary. This would allow for better knowledge and identification of a potential underlying condition.

Alternative to the previously introduced type of cluster similarity characteristics, another avenue is landmark clustering which consists of identifying individuals who exhibit a specific pattern within the overall curve. When important landmarks can be identified by experts in the field, it brings additional information beside the observed data. To the best of our knowledge, there are no works considering this type of data in the curve clustering. Returning to marketing, where a baseline is known for interested and uninterested, we can use it to specify the landmark. We then look for the occurrence of a landmark in other participants to categorize them as interested or uninterested. The lack of a landmark would imply neutrality. An advantage to this method is the ability to transpose the landmark to other advertisements.
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Fig. 1 .

 1 Fig. 1. Acceleration curves of ten boys in the Berkeley growth study -left: observed curves and right: after curve registration on the phase variation. The dashed lines represent the mean curve.

Fig. 2 .

 2 Fig. 2. A sample of temperature variation in Montreal for the month of January for the past ten years, 2010-2019, where each curve represents a given year.

Fig. 3 .

 3 Fig. 3. On the right: three different years of temperature in Montreal in three distinct clusters with respect to Type I similarity (phase-amplitude static); on the left: representation of one cluster of Type II (phase variation) of temperature in Montreal.

Fig. 4 .

 4 Fig. 4. Representation of one cluster of Type III (amplitude variation) of temperature in Montreal where the left plot is with realignment.

Fig. 5 .

 5 Fig. 5. Representation of one cluster of Type IV (phase-amplitude dynamic) of temperature in Montreal where the left plot is with realignment.

Fig. 6 .

 6 Fig. 6. Figure from Antoniadis et al. (2013) of 4 out of 8 clusters of the daily electricity power demand with respect to time, gigawatt-hour (GWh).