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Abstract

For control systems, the local regularity of the minimum time function τmin in the
absence of state constraints has been extensively studied and related both to inward-
pointing conditions and to small-time controllability in the neighborhood of a closed
target C. In the presence of state constraints, assessing this regularity is crucial to
ensure the existence of solutions when perturbing the initial condition. In this paper,
we prove, without imposing the inclusion C ⊂ IntK, that, for differential inclusions
with closed state constraints K and under general assumptions, τmin is locally Lips-
chitz continuous on its domain which is open in K. We discuss as well extensions to
nonautonomous systems and to point targets.

1 Introduction
Studying the regularity of the minimum time function finds its motivation in reachability
problems. Let K and C be two closed subsets of Rn and consider a control system with
initial condition x0 ∈ K {

x′(t) = f(x(t), u(t)), u(t) ∈ U,
x(0) = x0,

(1)

where U is a compact subset of Rm, the control u(·) is a measurable function and f :
Rn × U → Rn is sufficiently smooth. The state-constrained time optimal control problem
consists in finding the minimum time τmin(x0) to reach C along solutions of (1) staying
in K. Assessing the regularity of τmin allows to answer several questions. For instance,
let a time-optimal state-constrained solution xref(·) of system (1) be given. Take as initial
condition a point x1 in a neighborhood of the trajectory set xref([0, τmin(x0)]). Under what
conditions can x1 be steered to the target set C while respecting the state constraints K?
How long would it take compared to τmin(x0)?
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More generally, consider the autonomous differential inclusion1 with initial condition
x0 ∈ K:

x′(t) ∈ F (x(t)) x(0) = x0 (2)

where F : Rn ; Rn is a set-valued map taking closed, nonempty values. Below, an
F -trajectory x(·) on a time interval [0, T ] designates an absolutely continuous function
satisfying x′(t) ∈ F (x(t)) a.e. on [0, T ]. A trajectory is called "feasible" if x([0, T ]) ⊂ K.

The capture basin CaptF (K,C) is the set of all points x0 ∈ K such that there exists
T ≥ 0 and a feasible F -trajectory starting from x0 and reaching the target set C at time
T . For a given x0 ∈ K, we denote the infimum of such T by τmin(x0). By convention,
τmin(x0) = +∞ if x0 /∈ CaptF (K,C). By analogy with the control system (1), this defines
the minimum time extended function τmin : K → [0,+∞] associated with the target set C,
dynamics F and state-constraints K. The Lipschitzianity of the extended function τmin(·)
thus depends on the "Lipschitz regularity" of both F,K and C.

In order to exhibit Lipschitz dependence of solutions on initial conditions (through the
renowned Filippov’s theorem), it is classical to suppose the (local) Lipschitzianity of F . On
the other hand, the local Lipschitz continuity of τmin(·) on its domain CaptF (K,C), in the
case without state constraints, has been related to strict inward-pointing conditions on the
boundary ∂C of the target since the 70s (see e.g. [4, Chapter 8] for a modern presentation
and the bibliography therein). More recently, it has been shown in [3] that strict inward-
pointing conditions on the boundary ∂K ensure L∞-distance estimates between arbitrary
F -trajectories and the set of feasible ones. These three ingredients allow us to prove in this
paper the openness of CaptF (K,C) in K and the local Lipschitz continuity of τmin(·).

Inquiries on the regularity of the minimum time function using constraint qualifications
(albeit without state-constraints) go back at least to the early 70s. As a matter of fact, the
latter regularity can be related to a controllability property in the vicinity of the target.
For control systems, (local) Lipschitz continuity was already obtained for C2-regular target
sets in a general setting of differential games in [6, Theorem 5] and in a neighborhood of
point targets in [8, Theorem 4.1]. Through viscosity solutions theory, Lipschitz continuity
on CaptF (Rn, C) was then shown for compact piecewise-C2 targets in [2, Theorem 5.4] and
in a neighborhood of general closed target sets in [10, Corollary 3.7]. Based on nonsmooth
analysis and moving to differential inclusions, [11, Theorem 3.1] showed the Lipschitz
continuity of τmin on CaptF (Rn, C) for nonautonomous convex-valued F (measurable in
time), while [12, Theorem 6.1] revisited the regularity in a neighborhood of a closed target
set C. Finally, for state-constrained nonautonomous control systems (Lipschitz in time),
the local Lipschitz continuity of τmin was shown in [5, Theorem 3.8] under assumptions
similar to ours, although more stringent as they bore on f(x, U) rather than its convex
hull co (f(x, U)). We also discard the strong assumption of [5] of having C interior to
K. Though we only consider compact-valued F , we have to mention that the minimum

1We shall consider nonautonomous systems in Section 3.1, when F is also locally Lipschitz in the time
variable.
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time problem has also been studied for control-affine systems where U = Rm as in [7] and
references therein.

In this article on state-constrained differential inclusions, under general assumptions
on F , K and C, and a convexified version of the inward-pointing conditions, we prove
the local Lipschitz continuity of τmin, that had been shown for control systems without
state constraints. Such a property is a first step in studying nonlinear controllability
with nonsmooth state constraints. Furthermore our results encompass those of [5] on
nonautonomous control systems, as presented in Section 3.1. In Section 3.3, we show as
well that, for point targets that are interior to the constraints, the classical small-time
controllability condition is sufficient to retrieve the local Lipschitzianity of τmin on its
domain CaptF (K,C).

2 Main results
Notation: We denote by B the closed unit ball in Rn, by Sn−1 the unit sphere in Rn
and by ‖ · ‖ and 〈·, ·〉 the Euclidean norm and scalar product. We denote by R+ the set
of nonnegative real numbers. We write ΠK(x) for the (possibly set-valued) projection of
a point x into K. The function dK(·) designates the distance to K. The set IntK stands
for the interior of K and the set ∂K for its boundary. We denote by TK(x) (resp. NK(x))
the Clarke tangent (resp. normal) cone to the subset K at point x. We use the notation
coF for the set-valued map that maps x to the convex hull of F (x).

Assumption 1. General assumptions{
F takes closed, nonempty values on Rn,
C and K are two closed nonempty subsets of Rn.

Assumption 2. Sublinear growth and local Lipschitz continuity of F

∃A ≥ 0, ∀x ∈ Rn, F (x) ⊂ A(1 + ‖x‖)B

∀R > 0, ∃ kF ≥ 0, ∀x, y ∈ RB, F (y) ⊂ F (x) + kF ‖x− y‖B

Assumption 3. Strict inward-pointing condition on ∂K

∀x ∈ ∂K, coF (x) ∩ IntTK(x) 6= ∅

Assumption 4. Strict inward-pointing condition on ∂C ∩K

∀x ∈ ∂C ∩K, coF (x) ∩ IntTK(x) ∩ IntTC(x) 6= ∅

Remark 1. It stems directly from [9, Theorem 2] that for any x ∈ C ∩ K such that
IntTK(x) ∩ IntTC(x) 6= ∅, we have

IntTC∩K(x) = IntTK(x) ∩ IntTC(x).
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Remark 2. For any closed subset K of Rn, at a given x ∈ ∂K, for v ∈ Rn and a fixed
ε > 0, we have:

(v + εB) ⊂ TK(x)⇔ max
n∈NK(x)

〈
v,

n

‖n‖

〉
≤ −ε (3)

The existence at x ∈ ∂K of such v ∈ coF (x) and ε is implied by Assumption 3. Relation
(3) allows us to juggle the two translations of strict inward-pointing conditions (based
either on the normal cone or on the Clarke tangent cone to the sets). As a matter of fact,
while the tangent cone is suitable to build trajectories staying in a set, the normal cone is
easier to use when designing trajectories outside a set. In our case, we have both to stay
in K and to reach C, leading us to use both perspectives.

Remark 3. Assumptions 3 and 4 actually have deeper implications on the regularity of
the sets K and C. If for every x ∈ ∂K, IntTK(x) 6= ∅ (i.e. K is wedged), then ∂K is
epi-Lipschitzian (it can be represented locally as the epigraph of a Lipschitz function after
a nonsingular linear transform, see [9, Theorem 3]), and the same observation applies to
∂C ∩K. Furthermore, the characterization of the interior of the Clarke tangent cone (e.g.
[9, Theorem 2]) implies that both K and C∩K are the closure of their interiors. Therefore
Assumptions 3 and 4 implicitly require ∂K and ∂C ∩K to be "Lipschitzian surfaces" and
K and C ∩ K to be the closure of open sets of Rn. In particular C cannot be a point
target. Notice that we did not require C to be a subset of K, unlike [5] where the inclusion
C ⊂ IntK was assumed.

Remark 4. Owing to [1, Theorem 10.1.6], the above assumptions also imply that K is
viable under coF (i.e. for any x0 ∈ K there exists a feasible coF -trajectory defined on
[0,+∞[ starting at x0). [3, Theorem 2.3] shows that K is even viable under F .

The two following theorems are the main results of this article. Examples 1, 2 and 3
illustrate when they apply.

Theorem 1. Under Assumptions 1, 2 and 3, Assumption 4 implies the following property
of the minimum time function τmin to reach the target C subject to the state constraints
K:

∀R > 0, ∃ δ > 0, k > 0, ∀x ∈ (C + δB) ∩RB ∩K, τmin(x) ≤ kd(x) := kdC∩K(x) (4)

where, by convention, d∅(x) = +∞.

Theorem 2. Under Assumptions 1, 2, 3 and 4, CaptF (K,C) is open in K and τmin is
locally Lipschitz continuous on CaptF (K,C).

Example 1. Consider a two-dimensional simplified lunar landing module with orientable
exhaust nozzle, subject to the lunar gravity pulling downwards. Define the constraints as
being above the surface of the moon K = R×R+ and the target as a box C = [−ε, ε]× [0, ε]
with ε > 0. When close to the ground, the pilot is gradually allowed to activate emergency
boosters, strong enough to overcome the gravity, so that its dynamics are

F (x) := (0,−1)︸ ︷︷ ︸
gravity

+ [−1, 1]× {0}︸ ︷︷ ︸
nozzle

+ max(0, 1/2− x2){(0, 0), (0, 4)}︸ ︷︷ ︸
boosters

⊂ R2.

It can be easily checked that the triplet (F,K,C) satisfies all the Assumptions 1-4, and
that CaptF (K,C) = K.
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Example 2. Define a scalar potential gy(x) = max(0,min(1− ‖x− y‖, ‖x− y‖)) centered
at y. Consider a navigation problem: a child in a two-dimensional stream R× [−2, 2] wants
to reach an aquatic slide C = B((0, 0), 1/2) which creates a local whirl attractor. This
defines the following dynamics

x′ ∈ F (x) := (1, 0)︸ ︷︷ ︸
flow

+ B((0, 0), 1
2)︸ ︷︷ ︸

swimmer’s controls

− 2g(0,0)(x) x

‖x‖︸ ︷︷ ︸
whirl attractor

⊂ R2,

with the whirl continuously extended as (0, 0) at x = (0, 0). A wave generator centered at
xK = (−2, 0) is added. The constraint set is defined as K = (R× [−2, 2])\ Int(B(xK , 1/2))
and the new dynamics, when the wave generator is on, are

x′ ∈ F̃ (x) := F (x) + gxK (x) x− xK
‖x− xK‖︸ ︷︷ ︸

wave generator

.

One can verify that (F̃ ,K,C) satisfies the assumptions of Theorem 2. One can also check
that CaptF̃ (K,C) ( K is a proper open subset of K. On the other hand, when the
wave generator is off, (F,K,C) does not satisfy the strict-inward pointing condition at
(−5/2, 0) ∈ ∂K.

3 Discussion on the main results

3.1 Nonautonomous systems

Consider the nonautonomous differential inclusion with initial condition x0 ∈ K:

x′(t) ∈ F (t, x(t)) x(0) = x0

where F : R+ × Rn ; Rn is a set-valued map taking closed, nonempty values on R+ ×
Rn. Below, we shall make the same assumption as in [5] that F (·, x) is locally Lipschitz
continuous to show that Theorem 2 encompasses the results of [5] for nonautonomous
systems. This may appear as a restriction2, however there are comparatively much less
attempts at considering nonautonomous systems in their full generality (i.e. when F (·, x) is
merely measurable). For differential inclusions and a moving target C(t) but without state
constraints, we should mention [11]. For differential inclusions with fixed state constraints
K but without target, we refer to [3]. As a midway, [5] considered a nonautonomous control
system with compact control set and fixed K and C.

2Time-Lipschitzianity was acknowledged in [5] as too restrictive. Nonetheless [5] also considered the case
of F (t, x) = c(t, x)B where c is a bounded scalar function, globally Lipschitz in x and merely measurable
in t.
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Assumption 5. Sublinear growth and local Lipschitz continuity of nonautonomous F

∃A ≥ 0, ∀ (t, x) ∈ R+ × Rn, F (t, x) ⊂ A(1 + ‖x‖)B

∀R > 0, ∀T ≥ 0 ∃ kF ≥ 0, ∀x, y ∈ RB, ∀ t, s ∈ [0, T ] F (s, y) ⊂ F (t, x)+kF (‖x−y‖+|t−s|)B

By augmenting the dynamics, our results encompass those of [5]. As a matter of fact,
let K and C be two closed subsets of Rn. We define the augmented system x̂′(t) ∈ F̂ (x̂)
under state constraints K̂ and with target Ĉ as

K̂ = R+ ×K, Ĉ = R+ × C
x̂(·) = (τ(·), x(·))
F̂ (x̂) = (1, F (x̂))
x̂(0) = (0, x0)

As τ ′(·) = 1 and K̂ and Ĉ are unbounded on the right in the time variable, Assumptions 1,
3, 4 and 5 on F , K and C jointly imply Assumptions 1, 2, 3, 4 bearing on F̂ , K̂ and Ĉ. So
we may apply Theorem 2 to the augmented system. This shows that CaptF̂ (K̂, Ĉ) is open
in K̂ for the relative Euclidean topology of R+ × Rn which is stronger than the Cartesian
product topology. Furthermore the minimum time functions coincide for the two systems.
We obtain therefore the conclusions of Theorem 2 for the original nonautonomous system.

In the proof of Theorems 1 and 2, a key ingredient, namely [3, Theorem 2.3], was proven
for nonautonomous differential inclusions when F (·, x) is absolutely continuous from the
left. As a consequence, our results could eventually be extended to this class of systems.

3.2 Weakening the hypotheses

Among the other hypotheses, few could be relaxed. Indeed Assumptions 1 and 2 are
fairly general and related to the global existence of solutions of (2) and to their Lipschitz
dependence on initial conditions. Hence, they could hardly be weakened when we seek
Lipschitz regularity.

Assumption 4 cannot be replaced by Assumption 3 expressed for C instead of K, as
shown in (counter)-Example 3 below, so we require a jointly inward-pointing condition on
K and C.

Example 3. Consider a modification of Example 1, where the controller over the nozzle
of the landing module broke. The dynamics are now x′ ∈ F (x) = {(0,±1)} ⊂ R2, the
constraints are still K = R × R+, and the target is now C = Hyp(x1 7→ 1 − x2

1), where
Hyp stands for the hypograph. It is clear that K and C satisfy inward-pointing conditions
with respect to F , while C ∩K does not. Furthermore CaptF (K,C) = K ∩ ([−1, 1]× R)
is closed in K and τmin is discontinuous on K. In other words, for some initial conditions,
an infinitesimal perturbation may impede reaching the target.

We cannot either drop altogether assuming inward-pointing conditions on C. Indeed,
the problem without state constraints is a special case of a state-constrained problem.
So the necessary and sufficient conditions from [11, Theorem 2.1] have to remain valid.
Let Γ = GraphC(·) where (C(t))t≥0 is a moving target. In the simpler case of F (·, x)
being continuous and F (t, ·) being locally Lipschitz, the necessary condition for the local
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Lipschitzianity of the minimum time, as shown in [11, Corollary 2.1, Theorem 3.1] can be
stated as follows3: for every compact set G ⊂ R+ × Rn, there exists ε > 0 such that, for
every (t, x) ∈ ∂Γ ∩G,

sup
(p0,p)∈NΓ(t,x)∩Sn

(
min

v∈F (t,x)

(
p0 + 〈p, v〉

))
≤ −ε (5)

However, if the set K is invariant under F (i.e. for any x0 ∈ K all the solutions of the
differential inclusion (2) are feasible), then no inward-pointing condition onK is required as
all the trajectories are already feasible. Nevertheless we still need a strict inward-pointing
condition on C, such as (5).

3.3 Considering point targets

Originally, [8] considered point targets (i.e. C = {x̄}) and devised a necessary and suffi-
cient condition (0 ∈ Int(coF (x̄))) for the Lipschitz continuity of the minimum time in a
neighborhood of x̄, in the case without constraints. Since then, research focused mainly
on inward-pointing conditions which preclude point targets as discussed in Remark 3. We
show below that for point targets x̄ ∈ IntK, we still have the results of Theorems 1 and
2. Whenever x̄ ∈ ∂K, it is still an open question as to formulating sufficient conditions for
local Lipschitzianity of the minimum time.

We begin with an extension of [8, Theorem 4.1] to differential inclusions without state
constraints.

Proposition 1. Let x̄ ∈ Rn and suppose that 0 ∈ Int(coF (x̄)). Then, under Assumptions
1 and 2, the minimum time function τmin to reach the target x̄ without state constraints
has the following property:

∃ δ > 0, k > 0, ∀x ∈ (x̄+ δB), τmin(x) ≤ k‖x− x̄‖ (6)

A proof of Proposition 1 appears in the next section. We first state our result for point
targets x̄ ∈ IntK.

Proposition 2. Let x̄ ∈ IntK and suppose that 0 ∈ Int(coF (x̄)). Then, under Assump-
tions 1, 2 and 3, τmin satisfies (6) and is locally Lipschitz continuous on CaptF (K, {x̄}),
which is open in K.

Proof of Proposition 2: Fix η > 0 such that (x̄ + ηB) ⊂ IntK. Apply Proposition 1
to the system (2) without constraints, this gives δ0 > 0 and k > 0 such that, for any ε > 0
and any x ∈ (x̄ + δ0B), there exists τ ∈ [0, k‖x− x̄‖+ ε] and an F -trajectory y(·) defined
on [0, τ ] satisfying:

y(0) = x y(τ) = x̄ (7)

Let A > 0 be as in Assumption 2. Fix any δ ∈]0, δ0] and ε > 0 satisfying:

(δ + (kδ + ε) · (A+A‖x̄‖)) eA(kδ+ε) ≤ η

3The original condition of [11] bore on the proximal normal cone to Γ but, by taking the limit and the
closed convex hull, it can be restated for the Clarke normal cone.
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Take x ∈ (x̄+ δB) and consider τ and y(·) as in (7). Then for any t ∈ [0, τ ] we have:

‖x̄− y(t)‖ ≤ ‖x̄− x‖+ ‖x− y(t)‖ ≤ δ +
∫ t

0
‖y′(s)‖ds

≤ δ +
∫ t

0
(A+A‖x̄‖+A‖x̄− y(s)‖)ds

≤ δ + τ(A+A‖x̄‖) +A

∫ t

0
‖x̄− y(s)‖ds

Using Gronwall’s lemma, we get that for any t ∈ [0, τ ], as τ ≤ kδ + ε

‖x̄− y(t)‖ ≤ (δ + τ(A+A‖x̄‖)) eAτ ≤ η

Consequently y([0, τ ]) ⊂ IntK, so y(·) is feasible. As ε is arbitrary, we get that the
minimum time with state constraints coincides on (x̄+δB) with the minimum time without
state constraints, and that both are therefore Lipschitz continuous on (x̄+δB). The results
of Theorem 2 follow immediately, which concludes the proof.

�

4 Proofs
Proof of Theorem 1: This proof is partially inspired by [4, pp. 239-243] where the
result was proven for a control system without state constraints. The proof differs however
due to Assumption 4 which is weaker than in [4] as it bears on coF rather than F , and
as we consider a general differential inclusion rather than a control system. Moreover the
presence of constraints requires to design feasible trajectories (i.e. respecting the state con-
straints). This leads to applying both the celebrated relaxation theorem and a "correction"
theorem [3, Theorem 2.3] to build F -trajectories staying in K.

Fix any R > 0. Let kF > 0 such that:

∀x, y ∈ 2RB, F (y) ⊂ F (x) + kF ‖x− y‖B

Let cF := 5nkF and define
M = n+ sup

x∈2RB
sup

v∈F (x)
‖v‖.

By Assumptions 3 and 4 and [3, Lemma 5.3], there exists ε ∈]0, 1], η0 > 0 such that:{
∀x ∈ (∂(C ∩K) + η0B) ∩ 2RB ∩ C ∩K, ∃ v ∈ coF (x),
∀y ∈ (x+ η0B) ∩ C ∩K, y + [0, ε](v + εB) ⊂ C ∩K (8)

∀x ∈ (∂C ∩ ∂K + η0B) ∩ 2RB ∩ C ∩K, ∃ v ∈ coF (x),
∀y ∈ (x+ η0B) ∩K, y + [0, ε](v + εB) ⊂ K
∀z ∈ (x+ η0B) ∩ C ∩K, z + [0, ε](v + εB) ⊂ C ∩K.

(9)

In order to use Gronwall’s lemma later on, we require a technical condition on ε, which has
to be chosen small enough as to satisfy:

εecF ε/(16M2) ≤ 8MR (10)
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Since co(F ) is locally Lipschitz continuous, there exists η1 > 0, such that for every x̃ ∈
∂C ∩K ∩ 2RB and ṽ ∈ coF (x̃)

∀x ∈ (x̃+ η1B), ∃ v ∈ coF (x), ‖v − ṽ‖ ≤ ε/4. (11)

Let η := min(η0, η1, R)/2. For any δ ∈]0, η/3], we now define the following sets:

∆ = ∂C ∩ ∂K ∩ 2RB C̃ = (∂C ∩K ∩ 2RB) \(∆ + η

2B) ρ̃ = inf
x∈C̃

d∂K(x)

Cδ = ∂C ∩K + δB C̃δ =
(
Cδ ∩K ∩

3R
2 B

)
\(∆ + ηB) ρ̃δ = inf

x∈C̃δ
d∂K(x)

where, by convention, ∅+ B = ∅. The initial conditions x0 of interest are in Cδ ∩K ∩RB,
hence they either belong to (∆ + ηB) or to C̃δ.

Claim 1. Whenever C̃δ 6= ∅, ρ̃ is finite, independently of ∆ being empty or not.

Proof of Claim 1: Suppose C̃δ 6= ∅ and let x ∈ C̃δ ⊂ Cδ. Fix any x̄ ∈ ∂C ∩K such that
‖x− x̄‖ ≤ δ. As δ ≤ η

3 ≤
R
6 and x ∈ 3R

2 B, we have that x̄ ∈ (x+ δB) ⊂ 2RB. Further,

d∆(x̄) ≥ d∆(x)− ‖x− x̄‖ ≥ η − δ > η/2.

Therefore x̄ ∈ C̃, implying it is not empty. If ∆ 6= ∅, by definition, ρ̃ > 0. If ∆ = ∅, then
C̃ = ∂C ∩K ∩ 2RB is compact and C̃ ∩ ∂K = ∅, so ρ̃ > 0. In both cases, as C̃δ ⊂ C̃ + δB,
ρ̃δ ≥ ρ̃− δ.

We now define the key constants that the proof of Theorem 1 will require:

k0 := 4/ε γ :=

√
1−

(
ε

16M

)2

k := 2
ε

(1 + γ) γ̃ := 1 + γ

2

Notice that
k(1− γ̃) = k(1− γ)

2 = ε

(16M)2 . (12)

Define
δ := min

(
1, η3 ,

ρ̃

4 + 16k0M
,

ε

8cFM
,

R

32kM

)
. (13)

As δ ≤ 1, we may replace ε by εδ in (10).

Let us show that for any x0 ∈ (Cδ ∩K ∩ RB), we can define, for j ∈ N, a feasible F -
trajectory yj(·) on [0, tj ] with tj > 0, satisfying the following properties for d(x) := dC∩K(x)

xj+1 := yj+1(0) = yj(tj) ∈
3R
2 B

∞∑
j=0

tj ≤ 16kd(x0)
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and the two inequalities

d(xj) ≤ γ̃jd(x0) ‖xj − x0‖ ≤
ε

16M

j−1∑
k=0

γ̃kd(x0). (14)

Let us first make sure that the (xj)j satisfying (14) belong to 3R
2 B, by applying (12).

Indeed

‖xj‖ ≤ ‖x0‖+ ‖xj − x0‖ ≤ R+ ε

16M
1

1− γ̃ d(x0) ≤ R+ 16kMδ ≤ 3R
2 .

Let j ∈ N. The inequalities (14) are obviously satisfied for j = 0, so we will proceed by
induction on j. Assume we have already constructed our trajectories up to step j and have
not yet reached C (i.e. xj /∈ C). Let x̄j ∈ ∂(C ∩K) be such that d(xj) = ‖xj − x̄j‖ (i.e.
x̄j ∈ ΠC∩K(xj)).

As xj ∈ Cδ ∩K ∩ (3R/2)B = C̃δ ∪ (∆ + ηB), we distinguish two cases. In Case 1, we
consider the situation where ∆ 6= ∅ and xj ∈ (∆ + ηB). If the xj+1 that we design below
belongs to C̃δ, then we move to Case 2, otherwise the induction proceeds according to Case
1. In Case 2, xj ∈ C̃δ and we build by induction (xm)m≥j+1 ∈ Cδ. Owing to Claim 1, we
will show that, for any m ≥ j + 1 and t ∈ [0, tm], d∂K(ym(t)) > 0. This latter property
ensures that once the designed trajectory is far enough from ∂K (i.e. xj ∈ C̃δ), it stays so,
and we can focus on reaching C.

Case 1: Suppose ∆ 6= ∅ and xj ∈ (∆ + ηB)\C, then take any x̃j ∈ ∆ ∩ B(xj , η).
Consider ṽj ∈ coF (x̃j) satisfying (9). As x̃j ∈ ∆ ⊂ C ∩K ∩ 2RB,

‖xj − x̄j‖ = d(xj) ≤ ‖xj − x̃j‖ ≤ η
‖x̃j − x̄j‖ ≤ ‖x̃j − xj‖+ ‖xj − x̄j‖ ≤ 2η ≤ min(η1, η0)

‖x̄j‖ ≤ ‖xj‖+ ‖xj − x̄j‖ ≤
3R
2 + η ≤ 2R

we may thus apply (11) at x̃j and x̄j (instead of x̃ and x) and then at x̄j and xj . In this
way, we get v̄j ∈ coF (x̄j) and vj ∈ coF (xj) both satisfying (11)

‖ṽj − v̄j‖ ≤ ε/4 ‖vj − v̄j‖ ≤ ε/4

and the second (resp. first) line of (9) at x̃j and x̄j (resp. at x̃j and xj)

x̄j + [0, ε](ṽj + εB) ⊂ C ∩K xj + [0, ε](ṽj + εB) ⊂ K

which implies that

x̄j + [0, ε](vj + ε/2B) ⊂ C ∩K xj + [0, ε](vj + ε/2B) ⊂ K.

Using that (xj − x̄j) ∈ NC∩K(x̄j)\{0}, relation (3) gives 〈vj , xj − x̄j〉 ≤ −‖xj − x̄j‖ε/2.
Hence we have shown the two following formulas between xj and vj :

〈vj , xj − x̄j〉 ≤ −‖xj − x̄j‖ε/2 xj + [0, ε](vj + ε/2B) ⊂ K (15)

10



Let us now design a trajectory starting at xj . Define the duration tj > 0 as follows

tj := ε

16M2d(xj) (16)

By [1, Theorem 9.5.3], there exists a cF -Lipschitz selection f from the set-valued map coF
defined on 2RB, satisfying vj = f(xj). Let y̌j(·) be the unique solution of the differential
equation x′(t) = f(x(t)) on [0, tj ] with initial condition x(0) = xj . Let wj(·) := f(y̌j(·)) on
[0, tj ]. Then

y̌j(t) = xj +
∫ t

0
wj(s)ds (17)

Furthermore we have ‖wj(s)− vj‖ ≤ cF ‖y̌j(s)− xj‖, and

‖y̌j(t)− xj‖ ≤ ‖tvj‖+
∫ t

0
‖wj(s)− vj‖ ≤Mtj + cF

∫ t

0
‖y̌j(s)− xj‖

We apply Gronwall’s lemma as y̌j(t) is continuous and we take into account (10), recalling
that δ ≤ 1

‖y̌j(t)− xj‖ ≤Mtje
cF tj ≤ εδ

16M eεδcF /(16M2) ≤ R/2 (18)

Therefore y̌j(t) ∈ 2RB, which implies that wj(t) ∈MB. Thus (17) gives ‖y̌j(s)−xj‖ ≤Mtj .
As M ≥ 1 and ε ≤ 1:

‖y̌j(t)− xj − tvj‖ ≤
∫ t

0
‖wj(s)− vj‖ ≤ cF

∫ t

0
‖y̌j(s)− xj‖ ≤ cFMtj · t

≤ cFM
εδ

16M2 · t ≤ cFM
ε

16M2
ε

8cFM
· t ≤ ε

2 · t

Thanks to (15), this ensures that y̌j(t) ∈ (xj + t(vj + ε/2B)) ⊂ K. We have so far designed
a feasible coF -trajectory. Applying (15), we obtain furthermore for any t ∈ [0, tj ]:

1
2
d

dt
‖y̌j(t)− x̄j‖2 = 〈wj(t), y̌j(t)− x̄j〉

= 〈vj , xj − x̄j〉+ 〈wj(t), y̌j(t)− xj〉+ 〈wj(t)− vj , xj − x̄j〉

≤ − ε2‖xj − x̄j‖+M‖y̌j(t)− xj‖+ cF ‖y̌j(t)− xj‖‖xj − x̄j‖

≤ − ε2d(xj) + (M + cFd(xj))Mt

≤
(
− ε2 + cFMtj

)
d(xj) +M2tj

=
(
− ε2 + cF δ

M

ε

16 + ε

16

)
d(xj) ≤ −

3ε
8 d(xj) ≤ −

ε

32d(xj) = −M
2tj
2

Consequently, by integration:

d2(y̌j(tj)) ≤ ‖y̌j(tj)− x̄j‖2 ≤ d2(xj)−M2t2j =
(

1−M2
(

ε

16M2

)2
)
d2(xj) = γ2d2(xj)

However we cannot set y̌j(tj) as the next xj+1, as it is only a coF -trajectory for the time
being. In order to apply the relaxation theorem, we need a globally Lipschitz continuous
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set-valued map. Fix any εj > 0. Let F̃ be defined in any x ∈ Rn as F̃ (x) := F (Π(2R+εj)B(x))
where Π(2R+εj)B(x) is the unique projection of x into (2R+ εj)B. Since the projection on a
ball is Lipschitz, we deduce that F̃ is globally Lipschitz. As y̌j([0, tj ]) ⊂ 2RB, y̌j(·) is also
an F̃ -trajectory. Thanks to the relaxation theorem, we may thus build an F̃ -trajectory
ŷj(·) starting from xj and enjoying the following property:

‖ŷj − y̌j‖L∞([0,tj ]) ≤ εj

As y̌j([0, tj ]) ⊂ 2RB, ŷj([0, tj ]) ⊂ (2R + εj)B, on which F̃ and F coincide. Hence ŷj(·) is
an F -trajectory.

If ŷj([0, tj ]) ⊂ K, then we keep it as our feasible F -trajectory. Otherwise, if it leaves K
even during a short time, we correct it into an F -feasible trajectory yj(·) staying in IntK,
through [3, Theorem 2.3] which we apply on 2RB and time interval [0, tj ] ⊂ [0, tmax] with
tmax = εδ/(16M2) ≥ tj . This implies the existence of a constant L ≥ 1 (depending only
on R and F ) with the following property (as y̌j([0, tj ]) ⊂ K):

‖yj − ŷj‖L∞([0,tj ]) ≤ L‖dK(ŷj(·))‖L∞([0,tj ]) ≤ L‖ŷj − y̌j‖L∞([0,tj ]) ≤ Lεj
d(yj(tj)) ≤ d(ŷj(tj)) + ‖yj(tj)− ŷj(tj)‖ ≤ γd(xj) + Lεj

The above relations remain true even if ŷj([0, tj ]) ⊂ K. We set εj := 1−γ
2L d(xj) ≤ δ and

xj+1 := yj(tj), thus:

d(xj+1) ≤ (γ + 1− γ
2 )d(xj) = γ̃d(xj)

Moreover we derive from (14) and (16):

‖xj+1 − x0‖ ≤ ‖xj − x0‖+ ‖xj+1 − xj‖ ≤
ε

16M

j−1∑
k=0

γ̃kd(x0) +Mtj ≤
ε

16M

j∑
k=0

γ̃kd(x0)

If xj+1 ∈ (∆ + ηB)\C, then we remain in Case 1. Otherwise, if xj+1 ∈ C̃δ\C, we move to
Case 2.

Case 2: Suppose that xj ∈ C̃δ\C. The trajectory construction is similar to Case 1
and even simpler as we do not have to consider the point x̃j . As η ≥ δ, we can still select
v̄j ∈ coF (x̄j) and vj ∈ coF (xj) satisfying (8) and ‖vj − v̄j‖ ≤ ε/4. We define tj and y̌j(·)
as in (16), and apply (18). This leads to the same computations for d

dt‖y̌j(t)− x̄j‖
2 and for

d(y̌j(tj)). We define again through relaxation an F -trajectory ŷj(·) with the same εj and
we set xj+1 = ŷj(tj) ∈ Cδ, which satisfies (14). Then repeating the above steps, we build
a sequence (xm)m≥j+1 ∈ Cδ connected by trajectories ŷm(·).

We no longer have to check the feasibility of such ŷm(·). As a matter of fact, recall that
owing to Claim 1, as C̃δ 6= ∅, ρ̃ is finite. Let m ≥ j + 1. Using that γ ≤ γ̃ ≤ 1, k ≤ k0 and
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d(xj) ≤ δ ≤ ρ̃/(4 + 16k0M), we deduce

d∂K(ŷm(t)) ≥ d∂K(xj)− ‖ŷm(t)− xj‖
≥ ρ̃δ − ‖ŷm(t)− y̌m(t)‖ − ‖y̌m(t)− x̄m‖ − ‖x̄m − xm‖ − ‖xm − xj‖

≥ ρ̃− δ − Lεm − 2d(xm)− ε

16M(1− γ̃)d(xj)

≥ ρ̃− δ − 1− γ
2 d(xm)− 2γ̃m−jd(xj)− 16kMd(xj)

≥ ρ̃− δ − 1
2 γ̃

m−jd(xj)− 2d(xj)− 16kMd(xj)

≥ ρ̃− (7
2 + 16k0M)δ > 0

The above computation ensures that whenever an xj is both close enough to C and far
enough from ∂K, we can focus only on reaching C.

To conclude, we have built a bounded sequence (xj)j≥0 connected by feasible F -
trajectories yj(·), satisfying both (14) and:

lim
j→+∞

d(xj) = 0

Using (12), define τ as follows:

τ :=
∞∑
j=0

tj = ε

16M2

∞∑
j=0

d(xj) ≤
ε

16M2
1

1− γ̃ d(x0) = 16kd(x0)

Concatenating all the feasible F -trajectories yj(·), we get a feasible F -trajectory y(·) start-
ing at x0, defined on [0, τ ] and reaching C ∩K at time τ . Hence assertion (4) follows:

τmin(x0) ≤ τ ≤ 16kd(x0)

which concludes the proof, replacing 16k by k to recover (4).

�

Proof of Theorem 2: Let x0 ∈ CaptF (K,C)\C and ξ > 0 such that B(x0, ξ)∩C = ∅.
Let y0(·) be a feasible F -trajectory starting at x0 and reaching C at x̄0 at some time τ0
where τmin(x0) ≤ τ0 ≤ 2τmin(x0). Let x1 ∈ K ∩ B(x0, ξ). Define

R := (‖x̄0‖+ 1) eM(2τmin(x0)+1) where M := sup
z∈B,t∈[0,τ0]

sup
v∈F (y0(t)+z)

‖v‖

Let kF be as in Assumption 2 with R defined as above. Let F̃ be defined in any x ∈ Rn
as F̃ (x) := F (ΠRB(x)). Since the projection on a ball is Lipschitz with constant 1, we
deduce that F̃ is globally Lipschitz with constant kF . As y0([0, τ0]) ⊂ RB, y0(·) is also an
F̃ -trajectory. We may then apply the Filippov’s existence theorem (see e.g. [1, Theorem
10.4.1, p 384]), to design an F̃ -trajectory ŷ1(·) on [0, τ0] starting from x1 such that:

‖y0 − ŷ1‖L∞([0,τ0]) ≤ ‖x0 − x1‖ekF τ0 ≤ c · ξ where c := ekF (2τmin(x0)+1)
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Take from now on ξ ≤ 1/c. Therefore, for any t ∈ [0, τ0], ŷ1(t) ∈ (y0(t) + B) and in
particular ŷ1(τ0) ∈ (x̄0 + B)), from which we derive that ŷ1([0, τ0]) ⊂ RB, on which F̃ and
F coincide. We thus conclude that ŷ1(·) is an F -trajectory. If it stays within K, we keep
it. Otherwise we apply [3, Theorem 2.3] to retrieve an F -trajectory y1(·) on [0, τ0] starting
from x1 and staying in K, satisfying in both cases for an L ≥ 0 (depending only on R and
F ):

‖y0−y1‖L∞([0,τ0]) ≤ ‖y0−ŷ1‖L∞([0,τ0])+‖ŷ1−y1‖L∞([0,τ0]) ≤ (1+L)‖y0−ŷ1‖L∞([0,τ0]) ≤ c(1+L)ξ

Let δ > 0, k > 0 and d(·) be as in (4). We choose ξ such that c(1 + L)ξ ≤ min(1/k, δ, 1).
As y1(τ0) ∈ (C + δB)∩K ∩RB, we deduce from the dynamic programming principle that:

τmin(x1) ≤ τ0 + τmin(y1(τ0)) ≤ τ0 + kd(y1(τ0))
≤ 2τmin(x0) + ck(1 + L)ξ ≤ 2τmin(x0) + 1

We have thus shown that x1 ∈ CaptF (K,C). Since x1 is an arbitrary point in K in a
neighborhood of x0, CaptF (K,C) is open in K.

We now repeat the above strategy for x1, x2 ∈ B(x0, ξ/2)∩K. Let ε1 ≥ 0. Let y1(·) be
a feasible F -trajectory starting at x1 and reaching C at x̄1 at time τ1 ≤ τmin(x1)+ε1. Then
design a feasible F -trajectory y2(·) on [0, τ1] starting from x2. With the same arguments
as above, y2(τ1) ∈ RB and:

d(y2(τ1)) ≤ ‖y2(τ1)− x̄1‖ ≤ c(1 + L)‖x2 − x1‖ ≤ c(1 + L)ξ ≤ δ
τmin(x2) ≤ τ1 + τmin(y2(τ1)) ≤ τmin(x1) + ε1 + c(1 + L)k‖x2 − x1‖.

As the roles of x1 and x2 can be permuted and ε1 is arbitrary, τmin(·) is Lipschitz continuous
on B(x0, ξ/2) ∩K.

�

Proof of Proposition 1: This constructive proof is largely similar to that of Theorem
1, we thus focus only on the few differences as here K = Rn and d(x) = ‖x− x̄‖.

Let R = ‖x̄‖+1 and define the constants kF , cF andM accordingly. Fix ε > 0 satisfying
both εB ⊂ coF (x̄) and (10), then define the other constants η1, k0, k, γ and γ̃ as in the
proof of Theorem 1. Set δ as follows

δ := min
(

1, η1
6 ,

R

6 ,
ε

8cFM
,

R

32kM

)
.

Let x0 ∈ (x̄+δB), j ∈ N and suppose that (14) is satisfied at xj . Let v̄j = −ε(xj − x̄)/‖xj − x̄‖.
As v̄j ∈ coF (x̄), through (11), we can fix a vj ∈ coF (xj) such that ‖vj − v̄j‖ ≤ ε/4. Hence

〈vj , xj − x̄〉 ≤ 〈v̄j , xj − x̄〉+ ‖xj − x̄‖‖vj − v̄j‖ ≤ −
ε

2‖xj − x̄‖

and we recover (15). Let tj as in (16), and construct similarly ŷj(·) through (17) and
relaxation. This defines the next point xj+1 = ŷj(tj) for the induction. In conclusion, the
bounded sequence (xj)j≥0 converges to x̄, which is reached in time less than 16k‖x0 − x̄‖
by an F -trajectory starting at x0.

�
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