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Lipschitz regularity of the minimum time function of differential inclusions with state constraints

For control systems, the local regularity of the minimum time function τ min in the absence of state constraints has been extensively studied and related both to inwardpointing conditions and to small-time controllability in the neighborhood of a closed target C. In the presence of state constraints, assessing this regularity is crucial to ensure the existence of solutions when perturbing the initial condition. In this paper, we prove, without imposing the inclusion C ⊂ Int K, that, for differential inclusions with closed state constraints K and under general assumptions, τ min is locally Lipschitz continuous on its domain which is open in K. We discuss as well extensions to nonautonomous systems and to point targets.

Introduction

Studying the regularity of the minimum time function finds its motivation in reachability problems. Let K and C be two closed subsets of R n and consider a control system with initial condition

x 0 ∈ K x (t) = f (x(t), u(t)), u(t) ∈ U, x(0) = x 0 , ( 1 
)
where U is a compact subset of R m , the control u(•) is a measurable function and f : R n × U → R n is sufficiently smooth. The state-constrained time optimal control problem consists in finding the minimum time τ min (x 0 ) to reach C along solutions of (1) staying in K. Assessing the regularity of τ min allows to answer several questions. For instance, let a time-optimal state-constrained solution x ref (•) of system (1) be given. Take as initial condition a point x 1 in a neighborhood of the trajectory set x ref ([0, τ min (x 0 )]). Under what conditions can x 1 be steered to the target set C while respecting the state constraints K? How long would it take compared to τ min (x 0 )?

More generally, consider the autonomous differential inclusion1 with initial condition x 0 ∈ K:

x (t) ∈ F (x(t))

x(0) = x 0 [START_REF] Bardi | An Approximation Scheme for the Minimum Time Function[END_REF] where F : R n ; R n is a set-valued map taking closed, nonempty values. Below, an F -trajectory x(•) on a time interval [0, T ] designates an absolutely continuous function satisfying x (t) ∈ F (x(t)) a.e. on [0, T ]. A trajectory is called "feasible" if x([0, T ]) ⊂ K.

The capture basin Capt F (K, C) is the set of all points x 0 ∈ K such that there exists T ≥ 0 and a feasible F -trajectory starting from x 0 and reaching the target set C at time T . For a given x 0 ∈ K, we denote the infimum of such T by τ min (x 0 ). By convention, τ min (x 0 ) = +∞ if x 0 / ∈ Capt F (K, C). By analogy with the control system (1), this defines the minimum time extended function τ min : K → [0, +∞] associated with the target set C, dynamics F and state-constraints K. The Lipschitzianity of the extended function τ min (•) thus depends on the "Lipschitz regularity" of both F, K and C.

In order to exhibit Lipschitz dependence of solutions on initial conditions (through the renowned Filippov's theorem), it is classical to suppose the (local) Lipschitzianity of F . On the other hand, the local Lipschitz continuity of τ min (•) on its domain Capt F (K, C), in the case without state constraints, has been related to strict inward-pointing conditions on the boundary ∂C of the target since the 70s (see e.g. [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF]Chapter 8] for a modern presentation and the bibliography therein). More recently, it has been shown in [START_REF] Bettiol | L ∞ estimates on trajectories confined to a closed subset[END_REF] that strict inwardpointing conditions on the boundary ∂K ensure L ∞ -distance estimates between arbitrary F -trajectories and the set of feasible ones. These three ingredients allow us to prove in this paper the openness of Capt F (K, C) in K and the local Lipschitz continuity of τ min (•).

Inquiries on the regularity of the minimum time function using constraint qualifications (albeit without state-constraints) go back at least to the early 70s. As a matter of fact, the latter regularity can be related to a controllability property in the vicinity of the target. For control systems, (local) Lipschitz continuity was already obtained for C 2 -regular target sets in a general setting of differential games in [START_REF] Friedman | Existence of Value and of Saddle Points for Differential Games of Pursuit and Evasion[END_REF]Theorem 5] and in a neighborhood of point targets in [START_REF] Petrov | On the Bellman function for the time-optimal process problem[END_REF]Theorem 4.1]. Through viscosity solutions theory, Lipschitz continuity on Capt F (R n , C) was then shown for compact piecewise-C 2 targets in [START_REF] Bardi | An Approximation Scheme for the Minimum Time Function[END_REF]Theorem 5.4] and in a neighborhood of general closed target sets in [START_REF] Soravia | Pursuit-Evasion Problems and Viscosity Solutions of Isaacs Equations[END_REF]Corollary 3.7]. Based on nonsmooth analysis and moving to differential inclusions, [START_REF] Veliov | Lipschitz continuity of the value function in optimal control[END_REF]Theorem 3.1] showed the Lipschitz continuity of τ min on Capt F (R n , C) for nonautonomous convex-valued F (measurable in time), while [START_REF] Wolenski | Proximal Analysis and the Minimal Time Function[END_REF]Theorem 6.1] revisited the regularity in a neighborhood of a closed target set C. Finally, for state-constrained nonautonomous control systems (Lipschitz in time), the local Lipschitz continuity of τ min was shown in [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF]Theorem 3.8] under assumptions similar to ours, although more stringent as they bore on f (x, U ) rather than its convex hull co (f (x, U )). We also discard the strong assumption of [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] of having C interior to K. Though we only consider compact-valued F , we have to mention that the minimum time problem has also been studied for control-affine systems where U = R m as in [START_REF] Motta | Minimum Time with Bounded Energy, Minimum Energy with Bounded Time[END_REF] and references therein.

In this article on state-constrained differential inclusions, under general assumptions on F , K and C, and a convexified version of the inward-pointing conditions, we prove the local Lipschitz continuity of τ min , that had been shown for control systems without state constraints. Such a property is a first step in studying nonlinear controllability with nonsmooth state constraints. Furthermore our results encompass those of [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] on nonautonomous control systems, as presented in Section 3.1. In Section 3.3, we show as well that, for point targets that are interior to the constraints, the classical small-time controllability condition is sufficient to retrieve the local Lipschitzianity of τ min on its domain Capt F (K, C).

Main results

Notation:

We denote by B the closed unit ball in R n , by S n-1 the unit sphere in R n and by • and •, • the Euclidean norm and scalar product. We denote by R + the set of nonnegative real numbers. We write Π K (x) for the (possibly set-valued) projection of a point x into K. The function d K (•) designates the distance to K. The set Int K stands for the interior of K and the set ∂K for its boundary. We denote by T K (x) (resp. N K (x)) the Clarke tangent (resp. normal) cone to the subset K at point x. We use the notation co F for the set-valued map that maps x to the convex hull of F (x).

Assumption 1. General assumptions

F takes closed, nonempty values on R n , C and K are two closed nonempty subsets of R n .

Assumption 2. Sublinear growth and local Lipschitz continuity of

F ∃ A ≥ 0, ∀ x ∈ R n , F (x) ⊂ A(1 + x )B ∀ R > 0, ∃ k F ≥ 0, ∀ x, y ∈ RB, F (y) ⊂ F (x) + k F x -y B Assumption 3. Strict inward-pointing condition on ∂K ∀ x ∈ ∂K, co F (x) ∩ Int T K (x) = ∅ Assumption 4. Strict inward-pointing condition on ∂C ∩ K ∀ x ∈ ∂C ∩ K, co F (x) ∩ Int T K (x) ∩ Int T C (x) = ∅ Remark 1. It stems directly from [9, Theorem 2] that for any x ∈ C ∩ K such that Int T K (x) ∩ Int T C (x) = ∅, we have Int T C∩K (x) = Int T K (x) ∩ Int T C (x).
Remark 2. For any closed subset K of R n , at a given x ∈ ∂K, for v ∈ R n and a fixed > 0, we have:

(v + B) ⊂ T K (x) ⇔ max n∈N K (x) v, n n ≤ - (3) 
The existence at x ∈ ∂K of such v ∈ co F (x) and is implied by Assumption 3. Relation (3) allows us to juggle the two translations of strict inward-pointing conditions (based either on the normal cone or on the Clarke tangent cone to the sets). As a matter of fact, while the tangent cone is suitable to build trajectories staying in a set, the normal cone is easier to use when designing trajectories outside a set. In our case, we have both to stay in K and to reach C, leading us to use both perspectives.

Remark 3. Assumptions 3 and 4 actually have deeper implications on the regularity of the sets K and C. If for every x ∈ ∂K, Int T K (x) = ∅ (i.e. K is wedged), then ∂K is epi-Lipschitzian (it can be represented locally as the epigraph of a Lipschitz function after a nonsingular linear transform, see [9, Theorem 3]), and the same observation applies to ∂C ∩ K. Furthermore, the characterization of the interior of the Clarke tangent cone (e.g. [9, Theorem 2]) implies that both K and C ∩ K are the closure of their interiors. Therefore Assumptions 3 and 4 implicitly require ∂K and ∂C ∩ K to be "Lipschitzian surfaces" and K and C ∩ K to be the closure of open sets of R n . In particular C cannot be a point target. Notice that we did not require C to be a subset of K, unlike [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] where the inclusion C ⊂ Int K was assumed.

Remark 4.

Owing to [1, Theorem 10.1.6], the above assumptions also imply that K is viable under co F (i.e. for any x 0 ∈ K there exists a feasible co F -trajectory defined on [0, +∞[ starting at x 0 ). [3, Theorem 2.3] shows that K is even viable under F .

The two following theorems are the main results of this article. Examples 1, 2 and 3 illustrate when they apply.

Theorem 1. Under Assumptions 1, 2 and 3, Assumption 4 implies the following property of the minimum time function τ min to reach the target C subject to the state constraints

K: ∀ R > 0, ∃ δ > 0, k > 0, ∀ x ∈ (C + δB) ∩ RB ∩ K, τ min (x) ≤ kd(x) := kd C∩K (x) (4)
where, by convention, d ∅ (x) = +∞.

Theorem 2. Under Assumptions 1, 2, 3 and 4, Capt

F (K, C) is open in K and τ min is locally Lipschitz continuous on Capt F (K, C).
Example 1. Consider a two-dimensional simplified lunar landing module with orientable exhaust nozzle, subject to the lunar gravity pulling downwards. Define the constraints as being above the surface of the moon K = R × R + and the target as a box C = [-, ] × [0, ] with > 0. When close to the ground, the pilot is gradually allowed to activate emergency boosters, strong enough to overcome the gravity, so that its dynamics are

F (x) := (0, -1) gravity + [-1, 1] × {0} nozzle + max(0, 1/2 -x 2 ){(0, 0), (0, 4)} boosters ⊂ R 2 .
It can be easily checked that the triplet (F, K, C) satisfies all the Assumptions 1-4, and that Capt F (K, C) = K.

Example 2. Define a scalar potential g y (x) = max(0, min(1 -x -y , x -y )) centered at y. Consider a navigation problem: a child in a two-dimensional stream R × [-2, 2] wants to reach an aquatic slide C = B((0, 0), 1/2) which creates a local whirl attractor. This defines the following dynamics

x ∈ F (x) := (1, 0) flow + B((0, 0), 1 2 ) 
swimmer's controls

-2g (0,0) (x) x x whirl attractor ⊂ R 2 ,
with the whirl continuously extended as (0, 0) at x = (0, 0). A wave generator centered at

x K = (-2, 0) is added. The constraint set is defined as K = (R × [-2, 2])\ Int(B(x K , 1/2))
and the new dynamics, when the wave generator is on, are

x ∈ F (x) := F (x) + g x K (x) x -x K x -x K wave generator
.

One can verify that ( F , K, C) satisfies the assumptions of Theorem 2. One can also check that Capt F (K, C) K is a proper open subset of K. On the other hand, when the wave generator is off, (F, K, C) does not satisfy the strict-inward pointing condition at (-5/2, 0) ∈ ∂K.

3 Discussion on the main results

Nonautonomous systems

Consider the nonautonomous differential inclusion with initial condition x 0 ∈ K:

x (t) ∈ F (t, x(t)) x(0) = x 0
where F : R + × R n ; R n is a set-valued map taking closed, nonempty values on R + × R n . Below, we shall make the same assumption as in [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] that F (•, x) is locally Lipschitz continuous to show that Theorem 2 encompasses the results of [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] for nonautonomous systems. This may appear as a restriction2 , however there are comparatively much less attempts at considering nonautonomous systems in their full generality (i.e. when F (•, x) is merely measurable). For differential inclusions and a moving target C(t) but without state constraints, we should mention [START_REF] Veliov | Lipschitz continuity of the value function in optimal control[END_REF]. For differential inclusions with fixed state constraints K but without target, we refer to [START_REF] Bettiol | L ∞ estimates on trajectories confined to a closed subset[END_REF]. As a midway, [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] considered a nonautonomous control system with compact control set and fixed K and C.

Assumption 5. Sublinear growth and local Lipschitz continuity of nonautonomous

F ∃ A ≥ 0, ∀ (t, x) ∈ R + × R n , F (t, x) ⊂ A(1 + x )B ∀ R > 0, ∀ T ≥ 0 ∃ k F ≥ 0, ∀ x, y ∈ RB, ∀ t, s ∈ [0, T ] F (s, y) ⊂ F (t, x)+k F ( x-y +|t-s|)B
By augmenting the dynamics, our results encompass those of [START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF]. As a matter of fact, let K and C be two closed subsets of R n . We define the augmented system x (t) ∈ F (x) under state constraints K and with target Ĉ as

         K = R + × K, Ĉ = R + × C x(•) = (τ (•), x(•)) F (x) = (1, F (x)) x(0) = (0, x 0 )
As τ (•) = 1 and K and Ĉ are unbounded on the right in the time variable, Assumptions 1, 3, 4 and 5 on F , K and C jointly imply Assumptions 1, 2, 3, 4 bearing on F , K and Ĉ. So we may apply Theorem 2 to the augmented system. This shows that Capt F ( K, Ĉ) is open in K for the relative Euclidean topology of R + × R n which is stronger than the Cartesian product topology. Furthermore the minimum time functions coincide for the two systems. We obtain therefore the conclusions of Theorem 2 for the original nonautonomous system.

In the proof of Theorems 1 and 2, a key ingredient, namely [3, Theorem 2.3], was proven for nonautonomous differential inclusions when F (•, x) is absolutely continuous from the left. As a consequence, our results could eventually be extended to this class of systems.

Weakening the hypotheses

Among the other hypotheses, few could be relaxed. Indeed Assumptions 1 and 2 are fairly general and related to the global existence of solutions of (2) and to their Lipschitz dependence on initial conditions. Hence, they could hardly be weakened when we seek Lipschitz regularity.

Assumption 4 cannot be replaced by Assumption 3 expressed for C instead of K, as shown in (counter)-Example 3 below, so we require a jointly inward-pointing condition on K and C. 

= Hyp(x 1 → 1 -x 2 1 )
, where Hyp stands for the hypograph. It is clear that K and C satisfy inward-pointing conditions with respect to F , while

C ∩ K does not. Furthermore Capt F (K, C) = K ∩ ([-1, 1] × R)
is closed in K and τ min is discontinuous on K. In other words, for some initial conditions, an infinitesimal perturbation may impede reaching the target.

We cannot either drop altogether assuming inward-pointing conditions on C. Indeed, the problem without state constraints is a special case of a state-constrained problem. So the necessary and sufficient conditions from [11, Theorem 2.1] have to remain valid. Let Γ = Graph C(•) where (C(t)) t≥0 is a moving target. In the simpler case of F (•, x) being continuous and F (t, •) being locally Lipschitz, the necessary condition for the local Lipschitzianity of the minimum time, as shown in [11, Corollary 2.1, Theorem 3.1] can be stated as follows3 : for every compact set G ⊂ R + × R n , there exists > 0 such that, for every (t, x) ∈ ∂Γ ∩ G,

sup (p 0 ,p)∈N Γ (t,x)∩S n min v∈F (t,x) p 0 + p, v ≤ - (5) 
However, if the set K is invariant under F (i.e. for any x 0 ∈ K all the solutions of the differential inclusion (2) are feasible), then no inward-pointing condition on K is required as all the trajectories are already feasible. Nevertheless we still need a strict inward-pointing condition on C, such as (5).

Considering point targets

Originally, [START_REF] Petrov | On the Bellman function for the time-optimal process problem[END_REF] considered point targets (i.e. C = {x}) and devised a necessary and sufficient condition (0 ∈ Int(co F (x))) for the Lipschitz continuity of the minimum time in a neighborhood of x, in the case without constraints. Since then, research focused mainly on inward-pointing conditions which preclude point targets as discussed in Remark 3. We show below that for point targets x ∈ Int K, we still have the results of Theorems 1 and 2. Whenever x ∈ ∂K, it is still an open question as to formulating sufficient conditions for local Lipschitzianity of the minimum time.

We begin with an extension of [8, Theorem 4.1] to differential inclusions without state constraints. Proposition 1. Let x ∈ R n and suppose that 0 ∈ Int(co F (x)). Then, under Assumptions 1 and 2, the minimum time function τ min to reach the target x without state constraints has the following property:

∃ δ > 0, k > 0, ∀ x ∈ (x + δB), τ min (x) ≤ k x -x (6) 
A proof of Proposition 1 appears in the next section. We first state our result for point targets x ∈ Int K. Proposition 2. Let x ∈ Int K and suppose that 0 ∈ Int(co F (x)). Then, under Assumptions 1, 2 and 3, τ min satisfies [START_REF] Friedman | Existence of Value and of Saddle Points for Differential Games of Pursuit and Evasion[END_REF] and is locally Lipschitz continuous on Capt F (K, {x}), which is open in K.

Proof of Proposition 2:

Fix η > 0 such that (x + ηB) ⊂ Int K. Apply Proposition 1 to the system (2) without constraints, this gives δ 0 > 0 and k > 0 such that, for any > 0 and any x ∈ (x + δ 0 B), there exists τ ∈ [0, k x -x + ] and an F -trajectory y(•) defined on [0, τ ] satisfying:

y(0) = x y(τ ) = x (7) 
Let A > 0 be as in Assumption 2. Fix any δ ∈]0, δ 0 ] and > 0 satisfying:

(δ + (kδ + ) • (A + A x )) e A(kδ+ ) ≤ η
Take x ∈ (x + δB) and consider τ and y(•) as in [START_REF] Motta | Minimum Time with Bounded Energy, Minimum Energy with Bounded Time[END_REF]. Then for any t ∈ [0, τ ] we have:

x -y(t) ≤ x -x + x -y(t) ≤ δ + t 0 y (s) ds ≤ δ + t 0 (A + A x + A x -y(s) )ds ≤ δ + τ (A + A x ) + A t 0
x -y(s) ds Using Gronwall's lemma, we get that for any t ∈ [0, τ ], as τ ≤ kδ +

x -y(t)

≤ (δ + τ (A + A x )) e Aτ ≤ η Consequently y([0, τ ]) ⊂ Int K, so y(•) is feasible.
As is arbitrary, we get that the minimum time with state constraints coincides on (x+δB) with the minimum time without state constraints, and that both are therefore Lipschitz continuous on (x + δB). The results of Theorem 2 follow immediately, which concludes the proof.

Proofs

Proof of Theorem 1: This proof is partially inspired by [4, pp. 239-243] where the result was proven for a control system without state constraints. The proof differs however due to Assumption 4 which is weaker than in [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF] as it bears on co F rather than F , and as we consider a general differential inclusion rather than a control system. Moreover the presence of constraints requires to design feasible trajectories (i.e. respecting the state constraints). This leads to applying both the celebrated relaxation theorem and a "correction" theorem [3, Theorem 2.3] to build F -trajectories staying in K.

Fix any R > 0. Let k F > 0 such that:

∀ x, y ∈ 2RB, F (y) ⊂ F (x) + k F x -y B Let c F := 5nk F and define M = n + sup x∈2RB sup v∈F (x) v .
By Assumptions 3 and 4 and [3, Lemma 5.3], there exists ∈]0, 1], η 0 > 0 such that:

∀ x ∈ (∂(C ∩ K) + η 0 B) ∩ 2RB ∩ C ∩ K, ∃ v ∈ co F (x), ∀y ∈ (x + η 0 B) ∩ C ∩ K, y + [0, ](v + B) ⊂ C ∩ K (8)      ∀ x ∈ (∂C ∩ ∂K + η 0 B) ∩ 2RB ∩ C ∩ K, ∃ v ∈ co F (x), ∀y ∈ (x + η 0 B) ∩ K, y + [0, ](v + B) ⊂ K ∀z ∈ (x + η 0 B) ∩ C ∩ K, z + [0, ](v + B) ⊂ C ∩ K. ( 9 
)
In order to use Gronwall's lemma later on, we require a technical condition on , which has to be chosen small enough as to satisfy:

e c F /(16M 2 ) ≤ 8M R ( 10 
)
Since co(F ) is locally Lipschitz continuous, there exists η 1 > 0, such that for every x ∈ ∂C ∩ K ∩ 2RB and ṽ ∈ co F (x)

∀ x ∈ (x + η 1 B), ∃ v ∈ co F (x), v -ṽ ≤ /4. ( 11 
)
Let η := min(η 0 , η 1 , R)/2. For any δ ∈]0, η/3], we now define the following sets:

∆ = ∂C ∩ ∂K ∩ 2RB C = (∂C ∩ K ∩ 2RB) \(∆ + η 2 B) ρ = inf x∈ C d ∂K (x) C δ = ∂C ∩ K + δB Cδ = C δ ∩ K ∩ 3R 2 B \(∆ + ηB) ρδ = inf x∈ Cδ d ∂K (x)
where, by convention, ∅ + B = ∅. The initial conditions x 0 of interest are in C δ ∩ K ∩ RB, hence they either belong to (∆ + ηB) or to Cδ .

Claim 1. Whenever Cδ = ∅, ρ is finite, independently of ∆ being empty or not.

Proof of Claim 1:

Suppose Cδ = ∅ and let x ∈ Cδ ⊂ C δ . Fix any x ∈ ∂C ∩ K such that x -x ≤ δ. As δ ≤ η 3 ≤ R 6 and x ∈ 3R 2 B, we have that x ∈ (x + δB) ⊂ 2RB. Further, d ∆ (x) ≥ d ∆ (x) -x -x ≥ η -δ > η/2. Therefore x ∈ C, implying it is not empty. If ∆ = ∅, by definition, ρ > 0. If ∆ = ∅, then C = ∂C ∩ K ∩ 2RB is compact and C ∩ ∂K = ∅, so ρ > 0. In both cases, as Cδ ⊂ C + δB, ρδ ≥ ρ -δ.
We now define the key constants that the proof of Theorem 1 will require:

k 0 := 4/ γ := 1 -16M 2 k := 2 (1 + γ) γ := 1 + γ 2 Notice that k(1 -γ) = k(1 -γ) 2 = (16M ) 2 . ( 12 
) Define δ := min 1, η 3 , ρ 4 + 16k 0 M , 8c F M , R 32kM . ( 13 
)
As δ ≤ 1, we may replace by δ in [START_REF] Soravia | Pursuit-Evasion Problems and Viscosity Solutions of Isaacs Equations[END_REF].

Let us show that for any x 0 ∈ (C δ ∩ K ∩ RB), we can define, for j ∈ N, a feasible Ftrajectory y j (•) on [0, t j ] with t j > 0, satisfying the following properties for d(x) := d C∩K (x)

x j+1 := y j+1 (0) = y j (t j ) ∈ 3R 2 B ∞ j=0 t j ≤ 16kd(x 0 )
and the two inequalities

d(x j ) ≤ γj d(x 0 ) x j -x 0 ≤ 16M j-1 k=0 γk d(x 0 ). ( 14 
)
Let us first make sure that the (x j ) j satisfying (14) belong to 3R 2 B, by applying [START_REF] Wolenski | Proximal Analysis and the Minimal Time Function[END_REF]. Indeed

x j ≤ x 0 + x j -x 0 ≤ R + 16M 1 1 - γ d(x 0 ) ≤ R + 16kM δ ≤ 3R 2 .
Let j ∈ N. The inequalities ( 14) are obviously satisfied for j = 0, so we will proceed by induction on j. Assume we have already constructed our trajectories up to step j and have not yet reached C (i.e.

x j / ∈ C). Let xj ∈ ∂(C ∩ K) be such that d(x j ) = x j -xj (i.e. xj ∈ Π C∩K (x j )).
As

x j ∈ C δ ∩ K ∩ (3R/2)B = Cδ ∪ (∆ + ηB),
we distinguish two cases. In Case 1, we consider the situation where ∆ = ∅ and x j ∈ (∆ + ηB). If the x j+1 that we design below belongs to Cδ , then we move to Case 2, otherwise the induction proceeds according to Case 1. In Case 2, x j ∈ Cδ and we build by induction (x m ) m≥j+1 ∈ C δ . Owing to Claim 1, we will show that, for any m ≥ j + 1 and t ∈ [0, t m ], d ∂K (y m (t)) > 0. This latter property ensures that once the designed trajectory is far enough from ∂K (i.e. x j ∈ Cδ ), it stays so, and we can focus on reaching C. Case 1: Suppose ∆ = ∅ and x j ∈ (∆ + ηB)\C, then take any xj ∈ ∆ ∩ B(x j , η). Consider ṽj ∈ co F (x j ) satisfying [START_REF] Rockafellar | Clarke's tangent cones and the boundaries of closed sets in R n[END_REF]. As xj ∈ ∆ ⊂ C ∩ K ∩ 2RB,

x j -xj = d(x j ) ≤ x j -xj ≤ η xj -xj ≤ xj -x j + x j -xj ≤ 2η ≤ min(η 1 , η 0 ) xj ≤ x j + x j -xj ≤ 3R 2 + η ≤ 2R
we may thus apply [START_REF] Veliov | Lipschitz continuity of the value function in optimal control[END_REF] at xj and xj (instead of x and x) and then at xj and x j . In this way, we get vj ∈ co F (x j ) and v j ∈ co F (x j ) both satisfying [START_REF] Veliov | Lipschitz continuity of the value function in optimal control[END_REF] ṽj

-vj ≤ /4 v j -vj ≤ /4
and the second (resp. first) line of ( 9) at xj and xj (resp. at xj and

x j ) xj + [0, ](ṽ j + B) ⊂ C ∩ K x j + [0, ](ṽ j + B) ⊂ K which implies that xj + [0, ](v j + /2B) ⊂ C ∩ K x j + [0, ](v j + /2B) ⊂ K. Using that (x j -xj ) ∈ N C∩K (x j )\{0}, relation (3) gives v j , x j -xj ≤ -x j -xj /2.
Hence we have shown the two following formulas between x j and v j :

v j , x j -xj ≤ -x j -xj /2 x j + [0, ](v j + /2B) ⊂ K (15)
Let us now design a trajectory starting at x j . Define the duration t j > 0 as follows

t j := 16M 2 d(x j ) (16) 
By [1, Theorem 9.5.3], there exists a c F -Lipschitz selection f from the set-valued map co F defined on 2RB, satisfying v j = f (x j ). Let yj (•) be the unique solution of the differential equation

x (t) = f (x(t)) on [0, t j ] with initial condition x(0) = x j . Let w j (•) := f (y j (•)) on [0, t j ]. Then yj (t) = x j + t 0 w j (s)ds (17) 
Furthermore we have w j (s) -v j ≤ c F yj (s) -x j , and

yj (t) -x j ≤ tv j + t 0 w j (s) -v j ≤ M t j + c F t 0 yj (s) -x j
We apply Gronwall's lemma as yj (t) is continuous and we take into account [START_REF] Soravia | Pursuit-Evasion Problems and Viscosity Solutions of Isaacs Equations[END_REF], recalling that δ ≤ 1

yj (t) -x j ≤ M t j e c F t j ≤ δ 16M e δc F /(16M 2 ) ≤ R/2 (18)
Therefore yj (t) ∈ 2RB, which implies that w j (t) ∈ M B. Thus (17) gives yj (s)-x j ≤ M t j .

As M ≥ 1 and ≤ 1:

yj (t) -x j -tv j ≤ t 0 w j (s) -v j ≤ c F t 0 yj (s) -x j ≤ c F M t j • t ≤ c F M δ 16M 2 • t ≤ c F M 16M 2 8c F M • t ≤ 2 • t
Thanks to (15), this ensures that yj (t) ∈ (x j + t(v j + /2B)) ⊂ K. We have so far designed a feasible co F -trajectory. Applying (15), we obtain furthermore for any t ∈ [0, t j ]:

1 2 d dt yj (t) -xj 2 = w j (t), yj (t) -xj = v j , x j -xj + w j (t), yj (t) -x j + w j (t) -v j , x j -xj ≤ -2 x j -xj + M yj (t) -x j + c F yj (t) -x j x j -xj ≤ -2 d(x j ) + (M + c F d(x j ))M t ≤ -2 + c F M t j d(x j ) + M 2 t j = -2 + c F δ M 16 + 16 d(x j ) ≤ - 3 8 d(x j ) ≤ -32 d(x j ) = - M 2 t j 2
Consequently, by integration:

d 2 (y j (t j )) ≤ yj (t j ) -xj 2 ≤ d 2 (x j ) -M 2 t 2 j = 1 -M 2 16M 2 2 d 2 (x j ) = γ 2 d 2 (x j )
However we cannot set yj (t j ) as the next x j+1 , as it is only a co F -trajectory for the time being. In order to apply the relaxation theorem, we need a globally Lipschitz continuous set-valued map. Fix any j > 0. Let F be defined in any x ∈ R n as F (x) := F (Π (2R+ j )B (x)) where Π (2R+ j )B (x) is the unique projection of x into (2R + j )B. Since the projection on a ball is Lipschitz, we deduce that F is globally Lipschitz. As yj ([0, t j ]) ⊂ 2RB, yj (•) is also an F -trajectory. Thanks to the relaxation theorem, we may thus build an F -trajectory ŷj (•) starting from x j and enjoying the following property:

ŷj -yj L∞([0,t j ]) ≤ j
As yj ([0, t j ]) ⊂ 2RB, ŷj ([0, t j ]) ⊂ (2R + j )B, on which F and F coincide. Hence ŷj (•) is an F -trajectory.

If ŷj ([0, t j ]) ⊂ K, then we keep it as our feasible F -trajectory. Otherwise, if it leaves K even during a short time, we correct it into an F -feasible trajectory y j (•) staying in Int K, through [3, Theorem 2.3] which we apply on 2RB and time interval [0, t j ] ⊂ [0, t max ] with t max = δ/(16M 2 ) ≥ t j . This implies the existence of a constant L ≥ 1 (depending only on R and F ) with the following property (as yj ([0, t j ]) ⊂ K):

y j -ŷj L∞([0,t j ]) ≤ L d K (ŷ j (•)) L∞([0,t j ]) ≤ L ŷj -yj L∞([0,t j ]) ≤ L j d(y j (t j )) ≤ d(ŷ j (t j )) + y j (t j ) -ŷj (t j ) ≤ γd(x j ) + L j
The above relations remain true even if ŷj ([0, t j ]) ⊂ K. We set j := 1-γ 2L d(x j ) ≤ δ and x j+1 := y j (t j ), thus:

d(x j+1 ) ≤ (γ + 1 -γ 2 )d(x j ) = γd(x j )
Moreover we derive from ( 14) and ( 16):

x j+1 -x 0 ≤ x j -x 0 + x j+1 -x j ≤ 16M j-1 k=0 γk d(x 0 ) + M t j ≤ 16M j k=0 γk d(x 0 )
If x j+1 ∈ (∆ + ηB)\C, then we remain in Case 1. Otherwise, if x j+1 ∈ Cδ \C, we move to Case 2.

Case 2: Suppose that x j ∈ Cδ \C. The trajectory construction is similar to Case 1 and even simpler as we do not have to consider the point xj . As η ≥ δ, we can still select vj ∈ co F (x j ) and v j ∈ co F (x j ) satisfying ( 8) and v j -vj ≤ /4. We define t j and yj (•) as in (16), and apply (18). This leads to the same computations for d dt yj (t) -xj 2 and for d(y j (t j )). We define again through relaxation an F -trajectory ŷj (•) with the same j and we set x j+1 = ŷj (t j ) ∈ C δ , which satisfies (14). Then repeating the above steps, we build a sequence (x m ) m≥j+1 ∈ C δ connected by trajectories ŷm (•).

We no longer have to check the feasibility of such ŷm (•). As a matter of fact, recall that owing to Claim 1, as Cδ = ∅, ρ is finite. Let

m ≥ j + 1. Using that γ ≤ γ ≤ 1, k ≤ k 0 and d(x j ) ≤ δ ≤ ρ/(4 + 16k 0 M ), we deduce d ∂K (ŷ m (t)) ≥ d ∂K (x j ) -ŷm (t) -x j ≥ ρδ -ŷm (t) -ym (t) -ym (t) -xm -xm -x m -x m -x j ≥ ρ -δ -L m -2d(x m ) -16M (1 -γ) d(x j ) ≥ ρ -δ - 1 -γ 2 d(x m ) -2γ m-j d(x j ) -16kM d(x j ) ≥ ρ -δ - 1 2 γm-j d(x j ) -2d(x j ) -16kM d(x j ) ≥ ρ -( 7 2 + 16k 0 M )δ > 0
The above computation ensures that whenever an x j is both close enough to C and far enough from ∂K, we can focus only on reaching C.

To conclude, we have built a bounded sequence (x j ) j≥0 connected by feasible Ftrajectories y j (•), satisfying both (14) and: lim j→+∞ d(x j ) = 0 Using [START_REF] Wolenski | Proximal Analysis and the Minimal Time Function[END_REF], define τ as follows:

τ := ∞ j=0 t j = 16M 2 ∞ j=0 d(x j ) ≤ 16M 2 1 1 - γ d(x 0 ) = 16kd(x 0 )
Concatenating all the feasible F -trajectories y j (•), we get a feasible F -trajectory y(•) starting at x 0 , defined on [0, τ ] and reaching C ∩ K at time τ . Hence assertion (4) follows:

τ min (x 0 ) ≤ τ ≤ 16kd(x 0 )
which concludes the proof, replacing 16k by k to recover (4).

Proof of Theorem 2: Let x 0 ∈ Capt F (K, C)\C and ξ > 0 such that B(x 0 , ξ)∩C = ∅. Let y 0 (•) be a feasible F -trajectory starting at x 0 and reaching C at x0 at some time τ 0 where τ

min (x 0 ) ≤ τ 0 ≤ 2τ min (x 0 ). Let x 1 ∈ K ∩ B(x 0 , ξ). Define R := ( x0 + 1) e M (2τ min (x 0 )+1)
where M := sup z∈B,t∈[0,τ 0 ] sup v∈F (y 0 (t)+z)

v Let k F be as in Assumption 2 with R defined as above. Let F be defined in any x ∈ R n as F (x) := F (Π RB (x)). Since the projection on a ball is Lipschitz with constant 1, we deduce that F is globally Lipschitz with constant k F . As y 0 ([0, τ 0 ]) ⊂ RB, y 0 (•) is also an F -trajectory. We may then apply the Filippov's existence theorem (see e.g. [1, Theorem 10.4.1, p 384]), to design an F -trajectory ŷ1 (•) on [0, τ 0 ] starting from x 1 such that:

y 0 -ŷ1 L∞([0,τ 0 ]) ≤ x 0 -x 1 e k F τ 0 ≤ c • ξ where c := e k F (2τ min (x 0 )+1)
Take from now on ξ ≤ 1/c. Therefore, for any t ∈ [0, τ 0 ], ŷ1 (t) ∈ (y 0 (t) + B) and in particular ŷ1 (τ 0 ) ∈ (x 0 + B)), from which we derive that ŷ1 ([0, τ 0 ]) ⊂ RB, on which F and F coincide. We thus conclude that ŷ1 (•) is an F -trajectory. If it stays within K, we keep it. Otherwise we apply [START_REF] Bettiol | L ∞ estimates on trajectories confined to a closed subset[END_REF]Theorem 2.3] to retrieve an F -trajectory y 1 (•) on [0, τ 0 ] starting from x 1 and staying in K, satisfying in both cases for an L ≥ 0 (depending only on R and F ): We have thus shown that x 1 ∈ Capt F (K, C). Since x 1 is an arbitrary point in K in a neighborhood of x 0 , Capt F (K, C) is open in K.

We now repeat the above strategy for x 1 , x 2 ∈ B(x 0 , ξ/2) ∩ K. Let 1 ≥ 0. Let y 1 (•) be a feasible F -trajectory starting at x 1 and reaching C at x1 at time τ 1 ≤ τ min (x 1 )+ 1 . Then design a feasible F -trajectory y 2 (•) on [0, τ 1 ] starting from x 2 . With the same arguments as above, y 2 (τ 1 ) ∈ RB and: As the roles of x 1 and x 2 can be permuted and 1 is arbitrary, τ min (•) is Lipschitz continuous on B(x 0 , ξ/2) ∩ K.

Proof of Proposition 1:

This constructive proof is largely similar to that of Theorem 1, we thus focus only on the few differences as here K = R n and d(x) = x -x .

Let R = x +1 and define the constants k F , c F and M accordingly. Fix > 0 satisfying both B ⊂ co F (x) and [START_REF] Soravia | Pursuit-Evasion Problems and Viscosity Solutions of Isaacs Equations[END_REF], then define the other constants η 1 , k 0 , k, γ and γ as in the proof of Theorem 1. Set δ as follows

δ := min 1, η 1 6 , R 6 , 8c F M , R 32kM .
Let x 0 ∈ (x+δB), j ∈ N and suppose that ( 14) is satisfied at x j . Let vj = -(x j -x)/ x j -x . As vj ∈ co F (x), through [START_REF] Veliov | Lipschitz continuity of the value function in optimal control[END_REF], we can fix a v j ∈ co F (x j ) such that v j -vj ≤ /4. Hence v j , x j -x ≤ vj , x j -x + x j -x v j -vj ≤ -2 x j -x and we recover (15). Let t j as in (16), and construct similarly ŷj (•) through (17) and relaxation. This defines the next point x j+1 = ŷj (t j ) for the induction. In conclusion, the bounded sequence (x j ) j≥0 converges to x, which is reached in time less than 16k x 0 -x by an F -trajectory starting at x 0 .

Example 3 .

 3 Consider a modification of Example 1, where the controller over the nozzle of the landing module broke. The dynamics are now x ∈ F (x) = {(0, ±1)} ⊂ R 2 , the constraints are still K = R × R + , and the target is now C

y 0 -y 1

 1 L∞([0,τ 0 ]) ≤ y 0 -ŷ 1 L∞([0,τ 0 ]) + ŷ1 -y 1 L∞([0,τ 0 ]) ≤ (1+L) y 0 -ŷ 1 L∞([0,τ 0 ]) ≤ c(1+L)ξLet δ > 0, k > 0 and d(•) be as in[START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF]. We choose ξ such that c(1 + L)ξ ≤ min(1/k, δ, 1). As y 1 (τ 0 ) ∈ (C + δB) ∩ K ∩ RB, we deduce from the dynamic programming principle that:τ min (x 1 ) ≤ τ 0 + τ min (y 1 (τ 0 )) ≤ τ 0 + kd(y 1 (τ 0 )) ≤ 2τ min (x 0 ) + ck(1 + L)ξ ≤ 2τ min (x 0 ) + 1

d(y 2

 2 (τ 1 )) ≤ y 2 (τ 1 ) -x1 ≤ c(1 + L) x 2 -x 1 ≤ c(1 + L)ξ ≤ δ τ min (x 2 ) ≤ τ 1 + τ min (y 2 (τ 1 )) ≤ τ min (x 1 ) + 1 + c(1 + L)k x 2 -x 1 .

We shall consider nonautonomous systems in Section 3.1, when F is also locally Lipschitz in the time variable.

Time-Lipschitzianity was acknowledged in[START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] as too restrictive. Nonetheless[START_REF] Cannarsa | Lipschitz continuity and local semiconcavity for exit time problems with state constraints[END_REF] also considered the case of F (t, x) = c(t, x)B where c is a bounded scalar function, globally Lipschitz in x and merely measurable in t.

The original condition of[START_REF] Veliov | Lipschitz continuity of the value function in optimal control[END_REF] bore on the proximal normal cone to Γ but, by taking the limit and the closed convex hull, it can be restated for the Clarke normal cone.
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