
HAL Id: hal-03490358
https://hal.science/hal-03490358

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Non-local modeling with asymptotic expansion
homogenization of random materials

Sami Ben Elhaj Salah, Azdine Nait-Ali, Mikael Gueguen, Carole
Nadot-Martin

To cite this version:
Sami Ben Elhaj Salah, Azdine Nait-Ali, Mikael Gueguen, Carole Nadot-Martin. Non-local modeling
with asymptotic expansion homogenization of random materials. Mechanics of Materials, 2020, 147,
pp.103459 -. �10.1016/j.mechmat.2020.103459�. �hal-03490358�

https://hal.science/hal-03490358
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Non-local modeling with asymptotic expansion homogenization of a
randomly voided material.

Sami Ben Elhaj Salaha, Azdine Nait-Alia, Mikael Gueguena, Carole Nadot-Martina

a Institut Pprime, UPR CNRS no 3346, CNRS Université de Poitiers ENSMA, Physics and Mechanics of
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Abstract

The aim of this study is to build a non-local homogenized model for three-dimensional composites
with inclusions randomly embedded within a matrix according to a stochastic point process w =
(wi)i∈N in a bounded open set of R3 associated with a suitable probability space (a, A, P ) as defined
in [1] and [2]. Both phases were linear elastic. Asymptotic expansion homogenization (AEH) was
revisited by taking into account the stochastic parameter (w) representing the inclusion centers
distribution. The macroscopic behavior was then studied by combining the variational approach
with the mean-ergodicity. At the end, the advanced approach makes naturally emerge non-local
terms (involving the second displacement gradient) as well as a strong microstructural content
through the presence of the characteristic tensors in the expression of the homogenized elastic
energy. Microstructures with a high contrast between constituents Young′s modulus leading to
non-local effects were considered to test the model. Virtual microstructures were first generated
with a fixed, simple, pattern before considering real microstructures of Ethylene Propylene Dien
Monomer (EPDM) containing cavities in order to envision morphological situations with increasing
complexity.
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1. Introduction

The best known non-local models have been developed in the past by [3], [4] and [5]. These
models are based on the theory that the response of a material point depends on the deformation
of this point as well as of its neighboring points. Non-local phenomena are much studied especially
in the case of composites. Phenomenological models are constructed according to the composite
morphology [6]. Non-local theory can be applied to materials with different behavior laws. In
the case of isotropic linear elasticity, it is assumed that the strain gradient also plays a role in
the material response in addition to the strain, see [7]. In this reference, it is shown that the
mathematical formulations based on the second gradient of the displacement or on the first gradient
of the (symmetric) strain tensor are equivalent [8]. The dual quantities of the first and second
gradients of the displacement field in the work density of internal forces, W i, are the second rank
simple force stress tensor σ and the third rank double force stress tensor or hyperstress tensor S.

W i(x) = σ : ∇u+ S
...∇∇u (1)

In the case of damage, the localization process requires the regularization of the stress-softening
term. A possible choice is to regularize the model through the introduction of a gradient term of
the damage variable. In the variational approach of damage mechanics, such a regularization can be
achieved in an elegant way by adding a non-local counterpart to the local part of the total energy
which depends on the gradient of the damage variable. It is mandatory to introduce the parameter
of internal length in such regularized damage models. In the model of Marigo et al. [9], the energy
density is the sum of three terms (see Eq. (2)): the stored elastic energy ψ(ε, α), the local part of
the dissipated energy by damage w(α) and its non-local part 1

2w1l
2.g.g. The triplet (ε, α, g) denotes

respectively the strain tensor, the damage parameter and the gradient vector of damage (g = ∇α).

W 1(ε, α, g) = ψ(ε, α) + w(α) +
1

2
w1l

2g.g (2)

Like all softening laws, the Mazars [10] local model poses difficulties related to the phenomenon
of deformation localization. Physically, the heterogeneity of the considered microstructure induces
an interaction between the formed cracks [11]. The strains are located in a thin band, called
localization band, resulting in the formation of macrocracks. Thus, the stress field at the physical
point cannot be efficiently described only by the characteristics at the point but must also take
into consideration its environment. Moreover, no indication about the cracking scale is included.
Therefore, no information is given on the width of the location band. The localization problem is
poorly formulated mathematically as softening causes a loss of ellipticity of the differential equations
describing the deformation process [12]. The numerical solutions do not converge to physically
acceptable solutions despite mesh refinements. A regularization method is, therefore, necessary to
obtain a better synergy between mathematical formulation and physical phenomenon. The choice is
to regularize the strain by adding the strain gradient term, and thus to use a regularized deformation
tensor ε̄ which verifies the characteristic equation (see [13]):

ε = ε̄− L2
c∇2ε̄ (3)

In Marigo et al. [9] and Mazars and Bazant [10] models, the failure is described by means of internal
lengths l (see Eq. (2)) and Lc (Eq. (3)) which are not explicitly linked to any material parameters.
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In this context, the aim of the present paper is to develop a non-local homogenized model in
the elastic case by combining the second gradient theory presented in [7] and the AEH in order to
derive non-local parameters related to the microstructure.

The aim is to apply the asymptotic expansion homogenization (AEH) analysis to the prob-
abilistic framework thanks to the introduction of the stochastic parameter w in R3. For every
w = (wi)i∈N, the convex shape Sη(wi) is formed and, therefore, w 7→ Sη(w) is a random set in
R3. The AEH analysis is first overviewed in the context of engineering multi-scale problems, then
applied in the case of a probabilistic process until revealing the emergence of a non-local term at the
macroscopic scale. Some of the main aspects of the higher order terms of the asymptotic expansion
of the displacement field are also presented. A variational formulation is developed in section 3.
Theoretical developments are completed by numerical simulations for the progressive evaluation of
both the local and non-local parts of the elastic energy in the stochastic case (ergodicity theory).
In the three-dimensional case, the relevance of the advanced modelling is assessed for two different
types of microstructures with increasing complexity in terms of morphology. Both are characterized
by inclusions randomly embedded within a matrix according to a stochastic point process. The
first ones are virtual generated from a fixed pattern of spherical inclusions while the second ones
are real EPDM microstructures containing cavities. Both are characterized by inclusions randomly
embedded within a matrix according to a stochastic point process.

2. Asymptotic Expansion Homogenization

2.1. Generalities

The asymptotic expansion homogenization (AEH) method was developed by Francfort [14] for
the case of linear thermoelasticity in periodic structures. The AEH method has been employed
to calculate the homogenized thermomechanical properties of composite materials (elastic moduli
and coefficient of thermal expansion) [15, 16]. The detailed numerical modeling of the mechanical
behavior of composite material structures often involves high computational costs. The use of
homogenization methodologies can lead to significant improvements. For example, this technique
allows the substitution of heterogeneous medium with an equivalent homogeneous medium (see Fig.
1) including second-order displacement gradients [17, 18, 19], thereby allowing macroscopic behavior
law obtained from microstructural information. The AEH method is both an excellent approach
to solve problems involving physical phenomena in continuous media and a useful technique to
study the mechanical behavior of structural components built from composite materials. The main
advantages of this methodology lie on the fact that (i) it allows a significant reduction of the problem
size (number of degrees of freedom) and (ii) it has the capability to characterize stress and strain
microstructural fields. In fact, unlike mean field homogenization methods, the AEH leads to specific
equations that characterize these fields through the localization process.
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Fig. 1. Principle of asymptotic expansion homogenization method.

2.2. Application to a probabilistic framework

In this section, one revisits the AEH approach for random linear elastic composites defined by
a stochastic point process. One considers a heterogeneous material associated to a material body
Ω. Its microstructure is constituted of inclusions randomly embedded within an elastic matrix. In
classical homogenization, the original heterogeneous medium can be replaced by a homogeneous
one with homogenized (so-called effective) mechanical properties provided the condition of scales
separation is fulfilled. However, in real composites, the microstructural scale effects may result in
specific non-local phenomena. Scale effects can be systematically analyzed by means of the higher
order AEH method. According to this approach, physical and mechanical fields in a composite are
represented by multi-scale asymptotic expansions in powers of a small parameter η = l

L , where l is
the size of the representative elementary volume and L is the sample/structure size. η characterizes
the heterogeneity of the composite structure. This leads to a decomposition of the final solution
into macro and microcomponents. we also suppose to be in the case of periodic condition on the
scale of REV Y . Furthermore, application of the volume-integral homogenizing operator provides
a link between the micro and macroscopic behaviors of the material and allows the evaluation of
effective properties.

In order to separate macro and microscale components of the solution, slow (x) and fast (y)
coordinate variables are introduced with y = x

η . Using both, x and y variables, the following chain
rule of functional differentiation is used:

d(.)

dx
=
∂(.)

∂x
+

1

η

∂(.)

∂y
(4)

2.2.1. Local problem formulation

The local heterogeneous problem is described by the following equations:

div(ση(x,w)) + f(x,w) = 0

ση(x,w) = C(
x

η
,w) : εη(x,w) x ∈ Ω

εη(x,w) = sym (∇uη(x,w))

Periodic boundary conditions

(5)

where the random distribution of the inclusions is represented by the parameter w. This param-
eter is the center of inclusions randomly distributed in R3 according to a stochastic point process
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associated with a suitable probability space (a, A, P ) (see[2]). Displacement field is denoted by
uη(x,w) whereas f(x,w) denotes the source terms. The latter will be neglected for all numerical
simulations performed in this study. The linear elasticity tensor is noted by C(xη , w), which is ho-
mogeneous for each phase. The interfaces between the inclusions and the matrix are considered
perfect. Thus, both the displacement field uη(x,w) and the stress vector tη(x,w) = ση(x,w).n
across the interfaces with unit normal vector n are continuous. Operators div and ∇ denote the
partial derivative divergence and gradient, respectively.

The differential operations are divided into two parts: ∇(.) = ∇x(.) + 1
η∇y(.) and div(.) =

divx(.) + 1
ηdivy(.) where the indexes x and y indicate that the derivatives are taken with respect to

the first (x) and second (y) variables. The problem is therefore rewritten as:

divx(ση(x,w)) +
1

η
divy(σ

η(x,w)) + f(x,w) = 0

ση(x,w) = C(
x

η
,w) : εη(x,w) x ∈ Ω

εη(x,w) = sym
(

(∇xuη(x,w)) +
1

η
(∇yuη(x,w))

)
Periodic boundary conditions

(6)

2.2.2. Asymptotic expansion of the displacement field

Following the principle of the AEH method, the displacement field can be approximated at the
macroscale Ω and microscale Y with the following asymptotic expansion in η. More precisely, in all
that follows, Y corresponds to the REV.

uη(x,w) = u0(x,
x

η
, w) + η1u1(x,

x

η
, w) + η2u2(x,

x

η
, w) + η3u3(x,

x

η
, w) + ...

=
n=+∞∑
n=0

ηn un(x,
x

η
, w)

(7)

where each term un(x, xη , w) is a function of both variables x and y and depends on the stochastic

point process (w). The first term u0 represents the homogenized part of the solution; it changes
slowly within the whole material sample. The next terms un, n=1,2,3,..., provide higher order
corrections and describe local variations of the displacement at the scale of heterogeneities. Using
the displacement asymptotic expansion in Eq. (6)3 leads to the strain tensor as a function of
macroscopic (x) and microscopic (y) variables. It may be expanded in a series of powers of small
(material) parameter η = x/y:

εη(x,w) =
1

η
εy(u

0) + εx(u0) + εy(u
1) + η[εx(u1) + εy(u

2)] + η2[εx(u2) + εy(u
3)] + ...

=
1

η
εy(u

0) +
n=+∞∑
n=0

ηn εn(un, un+1)

(8)

Where εn(un, un+1) = εx(un) + εy(u
n+1) with εx and εy denoting the symmetric gradients with

respect to the slow and fast variables (εx = (∇x +∇tx)/2, εy = (∇y +∇ty)/2). In Eq. (8), the strain
field must be finite when η → 0. This suggests that:
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εy(u
0) = 0 and u0(x,

x

η
, w) = U0(x) (9)

We can conclude that the first term u0(x, xη , w) in Eq. (7) does not depend on the fast variable

(∂u0/∂y = 0).
The main objective of the AEH method is to postulate the following ansatz for the stress tensor

σ:

ση(x,w) = σ0(x,
x

η
, w) + η1σ1(x,

x

η
, w) + η2σ2(x,

x

η
, w) + η3σ3(x,

x

η
, w) + ...

=

n=+∞∑
n=0

ηn σn(x,
x

η
, w)

(10)

Using Eq. (10), the equilibrium equation (Eq. (6)1) can be written as follows:

1

η
divy(σ

0) +
n=+∞∑
n=0

ηn [divx(σn) + divy(σ
n+1)] + f(x,w) = 0 (11)

By identification, the source terme (f(x,w)) is associated to order 0. This leads to the following
differential equations: {

divy (σ0) = 0

divx (σ0) + divy (σ1) + f(x,w) = 0
(12)

2.2.3. Homogenization problems and their solutions

For successive values of n (i.e for successive orders of correction), it is possible to establish
hierarchical differential equation systems provided the limit of the equations exists when η → 0.
In this paper, this general methodology is illustrated until the order 2 and associated solutions in
terms of displacement are obtained. Then, the general solution is obtained by summation of the
previous solutions.

Problem of order 0
The first hierarchical equation system (without correction) is written as follows:

σ0 = C(
x

η
,w) : (εx(u0) + εy(u

1))

divx(σ0) + divy(σ
1) + f(x,w) = 0

Periodic boundary conditions

(13)

where u0 is given by Eq. (9) and εx(u0) = εx(U0) = E0(x), E0(x) being the macroscopic strain
in order 0.

Problem of order 1
The second hierarchical equation system (first order of correction) is written as follows:
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
σ1 = C(

x

η
,w) : (εx(u1) + εy(u

2))

divx(σ1) + divy(σ
2) = 0

Periodic boundary conditions

(14)

The problem associated with order 1 can be interpreted as an elasticity problem that is linear in
E0(x) charaterizing the loading applied. Accordingly, the solution of this problem may be written
as follows:

u1(x,
x

η
, w) = U1(x) + χ0(y, w) : E0(x) (15)

Where U1(x) is a constant translation term with respect to the x variable. χ0(y, w) denotes the
elastic corrector tensor or characteristic function whose volume average vanishes, < χ0(y, w) >Y =0.
The strain field ε0, is thus given by:

ε0
(
u0, u1

)
= E0(x) + εy(u

1) = L0(y) : E0(x) (16)

Where L0(y), called localization tensor, is defined by:

L0(y) = 11 +
1

2

{
∂χ0(y, w)

∂y
+
∂(χ0(y, w))t

∂y

}
(17)

where 11 denotes the fourth-order identity tensor.

Problem of order 2
The third hierarchical equation system (second order of correction) is written as follows:

σ2 = C(
x

η
,w) : (εx(u2) + εy(u

3))

divx(σ2) + divy(σ
3) = 0

Periodic boundary conditions

(18)

The displacement field in order 1 depends on macroscopic field U1(x) and E0(x) which appear
in the second order problem as loading variables. Indeed, the problem of order 2 can be interpreted
as an elasticity problem that is linear in E1(x) = εx(U1) and ∇xE0(x). The approach is thus similar
to the previous one performed for the first order. The solution of the problem may be written as
follows:

u2(x,
x

η
, w) = U2(x) + χ0(y, w) : E1(x) + χ1(y, w)

...∇xE0(x) (19)

Where the field U2(x) is a constant translation term with respect to the x variable. χ1(y, w) is
a corrector tensor with a zero average value, < χ1(y, w) >Y = 0. With the displacement solution,
the strain field, ε1

(
u1, u2

)
, is given by the following expression:

ε1(u1, u2) = εx(u1) + εy(u
2) = L0(y) : E1(x) + L1(y)

...∇xE0(x) (20)
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Where L0(y) is defined by Eq. (17) and L1(y), called localization tensor, is given by:

L1(y) =
1

2

(
χ0 (y, w)⊗ δ + (χ0 (y, w))t ⊗ δ

)
+

1

2

{
∂χ1(y, w)

∂y
+
∂(χ1(y, w))t

∂y

}
(21)

Where ⊗ represents the tensor product operator and δ denotes the second-order identity tensor.

General solution
The solution is obtained by summing the solution fields of problems of order 0, 1, 2. According to
Eq. (9), Eq. (15) and Eq. (19), the displacement fields 0, 1, and 2 have the following expressions:

u0(x,
x

η
, w) = U0(x)

u1(x,
x

η
, w) = U1(x) + χ0(y, w) : ∇xU0(x)

u2(x,
x

η
, w) = U2(x) + χ0(y, w) : E1(x) + χ1(y, w)

...∇xE0(x)

(22)

The whole displacement field (Eq. (7)) can, therefore, be written as:

uη(x,w) = U(x) + η χ0(y, w) : E(x) + η2 χ1 ...∇xE(x) + ... (23)

Where the macroscopic displacement and strain fields have been introduced:{
U(x) = U0(x) + ηU1(x) + η2U2(x) + ...

E(x) = E0(x) + ηE1(x) + ...
(24)

3. Energy method

The behavior law at any point in a continuous medium is characterized by a strictly convex and
coercive elastic potential function. Tran et al [20] presented a formulation including deformation
gradients. Following this idea and with moreover the introduction of the stochastic parameter w,
the elastic energy is given by:

W (η)(uη) = W (u0, u1, ...) =

∫
Ω×Y

1

2

(
εη(x,w) : C(

x

η
,w) : εη(x,w)

)
dx dy (25)

By replacing the expression Eq. (8) of the strain tensor in the whole energy function Eq. (25)
and grouping the terms of the same power in η, the following expression is obtained:

W (η)(uη) = W (u0, u1, u2 , ...) =
1

η2
W (−2) +

1

η
W (−1) +W (0) + ηW (1) + η2W (2) + ... (26)

Where for the various power orders of η, it is possible to obtain the following set of equations:

Order (-2):
1

η2
W (−2)(u0) =

1

η2

∫
Ω×Y

1

2
εy(u

0) : C(
x

η
,w) : εy(u

0) dx dy (27)
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Order (-1):

1

η
W (−1)(u0, u1) =

1

η

∫
Ω×Y

[εx(u0) + εy(u
1)] : C(

x

η
,w) : εy(u

0) dx dy (28)

Order(0):

W (0)(u0, u1) =
1

2

∫
Ω×Y

[εx(u0) + εy(u
1)] : C(

x

η
,w) : [εx(u0) + εy(u

1)] dx dy −
∫

Ω×Y
f u0 dx dy

with

∫
Ω×Y

f dx dy = 0

(29)

Order(1):

ηW (1)(u0, u1, u2) = η

∫
Ω×Y

[εx(u0) + εy(u
1)] : C(

x

η
,w) : [εx(u1) + εy(u

2)] dx dy (30)

In the present work, analytical developments have been performed until the first order of cor-
rection for the energy in order to introduce the second displacement gradient which represents the
kernel of the regularized term. Now, the following subsections aim to estimate the effective proper-
ties of the heterogeneous medium. First, the common part (local part) of the energy will be detailed
through theoretical developments and evaluated with numerical simulations in a one-dimensional
case. Then, the whole model will be also evaluated by complementary theoretical developments
followed by numerical simulations for two different three-dimensional microstructures.

3.1. Local part of the energy

3.1.1. Theoretical development

The displacement fields u0 and u1 are the solutions of the minimizing problem of the quadratic
function W (0) given by Eq. (29). By substituting Eq. (22)2 for u1 in Eq. (29), the energy expression
W (0) of the order 0 for the expansion of small parameter η is given by:

W (0)(u0, u1) =
1

2

∫
Ω×Y

εx(u0) : [11 +∇yχ0(y, w)] : C(
x

η
,w) : [11 +∇yχ0(y, w)] : εx(u0) dx dy (31)

With the macroscopic deformation defined by εx(u0) = εx(U0) = E0(x), we obtain

W (0)(u0, u1) =
1

2

∫
Ω
E0(x) : A(0,0) : E0(x) dx (32)

where A(0,0) corresponds to an elastic effective tensor, given by the following expression:

A(0,0) =

∫
Y

[11 +∇yχ0(y, w)] : C(
x

η
,w) : [11 +∇yχ0(y, w)] dy (33)

More precisely, this tensor corresponds to a homogenized elasticity tensor. For its calculation it
is only necessary to know the location tensor χ0 which can be known by making several draws
and then by carrying out one of the weighted averages (by χ0) on REV Y . Note here that the
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behavior is only ’at the local level. Non-local behavior will be taken into account via the following
developments.

First, the stress and displacement field, noted respectively σ and u verify the general following
equations:

Equilibrium equation:
divx(σn)(x,w) + fη(x,w) = 0 (34)

Constitutive laws:
ση(x,w) = C(

x

η
,w) : εη(x,w) (35)

Dirichelt boundary conditions:

u(0) = 0 et u(L) = uimpo (36)

3.2. Non-local part of the energy

3.2.1. Theoretical development

The aim of this section is to evaluate the additional constitutive properties associated with a
higher order strain. The displacement fields u0, u1 and u2 are the solutions of the minimizing
problem of the quadratic function W (1) given by Eq. (30). By substituting Eq. (22)2 and (22)3

for u1 and u2 in Eq. (30), the energy expression W (1) of the order 1 for the expansion of small
parameter η is given by:

ηW (1)(u0, u1, u2) = η

∫
Ω×Y

[εx(u0) : (11 +∇yχ0(y, w))] : C(
x

η
,w) : [(11 +∇yχ0(y, w)) : ∇xU1(x)] dx dy

+ η

∫
Ω×Y

[εx(u0) : (11 +∇yχ0(y, w))] : C(
x

η
,w) : χ0(y, w) : ∇xεx(u0) dx dy

+ η

∫
Ω×Y

[εx(u0) : (11 +∇yχ0(y, w))] : C(
x

η
,w) : ∇yχ1(y, w)

...∇xεx(u0) dx dy

(37)

With E0(x)=εx(u0) and E1(x) = εx(U1) representing the macroscopic strain in order 0 and 1,
respectively, Eq. (37) can be written as follows:

ηW (1)(u0, u1, u2) = η

∫
Ω
E0(x) : B(0,1) : E1(x) dx + η

∫
Ω
E0(x) : C(0,0) : ∇xE0(x) dx

+ η

∫
Ω
E0(x) : D(0,0)...∇xE0(x) dx

(38)

Where 

B(0,1) =

∫
Y

[(11 +∇yχ0(y, w))] : C(
x

η
,w) : [(11 +∇yχ0(y, w))] dy

C(0,0) =

∫
Y

[11 +∇yχ0(y, w))] : C(
x

η
,w) : χ0(y, w) dy

D(0,0) =

∫
Y

[11 +∇yχ0(y, w))] : C(
x

η
,w) : ∇yχ1(y, w) dy

(39)
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Eq. (38) involves the first strain gradient ∇xE0 which is equivalent to the second-order dis-
placement gradient ∇∇xU0 we wanted to make appear. In other words, it denotes the main/key of
the regularized term. Also, three homogenized elasticity tensors (B(0,1), C(0,0) and D(0,0)) naturally
emerge in Eq. (38). They are given by Eq. (39) and they have the order 4, 3 and 5, respectively.
It is interesting to note that through the characteristic tensors (χ0(y, w) and χ1(y, w)), the random
distribution is taken into account during the scale transition so as to preserve statistical informa-
tion. In addition, the non-local effect after homogenization is evidenced through the presence of the
second displacement gradient ∇xE0 in Eq. (38)

The accuracy of the proposed model was assessed by computing the whole energy and comparing
its predictions with the classical bounds. According to Eq. (26) until order 1 and with 1

η2
W (−2) =

1
ηW

(−1) = 0, the whole energy is given by:

W (η)(uη) = W (0) + ηW (1) (40)

In order to compute E0(x) and E1(x), full-field simulations over too different morphological rep-
resentative elementary volumes (MREV) were performed. They are noted MREV0 and MREV1,
respectively. This required to determine two characteristic lengths l0 and l1 defining the size of both
these volumes. An accurate way of doing this is to do a statistical analysis through the covariogram
method, the latter is brifely recalled below.

So as to have internal lengths directly linked to the microstructure, we use the covariogram
which gives us all the necessary microstructure information.

The covariance is a very useful characteristics for the description of the size, shape and spatial
distribution of a given particle. Covariance C(x, x+h) is defined by the probability P for two points,
separated by the vector h, to belong to the same stationary random set B (see[21, 22, 23, 24] and
[25]):

C(x, x+ h) = P{x ∈ B, x+ h ∈ B} (41)

Many different data can be estimated from this statistical tool. Although a covariogram has many
properties, only the correlation distance Dc(.) and the outdistance repulsion Dr(.) were used in
this study. The first intersection between C(h) and the asymptote corresponds to the correlation
length. It is defined by:

Dc(z) = min
h∈R∗
{Cz(h)− p2 = 0} (42)

This distance represents the maximal distance of statistical influence of the inclusion phase.
It provides information about the minimal size of the domain over which a volume is statistically
representative. Beyond this distance, additional statistical information is negligible (see[21]). Thus,
this size is the material first characteristic length (see Fig. 4) used to define the size of MREV0. It
is noted ”l0”.

The second intersection between C(h) and the asymptote corresponds to an outdistance of
repulsion. It corresponds to the statistical average distance between two inclusions. In clustering
situations, Dr(.) gives an estimate of the statistical average distance between two clusters in each
direction. Thus, similar to the correlation length, this distance allowed us to estimate the second
characteristic length named ”l1” (see Fig. 4 ), used to generate the second MREV1. More precisely,
this distance presents the range of the first volume (MREV0).
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Volume fraction of cavities

𝑙1= Repulsion distance

Distance (pixels)

C(h)

𝑙0= Correlation distance

Fig. 2. Example of covariogram for a 3D heterogeneous medium and identification of characteristic lenghts ”l0” and
”l1”.

To summarize, the main steps used to compute the whole energy (Eq. (40)) were the following:

Algorithm : Calculate W (η)(u)←W (0) + ηW (1)

3D images acquisition;
Morphological characterization:

Determine l0 and l1;
Construction of MREV0 and MREV1 from l0 and l1 respectively;

Meshing;
Compute:

E0 and E1 as volume averages of local fields obtained by full-field simulations on MREV0
and MREV1, respectively;
〈∇yχ0(y, w)〉Y ← 11;
χ0(y, w)ijk ←

∫
∇yχ0(y, w)←

∑2
l=0

(
∇yχ0(y, w)

)
ijkl

;

W (0)
(
A(0,0)

)
← Eq.(32);

ηW (1)
(
B(0,1), C(0,0)

)
← Eq.(38);

For a first approach, D(0,0) is not yet taken into account in the computation.

3.2.2. 3D Numerical simulations

Two different types of 3D microstructures were used as supports to test the proposed model.
They were chosen as examples of two-phase heterogeneous materials with an elastic matrix con-
taining a random distribution of inclusions. The loading was a uniaxial displacement imposed on
the top surface of the microstructures. The first microstructures are virtual while the second ones
correspond to unfilled EPDM microstructures obtained by High-Resolution X-ray Computed To-
mography (HRXCT) [26] [27] at different times of the decompression stage after hydrogen exposure
of the material [28]. For both microstructure types and every inclusion volume fraction investigated,
the Young′s modulus of the inclusions was equal to 100 GPa while it was equal to 1 GPa for the
matrix (contrast 100). The Poisson ratio for both constituents was 0.3.

The virtual microstructures were generated from a simple pattern composed of a big inclusion
circled by six identical small inclusions. This pattern was the same for a fixed inclusions volume
fraction and only the size of both types of particles was homothetically enlarged to adjust to the
desired volume fraction. For each volume fraction, 10 realizations were generated with this pattern
by a stochastic process assumed to be stationary and ergodic. For each realization, the characteristic
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lengths l0 and l1 were determined thanks to the covariogram analysis. The arithmetic average over
the 10 resulting values of l0, respectively l1, was used to define the size of MREV0, respectively
MREV1. Both volumes were then numerically generated and meshed with 4-node linear tetrahedral
elements. Finally, the tensors E0 and E1 were computed from full-field simulations on MREV0 and
MREV1 and the energy was derived according to the methodology exposed in section 3.2.1. Fig.
3 provides an example of realization for an inclusion volume fraction of 0.01 as well as images of
MREV0 and MREV1.

At each time of the decompression, the volume fraction but also the morphology of the inclusions
in the real EPDM microstructures are different contrarily to the virtual microstructures for which
it is identical for every volume fraction. This introduces an additional complexity. For a given
volume fraction, i.e. for a given image acquired at a specific time, the characteristics lengths l0 and
l1 were deduced from the covariogram analysis. Then, 15 realizations of MREV0 and 15 realizations
of MREV1 were randomly extracted from this HRXCT image. They were meshed by converting
voxels into hexahedral elements. The tensor E0, respectively E1, was calculated as the ensemble
average of E0, respectively E1, on the number of realizations of MREV0, respectively MREV1.
Fig. 6 presents a 3D image of EPDM for a cavity volume fraction of 0.045 as well as an example of
realization of each volume MREV0 and MREV1.

All the FE full-field simulations were performed with an in-house finite element solver FoXtroT
[29]. Microstructures in Fig. 3.b and Fig. 4.a were meshed with 1.291.025 and 158.340.421 elements,
respectively.

𝒁

𝒚
𝒙

𝒁

𝒚
𝒙

𝒁

𝒚
𝒙

𝒃) 𝒄)𝒂)

Fig. 3. Virtual microstructure a): Morphological pattern, the radius of the big, respectively small, inclusion is 1,
respectively 0.5, voxel, b): Example of realization for an inclusion volume fraction of 0.01, c): Corresponding volumes
MREV0 and MREV1.
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Fig. 4. Real EPDM microstruture containing cavities a): 3D image for a cavity volume fraction of 0.045 b): Examples
of realization of volumes MREV0 and MREV1 extracted from the previous 3D image.

Fig. 5 represents the elastic energy given by Eq. (40) as a function of the inclusion volume
fraction for the virtual microstructure (Fig. 5.a) and the EPDM one (Fig 5.b). The results are
compared to Voigt and Reuss bounds. The values obtained by full-field simulations on the whole
microstructure are also reported in Fig. 5.a for the virtual material. It was not possible to do
the same for the EPDM microstructures due the size of the HRXCT images and consecutive high
number of nodes to consider. For both microstructures the simulated energy values are between the
bounds. They fall very close to the Reuss bound when decreasing the inclusion volume fraction.
The results can be explained by the fact that these computational results were obtained for the first
higher-order displacement corrector (η1) only leading to the so-called underestimation. Through this
model, we can save the time required to the computational analysis. Indeed, in the case of large size
microstructures, we have developed two MREV that allow us to compute two different macroscopic
strain according to two various scales. This result is a first validation of this model which shows
that the transition of scales remains between the classical limits used in homogenization.
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a) b)

Fig. 5. Voigt-Reuss-Hill spindle. a): Virtual microstructure, b): Real EPDM Material

4. Conclusions

In this paper, we developed a non-local (second-gradient) homogenenized model for three-
dimensional composites in the framework of ergodic linear elastic two-phases (matrix-inclusions)
random microstructures. This was done by using the asymptotic expansion homogenization (AEH)
in order to derive non-local parameters related to the microstructure. The formal mathematical
formulation of the AEH was detailed. The resulting sets of homogenization problems and their
solutions were established. To the best of our knowledge, this was the first application of the AEH
for random heterogeneous media defined by a stochastic point process. Analytical development of
the homogenized elastic energy until the first order of correction makes appear the second gradi-
ent of the displacement field which represents the kernel of the regularized term. In addition, the
close-form expression of the non-local part of the energy involves homogenized elasticity tensors
explicitly dependent on the characteristic tensors. Thus, the advanced modeling allows to obtain a
non-local macroscopic model in which statistical data are preserved. The model was tested through
an extensive numerical study performed in one and three-dimensional cases.

Two full-field calculations in order to compute the two strain tensors E0(x) and E1(x), which
were identified respectively in order 0 and 1 of η, were required. So, in the future, we would like to
obtain an analytical formulation of the model by using Γ-Convergence [30, 31] to avoid any full-field
computation. This would allow using the model for structure calculations.

Although developed for linear elasticity, the present approach could be also extended to inelastic
and/or non-linear problems in general, more particurlarly for the damage modelling [32], [33] and
[34].

To conclude, this model is built in such a way as to respond to the problem of materials with
a strong gradient. This property gradient can be exacerbated by a strongly non-homogeneous
distribution. For these materials the classical modeling’s are limited. And this is even more true
for scale transition models which by definition and the scale separation hypothesis makes taking
non-locality very difficult. This model will therefore be usable for porous materials [35] with a
cavity distribution on two scales [28, 36], depending on the time [37] , or even foundry materials or
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additive manufacturing. The comparison of the model with all of these categories of materials will
be made in a future study. ”
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