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Abstract 

Probabilistic learning is a fundamental cognitive ability that extracts and represents regularities 

of our environment enabling predictive processing during perception and acquisition of 

perceptual, motor, cognitive, and social skills. Previous studies show competition between 

neural networks related to executive function/working memory vs. probabilistic learning. Theta 

synchronization has been associated with the former while desynchronization with the latter in 

correlational studies. In the present paper our aim was to test causal relationship between fronto-

parietal midline theta synchronization and probabilistic learning with non-invasive transcranial 

alternating current (tACS) stimulation. We hypothesize that theta synchronization disrupts 

probabilistic learning performance by modulating the competitive relationship. Twenty-six 

young adults performed the Alternating Serial Reaction Time (ASRT) task to assess 

probabilistic learning in two sessions that took place one week apart. Stimulation was applied 

in a double-blind cross-over within-subject design with an active theta tACS and a sham 

stimulation in a counter-balanced order between participants. Sinusoidal current was 

administered with 1 mA peak-to-peak intensity throughout the task (approximately 20 minutes) 

for the active stimulation and 30 seconds for the sham. We did not find an effect of fronto-

parietal midline theta tACS on probabilistic learning comparing performance during active and 

sham stimulation. To influence probabilistic learning, we suggest applying higher current 

intensity and stimulation parameters more precisely aligned to endogenous brain activity for 

future studies. 

 

Keywords: statistical learning, transcranial electric stimulation, procedural learning, neural 
oscillations, competition   
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Introduction 

Probabilistic learning (often referred to as statistical learning as well) is a fundamental cognitive 

ability that underlies automatic behaviors and skills, such as motor, linguistic or social skills 

and habits [1-7]. It facilitates the extraction of statistical regularities from the environment and 

enables predictions of environmental events. Several studies discussed the neural background 

of probabilistic learning using functional magnetic resonance imaging (fMRI) [8-10], 

magnetoencephalography (MEG) [11], electroencephalography (EEG) [12, 13] or 

neuropsychology [14-17]. However, these studies used correlational methods only. In the 

present paper our aim was to test the causal relationship between brain activity and probabilistic 

learning by directly manipulating oscillatory activity with non-invasive electric brain 

stimulation.  

Oscillatory synchronization is a fundamental mechanism for information transmission 

between neural populations and for forming larger networks [18-20]. For instance, theta (4-7 

Hz) activity was consistently observed particularly within the fronto-midline areas during 

working memory and declarative memory tasks [21-28]. Tóth et al. [13] showed in an EEG 

study that theta activity was correlated with probabilistic learning as well: weaker phase 

synchronization in theta frequency was associated with better learning performance. Thus, in 

contrast with declarative and working memory, in theta frequency, desynchronization, and not 

synchronization seems to be beneficial for probabilistic learning. This is in line with the 

competition framework in which there is an antagonistic relationship between fronto-

hippocampal and striatal networks and related functions such as working and declarative 

memory vs. probabilistic and sequence learning [29-33].   

A possible method to test causal relationships between brain networks and cognitive 

performance is brain stimulation. Transcranial Alternating Current Stimulation (tACS) is a 
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suitable method to influence oscillatory brain activity [34, 35]. Based on the above presented 

evidence for the role of theta frequency in prefrontal-dependent processes (including working 

memory) and the antagonistic relationship of these processes with probabilistic learning [36-

40], we hypothesized that induced theta synchronization is detrimental for probabilistic 

learning. Thus, in the present paper, we used a frontal-midline theta frequency tACS stimulation 

to disrupt probabilistic learning.  

 

Methods 

Participants 

26 young adults (19 females) were selected from a large pool of undergraduate students from 

the Eötvös Loránd University in Budapest (MAge = 21.38 years, SD = 1.52 years; 

MYears of education = 14.46 years, SD = 1.45 years). Participants had no previous history of 

neurological, psychiatric or cardiovascular disorders, brain injuries and they had no metal 

implants in the head or neck area. They reported not taking any substances that affect the 

nervous system. All participants completed all sessions: two sessions with different stimulation 

conditions (sham vs. active stimulation) during the probabilistic learning task and an additional 

session for other neuropsychological tests. They were naïve regarding the exact purpose of the 

study and did not know in which session they were assigned to receive active or sham 

stimulation. Participants gave written and verbal informed consent before participating and 

received course credits for taking part in the experiment. The experiment was in accordance 

with the guidelines of the Declaration of Helsinki, and was approved by the ethics committee 

of the Eötvös Loránd University, Budapest, Hungary (identifier: 2016/120). 
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Experimental Design 

This study utilized a within-subject, cross-over design consisting of two stimulation sessions: 

1 mA active tACS stimulation and sham stimulation (Fig. 1). These sessions took place one 

week apart from each other, starting at the same time of the day to eliminate time-of-day effects. 

The order of the sessions was counterbalanced across participants, and the stimulation was 

double-blinded. Therefore, neither the main investigator nor the participant was aware of the 

current stimulation condition. A second investigator who was not involved in the interaction 

with participants was responsible for setting the stimulation only. The stimulation was 

administered simultaneously with the probabilistic learning task (Alternating Serial Reaction 

Time, ASRT task). In the two sessions, participants learned two different, partly overlapping 

sequences. The overlap was controlled across participants (see Probabilistic learning section in 

Tasks for details).  

 

Figure 1. Overview of the experimental design and stimulation parameters. A) Task and experimental 

design. The stimulation was carried out in a double-blind, placebo-controlled crossover design. Healthy young 

adults participated in two sessions (one week apart) during which they received 1 mA active theta frequency tACS 

stimulation, or sham stimulation in a counterbalanced order. Active tACS stimulation was administered throughout 

the task (approximately 20 minutes), while sham stimulation lasted only 30 seconds. In both cases there were 30 
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seconds ramp up and ramp down periods. Participants completed the Alternating Serial Reaction Time (ASRT) 

task both times to assess probabilistic learning performance. In this task, pattern elements alternate with random 

ones, constituting a probabilistic sequence, in which some runs of three consecutive trials (“triplets”) occur more 

frequently than others. We refer to probabilistic learning as a performance difference between high-probability 

compared to low-probability triplets. Participants learned two different probabilistic sequences during the two 

sessions. B) Electrode setup and current simulation.  A battery driven constant current stimulator delivered a 

sinusoidal alternating current stimulation to the participant’s scalp via two 5 cm × 5 cm electrodes placed over 

positions Fpz and Pz according to the international 10-20 system. TACS was applied at a peak-to-peak current 

intensity of 1 mA oscillating at 6 Hz. To model tACS, we performed a simulation on a template head model by 

using a free software package called Simulation of Non-invasive Brain Stimulation (for details, see section 

‘Transcranial Alternating Current Stimulation (tACS)’ in the main text). The spatial distribution of the absolute 

electric field magnitudes in the gray-matter compartment is in mV/mm. We used a robust maximum (99.9th 

percentile) of the absolute values for the scale limit. Lateral (top), top (bottom left) and superior lateral (bottom 

right) views are presented. The mean and maximal electric field strength of the robust maximum in the frontal, 

paracentral (pre- and post-central and central gyri and sulci) and parietal (superior gyri and sulci) regions were 

0.088, 0.096, 0.083, 0.093, 0.072, 0.074 V/m respectively. 

 

Tasks 

Probabilistic learning - The Alternating Serial Reaction Time (ASRT) task [41, 42] was used 

to measure probabilistic sequence learning. In this task, a stimulus (a dog’s head) appeared in 

one of the four empty circles on the screen, and participants had to press the corresponding 

button as fast and as accurately as possible (Fig. 1A). The target remained on the screen until 

the participant pressed the correct button. The response-to-stimulus interval (RSI) was 120 ms. 

The computer was equipped with a special keyboard with four marked keys (Z, C, B and M on 

a QWERTY keyboard), each corresponding to one of the horizontally aligned circles. The 

ASRT task consisted of 20 blocks, with 85 trials per block. The first five stimuli were random 

for practice purposes, then an eight-element alternating sequence was repeated ten times. The 
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alternating sequence was composed of fixed sequence (pattern) and random elements (e.g., 2-

R-4-R-3-R-1-R, where each number represents one of the four circles on the screen and “R” 

represents a randomly selected circle out of the four possible ones). As one block took 1-1.5 

min, the whole task took approximately 20-25 min. 

Due to the alternating sequence in the ASRT task, some triplets or runs of three 

consecutive events are more probable (high-probability triplets) than others (low-probability 

triplets). For example, in the abovementioned sequence (2-R-4-R-3-R-1-R), 2-X-4 is a high-

probability triplet (where X denotes to any of the four possible positions), since the first and the 

third elements can either be a pattern or a random stimulus. However, 2-X-1, 2-X-2, and 2-X-

3 are low-probability triplets, since the first and the third elements can only be a random 

stimulus. Therefore, for analyzing the data we determined whether each trial was the last 

element of a high-probability or low-probability triplet. Note that in this way, we determine the 

probability of each triplet throughout the task in a sliding window manner (i.e., one stimulus is 

the last element of a triplet, but also the middle and the first element of the consecutive triplets). 

The high-probability triplets are five times more predictable than the low-probability triplets. 

Therefore, the final event of a triplet is more predictable in high-probability triplets compared 

to low-probability ones. Previous studies have shown that as people practice the ASRT task, 

they come to respond more quickly and more accurately to the high-probability triplets 

compared to low-probability triplets, revealing probabilistic learning (Howard et al., 2004; 

Howard and Howard, 1997b; Janacsek, Fiser, and Nemeth, 2012; Nemeth et al., 2010; Song, 

Howard, and Howard, 2007).  

The ASRT task was performed in two sessions during the experiment, with 20 blocks 

in each session. For this, pairs of sequences were created, where the two sequences shared 2 

position orders out of the 4 (e.g., 2-R-4-R-3-R-1-R and 2-R-4-R-1-R-3-R, see Fig. 1A) which 

results in a 25% overlap in high-probability triplets between the sequences. One of these pairs 
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of sequences was randomly assigned to each participant to keep constant the overlap in the two 

sequences amongst participants.  

Finally, it is important to note that participants were unaware of the underlying 

alternating sequence structure, thus they acquired the probabilistic regularities incidentally and 

that knowledge remained implicit throughout the task. This was confirmed using a short 

questionnaire [42, 45] after the second stimulation session. The questionnaire included the 

following two increasingly specific questions: “Have you noticed anything special regarding 

the task?”, “Have you noticed some regularity in the sequence of stimuli?”. The experimenter 

rated subjects' answers on a 5-point scale where 1 denoted “Nothing noticed” and 5 denoted 

“Total awareness”.  None of the participants reported noticing regularities in the ART task. 

 

Transcranial Alternating Current Stimulation (tACS) 

A commercial, battery driven constant current stimulator (DC-Stimulator Plus, NeuroConn, 

Ilmenau, Germany) delivered a sinusoidal alternating current stimulation to the participant’s 

scalp via two 5 cm × 5 cm electrodes. The electrodes were covered with a thin layer of electrode 

gel and were placed over positions Fpz and Pz according to the international 10-20 system (Fig. 

1B). This frontal-midline electrode montage choice was based on a previously reported 

stimulation design [46]. Impedances were kept below 30 kΩ (average impedance was 8.25±3.83 

kΩ). TACS was applied at a peak-to-peak current intensity of 1 mA oscillating at 6 Hz. While 

recent papers suggest using higher current intensity [47], these intensities can cause intense 

discomfort. In our study, to ensure that all participants complete both sessions and to maintain 

blindness of the participants to the stimulation settings, we decided to use a smaller current 

intensity that was proven successful in previous studies [48-50]. To avoid possible discomfort 

during the onset of tACS, the stimulation current was gradually ramped up from 0 to 1.0 mA 
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over a period of 30 s. After the 30 s ramp up, the stimulation intensity was maintained for the 

length of the task (approximately 20 minutes) in case of the active stimulation condition. To 

control for tACS-unspecific effects (such as fatigue and beliefs of the participant), there was a 

sham (placebo) stimulation condition, consisting of 30 s of stimulation following the 30 s ramp 

up.  In both conditions there was a 30 s ramp down period after the stimulation.  

To model tACS, we performed a simulation on a template head model by using a free 

software package called Simulation of Non-invasive Brain Stimulation (SimNIBS; version 

2.1.2, Fig. 1B). SimNIBS generates anatomically realistic, multi-compartment head models 

from structural magnetic resonance imaging by using the finite element method. The head mesh 

entailed ca. 3,500,000 tetrahedral elements and five compartments. We used standard, isotropic 

conductivity values for the comparnts, all values are expressed in S/m: white matter = 0.126; 

gray matter = 0.275; cerebrospinal fluid = 1.654; bone = 0.01; scalp = 0.465; eyes = 0.5; silicon 

rubber electrode = 29.4; conductive medium = 1.0. The physical dimensions of both electrodes 

were 50 × 50 mm and 4 mm thick. The thickness of the conductive medium was set to 2 mm. 

The electric field was modeled by using 0.5 mA peak to baseline intensities. To quantify the 

strength of the induced electric field in particular brain areas, we used the parcellation of human 

cortical gyri and sulci proposed by Destrieux, Fischl, Dale and Halgren [51]. We computed the 

mean and maximal electric field strength of the robust maximum (99.9th percentile) in the 

following regions of interest (ROIs): frontal (superior, middle and orbital gyri and sulci), 

paracentral (pre- and post-central and central gyri and sulci), and parietal (superior gyri and 

sulci). The electric field strength was Meanmax = 0.088 V/m, Maxmax = 0.096 V/m in the frontal, 

Meanmax = 0.083 V/m, Maxmax = 0.093 V/m in the paracentral and Meanmax = 0.072 V/m, 

Maxmax = 0.074 V/m in the parietal regions. 
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Statistical analysis 

Statistical analyses were carried out with the Statistical Package for the Social Sciences version 

22.0 (SPSS, IBM) and JASP Version 0.11.1 [52]. To facilitate data processing, the blocks of 

ASRT were organized into four epochs of five blocks in each session. The first epoch contained 

blocks 1–5, the second epoch contained blocks 6–10, etc. We calculated mean accuracy scores 

(ACCs) for all responses and median reaction times (RTs) for correct responses only, separately 

for high- and low-probability triplets and for each subject and each epoch. Note that for each 

trial we defined whether it was the last element of a high or a low-probability triplet. Two kinds 

of low-probability triplets were eliminated from the analysis: repetitions (e.g., 222 and 333) and 

trills (e.g., 212 and 343), as people often showed pre-existing response tendencies to them 

(Howard and Howard, 1997a; Howard et al., 2004, Howard and Howard, 1997a; Nemeth et al., 

2010; Song et al., 2007). 

Overall RTs significantly differed between the two sessions (as revealed by the 

significant main effect of SESSION in the repeated measures ANOVA on RTs with SESSION 

(First vs. Second), EPOCH (1-4) and TRIPLET TYPE (High vs. Low) as within-subject factors: 

F(1, 25) = 39.510, p < .0001, η²P = .612): participants were faster when completing the task for 

the second time (MRT = 369.70, SEM = 5.31, MRT = 336.20, SEM = 5.29 for the first and the 

second session, respectively). Therefore, we calculated z-scores within each subject in each 

session to eliminate the effects of different baseline speeds when comparing performance 

between the two sessions. A similar ANOVA computed on accuracy data revealed no 

significant difference between the two sessions (main effect of SESSION: F(1, 25) = 0.376, p 

= .545, η²P = .015). 

For each epoch, we calculated learning scores both for RT and ACC data. For RT, the 

learning score was calculated as the difference between the z-transformed RTs for low-
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probability triplets minus the z-transformed RTs for high-probability triplets. For ACC, the 

learning score was calculated as the raw ACCs for high-probability triplets minus the raw ACCs 

for low-probability triplets. In both cases, a higher learning score indicate better learning. To 

evaluate changes in probabilistic learning as a function of stimulation, we conducted mixed 

design analyses of variance (ANOVAs) separately for the RT and ACC learning scores with 

STIMULATION (Sham vs. Active) and EPOCH (1-4) as within-subject factors and ORDER 

(Sham first vs. Stimulation first) as a between-subject factor. We included the ORDER 

between-subject factor to ensure that the order in which participants received sham and active 

stimulation did not influence the effects of stimulation. Greenhouse–Geisser epsilon (ε) 

correction was used if necessary. Original df values and corrected p-values (if applicable) are 

reported together with partial eta-squared (η²P) as the measure of effect size.  

Furthermore, as suggested by Biel and Friedrich [53] we conducted the same mixed 

design ANOVAs separately for the RT and ACC learning scores with STIMULATION and 

EPOCH as within-subject factors and ORDER as a between-subject factor with a Bayesian 

approach as well. The Bayesian ANOVA contrasts the predictive performance of competing 

models instead of F-tests of main effects and interactions [54]. Models were compared using 

BF10, which quantifies the evidence in favor of each model relative to the best model in the 

respective comparison. To summarize the importance of the within-subject factors across all 

models, we also performed model averaging, which provides us with evidence for inclusion for 

main effects and interactions (BFinclusion). The inclusion Bayes factor quantifies the change from 

prior inclusion odds to posterior inclusion odds and can be interpreted as the evidence in the 

data for including a predictor.  

To ensure that the partially overlapping sequence in the task between the two sessions 

did not distort the effects of the stimulation, we recomputed learning scores excluding the 

responses (RT and ACC) to those triplets that were high-probability in both sessions and ran 
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frequentist and Bayesian repeated measures ANOVAs on these modified RT and ACC learning 

scores over time and stimulation (see section ‘Does the partial overlap between the sequences 

practiced during the two stimulation sessions influence the effects of the stimulation?’ and Fig. 

S1 in the Supplementary results). Importantly, the results after the elimination of the 

overlapping high-probability triplets are identical to the results without the elimination of these 

triplets and are not discussed further in the main text. 

Lastly, as a post-hoc analysis we investigated the effects of baseline performance on the 

stimulation. We ran four additional mixed design ANOVAs (both frequentist and Bayesian) 

including a between-subject factor for good vs. poor initial/baseline performance in four 

measures of ASRT (average reaction times, reaction time learning scores, average accuracy, 

accuracy learning scores) on the learning scores over time and stimulation (see section ‘Does 

baseline performance influence the effects of the stimulation?’ in the Supplementary results). 

We did not find a differential effect of the stimulation in good vs. poor performers based on 

initial speed, accuracy, RT or ACC probabilistic learning.  

 

Results 

Do RT learning scores differ between stimulation conditions? 

The frequentist mixed design ANOVA on the z-transformed RT learning scores revealed a 

significant Intercept (F(1, 24) = 66.277, p < .001, η²P = .734), suggesting that learning occurred 

in the ASRT task. The main effect of EPOCH was also significant (F(3, 72) = 6.663, p < .001, 

η²P = .217), indicating that the learning scores increased throughout the task, independent of the 

stimulation condition (Fig. 2A). However, we did not find any significant differences between 

the active stimulation and sham conditions either in overall learning (main effect of 

STIMULATION: F(1, 24) = 0.093, p = .763, η²P = .004) or in the time course of learning 
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(STIMULATION * EPOCH interaction: F(3, 72) = 0.637, p = .593, η²P = .026). The order of 

the stimulation sessions did not seem to affect the overall learning scores (main effect of 

ORDER: F(1, 24) = 2.345, p = .139, η²P = .089), the trajectory of the learning scores (ORDER 

x EPOCH interaction: F(3, 72) = 0.048, p = .986, η²P = .002), the effect of stimulation (ORDER 

x STIMULATION interaction: F(1, 24) = 0.974, p = .333, η²P = .039) or the trajectory of the 

learning scores during the two stimulation conditions (ORDER x EPOCH x STIMULATION 

interaction: F(3, 72) = 0.627, p = .600, η²P = .025).  

 

 

Figure 2. Probabilistic learning in terms of reaction times (A) and accuracy (B) in the active stimulation vs. 

sham conditions across the 4 epochs of the ASRT task. There was no significant difference between the active 

stimulation in theta frequency (grey squares) and sham (black triangles) conditions either in overall learning or in 

the time course of learning. Error bars indicate the Standard Error of Mean (SEM).  

 

The analysis of effects (model-averaged results) of the Bayesian mixed design 

ANOVA on the z-transformed RT learning scores showed that the main effect of Epoch should 

be included in the model (BFinclusion = 74.684), while the effects related to the Stimulation and 

the Session order should not (all BFinclusion < 1, Table 1). Thus, based on the Bayesian analysis 
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of effects, the learning scores changed throughout the task, but they were independent of the 

stimulation condition or the order of the stimulation.  

 

Table 1. Model-averaged results of Bayesian ANOVA for RT learning scores  

Effects  P(incl) P(incl|data) BF inclusion 

Stimulation  0.737   0.170  0.073   

Epoch   0.737   0.995  74.684   

Order  0.737   0.437  0.278   

Stimulation  ✻  Epoch  0.316   0.014  0.030   

Stimulation ✻ Order  0.316   0.030  0.067   

Epoch  ✻  Order   0.316   0.023  0.051   

Stimulation  ✻  Epoch  ✻ Order  0.053   1.564e -5  2.816e -4   

Note: The Effects column denotes predictors of interest, the column P(incl) shows the prior inclusion probability, 

P(incl | D) shows the posterior inclusion probability, and BFInclusion shows the inclusion Bayes factor. 

 

As our primary interest was the effect of the stimulation on probabilistic learning and 

the number of models was too high with the ORDER between-subject factor, as well as there 

was no evidence to include that factor, we recomputed the Bayesian ANOVA with only the 

STIMULATION and EPOCH as within-subject factors. Based on this Bayesian ANOVA, the 

best model for our data was with only the main effect of Epoch (Table 2). This model with the 

main effect of Epoch was ~6.5 times more likely than any model including the effect of the 

Simulation. Altogether the Bayesian ANOVA for the RT learning scores provides evidence for 

the model with only the main effect EPOCH to explain best our data. This suggests that while 

the learning scores changed during the task, this was independent of the stimulation condition 

and the order of the stimulation condition. 

 

Table 2. Bayesian model comparisons for RT learning scores 
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Models  P(M) P(M|data) BF M BF 10 error % 

Epoch   0.200  0.853   23.178   1.000     

Stimulation + Epoch   0.200  0.129   0.595   0.152   1.559   

Null model   0.200  0.013   0.052   0.015   2.618   

Stimulation + Epoch + Stim.  ✻  Epoch   0.200  0.004   0.017   0.005   0.610   

Stimulation   0.200  0.0006   0.003   0.0008   0.978   

Note: All models include Subject. The Model column shows the predictors included in each model, the P(M) 

column the prior model probability, the P(M | D) column the posterior model probability, the BFM column the 

posterior model odds, and the BF10 column the Bayes factors of all models compared to the best model. The final 

column, ‘error’ is an estimate of the numerical error in the computation of the Bayes factor. All models are 

compared to the best model and are sorted from highest Bayes factor to lowest. 

 

Do ACC learning scores differ between stimulation conditions? 

The frequentist mixed design ANOVA on the ACC learning scores revealed a significant 

Intercept (F(1, 24) = 62.307, p < .001, η²P = .722), suggesting that learning occurred in the 

ASRT task. The main effect of EPOCH showed a trend (F(3, 72) = 2.303, p = .084, η²P = .034), 

indicating that the learning scores increased throughout the task, independent of the stimulation 

condition (Fig. 2B). We did not find significant differences between the active stimulation and 

sham conditions either in overall learning (main effect of STIMULATION: F(1, 24) = 0.054, p 

= .818, η²P < .001) or in the time course of learning (STIMULATION * EPOCH interaction: 

F(3, 72) = 1.059, p = .372, η²P =.011). The order of the stimulation sessions did not seem to 

affect the overall learning scores (main effect of ORDER: F(1, 24) = 2.202, p = .151, η²P = 

.084), the trajectory of the learning scores (ORDER x EPOCH interaction: F(3, 72) = 0.326, p 

= .807, η²P = .005), the stimulation (ORDER x STIMULATION interaction: F(1, 24) = 1.566, 

p = .223, η²P = .010) or the trajectory of the learning scores during the two different stimulation 

condition (ORDER x EPOCH x STIMULATION interaction: F(3, 72) = 1.754, p = .164, η²P = 

.018). 
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The analysis of effects (model-averaged results) of the Bayesian mixed design 

ANOVA on the ACC learning scores showed that none of the effects related to Epoch, 

Stimulation or Session order should be included in the model (all BFinclusion < 1, Table 3). Thus, 

based on the Bayesian analysis of effects, the learning scores were stable throughout the task 

and they were independent of the stimulation condition or the order of the stimulation.  

 

Table 3. Model-averaged results of Bayesian ANOVA for ACC learning scores 

Effects  P(incl) P(incl|data) BF inclusion 

Stimulation  0.737   0.089  0.035   

Epoch   0.737   0.220  0.101   

Order  0.737   0.618  0.578   

Stimulation  ✻  Epoch  0.316   0.005  0.011   

Stimulation  ✻  Order  0.316   0.014  0.031   

Epoch  ✻  Order  0.316   0.005  0.012   

Stimulaltion  ✻  Epoch  ✻  Order  0.053   2.526e -5  4.547e -4   

Note: The Effects column denotes predictors of interest, the column P(incl) shows the prior inclusion probability, 

P(incl | D) shows the posterior inclusion probability, and BFInclusion shows the inclusion Bayes factor. 

 

Again, as our primary interest was the effect of the stimulation on probabilistic 

learning and the number of models was too high with the ORDER between-subject factor, as 

well as there was no evidence to include that factor, we recomputed the ANOVA with only the 

STIMULATION and EPOCH within-subject factors. This Bayesian ANOVA showed that the 

best model for our data is the Null model (Table 4). This Null model is ~6 times more likely 

than any model including the Stimulation factor. Altogether the Bayesian ANOVA for the ACC 

learning scores provides evidence for the Null model to explain best our data. This suggests 

that learning scores were stable throughout the task and were independent of epochs, the 

stimulation condition and the order of the stimulation condition.  
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Table 4. Bayesian model comparisons for ACC learning scores 

Models  P(M) P(M|data) BF M BF 10 error % 

Null model   0.200  0.533   4.566   1.000     

Epoch   0.200  0.328   1.956   0.616   0.523   

Stimulation   0.200  0.081   0.353   0.152   1.680   

Stimulation + Epoch   0.200  0.050   0.210   0.093   2.373   

Stimulation + Epoch + Stim.  ✻  Epoch   0.200  0.008   0.031   0.014   1.860   

Note: All models include Subject. The Model column shows the predictors included in each model, the P(M) 

column the prior model probability, the P(M | D) column the posterior model probability, the BFM column the 

posterior model odds, and the BF10 column the Bayes factors of all models compared to the best model. The final 

column, ‘error’ is an estimate of the numerical error in the computation of the Bayes factor. All models are 

compared to the best model and are sorted from highest Bayes factor to lowest. 

 

To reveal possible patterns in the stimulation effects, we visualized individual learning 

score trajectories for both stimulation conditions separately for RT and ACC learning scores 

(see section ‘Are there any obvious patterns in the stimulation effects for different individuals?’ 

and Fig. S2-S3 in Supplementary materials). Furthermore, to explore visually whether the order 

of the conditions influenced the effect of stimulation, we grouped the participants based on 

whether they completed the sham condition (Fig. S2A and S3A), or the active stimulation 

condition first (Fig. S2B and S3B). Altogether, the plots did not unravel obvious subgroups 

based on the difference between the active stimulation and sham conditions either in overall 

learning or in the time course of learning. Furthermore, the order of the stimulation did not seem 

to interact with the effects of the stimulation, further supporting the findings reported above. 

 

 

Discussion 
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In the current study, our aim was to alter probabilistic learning by applying theta tACS during 

learning in a double-blinded cross-over within-subject design. We did not find differences 

either in overall learning performance or the time course of learning between the active 

stimulation and sham conditions. Moreover, Bayesian model comparisons provided evidence 

for no effect of stimulation on the learning performance. 

Contrary to our expectations, we did not find an effect of the tACS on probabilistic 

learning. It is possible that the chosen parameters for the tACS stimulation, such as the fronto-

parietal midline montage, the relatively weak (1 mA) current intensity, and/or the chosen theta 

frequency were not appropriate to influence probabilistic learning. Importantly, however, 

previous studies successfully influenced other cognitive functions (such as short term and 

working memory, or decision making) with stimulation parameters similar to ours [46, 55-57], 

suggesting that these stimulation parameters might be effective for altering some cognitive 

functions but not others. Specifically, these studies aimed to influence prefrontal-network 

dependent, expectation/hypothesis-driven (top-down) cognitive processes. It is possible that 

stimulus-driven, bottom-up processes such as probabilistic learning can be successfully 

influenced by different frequency and / or electrode positions. Previous studies using similar, 

bottom-up tasks with deterministic sequential regularities (Serial Reaction Time Task, SRTT) 

reported alpha and beta frequencies to be successful for stimulation [34, 58]. Antal, Boros, 

Poreisz, Chaieb, Terney and Paulus [34] showed that alpha frequency tACS specifically 

improved motor sequence learning in contrast to beta or gamma frequencies over the primary 

motor cortex. Pollok, Boysen and Krause [58] successfully applied both alpha and beta 

frequency tACS over the left primary motor cortex to improve motor sequence learning. Note 

that while these studies tested multiple frequencies to influence sequence learning, neither of 

them applied theta frequency. Importantly, these tasks were deterministic sequential learning 

tasks, which potentially rely more on motor representations as opposed to the ASRT task that 
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we used in the current study, therefore we did not rely on these results when determining our 

stimulation parameters. To the best of our knowledge, our study was the first to test if 

probabilistic learning can be influenced by tACS and we chose theta frequency stimulation as 

it has been proven successful in several studies investigating working memory and it has not 

been studied in tasks with acquiring regularities of stimuli. Future studies are needed to 

investigate whether different frequency bands (in particular alpha or beta) or different electrode 

montages (targeting motor cortex, or frontal or parietal areas selectively) are more suitable to 

influence probabilistic learning. 

It is also possible that desynchronization instead of synchronization with the same 

parameters would have a bigger impact on probabilistic learning (although opposite effect). In 

support of this, Alekseichuk, Pabel, Antal and Paulus [59] found that fronto-parietal 

synchronization induced by 0° tACS did not significantly influence brain connectivity 

(measured via EEG) and working memory performance. In contrast, fronto-parietal 

desynchronization induced by 180° tACS affected both connectivity and performance. We did 

not have the appropriate equipment to induce desynchronization in the current study, but based 

on the finding of Tóth et al. [13], that desynchronization in theta frequency is associated with 

better probabilistic learning, it would worth testing this stimulation design in case of a 

probabilistic learning paradigm (see for example the design in [57]).  

Picking the appropriate stimulation parameters enables electrical stimulation to induce 

changes in brain activity and, therefore possibly behavior. Thut, Schyns and Gross [60] claim 

the entrainment of endogenous brain oscillations by tACS is possible if there is phase-alignment 

between the stimulation and internal oscillators. For this, an internal oscillator is needed, 

namely entrainment can occur only if there is a neural population that exhibits oscillations at 

the stimulation frequency under natural conditions. Moreover, the closer the external rhythm is 

to the internal one, the smaller the force needed to entrain endogenous oscillations [61]. Antal 
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and Herrmann [62] showed that the electrical current intensity with the standard stimulation 

strengths of 1-2 mA can be sufficient to induce changes in the brain activity but the induced 

voltage gradients in the brain are small. Based on our simulation, the induced electric field was 

up to 0.1 V/m, in particular in frontal and paracentral brain regions in our study. Altogether, 

tACS with 1 mA stimulation strength (as in our study) will likely influence brain activity only 

if the chosen stimulation frequency and stimulated brain areas match the patterns of naturally 

occurring brain activity during the given task. Thut et al. [63] suggested several approaches to 

increase the alignment between the brain stimulation and the ongoing endogenous activity, for 

example, setting the stimulation parameters by obtaining instantaneous phase or power of 

oscillatory brain activity from simultaneous EEG/MEG recording, or using EEG/MEG 

recordings prior to interventions to detect the individual frequency of the oscillation of interest. 

Further studies with more precise alignment could clarify if fronto-parietal theta entrainment 

can influence probabilistic learning.   

Beyond the stimulation parameters, other factors could also influence the effects of the 

stimulation. We studied healthy young adults who generally perform well in cognitive tasks 

[64, 65] and therefore their performance may be less susceptible to the effect of the stimulation. 

However, this is unlikely the case in our study as we also tested the effects of baseline 

performance on stimulation (see section ‘Does baseline performance influence the effects of the 

stimulation?’ in Supplementary results) and did not find differential effects of the stimulation 

in participants performing worse at the beginning of the task. Nevertheless, the effect of theta 

tACS stimulation on probabilistic learning in a population with poorer cognitive performance 

remains to be explored.  
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Limitations 

Similarly to most of the previous tACS studies, we did not monitor the brain activity during the 

stimulation, therefore there is no evidence that the stimulation induced changes in the 

endogenous activity. Furthermore, offline monitoring of brain activity preceding the 

stimulation is also lacking. This design would have enabled us to pick an individual theta 

frequency for each participant. Stimulating with the frequency matching the participant’s 

dominant frequency could promote stronger stimulation effects [62]. However, previous studies 

used similar tACS stimulation successfully to alter behavior. Lastly, as our stimulation 

parameters relied on previous studies that targeted working memory performance, a working 

memory control task could have been used to validate these parameters within the current 

sample. However, as our aim was not replication but to test the effect of simulation on 

probabilistic learning, we decided not to include other tasks in the stimulation conditions. 

Conclusions 

To the best of our knowledge, our study was the first to apply tACS to influence probabilistic 

learning. We did not find statistically significant effects of fronto-parietal midline theta tACS 

(with ~0.1 V/m electrical field strength) on probabilistic learning comparing behavior during 

active and sham stimulation. Our results draw attention to possible methodological flaws in 

electrical stimulation experiments. It is possible that with greater current intensity and/or with 

stimulation parameters more precisely aligned to endogenous brain activity during probabilistic 

learning, stimulation effects can be observed.  
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