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Abstract 43 

Background and aims: Covalently closed circular DNA (cccDNA) is the episomal 44 

form of the Hepatitis B virus (HBV) genome that stably resides in the nucleus of 45 

infected hepatocytes. cccDNA is the template for the transcription of six major viral 46 

RNAs, i.e. preC- pg-, preS1/2-, S- and HBx-RNA. All viral transcripts share the same 47 

3’ end and are all to various degrees subsets of each other. Especially under infection 48 

conditions, it has been difficult to study in depth the transcription of the different viral 49 

transcripts. We thus wanted to develop a method with which we could easily detect the 50 

full spectrum of viral RNAs in any lab. 51 

Methods: We set-up the HBV full-length 5’RACE (rapid amplification of cDNA ends) 52 

method with which we measured and characterized the full spectrum of viral RNAs in 53 

cell culture and in chronically infected patients.  54 

Results: In addition to canonical HBx transcripts coding for full-length X, we identified 55 

shorter HBx transcripts potentially coding for short X proteins. We showed that 56 

Interferon β treatment leads to a strong reduction of preC- and pg-RNAs but only has 57 

a moderate effect on the other viral transcripts. We found pgRNA, one spliced pgRNA 58 

variant and a variety of HBx transcripts associated with viral particles generated by 59 

HepAD38 cells. The different HBx RNAs are both capped and uncapped. Lastly, we 60 

identified 3 major categories of circulating RNA species in patients with chronic HBV 61 

infection: pgRNA, spliced pgRNA variants and HBx. 62 

Conclusions: The HBV full-length 5’RACE method should significantly contribute to 63 

the understanding of HBV transcription during the course of infection and therapy and 64 

may inform the development of novel therapies aimed at targeting cccDNA. 65 

Electronic word count abstract: 274 66 
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Lay Summary 67 

Especially under infection conditions, it has been difficult to study in depth the 68 

transcription of the different HBV transcripts. This study introduces the HBV full-length 69 

5’RACE method that can be used in any standard lab to discriminate all viral transcripts 70 

in cell culture and in the serum of patients. 71 

 72 

Introduction 73 

Hepatitis B remains worldwide a major public health problem despite the availability of 74 

prophylactic vaccination and anti-viral treatments [1]. The Hepatitis B virus (HBV) 75 

persists as a  covalently closed  circular DNA (cccDNA) of approximately 3.2 kb that is 76 

embedded into the chromatin of hepatocytes as an episomal entity [2].  The amount of 77 

cccDNA and its transcriptional activity vary along the natural course of infection and 78 

are a main determinant of viral persistence and reactivation. From 4 promoters, 6 major 79 

viral RNAs are expressed: preC, pgRNA, preS1, preS2, S and HBx mRNAs (Fig.1A). 80 

preC and pgRNA transcripts are characterized by a 100bp redundancy at their 3’ ends 81 

and consequently contain two epsilon stem loop structures at their 5’ and 3’ ends 82 

(Fig.1A). Every viral RNA is translated into proteins that are essential for the viral life 83 

cycle. In this regard, the pgRNA is particular in the sense that apart from encoding the 84 

two viral proteins C (core) and P (polymerase), it serves as the template for the viral 85 

DNA genome. Genomic viral DNA synthesis is mediated by the reverse transcriptase 86 

activity of the viral P protein once pgRNA and the P protein are encapsidated into the 87 

nucleocapsids formed by the C protein [3,4]. preC RNA codes for the HBe protein that 88 

has a potential immunoregulatory function [5]. preS1/2 and S mRNAs encode the 3 89 

viral surface proteins L, M and S, respectively, that build up the viral envelope. The 90 
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shortest of the 6 transcripts is the HBx transcript that gives rise to a 154 amino-acid 91 

long cytoplasmic and nuclear X protein [6–10]. X directly interacts with a multitude of 92 

host proteins explaining its diverse trans-activating effects in host cells [11–14].  93 

The organization of the HBV genome is highly condensed and all transcripts are to 94 

various degrees subsets of each other (Fig.1A). Indeed, all HBV transcripts share the 95 

same 3' end and, thus, the HBx sequence constitutes the 3’ end of every viral transcript 96 

(Fig1A). Therefore, most HBV RNAs are indistinguishable by quantitative real time 97 

PCR (qPCR). At present, only the larger viral RNAs can be differentiated by Northern 98 

blotting during the course of infection. Most probably because of low expression levels, 99 

HBx transcripts are undetectable by Nothern blotting under infection conditions. 100 

Accordingly, not much is known about HBx transcription during viral infection. 101 

Moreover, there is a knowledge gap about the viral RNA species, per se, found in cell 102 

culture, but also in viral particles and in chronically HBV infected patients.  103 

To this end, we set up a strategy called HBV full-length 5’RACE with which we 104 

characterized all major intra- and extracellular HBV RNAs during viral infection of 105 

cultured hepatocytes. With the HBV full-length 5’ RACE approach, we followed the 106 

expression of the different viral RNAs over the course of infection and additionally 107 

studied how they are modulated by various drug treatments. Furthermore, we identified 108 

the viral RNAs that are associated with viral particles produced by HepAD38 cells. 109 

Finally, we analyzed the full spectrum of circulating HBV RNAs in patients with chronic 110 

HBV infection. 111 

 112 

Materials and methods 113 

 114 

Cell lines, viral inoculum and infection conditions  115 
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For infection purpose, HBV particles were concentrated from the supernatant of 116 

HepAD38 (HBV genotype D) cells by filtering and PEG precipitation as described 117 

previously [15]. The HepAD38 cell line was a kind gift of Dr C. Seeger (Fox Chase 118 

Cancer Center, Philadelphia, USA) [16]. The HepG2-NTCP cell line was a kind gift of 119 

Dr S. Urban (Heidelberg University, Germany) [17]. Primary human hepatocytes (PHH) 120 

were isolated from surgically removed liver sections, cultured, and infected as 121 

described previously [15]. HepG2-NTCP cells and PHHs were infected at a M.O.I. of 122 

100 vg/cell in culture media supplemented with 4% PEG (polyethylene glycol 8000). 123 

 124 

Serum samples 125 

Serum samples were collected in the Lyon Biobank after written informed consent from 126 

the patients and the protocol was approved by the Lyon institutional Ethic Committees 127 

(#DC-2008-235, CPP 11/040 20110530 A11-168, CNIL n°1789480v0). 128 

 129 

RNA ligase-mediated 5’RACE 130 

RNAs were isolated using a guanidinium thiocyanate–phenol–chloroform extraction 131 

protocol (TRI reagent Sigma; [18]). 5’RACE was essentially done as described in the 132 

GeneRacer Kit manual (ThermoFisher Scientific) except Tobacco Acid 133 

Pyrophosphatase was substituted by RNA 5' Pyrophosphohydrolase (New England 134 

Biolabs) and SuperScript reverse transcriptase III by SuperScript reverse transcriptase 135 

IV (ThermoFisher Scientific). Reverse transcription reaction was performed using 3’ 136 

HBV specific Gsp1 primer 5’-GGTGCGCAGACCAATTTATG-3’. For the 5’RACE PCR 137 

reaction Platinum™ SuperFi™ DNA Polymerase (ThermoFisher Scientific), 138 

GeneRacer 5’ primer and HBV specific nested primer Gsp2 5’-139 

GTGCACACGGTCCGGCAGATG-3’ were used (Fig.1B). 5’RACE PCR was run in a 140 
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iTOUCH 1000 BIORAD thermocycler using the following touch down PCR program: 141 

Initial denaturation step 98°C 3min > 5x(98°C 10s; 72°C 3min) > 5x(98°C 10s; 70°C 142 

3min) > 25x(98°C 10s; 64,4 20s; 72°C 3min) > 72°C 10min. pg and preC specific PCRs 143 

were run using primer Gsp2.2 5’-GCTTCCCGATACAGAGCTGAGG-3’ in combination 144 

with either pg ACTGAAGGAGTAGAAAAACTTTTTCACCTCTG or preC 145 

ATGGACTGAAGGAGTAGAAAATAAATTGGTCTGCG specific primer in a iTOUCH 146 

1000 BIORAD thermocycler using the following 2-step PCR program: Initial 147 

denaturation step 98°C 3min > 34x(98°C 10s; 72°C 30s) > 72°C 10min. 148 

 149 

Cloning of 5’RACE amplicons 150 

5’RACE amplicons were A-tailed and cloned into the pGEM-T vector (Promega) using 151 

standard procedures. Clones were verified by digestion and sequenced by Sanger 152 

sequencing at Eurofins Genomics. 153 

 154 

Drug treatments of culture hepatocytes 155 

Interferon beta (PBL Assay Science) was used at 500 IU/ml, preS1-myr (Myrcludex-156 

like) peptide (sequence: GTNLSVPNPLGFFPDHQLDPAFRANSNNPDWDFNPN 157 

KDHWPEANKVG, synthesized by GeneScript) was used at 500nM, Tenofovir (Sigma 158 

Aldrich) was used at 100µM. Drug regimens are detailed in the corresponding figures. 159 

 160 

ELISA for viral antigens 161 

Prior to ELISAs supernatants were 10 times diluted. ELISAs for HBeAg detection in 162 

cell supernatants were performed according to the manufacturer’s protocol using the 163 

CLIA kit from Autobio Diagnostic. 164 

 165 
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Protein isolation and Western blotting 166 

Whole cell proteins were isolated by a first lysis with buffer A (20mM Tris-HCL pH7.5; 167 

0.5mM EDTA; 0.1% TritonX100; 100mM NaCl; 10% Glycerol; 2mM MgCl2; 10mM 168 

mercaptoethanol; 0.5 mM PMSF (phenylmethylsulfonyl fluoride)) for 30 min at 4°C. 169 

Subsequently, the lysate was centrifuged for 5 min at 4000rpm using a tabletop 170 

centrifuge. Supernatant was transferred to a fresh tube and the pellet was incubated 171 

with 5 volumes of buffer B (20mM Tris-HCL pH7.5; 0.5mM EDTA; 0.1% TritonX100; 172 

400mM NaCl; 10% Glycerol; 2mM MgCl2; 10mM mercaptoethanol; 0.5 mM PMSF) for 173 

30 min on 4°C and then centrifuged for 10 min at 13000 rpm. Both supernatants were 174 

pooled. 1 OD per condition determined by Bradford assay was diluted in Laemmli-175 

buffer and resolved on an SDS-PAGE gel.  176 

For the detection of surface proteins in gradient fractions, 10µl of fractions were directly 177 

diluted in Laemmli buffer and resolved on an SDS-PAGE gel. Proteins were 178 

electroblotted onto a nitrocellulose membrane using the Transblot system (Biorad). 179 

Surface proteins L/M/S were detected by the monoclonal antibody H166 [19], a kind 180 

gift of Abbott Laboratories. 181 

 182 

Iodixanol gradient sedimentation analysis 183 

To analyze viral particles, 200ml of HepAD38 cell supernatant was centrifuged for 5min 184 

at 500g to sediment cell debris. This was followed by an additional centrifugation step 185 

for 45min at 2000g. Supernatant was laid over a 20% sucrose cushion and centrifuged 186 

at 90000g for 2h using a Beckmann 32Ti rotor to pellet viral particles. Pellet was 187 

resuspended in 1ml PBS and material was loaded onto a 10 ml 10% to 50% Iodixanol 188 

gradient in PBS and centrifuged at 175000g for 14h in a Beckmann SW41 rotor. 900µl 189 

fractions were collected from the top of the gradient. 190 
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 191 

MNase digestion of HepAD38 supernatants 192 

To isolate encapsidated viral RNAs we performed MNAse (Micrococcal Nuclease) 193 

digestions of the HepAD38 supernatants. MNase is a DNA and RNA endonuclease 194 

that degrades double- and single-stranded DNA and RNA. 200ml of HepAD38 195 

supernatant was centrifuged for 5min at 500g to sediment cell debris. This was 196 

followed by an additional centrifugation step for 45min at 2000g.  The supernatant was 197 

laid over a sucrose cushion and centrifuged at 90000g for 2h using a Beckmann 32Ti 198 

rotor to pellet viral particles. Viral particles were resuspended in MNase buffer, 2 µg of 199 

a non-relevant plasmid (pcDNA3 vector + insert) was added to monitor digestion 200 

(Suppl.Fig.5). MNase digestion was performed for 25min at 37°C using 30 gel units 201 

(New England Biolabs) in a 150µl reaction. Reactions were stopped by Trizol. 202 

 203 

Real-time PCRs 204 

RNA or DNA was extracted using the MasterPure complete kit (Epicentre) following 205 

manufacturer’s instructions. Real-time PCRs were performed essentially as described 206 

in Lebossé et al. [20]. 3kb RNAs were detected by the primer pair 207 

ggagtgtggattcgcactcct (A) and agattgagatcttctgcgac (B) together with the Taqman 208 

hybridization probe ([6FAM]-AGGCAGGTCCCCTAGAAGAAGAACTCC-[BHQ1]) [21]. 209 

Total RNAs were measured using primers and Taqman probe Pa03453406_s1 210 

(ThermoFisher Scientific). Signals were normalized by the housekeeping gene GUSB 211 

detected with primers and Taqman probe Hs99999908_m1 (ThermoFisher Scientific). 212 

Total DNA was measured using primers and Taqman probe Pa03453406_s1 (Life 213 

Technologies). Serial dilutions of a plasmid that contains a HBV monomer 214 

(pHBVEcoR1) served as an external quantification standard. The amount of total DNA 215 
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was normalized to the cell number using primers and Taqman probe Hs00758889_s1 216 

(ThermoFisher Scientific) that are specific for the β-globin locus. PCRs were performed 217 

in duplicates. Amplification was carried out on the QuantStudio 7 Flex with the following 218 

PCR conditions: Initial denaturation step 95°C 20s > 40x(95°C 1s; 60°C 20s). 219 

 220 

Accession code for sequencing data 221 

All Sanger sequencing data is available at the European Nucleotide Archive (ENA) at 222 

http://www.ebi.ac.uk/ena/data/view/PRJEB36101 (accession code PRJEB36101). 223 

 224 

Results 225 

 226 

Detection of all major viral RNAs by HBV full length 5’RACE 227 

In the context of the HBV genome, transcription of 5' positioned genes obscures the 228 

measurement of transcripts starting further downstream because all transcripts share 229 

the same 3’ ends (Fig.1A). Currently, the measurement of viral RNAs relies on 3 230 

techniques: Northern blotting, quantitative RT PCR and RNA-next generation 231 

sequencing (NGS).  Northern blotting allows the resolution of viral RNAs according to 232 

their molecular weights on an agarose gel but misses the HBx transcript under infection 233 

conditions [22].  Quantitative RT PCR cannot distinguish between the different viral 234 

transcripts and hence it is commonly used exclusively for measuring total RNAs vs 3.5 235 

kb RNAs. Similarly, standard short reads RNA-NGS approaches cannot distinguish the 236 

different viral transcripts as soon as more than one viral transcript are present. To our 237 

knowledge, there is only one publication in which the authors tried to discriminate all 238 

the different viral transcripts expressed in cell culture and in patients by a strategy 239 

called cap analysis of gene expression (CAGE) [23]. However, the major limitation of 240 
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this study was that only the first 50 nucleotides of the viral transcripts were sequenced 241 

and thus no conclusions could be drawn about viral full-length transcripts and 242 

especially pgRNA splice variants.  243 

Thus, to specifically detect and characterize the different intra- and extracellular HBV 244 

RNAs in full length we set up the HBV full-length 5’RACE strategy. The technique 245 

follows a standard RNA ligase-mediated 5’RACE protocol including initial 246 

dephosphorylation and decapping steps to ensure the amplification of only full-length 247 

transcripts with respect to 5’ ends. Truncated, uncapped RNA species are eliminated 248 

from the subsequent 5’RACE amplification process because they miss the 5’ 249 

phosphate group that is essential for anchor ligation (Fig.1B). After performing the HBV 250 

full-length 5’RACE, the different HBV transcripts are resolved on an agarose gel 251 

according to their molecular weights.  252 

The initial experiment was carried out in HepG2-NTCP cells that had been infected for 253 

8 days. As shown in Fig.1C we found all major transcripts including HBx migrating at 254 

their expected seizes on the gel. Their relative sizes are reduced in length by 255 

approximately 338 bp (base pairs) with respect to template viral RNAs because of the 256 

use of gene specific 3’ primer 2 (Gsp2) for PCR. PCR products are specific to viral 257 

RNAs as shown by performing the 5’RACE without the reverse transcription reaction 258 

(Suppl.Fig.1A) and by their absence in the non-infected condition (Fig.1C). In addition, 259 

PCR products are specific to capped viral RNAs as demonstrated in Suppl.Fig.1C and 260 

further below. Of note, the proportional quantities of the different viral RNAs are not 261 

directly translated by the 5’RACE PCR reaction. This is because the viral transcripts 262 

exhibit an important heterogeneity in their respective lengths and, hence, are subject 263 

to different amplification efficiencies during the 5’RACE PCR reaction, i.e., gel band 264 



12 

 

intensities of the 5’RACE PCR product do not provide an absolute information on the 265 

original proportional quantities of the different viral RNA species. 266 

We then investigated the expression kinetics of the different viral RNA species during 267 

the course of infection. In both HepG2-NTCP cells and PHHs we found HBx to be the 268 

first transcript detectable by full-length 5’RACE as early as 8h post-infection (Fig.1D). 269 

The remaining transcripts are detected later during infection, in HepG2-NTCP cells 270 

from 24 hours on and in PHHs after a longer delay (not earlier than 48h, see additional 271 

experiment Suppl.Fig.2). The variance in the kinetics of viral RNAs observed for the 272 

two experiments shown for PHHs (Fig.1D and Suppl.Fig.2) probably resulted from the 273 

heterogeneity of cells retrieved from two different donors. However, these results are 274 

similar to the data published in Niu et al. where the authors followed viral RNAs in 275 

PHHs during the course of infection by an RNA-NGS approach [22]. 276 

 277 

Short versions of HBx transcripts are produced in HepG2-NTCP cells and PHHs 278 

To confirm their identity, the obtained amplicons were fully characterized by subcloning 279 

and Sanger sequencing (Fig.1E and PRJEB36101). Sequencing of the 5’RACE 280 

amplicons revealed an important diversity in transcript start sites (TSSs) for the HBx 281 

transcripts expressed in HepG2-NTCP cells and PHHs (red bars in Fig.1E). In contrast, 282 

all sequenced clones for the preS2 transcripts were identical and share the same 5’ 283 

end in PHHs and HepG2-NTCP cells (TSS nucleotide (nt) 3159 with respect to 284 

reference sequence GenBank U95551.1, blue bars in Fig.1E). The same was true for 285 

pgRNA (TSS nt1820) and preC (TSS nt1791). Surprisingly, we were not able to detect 286 

spliced pgRNA variants, most likely because of their low proportional copy numbers 287 

with respect to the other viral RNA species in HepG2-NTCP cells and PHHs. 288 
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In HepG2-NTCP cells, HBx transcripts can be subdivided into two categories: i. 289 

“canonical” transcripts initiating closely upstream (TSSs nt1243 to nt1338) of the first 290 

ATG of HBx (light red) coding for the full-length X protein (154 amino acids) and ii. 291 

transcripts starting after the first ATG of HBx (dark red) presumably coding for a short 292 

version of X potentially using 2 ATGs further downstream as start codons 293 

(Met79/Met103). In PHHs, we additionally sequenced a third category of longer HBx 294 

transcripts (TSS nt1065 and nt1151, very light red Fig.1E) that we did not detect in 295 

HepG2-NTCP cells. The longer transcripts include ATGs from the P protein open 296 

reading frame and could potentially code for its RNAseH subdomain. The number of 297 

sequenced clones positive for shorter and longer HBx transcripts was much smaller as 298 

compared to clones harboring canonical HBx (see Fig.1E), indicating that shorter and 299 

longer HBx transcripts are most likely less abundant in cells.  300 

 301 

Tenofovir treatment primarily increases the pgRNA transcript in PHHs and 302 

HepG2-NTCP cells 303 

Subsequently, to further validate our approach, we investigated the effect of treatment 304 

interventions on viral transcripts in HBV infected HepG2-NTCP cells and PHHs using 305 

the full-length 5’RACE assay. We first exposed the cells to a Myrcludex-like peptide 306 

(hereafter Myrcludex) and Tenofovir, two functionally well-characterized drugs 307 

interfering with the viral life cycle at different stages. Myrcludex is a viral entry inhibitor 308 

peptide binding to the HBV receptor sodium tauro-cholate co-transporting  polypeptide 309 

(NTCP) and thus efficiently prevents viral infection [17,24]. Tenofovir, on the other 310 

hand, is a nucleotide analog (NA) that interferes with DNA chain elongation during the 311 

reverse transcription reaction and, accordingly, inhibits viral genome replication [25]. 312 

For HepG2-NTCP experiments, cytotoxicity of drug regimens was excluded by visual 313 
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inspection. For experiments in PHHs, effect of drug regimens on cell viability was 314 

measured by the CellTiter-Glo approach (Suppl.Fig.3). As shown in Fig2.A we 315 

measured viral RNAs by 5’RACE on 4, 8 and 15 days post infection. Myrcludex 316 

treatment was initiated 1 day before infection to saturate NTCP receptors, Tenofovir 317 

treatment was started 3 days post infection (see timescale in Fig.2A).  After 8 days of 318 

infection, conventional qPCRs were performed to monitor their effect on 3kb RNAs (pg- 319 

and preC-RNA), total RNAs and total DNA (Fig.2B). In the Myrcludex condition, no viral 320 

RNAs and DNAs were detectable by qPCRs. Tenofovir treatment, on the other hand, 321 

led to a ~1.5 fold increase in 3kb RNAs and total RNAs and to a strong decrease in 322 

viral DNAs.  323 

Concordantly, full length 5’RACEs showed no specific signal when Myrcludex blocks 324 

viral entry (Fig.2A upper gel). The bands visible in the Myrcludex lane 8 days post 325 

infection are non-specific, as verified by cloning and sequencing (data not shown). 326 

However, Tenofovir treatment lead to an increase in 3kb 5’RACE signals indicating 327 

more preC/pgRNA as compared to the non-treated control conditions (Fig.2A lower 328 

gel). Tenofovir administration had no effect on the S and HBx transcripts, especially 329 

from day 8 on. Since the experiment is exclusively controlled by using equal amounts 330 

of input RNA for the different conditions, we normalized the quantity of the 3kb band 331 

(preC/pgRNA) in each lane by its corresponding HBx band. This procedure produces 332 

the 3kb ratio (intensity 3kb band/intensity HBx band) and shows that, for each time-333 

point, the 3kb ratios are elevated, i.e. more preC/pgRNAs are found in Tenofovir 334 

treated as compared to untreated cells (Fig.2C). Moreover, we observed an increase 335 

of the 3kb ratio over time supporting the concept that viral full-length transcripts 336 

accumulate with Tenofovir treatment duration in HepG2-NTCP cells.                   337 
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Comparable to the experiments in HepG2-NTCP cells, no 5’RACE signals are detected 338 

in PHHs treated with Myrcludex (Fig.3A/B). In PHHs too, Tenofovir treatment causes 339 

an exclusive increase in the 3kb band as compared to the other 5’RACE products (i.e. 340 

S transcripts and HBx transcripts) over the time of infection (Fig.3A/B/C). Next, in order 341 

to elucidate whether the increase in 3kb transcripts reflects an augmentation of pgRNA, 342 

preC-RNA or both, we designed primers that are specific for pg- or preC-RNA using 343 

full-length 5’RACE cDNAs (for specificity and outline of strategy see Suppl.Fig.4). 344 

pg/preC-RNA specific 5’RACE PCRs indicate that the effect of Tenofovir is much more 345 

pronounced for pgRNA than for preC RNA on day 8 post infection, an observation that 346 

is consistent with the mode of action of Tenofovir as a reverse transcription inhibitor 347 

(Fig.3A gels pg and preC). To support the results, we quantified HBeAg by ELISA as 348 

another read out for preC using the supernatants of treated and untreated cells. 349 

Consistently, by ELISA we did not detect any effect of Tenofovir on extracellular HBeAg 350 

(Fig.3D). Furthermore, we show by Western blotting that cellular S protein levels are 351 

not affected by Tenofovir administration (Fig.3E). In summary, these results validated 352 

the HBV full length 5’RACE technique and further confirmed that Tenofovir treatment 353 

primarily increases pgRNA but has no effect on preC-RNA, S transcripts and HBx RNA.  354 

 355 

Interferon β treatment reduces both pg- and preC-transcripts without affecting 356 

other viral transcripts in PHHs 357 

Patients with chronic Hepatitis B are treated with Interferon alpha and nucleos(t)ides 358 

analogues leading to the suppression of viral replication [25]. In HepG2 or chicken 359 

hepatoma cell lines that express viral RNAs from transfected or integrated plasmids, 360 

Interferon alpha efficiently down-regulates viral RNA transcription by reducing active 361 

chromatin marks like H3K9ac and H3K27ac from HBV and DHBV chromatin [26,27]. 362 
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We wanted to take advantage of the full-length 5’RACE and investigate how Interferon 363 

β affects the different viral RNAs under infection conditions in PHHs. Interferon β is a 364 

type I interferon which utilizes the same receptor as IFN alpha for which it has been 365 

shown that it inhibits HBV genome replication in hepatocyte culture [28,29]. Interferon 366 

β treatment was started on day 3 post infection, 5’RACEs (Fig.4A) and control qPCRs 367 

(Fig.4B) were carried out on day 8 post infection. Surprisingly, we found that Interferon 368 

β treatment predominantly reduces viral 3kb transcripts i.e. preC- and pgRNA without 369 

significantly affecting the other viral transcripts. This prominent effect is observed by 370 

full-length 5’RACE and preC/pg-RNA specific 5’RACE PCRs (Fig.4A).  371 

To complement the 5’RACE analysis, we show by Western blotting that the S protein 372 

levels are only moderately affected in the Interferon condition (Fig.3E). In contrast, 373 

extracellular HBeAg is strongly reduced, as determined by ELISA (Fig.3D). We omitted 374 

measuring secreted HBsAgs in supernatants by ELISA since it had been shown that 375 

Interferons inhibit HBV virion secretion by inducing tetherin expression [30]. 376 

 377 

Viral particles produced in HepAD38 cells contain different HBx transcripts, at 378 

least one spliced pgRNA variant and pgRNA  379 

Recently it was shown that viral particles produced in cell culture or circulating in the 380 

blood of chronically infected patients may harbor viral RNA species [22,31,32]. To gain 381 

more insight into the type of viral RNAs that may be contained in these particles, we 382 

performed 5’RACEs with material derived from supernatants of HepAD38 cells (See 383 

Fig.5A for purification steps). We focused our work on viral particles produced by the 384 

HepAD38 cell line since HepG2-NTCP cells and PHHs in infection assays (Fig.1-Fig.4) 385 

were infected with viral inocula generated by the same cell line.  386 
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Prior to full-length 5’RACE analysis, the pelleted material was digested with MNAse to 387 

detect exclusively protected RNAs (see Suppl.Fig.5 for digestion efficacies). As shown 388 

in Fig.5B/C in the supernatant of HepAD38 cells, we found pgRNA, one pgRNA spliced 389 

variant (known as splice variant 6 (SP6) [33], splice donor site nt2471/nt2472; splice 390 

acceptor site nt488/nt499, Fig.5C) and HBx transcripts with different lengths (long, 391 

canonical, and short) that are protected from MNAse digestion. For their identification, 392 

we characterized all RNAs that were protected from MNAse degradation (Fig.5B) by 393 

cloning and Sanger sequencing (Fig.5C and PRJEB36101). Neither S transcripts nor 394 

preC-RNA were detected by sequencing. Furthermore, by pgRNA and preC RNA 395 

specific 5’RACE analysis, we confirmed that protected RNAs did not include preC RNA 396 

(Fig.5B). Importantly, the 5’RACE products were specific to viral RNAs since there was 397 

no signal in the negative control reactions without RT. 398 

To confirm that the MNAse-protected RNAs are contained in viral particles, we 399 

performed Iodixanol gradient sediment analysis. Overall, 12 fractions were collected 400 

from the top out of which fractions 2 to 11 were characterized in detail with respect to 401 

viral DNA (Fig.5D), S antigens (HBAgs, Fig.5E) and viral 5’RACE RNA content 402 

(Fig.5F). Viral DNA sedimented between fractions 4 and 8 with a sharp peak in fraction 403 

7. All three HBsAgs co-sedimented between fractions 5 and 9 with the strongest 404 

intensities found in fractions 6 and 7. 405 

By full-length 5’RACE we could detect the different HBx transcripts similar to the 406 

MNAse approach. The majority of HBx transcripts was detected in fractions 7 and 8 407 

co-fractionating with viral DNA and HBAgs. Most probably because of RNA quantity 408 

issues, full-length 5’RACE neither detected pgRNA nor the pgRNA splice variant found 409 

by the MNAse approach.  However, by performing pgRNA specific 5’RACE analysis 410 
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using the pgRNA specific primer, pgRNA was detected in gradient fractions 6 to 9 with 411 

the highest abundance in fraction 7 similar to viral DNA.  412 

Taken together, we found pgRNA, one pgRNA derived splice variant (SP6) and 413 

different HBx transcripts co-fractionating with HBAgs in gradient fractions where viral 414 

DNA is present (Fig.5C). HBx transcripts are of different lengths: long (TSSs nt1065 to 415 

nt1198, canonical (TSSs nt1243 to nt1338bp) and short (TSSs nt1418bp to nt1533). 416 

 417 

HBx RNAs in viral particles are both capped and un-capped 418 

Capped RNAs are protected against de-phosphorylation, the first step of the full-419 

length-5’RACE protocol that is necessary to exclude degraded or un-capped RNAs 420 

from the full-length 5’RACE (Fig.1B). The interpretation of our data, i.e. that the 421 

different RNAs detected by the 5’RACE in viral particles are indeed capped, relies on 422 

the efficiency of this de-phosphorylation step. An inefficient de-phosphorylation step 423 

could leave un-capped RNAs phosphorylated and thus could produce false positive 424 

signals during the full-length 5’RACE. However, un-capped/degraded viral RNAs that 425 

are generated by the RNAse H activity of the P protein during cDNA synthesis must 426 

be present in viral particles, as discussed by Bai et al. [31].  427 

To clarify these issues, we carried out control 5’RACE experiments that specifically 428 

detect un-capped RNAs using again MNAse digested material from HepAD38 cells 429 

derived supernatants. The un-capped RNA specific 5’RACE protocol lacks the de-430 

capping and de-phosphorylation steps from the standard full-length 5’RACE and thus 431 

capped RNAs are not ligated to the anchor sequence and consequently are not 432 

amplified by the final PCR reaction (Fig.6A). To control de-phosphorylation efficacy, 433 

we included or not a de-phosphorylation step in the un-capped RNA specific 5’RACE 434 

protocol (compare lane 4 with lane 5 in Fig.6B). Simultaneously, we performed the 435 
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standard full-length 5’RACE (capped RNA specific) on the same material (Fig.6B lane 436 

3) and on cellular RNAs derived from PHHs (Fig.6B lane 1).  437 

Collectively, the data in Fig.6B demonstrates the authenticity of the capped RNAs 438 

found in viral particles since all uncapped RNAs contained in viral particles are 439 

dephosphorylated during the capped RNA specific full-length 5’RACE approach 440 

(compare lane 4 with lane 5 in Fig.6B). However, we also confirm that un-capped RNA 441 

species up to 800bp exist in the MNAse digested material (Fig.6B lane 5). Sub-cloning 442 

and sequencing identified the uncapped RNAs as long, canonical and short HBx 443 

transcripts (data not shown). We detected neither pgRNA nor the pgRNA splice variant 444 

as uncapped RNAs (Fig.6B lane 5). 445 

 446 

Full length 5’RACE identifies 3 major categories of circulating RNA species in 447 

patients with chronic HBV infection 448 

An accurate monitoring of intrahepatic cccDNA levels and activity during patient 449 

management is limited by the need for invasive liver biopsy procedures. So far, no 450 

single serum parameter has been shown to accurately reflect the transcriptional activity 451 

of the cccDNA pool in the liver [34]. Moreover, it is still an open question, which 452 

serological viral RNA species exist in the plasma/serum of patients. Indeed, pgRNA 453 

has been detected in sera of patients, spliced pgRNA variants and HBx transcripts as 454 

well, but there is not much information about whether and how these transcripts co-455 

exist [22,32,35–38]. To gain deeper insight into these questions, we characterized the 456 

major circulating viral RNA species found in three highly viremic chronically infected 457 

patients (Fig.7A) by full-length 5’RACE (Fig.7B). All three patients were HBe-positive 458 

and patient #2 had elevated alanine aminotransferase (ALT) levels. Figure 7B shows 459 

the different 5’RACE profiles for the three patients and visual inspection revealed a 460 
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differential pattern between the patients. Importantly, for all patients 5’RACE signals 461 

were specific to RNAs (Fig.7B/-RT). 462 

To characterize the RNA species found in plasma, we sub-cloned and sequenced the 463 

5’RACE products of patient 1 and 2 (Fig.7C and PRJEB36101). We did not detect any 464 

S and preC transcripts in the plasma samples. For both patients 1 and 2, we found co-465 

circulating pgRNA and pgRNA splice variants (known as SP1/2/3/5 [33], see Fig.7C 466 

for splice donor/acceptor sites). We again identified an important heterogeneity for the 467 

HBx transcripts including long (TSSs nt991-nt1197), canonical (TSSs nt1278-nt1350) 468 

and short (TSSs nt1397-nt1558) HBx transcripts similar to the HBx transcripts 469 

associated with in vitro produced viral particles. Interestingly, the pgRNA splice 470 

variants observed in patients #1 and #2 were different (see Fig.7C for alignments of 471 

transcripts in individual patients). In summary, HBV RNAs found in plasma samples of 472 

patients belong to one of the three categories: 1. pgRNA, 2. pgRNA splice variant, 3. 473 

HBx transcript (long, canonical and short HBx transcripts). Considering the sequencing 474 

data together with the patient specific 5’RACE profiles, the results presented here open 475 

up the possibility that patients exhibit qualitative and/or quantitative differences in 476 

circulating HBV RNAs.    477 

 478 

Conclusions 479 

We set up the HBV full-length 5’RACE approach to overcome the current limitations 480 

for the measurement and discrimination of the different HBV RNAs. Our results show 481 

that the HBV full-length 5’RACE detects all major viral RNAs including pgRNA splicing 482 

variants and most importantly, HBx. The full-length 5’RACE is a qualitative approach 483 

though sensitive enough to demonstrate changes during the course of infection (Fig.1) 484 
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and in experimental conditions where cultured hepatocytes were treated with Tenofovir 485 

(Fig.2A/3A) or Interferon β (Fig.4A). 486 

Contrary to preC/pg-RNA and the S transcripts, we found a variety of transcripts for 487 

HBx that are characterized by heterogeneous TSSs (Fig.1D). Of special interest are 488 

the long and short HBx transcripts, that were found in cells, viral particles produced by 489 

cultured hepatocytes but also in plasmas of patients, indicating their biological 490 

relevance. Some of the long and short HBx transcripts could potentially code for other 491 

proteins than full-length canonical X. Shorter than canonical HBx transcripts and short 492 

X proteins have been discussed in the literature [23,39,40]. Short X starting from Met 493 

103 of the canonical X would lack the DDB1-binding domain of the full-length protein 494 

[41] and thus would have lost its co-regulatory activity of the Cul4A E3 ubiquitin ligase 495 

complex [12,41,42]. In addition, the C-terminal domain of full-length X is required for 496 

p53 interaction [13] and consequently, short X could be a protein that predominantly 497 

interacts with p53.  498 

On the other hand, long HBx transcripts have not yet been described. We could detect 499 

them in plasma, viral particles produced by the HepAD38 cell line and in cell extracts 500 

from PHHs, but surprisingly not in HepG2-NTCP cells. Long HBx transcripts could code 501 

for the RNAseH domain of the P protein since the transcripts include ATGs upstream 502 

of HBx. Whether the long transcripts code for RNAseH and which function the RNAseH 503 

domain separated from its RT domain has, needs further investigation. Interestingly, it 504 

has been shown that the HBV RNAseH domain is a stable protein without the RT 505 

domain [43–46], a characteristic that is not true for all the RNAseH domains of other 506 

RTs [47,48].   507 

Besides coding for proteins, there is also the possibility that the short and long HBx 508 

RNAs function as regulatory non-coding RNAs (ncRNAs). Many DNA and RNA viruses 509 
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express ncRNAs that target either host or viral factors [49]. Especially long non-coding 510 

RNAs (lncRNAs) are an interesting class of ncRNAs that regulate host or viral gene 511 

expression at the level of chromatin, transcription, post-transcription and translation. 512 

Interestingly, for the Kaposi's sarcoma-associated herpesvirus (KSHV), Japanese  513 

encephalitis  virus  (JEV),  dengue  virus,  and  West  Nile Virus (WNV) it has been 514 

shown that lncRNAs antagonize the antiviral Interferon response [50–55]. 515 

The capacity of the full-length 5’RACE to discriminate all the major viral transcripts 516 

allowed us to show that viral RNAs can be differentially regulated. We demonstrated 517 

that Interferon β reduced preC-RNA and pgRNA without affecting the other viral 518 

transcripts (Fig.4A). In overexpression assays [26,27,56] and mouse model infection 519 

systems [57], this differential phenotype could not be differentiated from a general 520 

down-regulation of viral transcripts. Moreover, in combination with the qPCR assays 521 

(Fig.4B), the full length 5’RACE data also indicates that preC- and pgRNAs constitute 522 

the majority of viral transcripts in infected PHHs confirming CAGE-NGS results recently 523 

published by Altinel et al. [23].  524 

It will be important to elucidate how Interferon β induces the specific down-regulation 525 

of preC/pg-RNAs. One possible scenario could be that Interferon β treatment induces 526 

the specific degradation of the full-length viral transcripts in PHHs. Interestingly, 527 

Interferon stimulated gene 20 (ISG20) degrades HBV viral RNAs by binding to the 528 

epsilon stem-loop structure [58].  If the targeting/degradation activity of ISG20 in PHHs 529 

would be specific for the epsilon structure at the 5’ end of an RNA molecule, only full-530 

length viral RNAs (preC/pg-RNAs) would be degraded. However, Liu et al. 531 

demonstrated by over expression assays that ISG20 degrades viral RNAs irrespective 532 

whether the epsilon structure is at the 5’ or 3’ end of the transcripts. The authors 533 

additionally demonstrated that ISG20 does not act alone but requires co-factors for its 534 
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target specificity. Thus, either another ISG displaying different targeting characteristics 535 

is induced upon Interferon β treatment or, the specificity of ISG20 is modulated by 536 

different co-factors in PHHs. 537 

Another possibility could be that Interferon β specifically reduces the activity of the HBV 538 

core promoter regulating preC/pg-RNAs expression. It has been shown that the core 539 

HBV promoter is negatively regulated by the NF-κβ factor p65 [59,60], another rapidly 540 

induced ISG, which could preferentially down-regulate the HBV core promoter once 541 

activated by Interferon β. Alternatively, the ISG TRIM22 can suppress HBV core 542 

promoter activity in HepG2 cells. TRIM22 is a member of the tripartite motif (TRIM) 543 

superfamily whose members have been shown to be expressed in response to 544 

Interferons to restrict viral activity, especially with respect to retroviruses [61]. 545 

We also characterized the full spectrum of viral RNAs associated with viral particles 546 

and gained a detailed overview of their composition (Fig.5/6). Our results integrate 547 

earlier published results, but at the same time provide new insights into the diversity of 548 

particle associated viral RNAs. For instance, in addition to pgRNA we also detect 549 

spliced pgRNA variants in viral particles. Spliced pgRNA variants have been first 550 

described in cell lines and infected livers [62–65] and later have been shown to be 551 

incorporated into the nucleocapsids and then reverse transcribed into HBV DNA to 552 

generate defective HBV particles [33,66–69]. Interestingly, it also has been shown that 553 

pgRNA splice variants can code for additional viral proteins [70,71]. Furthermore, our 554 

results substantiate the notion that viral particles contain HBx RNA that may have an 555 

important role for the establishment of infection as proposed by Niu et al. [22]. In this 556 

regard, we found that different HBx RNAs exist as capped and un-capped molecules 557 

in viral particles, an observation that raises the question whether one is the product of 558 

the other (Fig.6B).  As depicted in Figure 1A, the six viral RNAs are transcribed from 559 



24 

 

four different promoters. After productive initiation of Polymerase II, nascent transcripts 560 

are co-transcriptionally capped in the nucleus by different capping enzymes. Capping 561 

of transcripts promotes translation and protects against RNA degradation by cellular 562 

exonucleases. The capped non-canonical HBx RNAs are puzzling with respect to their 563 

5’ends since, to our knowledge, promoters that initiate transcription from these 564 

positions in the HBV genome have not yet been molecularly characterized. In addition, 565 

transcripts that lack the 5’ epsilon stem-loop structure should be excluded from viral 566 

capsids [72–75]. Therefore, the question arises whether the capped HBx transcripts in 567 

viral particles could be produced rather post- than co-transcriptionally. The hypothetical 568 

post-transcriptional generation of encapsidated HBx RNAs would require 2 major 569 

steps: i. an endolytic cut to generate the 5’end of the RNA molecule and ii. the addition 570 

of the cap structure. A scenario would be that the RNAse H domain of the P protein 571 

produces specific endolytic cuts in the pgRNA during reverse transcription in viral 572 

particles giving rise to the 5’ ends of the different HBx RNAs. Interestingly, the RNAse 573 

H domain of the avian myeloblastosis virus (AMV) reverse transcriptase e.g. initially 574 

cuts every 100-200 nucleotides during reverse transcription. Whereas for HIV-1 and 575 

MoMLV, the cleavage frequency centers around 100–120 nucleotides [48,76]. 576 

Consequently, it will be important to determine the cutting frequency of the HBV RNAse 577 

H domain and whether it correlates with the molecular sizes of the different HBx 578 

transcripts (400-800nts). Furthermore, the post-transcriptional generation of capped 579 

non-canonical HBx RNAs would also require that the capping of un-capped 5’ ends 580 

takes place inside viral particles. Since HBV does not code for its own capping 581 

enzymes, viral particles would have to contain host-capping enzymes that fulfill this 582 

task. Notably, for RNA alphaviruses it has been shown that viral particles that contain 583 

non-capped viral RNAs induce innate immune responses in host cells and therefore 584 
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are less infectious than viral particles carrying capped RNAs [77]. It is intriguing to 585 

speculate that HBV might have found a way to cap the different RNAs arising during 586 

the maturation of viral particles to hide them from the innate immune system of host 587 

cells. Importantly, it is very likely that other pgRNA-derived RNA species are generated 588 

during the reverse transcription process in addition to the different HBx RNAs 589 

characterized in this study. However, the HBV full-length 5’RACE method is specific to 590 

RNA molecules that are intact until nt1810 (Gsp1 annealing point) of the HBV genome 591 

(reference sequence GenBank U95551.1). Our approach is blind to RNA species that 592 

do not include this distal 3’ sequence, i.e. to all RNAs that have been released from 593 

the pgRNA by two cuts upstream of this reference point during reverse transcription. 594 

Whether these RNA species are also capped, similar to the HBx transcripts that were 595 

identified in this study, remains to be investigated. 596 

In recent years, many studies evaluated circulating pgRNA as a biomarker for disease 597 

development and treatment efficacy. A good correlation between serological and intra-598 

hepatic pgRNA levels, as well as between circulating pgRNA and the ratio between 599 

intracellular pgRNA and cccDNA have been observed. Therefore, serological pgRNA 600 

could represent a non-invasive read out for monitoring intra-hepatic cccDNA 601 

transcriptional activity, even during NA treatment [37,78]. To get a deeper 602 

understanding of the complexity of the circulating viral RNAs we characterized the 603 

majority of serological viral RNAs in three patients using the HBV full-length 5’RACE 604 

(Fig.7). Similar to the RNA species associated with viral particles, circulating RNAs 605 

belong to one of the three categories: 1. pgRNA, 2. pgRNA splice variant, 3. HBx 606 

transcripts (long, canonical and short). Likewise, we detected neither preC- nor S-607 

transcripts in the plasmas of patients. Considering the possibility that the different HBx 608 

RNAs are post-transcriptionally generated inside viral particles these results support 609 



26 

 

the concept that viral RNAs found in the blood circulation are all derived from packaged 610 

pgRNAs and protected against degradation by nucleases in the blood of patients. 611 

Consequently, all viral RNAs that are not packaged into viral particles, i.e. preC- and 612 

S-transcripts, are not detected by the full-length 5’RACE. At this point, it should be 613 

emphasized that the capped RNA specific 5’RACE approach only detects RNAs that 614 

are non-degraded. It excludes all the partially digested viral RNAs that might be present 615 

in the blood of patients, especially of those with high ALT levels. However, with our 616 

limited sub-cloning and sequencing approach, we cannot categorically exclude the 617 

presence of S- or preC-RNAs in the plasmas of patients. Yet, they might represent 618 

minor viral RNA species since we readily detected them by the same cloning and 619 

sequencing approach in infected cells.  620 

At last, the 5’RACE profiles of the different patients exhibit differential patterns of PCR 621 

bands. The differential PCR patterns together with the identification of specific pgRNA 622 

splice variants in different patients demonstrate that the composition of the viral RNA 623 

species can vary among patients. Our observations open new avenues of research to 624 

determine the biological and clinical relevance of circulating viral RNAs as novel 625 

biomarkers for treatment efficacy and their potential to decrease the pool of 626 

intrahepatic cccDNA. 627 
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 860 

 861 

Fig.1. Set-up of the HBV full-length 5’RACE.  862 

(A) Illustration of the Hepatitis B viral genome with its four promoters (arrows) and viral 863 

transcripts. preCore RNA (preC), pregenomic RNA (pg), Large surface protein RNA 864 

(preS1), Middle surface protein RNA (preS1), Small surface protein RNA (S), X protein 865 

RNA (HBx) and covalently closed circular DNA (cccDNA). 866 

(B) Overview of the capped RNA specific HBV full-length 5’RACE protocol. In a first 867 

step, RNAs are dephosphorylated to assure that degraded and truncated RNAs are 868 

excluded from the 5’RACE assay. 5’ capped full-length RNAs are protected from the 869 

dephosphorylation reaction. Subsequently, the 5’ cap structure (m7Gppp) is removed 870 

from the full-length RNAs by a de-capping reaction resulting in a free phosphate group 871 

(p) at their 5’ ends to which an RNA anchor (green box) can be ligated in the following 872 

step. Then, the viral RNAs are reverse transcribed using the gene specific primer Gsp1 873 

(black arrow) integrating the anchor sequence into the cDNA. Finally, the different viral 874 

cDNAs are amplified by PCR using the second gene specific primer Gsp2 (black arrow) 875 

and an anchor specific primer (green arrow) in the same tube. 876 
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(C) Transcript-specific 5’RACE amplicons using HepG2-NTCP cells 8 days post 877 

infection (p.i.) as compared to non-infected (n.i.) cells. Arrow indicates HBx. Individual 878 

amplicons are reduced in length by approximately 337 bp with respect to template viral 879 

RNAs because of the usage of gene specific primers. All amplicons were sequenced 880 

by sub-cloning and Sanger sequencing (Suppl. Table 1 and Fig.1E for overview). 881 

(D) HBx is the first viral transcript detected after infection in HepG2-NTCP cells and 882 

PHH primary human hepatocytes (PHHs). 883 

(E) Alignment of sequenced amplicons with respect to HBV genome genotype D 884 

(reference sequence GenBank U95551.1). pgRNA and preC RNA in orange. preS1 in 885 

dark blue, preS2 in blue and S in light blue. Long HBx transcripts in very light red, 886 

canonical HBx transcripts in light red and short HBx transcripts in red. To the right, total 887 

number of sequenced clones per transcript category. 888 

 889 

Fig.2. Tenofovir treatment increases full-length transcripts in HepG2-NTCP cells. 890 

(A) Full-length 5’RACE amplicons using HepG2-NTCP cells after 4, 8 and 15 days of 891 

infection. Myrcludex drug regime was initiated 1 day before infection. Tenofovir 892 

treatment was started 3 days p.i.. No specific signals are detected by 5’RACE in the 893 

Myrcludex condition as verified by sequencing (stars: non-specific signals). Tenofovir 894 

leads to an increase in full-length transcripts as compared to non-treated cells.  895 

(B) Quantitative PCRs measuring 3kb RNAs (preC and pgRNA), total RNAs and total 896 

DNA in treated versus control cells. 897 

(C) 3kb ratio (intensity 3kb band/intensity HBx band/lane) is increased and further 898 

increases over time in the Tenofovir condition as compared to untreated cells. One 899 

representative experiment is shown. 900 
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Experiments were performed in triplicates. Student’s t-test p-values with respect to no 901 

treatment: ***<0.001, ****<0.0001 902 

 903 

Fig.3. Tenofovir treatment primarily augments the pgRNA transcript without 904 

affecting the other viral transcripts in PHHs. 905 

(A) Full-length 5’RACE and preC/pg RNA-specific 5’RACE amplicons using PHHs after 906 

4 and 8 days of infection. Myrcludex drug regime was initiated 1 day before infection. 907 

Tenofovir treatment was started 3 days p.i.. No specific signals are detected by both 908 

the 5’RACEs in the Myrcludex condition. Tenofovir primarily increases the pgRNA 909 

transcript (see preC/pg RNA-specific 5’RACEs) without affecting the other viral 910 

transcripts (see full-length 5’RACEs). 911 

(B) Quantitative PCRs measuring 3kb RNAs (preC and pgRNA), total RNAs and total 912 

DNA in treated versus control cells. 913 

(C) 3kb ratio (intensity 3kb band/intensity HBx band/lane) is increased and further 914 

increases over time in the Tenofovir condition as compared to untreated cells. One 915 

representative experiment is shown. 916 

(D) ELISAs against HBeAg with supernatants of PHHs treated with Tenofovir and 917 

Interferon � as compared to n.i. and untreated PHHs. Tenofovir treatment does not 918 

change HBeAg levels whereas Interferon β strongly reduces HBeAg.  919 

(E) Western blot against surface proteins (HBsAgs) using antibody H166 (Abbott) 920 

recognizing a conserved epitope in the antigenic loop after 8 days of Myrcludex, 921 

Tenofovir or Interferon β treatment. Tenofovir treatment does not affect surface protein 922 

levels. Interferon β treatment moderately affects surface protein levels. 923 

Experiments were performed in triplicates. Student’s t-test p-values with respect to no 924 

treatment: ***<0.001, ****<0.0001  925 
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 926 

Fig.4. Interferon β treatment reduces both pg- and preC-transcripts without 927 

affecting the other viral transcripts in PHHs. 928 

(A) Full-length 5’RACE and preC/pg RNA-specific 5’RACE amplicons using PHHs after 929 

8 days of infection. Interferon β treatment was initiated 3 days p.i.. Interferon β 930 

treatment decreases both pg- and preC- transcripts (see preC/pg RNA-specific 931 

5’RACEs) without affecting the other viral transcripts, like HBx (see full-length 932 

5’RACE).  933 

(B) Quantitative PCRs measuring 3kb RNAs (preC and pgRNA), total RNAs and total 934 

DNA in treated versus control cells. 935 

Experiments were performed in triplicates. Student’s t-test p-values with respect to no 936 

treatment: **<0.01, ***<0.001, ****<0.0001 937 

 938 

Fig.5. Viral particles produced in HepAD38 cells contain different HBx 939 

transcripts, at least one spliced pgRNA variant and pgRNA. 940 

(A) Schematic diagram of procedures used to obtain viral particles.  941 

(B) Full-length 5’RACE and preC/pg RNA-specific 5’RACE amplicons using HepAD38 942 

supernatant precipitated through sucrose cushion, with/without micrococcal nuclease 943 

(MNAse) digestion, with/without reverse transcriptase (RT). All amplicons were 944 

sequenced by sub-cloning and Sanger sequencing (Suppl. table 2). Different HBx 945 

RNAs (long, normal and short), pgRNA and one pgRNA splice variant were identified. 946 

Neither preC RNA nor S transcripts were detected.  947 

(C) Alignment of sequenced amplicons with respect to HBV genome genotype D 948 

(reference sequence GenBank U95551.1). To the right, total number of sequenced 949 

clones per transcript category. 950 



36 

 

(D) Total viral DNA in gradient fractions of Iodixanol gradient. Viral DNA fractionated 951 

between fractions 4 and 8 with a sharp peak in fraction 7. 952 

(E) HBsAgs in Iodixanol gradient. All three HBsAgs co-sedimented between fractions 953 

5 and 9 with the strongest intensities found in fractions 6 and 7 as shown by Western-954 

blotting. 955 

(F) Full-length 5’RACE detects the majority of long, normal and short HBx transcripts 956 

in gradient fractions 7 and 8 co-fractionating with viral cDNA and S proteins. pgRNA-957 

specific 5’RACE detects pgRNA in gradient fractions 6 to 9 with the highest abundance 958 

in fraction 7 similar to cDNA. 959 

 960 

Fig.6. HBx RNAs in viral particles are both capped and un-capped. 961 

(A) Overview of the un-capped RNA specific HBV full-length 5’RACE protocol. The un-962 

capped RNA specific 5’RACE protocol lacks the de-capping and de-phosphorylation 963 

steps from the standard HBV full-length 5’RACE. In a first step, isolated RNAs are 964 

digested by DNAse to remove residual DNA molecules. In a next step, the RNA anchor 965 

(green box) is ligated to the free phosphate group of un-capped RNAs. Then, the viral 966 

RNAs are reverse transcribed using the gene specific primer Gsp1 (black arrow) 967 

integrating the anchor sequence into the cDNA. Finally, the different viral cDNAs are 968 

amplified by PCR using the second gene specific primer Gsp2 (black arrow) and an 969 

anchor specific primer (green arrow) in the same tube. 970 

(B) Capped RNA specific 5’RACE using total RNAs of PHHs (lane 1). Capped and un-971 

capped RNA specific 5’RACEs using MNAse-digested supernatant of HepAD38 cells 972 

(lane 3-5). Presence of different un-capped HBx RNA (amplicons sequenced by sub-973 

cloning and Sanger sequencing, data not shown) in viral particles (lane 5). The de-974 

phosphorylation step of the 5’RACE protocol is very effective (compare lane 4 with 975 
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lane 5) demonstrating the authenticity of the capped RNA species identified by the 976 

HBV full-length 5’RACE in viral particles and in cells (lanes 1 and 3). L (1kb ladder 977 

(NEB)). 978 

 979 

Fig.7. Full length 5’RACE identifies 4 major categories of circulating RNA 980 

species in plasma and sera of patients. 981 

(A) Clinical characteristics associated with the blood samples of chronic Hepatitis B 982 

patients used in this study. 983 

(B) Full-length 5’RACE amplicons using patient plasmas (patient #1 and #2) and serum 984 

(patient #3) plus minus RT. All amplicons for patients 1 and 2 were sequenced by sub-985 

cloning and Sanger sequencing (Suppl. Table 3A/B). Sequences of serological RNAs 986 

belong to one of the three categories: 1. pgRNA 2. pgRNA splice variant 3. HBx 987 

transcript (long, normal and short HBx transcripts).  988 

(C) Alignment of sequenced amplicons in patient #1 and #2 with respect to HBV 989 

genome genotype D. To the right, total number of sequenced clones per transcript 990 

category.  991 
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